
F Syntax Rules (G95/F – duben 2006)

F Syntax Rules

These are the syntax rules for F. The rule numbers correspond roughly to those of the Fortran
90/95 standards.

Permission to use, copy, modify, and distribute this Appendix is freely granted, provided that
this notice is preserved.

R201 program
 is program-unit
 [program-unit] ...

Constraint: A program must have exactly one main-program.

R202 program-unit
 is main-program
 or module

R1101 main-program
 is program-stmt
 [use-stmt] ...
 [main-specification] ...
 [execution-part]
 end-program-stmt

R1102 program-stmt
 is PROGRAM program-name

R1103 end-program-stmt
 is END PROGRAM program-name

Constraint: The program-name in the end-program-stmt shall
be identical to the program-name specified in the program-stmt.

R1103x main-specification
 is type-declaration-stmt
 intrinsic-stmt

Constraint: An automatic object shall not appear in the
specification-part of a main program.

Constraint: In a main-program, the execution-part
shall not contain a RETURN statement.

R1104w module
 is public-module
 or private-module

R1104x public-module
 is module-stmt
 [use-stmt] ...
 PUBLIC
 end-module-stmt

- 1 -

F Syntax Rules (G95/F – duben 2006)

R1104y private-module
 is module-stmt
 [use-stmt] ...
 [PRIVATE]
 [module-specification] ...
 [subprogram-part]
 end-module-stmt

Constraint: A PRIVATE statement shall appear if any use-stmts appear.
A PRIVATE statement shall not appear if no use-stmts are present.

R1105 module-stmt
 is MODULE module-name

R1106 end-module-stmt
 is END MODULE module-name

Constraint: The module-name is specified in the end-module-stmt
shall be identical to the module-name specified in the module-stmt.

Constraint: An automatic object shall not appear
in a module-specification.

R1106x module-specification
 is access-stmt
 or derived-type-def
 or type-declaration-stmt
 or module-procedure-interface-block
 or intrinsic-stmt

R212 subprogram-part
 is contains-stmt
 subprogram
 [subprogram] ...

R213 subprogram
 is function-subprogram
 or subroutine-subprogram

Constraint: every function-subprogram or subroutine-subprogram
in a private-module shall be listed in an access-stmt.

R1216 function-subprogram
 is function-stmt
 [use-stmt] ...
 [procedure-specification] ...
 [execution-part]
 end-function-stmt

R1221 subroutine-subprogram
 is subroutine-stmt
 [use-stmt] ...
 [procedure-specification] ...
 [execution-part]
 end-subroutine-stmt

R1221x procedure-specification
 is type-declaration-stmt
 or intrinsic-stmt
 or dummy-interface-block
 or optional-stmt

- 2 -

F Syntax Rules (G95/F – duben 2006)

R1217 function-stmt
 is [prefix] ... FUNCTION function-name
 ([dummy-arg-name-list]) RESULT (result-name)

R1218 prefix
 is RECURSIVE
 or ELEMENTAL
 or PURE

Constraint: If RECURSIVE appears, ELEMENTAL shall not appear.

Constraint: The same prefix shall not appear more than once
in a function-stmt or subroutine-stmt.

Constraint: The function-name shall not appear
in any specification statement in the scoping unit
of the function subprogram.

R1220 end-function-stmt
 is END FUNCTION function-name

Constraint: result-name shall not be the same as function-name.

Constraint: The function-name in the end-function-stmt shall be
identical to the function-name specified in the function-stmt.

R1222 subroutine-stmt
 is [prefix] ... SUBROUTINE subroutine-name &
 ([dummy-arg-name-list])

R1224 end-subroutine-stmt
 is ENDSUBROUTINE subroutine-name

Constraint: The subroutine-name in the end-subroutine-stmt shall be
identical to the subroutine-name specified in the subroutine-stmt.

R208 execution-part
 is [executable-construct] ...

R215 executable-construct
 is action-stmt
 or case-construct
 or do-construct
 or forall-construct
 or if-construct
 or where-construct

R216 action-stmt
 is allocate-stmt
 or assignment-stmt
 or backspace-stmt
 or call-stmt
 or close-stmt
 or cycle-stmt
 or deallocate-stmt
 or endfile-stmt
 or exit-stmt
 or inquire-stmt
 or open-stmt
 or pointer-assignment-stmt

- 3 -

F Syntax Rules (G95/F – duben 2006)

 or print-stmt
 or read-stmt
 or return-stmt
 or rewind-stmt
 or stop-stmt
 or write-stmt

R301 character
 is alphanumeric-character
 or special-character

R302 alphanumeric-character
 is letter
 or digit
 or underscore

R303 underscore
 is _

R304 name
 is letter [alphanumeric-character] ...

Constraint: The maximum length of a name is 31 characters.

Constraint: The last character of a name shall not be _ .

Constraint: All variables must be declared in type statements
or accessed by use or host association.

Constraint: A name may use both upper and lower case letters;
however all appearences of a name that refers to the same
entity shall use the same case convention.

Constraint: Blank characters shall not appear within any name, keyword,
operator, or literal-constant except that one or more blank characters
may appear before or after the real-part or imag-part of a
complex-literal-constant and one or more blanks may be used in keywords
as follows:

 keyword alternate usage

 elseif else if
 enddo end do
 endfile end file
 endfunction end function
 endif end if
 endinterface end interface
 endmodule end module
 endprogram end program
 endselect end select
 endsubroutine end subroutine
 endtype end type
 endwhere end where
 inout in out
 selectcase select case

Constraint: No keyword shall be continued at the optional blank.

Constraint: No line shall begin with the & character.

- 4 -

F Syntax Rules (G95/F – duben 2006)

R305 constant
 is literal-constant
 or named-constant

R306 literal-constant
 is int-literal-constant
 or real-literal-constant
 or complex-literal-constant
 or logical-literal-constant
 or char-literal-constant

R307 named-constant
 is name

R308 int-constant
 is constant

Constraint: int-constant shall be of type integer.

R309 char-constant
 is constant

Constraint: char-constant shall be of type character.

R310 intrinsic-operator
 is power-op
 or mult-op
 or add-op
 or concat-op
 or rel-op
 or not-op
 or and-op
 or or-op
 or equiv-op

R311 defined-operator
 is defined-unary-op
 or defined-binary-op
 or extended-intrinsic-op

R312 extended-intrinsic-op
 is intrinsic-operator

Constraint: A defined-unary-op and a defined-binary-op shall not
contain more than 31 letters and shall not be the same as any
intrinsic-operator (including the Fortran operators .lt., .le.,
.eq., .ne., .gt., and .ge.) or logical-literal-constant.

R401 signed-digit-string
 is [sign] digit-string

R402 digit-string
 is digit [digit] ...

R403 signed-int-literal-constant
 is [sign] int-literal-constant

R404 int-literal-constant
 is digit-string [_ kind-param]

- 5 -

F Syntax Rules (G95/F – duben 2006)

R405 kind-param
 is scalar-int-constant-name

R406 sign
 is +
 or -

Constraint: The value of kind-param shall be nonnegative.

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

R412 signed-real-literal-constant
 is [sign] real-literal-constant

R413 real-literal-constant
 is significand [exponent-letter exponent] [_ kind-param]

R414 significand
 is digit-string . digit-string

R415 exponent-letter
 is E

R416 exponent
 is signed-digit-string

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

R417 complex-literal-constant
 is (real-part , imag-part)

R418 real-part
 is signed-real-literal-constant

R419 imag-part
 is signed-real-literal-constant

Constraint: Both real-part and imag-part must either have no kind-param
or have the same kind-param.

R420 char-literal-constant
 is [kind-param _] " [rep-char] ... "

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

Note: Within a char-literal-constant the quote may be doubled
to indicate a single instance of the quote.

R421 logical-literal-constant
 is .TRUE. [_ kind-param]
 or .FALSE. [_ kind-param]

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

Constraint: No integer, real, logical, or character literal constant,
or real-part or imag-part shall be split onto more than one line
via statement continuation.

- 6 -

F Syntax Rules (G95/F – duben 2006)

R422 derived-type-def
 is derived-type-stmt
 [private-stmt]
 component-def-stmt
 [component-def-stmt] ...
 end-type-stmt

R423 derived-type-stmt
 is TYPE , access-spec :: type-name

R424 private-stmt
 is PRIVATE

Constraint: A derived type type-name shall not be the same
as the name of any intrinsic type defined in Fortran nor
the same as any other accessible derived type type-name.

R425 component-def-stmt
 is type-spec [, component-attr-spec-list] :: &
 component-decl-list

Constraint: The character length specified by the char-length
in a type-spec shall be a constant specification expression.

R426 component-attr-spec
 is POINTER
 or DIMENSION (component-array-spec)
 or ALLOCATABLE

R427 component-array-spec
 is explicit-shape-spec-list
 or deferred-shape-spec-list

Constraint: If a component of a derived-type is of a type
that is private, either the derived type definition shall contain
the PRIVATE statement or the derived type shall be private.

Constraint: If a derived type is private it shall not contain
a PRIVATE statement.

Constraint: No component-attr-spec shall appear more than once
in a given component-def-stmt.

Constraint: If the POINTER attribute is not specified for a component,
a type-spec in the component-def-stmt shall specify an intrinsic type
or a previously defined derived type.

Constraint: If the POINTER attribute is specified for a component,
a type-spec in the component-def-stmt shall specify an intrinsic type
or any accessible derived type including the type being defined.

Constraint: If the POINTER or ALLOCATABLE attribute is specified,
each component-array-spec shall be a deferred-shape-spec-list.

Constraint: If the POINTER or ALLOCATABLE attribute is not specified,
each component-array-spec shall be an explicit-shape-spec-list.

Constraint: Each bound in the explicit-shape-spec shall be
a constant specification expression.

- 7 -

F Syntax Rules (G95/F – duben 2006)

Constraint: A component shall not have both the POINTER and
the ALLOCATABLE attribute.

R428 component-decl
 is component-name

R430 end-type-stmt
 is END TYPE type-name

Constraint: The type-name shall be the same as that
in the corresponding derived-type-stmt.

R431 structure-constructor
 is type-name (expr-list)

R432 array-constructor
 is (/ ac-value-list /)

R433 ac-value
 is expr
 or ac-implied-do

R434 ac-implied-do
 is (ac-value-list , ac-implied-do-control)

R435 ac-implied-do-control
 is ac-do-variable = scalar-int-expr , scalar-int-expr
 [, scalar-int-expr]

R436 ac-do-variable
 is scalar-int-variable

Constraint: An ac-do-variable shall be a named variable,
shall not be a dummy argument, shall not have the POINTER attribute,
shall not be initialized, shall not have the save attribute
and shall not be accessed by use or host association,
and shall be used in the scoping unit only as an ac-do-variable.

Constraint: Each ac-value expression in the array-constructor
shall have the same type and kind type parameter.

R501 type-declaration-stmt
 is type-spec [, attr-spec] ... :: entity-decl-list

R502 type-spec
 is INTEGER [kind-selector]
 or REAL [kind-selector]
 or CHARACTER char-selector
 or COMPLEX [kind-selector]
 or LOGICAL [kind-selector]
 or TYPE (type-name)

R503 attr-spec
 is PARAMETER
 or access-spec
 or ALLOCATABLE
 or DIMENSION (array-spec)
 or INTENT (intent-spec)
 or OPTIONAL
 or POINTER
 or SAVE
 or TARGET

- 8 -

F Syntax Rules (G95/F – duben 2006)

R504 entity-decl
 is object-name [initialization]

R505 initialization
 is = initialization-expr
 or => function-reference

R506 kind-selector
 is (KIND = scalar-int-constant-name)

Constraint: The same attr-spec shall not appear more than once
in a given type-declaration-stmt.

Constraint: The function-reference shall be a reference to the
NULL intrinsic function with no arguments.

Constraint: An array declared with a POINTER or an ALLOCATABLE
attribute shall be specified with an array-spec
that is a deferred-shape-spec-list.

Constraint: An array-spec for an object-name that is a function result
that does not have the POINTER attribute
shall be an explicit-shape-spec-list.

Constraint: If the POINTER attribute is specified,
neither the TARGET nor INTENT attribute shall be specified.

Constraint: If the TARGET attribute is specified,
neither the POINTER nor PARAMETER attribute shall be specified.

Constraint: The PARAMETER attribute shall not be specified
for dummy arguments, pointers, allocatable arrays,
or functions results.

Constraint: The INTENT and OPTIONAL attributes may be specified
only for dummy arguments.

Constraint: An entity shall not have the PUBLIC attribute
if its type has the PRIVATE attribute.

Constraint: The SAVE attribute shall not be specified
for an object that is a dummy argument, a procedure,
a function result, an automatic data object,
or an object with the PARAMETER attribute.

Constraint: An array shall not have both the ALLOCATABLE attribute
and the POINTER attribute.

Constraint: If initialization appears in a main program,
the object shall have the PARAMETER attribute.

Constraint: If initialization appears, the statement shall contain
either a PARAMETER attribute or a SAVE attribute.

Constraint: Initialization shall appear if the statement contains
a PARAMETER attribute.

Constraint: Initialization shall not appear if object-name
is a dummy argument, a function result, an allocatable array,
or an automatic object.

- 9 -

F Syntax Rules (G95/F – duben 2006)

Constraint: Initialization shall have the form
=> function-reference if and only if object-name has the
POINTER attribute.

Constraint: The value of scalar-int-constant-name in kind-selector
shall be nonnegative and shall specify a representation method
that exists on the processor.

R507 char-selector
 is (LEN = char-len-param-value &
 [, KIND = scalar-int-constant-name])

R510 char-len-param-value
 is specification-expr
 or *

Constraint: The char-len-param-value must be *
for a parameter and for a dummy argument.

R511 access-spec
 is PUBLIC
 or PRIVATE

Constraint: An access-spec shall appear only in the specification-part
of a module.

Constraint: An access-spec shall appear
in every type-declaration-statement in a module.

R512 intent-spec
 is IN
 or OUT
 or IN OUT

Constraint: The INTENT attribute shall not be specified
for a dummy argument that is a dummy procedure or a dummy pointer.

Constraint: A dummy argument with the INTENT(IN) attribute,
or a subobject of such a dummy argument, shall not appear as

(1) The variable of an assignment-stmt,

(2) The pointer-object of a pointer-assignment-stmt,

(3) A DO variable,

(4) An input-item in a read-stmt,

(5) An internal-file-unit in a write-stmt,

(6) An IOSTAT= or SIZE= specifier in an input/output statement,

(7) A definable variable in an INQUIRE statement,

(9) A stat-variable or allocate-object in an allocate-stmt
 or a deallocate-stmt, or

(10) An actual argument in a reference to a procedure
 when the associated dummy argument has the INTENT(OUT)
 or INTENT(IN OUT) attribute.

- 10 -

F Syntax Rules (G95/F – duben 2006)

R513 array-spec
 is explicit-shape-spec-list
 or assumed-shape-spec-list
 or deferred-shape-spec-list

Constraint: The maximum rank is seven.

R514 explicit-shape-spec
 is [lower-bound :] upper-bound

R515 lower-bound
 is specification-expr

R516 upper-bound
 is specification-expr

Constraint: An explicit-shape array whose bounds depend on
the values of nonconstant expressions shall be a function result
or an automatic array of a procedure.

R517 assumed-shape-spec
 is [lower-bound] :

R518 deferred-shape-spec
 is :

R521 optional-stmt
 is OPTIONAL :: dummy-arg-name-list

Constraint: Each dummy argument shall be a procedure
dummy argument of the subprogram containing the
optional-stmt.

R522 access-stmt
 is access-spec :: access-id-list

Constraint: Each access-id shall be a procedure defined
in the host module or a generic-spec accessed by use
association and extended in the module.

R523 access-id
 is local-name
 or generic-spec

Constraint: Each generic-spec and local-name shall be the name
of a module-procedure-interface-block or the name of a procedure,
respectively, that is not accessed by use association, execpt
for a generic-spec that is extended in the module, which shall
be named in an access-stmt.

Constraint: Each generic-spec and procedure in a module shall
be named in an access-stmt.

Constraint: A module procedure that has a dummy argument or
function result of a type that has PRIVATE accessibility shall
have PRIVATE accessibility and shall not have a generic identifier
that has PUBLIC accessibility.

- 11 -

F Syntax Rules (G95/F – duben 2006)

R601 variable
 is scalar-variable-name
 or array-variable-name
 or subobject

Constraint: array-variable-name shall be the name of a data object
that is an array.

Constraint: array-variable-name shall not have the PARAMETER attribute.

Constraint: scalar-variable-name shall not have
the PARAMETER attribute.

Constraint: subobject shall not be a subobject designator (for example,
a substring) whose parent is a constant.

R602 subobject
 is array-element
 or array-section
 or structure-component
 or substring

R603 logical-variable
 is variable

Constraint: logical-variable shall be of type logical.

R604 default-logical-variable
 is variable

Constraint: default-logical-variable shall be of type default logical.

R605 char-variable
 is variable

Constraint: char-variable shall be of type character.

R607 int-variable
 is variable

Constraint: int-variable shall be of type integer.

R608 default-int-variable
 is variable

Constraint: default-int-variable shall be of type default integer.

R609 substring
 is parent-string (substring-range)

R610 parent-string
 is scalar-variable-name
 or array-element
 or scalar-structure-component

R611 substring-range
 is [scalar-int-expr] : [scalar-int-expr]

Constraint: parent-string shall be of type character.

- 12 -

F Syntax Rules (G95/F – duben 2006)

R612 data-ref
 is part-ref [% part-ref] ...

R613 part-ref
 is part-name [(section-subscript-list)]

Constraint: In a data-ref, each part-name except the rightmost
shall be of derived type.

Constraint: In a data-ref, each part-name except the leftmost
shall be the name of a component of the derived type definition
of the type of the preceding part-name.

Constraint: In a part-ref containing a section-subscript-list,
the number of section-subscripts shall equal the rank of part-name.

Constraint: In a data-ref, there shall not be more than one
part-ref with nonzero rank. A part-name to the right of a part-ref
with nonzero rank shall not have the POINTER attribute.

R614 structure-component
 is data-ref

Constraint: In a structure-component, there shall be more than one
part-ref and the rightmost part-ref shall be of the form part-name.

R615 array-element
 is data-ref

Constraint: In an array-element, every part-ref shall have rank zero
and the last part-ref shall contain a subscript-list.

R616 array-section
 is data-ref [(substring-range)]

Constraint: In an array-section, exactly one part-ref shall have
nonzero rank, and either the final part-ref shall have
a section-subscript-list with nonzero rank or another part-ref
shall have nonzero rank.

Constraint: In an array-section with a substring-range,
the rightmost part-name shall be of type character.

R617 subscript
 is scalar-int-expr

R618 section-subscript
 is subscript
 or subscript-triplet
 or vector-subscript

R619 subscript-triplet
 is [subscript] : [subscript] [: stride]

R620 stride
 is scalar-int-expr

R621 vector-subscript
 is int-expr

Constraint: A vector-subscript shall be an integer array expression
of rank one.

- 13 -

F Syntax Rules (G95/F – duben 2006)

R622 allocate-stmt
 is ALLOCATE (allocation-list [, STAT = stat-variable])

R623 stat-variable
 is scalar-int-variable

R624 allocation
 is allocate-object [(allocate-shape-spec-list)]

R625 allocate-object
 is variable-name
 or structure-component

R626 allocate-shape-spec
 is [allocate-lower-bound :] allocate-upper-
bound

R627 allocate-lower-bound
 is scalar-int-expr

R628 allocate-upper-bound
 is scalar-int-expr

Constraint: Each allocate-object shall be a pointer
or an allocatable array.

Constraint: The number of allocate-shape-specs
in an allocate-shape-spec-list shall be the same as the rank
of the pointer or allocatable array.

R630 pointer-object
 is variable-name
 or structure-component

Constraint: Each pointer-object shall have the POINTER attribute.

R631 deallocate-stmt
 is DEALLOCATE &
 (allocate-object-list [, STAT = stat-variable])

Constraint: Each allocate-object shall be a pointer
or allocatable array.

R701 primary
 is constant
 or constant-subobject
 or variable
 or array-constructor
 or structure-constructor
 or function-reference
 or (expr)

R702 constant-subobject
 is subobject

Constraint: subobject shall be a subobject designator
whose parent is a constant.

R703 level-1-expr
 is [defined-unary-op] primary

- 14 -

F Syntax Rules (G95/F – duben 2006)

R704 defined-unary-op
 is . letter [letter] ...

Constraint: A defined-unary-op shall not contain more than 31 letters.

R705 mult-operand
 is level-1-expr [power-op mult-operand]

R706 add-operand
 is [add-operand mult-op] mult-operand

R707 level-2-expr
 is [[level-2-expr] add-op] add-operand

R708 power-op
 is **

R709 mult-op
 is *
 or /

R710 add-op
 is +
 or -

R711 level-3-expr
 is [level-3-expr concat-op] level-2-expr

R712 concat-op
 is //

R713 level-4-expr
 is [level-3-expr rel-op] level-3-expr

R714 rel-op
 is ==
 or /=
 or <
 or <=
 or >
 or >=

R715 and-operand
 is [not-op] level-4-expr

R716 or-operand
 is [or-operand and-op] and-operand

R717 equiv-operand
 is [equiv-operand or-op] or-operand

R718 level-5-expr
 is [level-5-expr equiv-op] equiv-operand

R719 not-op
 is .NOT.

R720 and-op
 is .AND.

- 15 -

F Syntax Rules (G95/F – duben 2006)

R721 or-op
 is .OR.

R722 equiv-op
 is .EQV.
 or .NEQV.

R723 expr
 is [expr defined-binary-op] level-5-expr

R724 defined-op
 is . letter [letter]

Constraint: A defined-binary-op shall not contain more than 31 letters.

R725 logical-expr
 is expr

Constraint: logical-expr shall be of type logical.

R726 char-expr
 is expr

Constraint: char-expr shall of be type character.

R728 int-expr
 is expr

Constraint: int-expr shall be of type integer.

R729 numeric-expr
 is expr

Constraint: numeric-expr shall be of type integer, real or complex.

R730 initialization-expr
 is expr

Constraint: initialization-expr shall be an initialization expression.

R731 char-initialization-expr
 is char-expr

Constraint: char-initialization-expr shall be
an initialization expression.

R732 int-initialization-expr
 is int-expr

Constraint: int-initialization-expr shall be
an initialization expression.

R733 logical-initialization-expr
 is logical-expr

Constraint: logical-initialization-expr shall be
an initialization expression.

R734 specification-expr
 is scalar-int-expr

- 16 -

F Syntax Rules (G95/F – duben 2006)

Constraint: The scalar-int-expr shall be a restricted expression.

R735 assignment-stmt
 is variable = expr

R736 pointer-assignment-stmt
 is pointer-object => target

R737 target
 is variable
 or expr

Constraint: The pointer-object shall have the POINTER attribute.

Constraint: The variable shall have the TARGET attribute
or be a subobject of an object with the TARGET attribute,
or it shall have the POINTER attribute.

Constraint: The target shall be of the same type,
kind type parameters, and rank as the pointer.

Constraint: The target shall not be an array
with vector section subscripts

Constraint: The expr shall deliver a pointer result.

R739 where-construct
 is WHERE (mask-expr)
 [assignment-stmt] ...
 [ELSEWHERE (mask-expr)
 [assignment-stmt] ...] ...
 [ELSEWHERE
 [assignment-stmt] ...]
 ENDWHERE

R743 mask-expr
 is logical-expr

Constraint: In each assignment-stmt, the mask-expr
and the variable being defined must be arrays of the same shape.

Constraint: The assignment-stmt must not be a defined assignment.

R801 block
 is [executable-construct] ...

R802 if-construct
 is IF (scalar-logical-expr) THEN
 block
 [ELSEIF (scalar-logical-expr) THEN
 block] ...
 [ELSE
 block]
 END IF

R808 case-construct
 is SELECT CASE (case-expr)
 [CASE case-selector
 block] ...
 [CASE DEFAULT
 block]
 END SELECT

- 17 -

F Syntax Rules (G95/F – duben 2006)

R812 case-expr
 is scalar-int-expr
 or scalar-char-expr

R813 case-selector
 is (case-value-range-list)

R814 case-value-range
 is case-value
 or case-value :
 or : case-value
 or case-value : case-value

R815 case-value
 is scalar-int-initialization-expr
 or scalar-char-initialization-expr

Constraint: For a given case-construct, each case-value shall be
of the same type as case-expr. For character type,
length differences are allowed.

Constraint: For a given case-construct, the case-value-ranges
shall not overlap; that is, there shall be no possible value
of the case-expr that matches more than one case-value-range.

R816 do-construct
 is [do-construct-name :] DO [loop-control]
 block
 END DO [do-construct-name]

Constraint: The do-construct-name shall not be the same as
the name of any accessible entity.

Constraint: The same do-construct-name shall not be used
for more than one do-construct in a scoping unit.

Constraint: If the do-stmt is identified by a do-construct-name,
the corresponding end-do shall specify the same do-construct-name.
If the do-stmt is not identified by a do-construct-name,
the corresponding end-do shall not specify a do-construct-name.

R821 loop-control
 is do-stmt-variable = scalar-int-expr, &
 scalar-int-expr [, scalar-int-expr]

R822 do-stmt-variable
 is scalar-int-variable

Constraint: A do-stmt-variable shall be a named variable,
shall not be a dummy argument, shall not have the POINTER attribute,
and shall not be accessed by use or host association.

R834 cycle-stmt
 is CYCLE [do-construct-name]

Constraint: If a cycle-stmt refers to a do-construct-name,
it shall be within the range of that do-construct;
otherwise, it shall be within the range of at least one do-construct.

- 18 -

F Syntax Rules (G95/F – duben 2006)

R835 exit-stmt
 is EXIT [do-construct-name]

Constraint: If an exit-stmt refers to a do-construct-name,
it shall be within the range of that do-construct; otherwise,
it shall be within the range of at least one do-construct.

R840 stop-stmt
 is STOP

R901 io-unit
 is external-file-unit
 or *
 or internal-file-unit

R902 external-file-unit
 is scalar-int-expr

R903 internal-file-unit
 is char-variable

Constraint: The char-variable shall not be an array section
with a vector subscript.

R904 open-stmt
 is OPEN (connect-spec-list)

R905 connect-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable
 or FILE = file-name-expr
 or STATUS = scalar-char-expr
 or ACCESS = scalar-char-expr
 or FORM = scalar-char-expr
 or RECL = scalar-int-expr
 or POSITION = scalar-char-expr
 or ACTION = scalar-char-expr

R906 file-name-expr
 is scalar-char-expr

Constraint: Each connect-spec may appear at most once.

Constraint: A UNIT= must appear.

Constraint: A FILE= must appear if and only if
the status is not SCRATCH.

Constraint: A STATUS= must appear.

Constraint: An ACTION= must appear unless the status is SCRATCH.

Constraint: A POSITION= must appear if the status is OLD
and the access is SEQUENTIAL.

Constraint : A RECL= must appear if access is DIRECT.

R907 close-stmt
 is CLOSE (close-spec-list)

- 19 -

F Syntax Rules (G95/F – duben 2006)

R908 close-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable
 or STATUS = scalar-char-expr

Constraint: A close-spec-list shall contain exactly one
UNIT = io-unit and may contain at most one of each
of the other specifiers.

R909 read-stmt
 is READ (io-control-spec-list) [input-item-list]
 or READ format [, input-item-list]

R910 write-stmt
 is WRITE (io-control-spec-list) [output-item-
list]

R911 print-stmt
 is PRINT format [, output-item-list]

R912 io-control-spec
 is UNIT = io-unit
 or FMT = format
 or REC = scalar-int-expr
 or IOSTAT = scalar-default-int-variable
 or ADVANCE = scalar-char-expr
 or SIZE = scalar-default-int-variable

Constraint: An io-control-spec-list shall contain exactly one
UNIT = io-unit and may contain at most one of each
of the other specifiers.

Constraint: A SIZE= specifier shall not appear in a write-stmt.

Constraint: If the unit specifier specifies an internal file,
the io-control-spec-list shall not contain a REC= specifier.

Constraint: If the REC= specifier is present, the format,
if any, shall not be an asterisk specifying list-directed input/output.

Constraint: An ADVANCE= specifier may be present only
in a formatted sequential input/output statement
with explicit format specification whose control information list
does not contain an internal file unit specifier.

Constraint: If a SIZE= specifier is present, an ADVANCE= specifier
also shall appear.

R913 format
 is char-expr
 or *

R914 input-item
 is variable

R915 output-item
 is expr

R919 backspace-stmt
 is BACKSPACE (position-spec-list)

- 20 -

F Syntax Rules (G95/F – duben 2006)

R920 endfile-stmt
 is ENDFILE (position-spec-list)

R921 rewind-stmt
 is REWIND (position-spec-list)

R922 position-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable

Constraint: A position-spec-list shall contain exactly one
UNIT = external-file-unit, and may contain at most one
IOSTAT specifier.

R923 inquire-stmt
 is INQUIRE (inquire-spec-list)
 or INQUIRE (IOLENGTH = scalar-default-int-variable) &
 output-item-list

R924 inquire-spec
 is UNIT = external-file-unit
 or FILE = file-name-expr
 or IOSTAT = scalar-default-int-variable
 or EXIST = scalar-default-logical-variable
 or OPENED = scalar-default-logical-variable
 or NUMBER = scalar-default-int-variable
 or NAMED = scalar-default-logical-variable
 or NAME = scalar-char-variable
 or ACCESS = scalar-char-variable
 or SEQUENTIAL = scalar-char-variable
 or DIRECT = scalar-char-variable
 or FORM = scalar-char-variable
 or FORMATTED = scalar-char-variable
 or UNFORMATTED = scalar-char-variable
 or RECL = scalar-default-int-variable
 or NEXTREC = scalar-default-int-variable
 or POSITION = scalar-char-variable
 or ACTION = scalar-char-variable
 or READ = scalar-char-variable
 or WRITE = scalar-char-variable
 or READWRITE = scalar-char-variable

Constraint: An inquire-spec-list shall contain one FILE= specifier
or one UNIT= specifier, but not both, and at most one of each
of the other specifiers.

R1002 format-specification
 is ([format-item-list])

R1003 format-item
 is [r] data-edit-desc
 or control-edit-desc
 or [r] (format-item-list)

R1004 r
 is int-literal-constant

Constraint: r shall be positive.

Constraint: r shall not have a kind parameter specified for it.

- 21 -

F Syntax Rules (G95/F – duben 2006)

R1005 data-edit-desc
 is I w [. m]
 or F w . d
 or ES w . d [E e]
 or L w
 or A [w]

R1006 w
 is int-literal-constant

R1007 m
 is int-literal-constant

R1008 d
 is int-literal-constant

R1009 e
 is int-literal-constant

Constraint: w and e shall be positive.

Constraint: w, m, d, and e shall not have kind parameters
specified for them.

R1010 control-edit-desc
 is position-edit-desc
 or [r] /
 or :
 or sign-edit-desc

R1012 position-edit-desc
 is T n
 or TL n
 or TR n

R1013 n
 is int-literal-constant

Constraint: n shall be positive.

Constraint: n shall not have a kind parameter specified for it.

R1014 sign-edit-desc
 is S
 or SP
 or SS

R1107 use-stmt
 is USE module-name [, rename-list]
 or USE module-name , ONLY : [only-list]

Constraint: The module shall appear in a previously processed
program unit.

Constraint: There shall be at least one ONLY in the only-list.

R1108 rename
 is local-name => use-name

- 22 -

F Syntax Rules (G95/F – duben 2006)

R1109 only
 is generic-spec
 or only-use-name
 or only-rename

R1110 only-use-name
 is use-name

R1111 only-rename
 is local-name => use-name

Constraint: Each generic-spec shall be a public entity in the module.

Constraint: Each use-name shall be the name of a public entity
in the module.

Constraint: No two accessible entities may have the same local name.

R1201 module-procedure-interface-block
 is INTERFACE generic-spec
 module-procedure-stmt
 [module-procedure-stmt] ...
 END INTERFACE

Constraint: The generic-spec in the END INTERFACE statement
must be the same as the generic-spec in the INTERFACE statement.

Constraint: Every generic-spec in a private-module
shall be listed in an access-stmt.

Constraint: If generic-spec is also the name of an intrinsic procedure,
the generic name shall appear in a previous intrinsic statement
in the module.

R1206 module-procedure-stmt
 is MODULE PROCEDURE procedure-name-list

Constraint: A procedure-name in a module-procedure-stmt shall not be
one which previously had been specified in any module-procedure-stmt
with the same generic identifier in the same specification part.

Constraint: Each procedure-name must be accessible
as a module procedure.

R1207 generic-spec
 is generic-name
 or OPERATOR (defined-operator)
 or ASSIGNMENT (=)

Constraint: generic-name shall not be the same
as any module procedure name.

R1202 dummy-procedure-interface-block
 is INTERFACE
 interface-body
 [interface-body] ...
 END INTERFACE

Constraint: Each procedure dummy argument shall appear
in exactly one interface body.

- 23 -

F Syntax Rules (G95/F – duben 2006)

R1205 interface-body
 is function-stmt
 [use-stmt] ...
 [procedure-specification] ...
 end-function-stmt
 or subroutine-stmt
 [use-stmt] ...
 [procedure-specification] ...
 end-subroutine-stmt

Constraint: Each procedure specified shall be a dummy argument.

R1209 intrinsic-stmt
 is INTRINSIC :: intrinsic-procedure-name-list

Constraint: Each intrinsic-procedure-name shall be the name
of an intrinsic procedure.

R1298 intrinsic-procedure-name
 is ABS
 or ACOS
 or ADJUSTL
 or ADJUSTR
 or AIMAG
 or AINT
 or ALL
 or ALLOCATED
 or ANINT
 or ANY
 or ASIN
 or ASSOCIATED
 or ATAN
 or ATAN2
 or BIT_SIZE
 or BTEST
 or CEILING
 or CHAR
 or CMPLX
 or CONJG
 or COS
 or COSH
 or COUNT
 or CPU_TIME
 or CSHIFT
 or DATE_AND_TIME
 or DIGITS
 or DOT_PRODUCT
 or EOSHIFT
 or EPSILON
 or EXP
 or EXPONENT
 or FLOOR
 or FRACTION
 or HUGE
 or IAND
 or IBCLR
 or IBITS
 or IBSET
 or ICHAR
 or IEOR
 or INDEX
 or INT

- 24 -

F Syntax Rules (G95/F – duben 2006)

 or IOR
 or ISHFT
 or ISHFTC
 or KIND
 or LBOUND
 or LEN
 or LEN_TRIM
 or LOG
 or LOG10
 or LOGICAL
 or MATMUL
 or MAX
 or MAXEXPONENT
 or MAXLOC
 or MAXVAL
 or MERGE
 or MIN
 or MINEXPONENT
 or MINLOC
 or MINVAL
 or MODULO
 or MVBITS
 or NEAREST
 or NINT
 or NOT
 or NULL
 or PACK
 or PRECISION
 or PRESENT
 or PRODUCT
 or RADIX
 or RANDOM_NUMBER
 or RANDOM_SEED
 or RANGE
 or REAL
 or REPEAT
 or RESHAPE
 or RRSPACING
 or SCALE
 or SCAN
 or SELECTED_INT_KIND
 or SELECTED_REAL_KIND
 or SET_EXPONENT
 or SHAPE
 or SIGN
 or SIN
 or SINH
 or SIZE
 or SPACING
 or SPREAD
 or SQRT
 or SUM
 or SYSTEM_CLOCK
 or TAN
 or TANH
 or TINY
 or TRANSPOSE
 or TRIM
 or UBOUND
 or UNPACK
 or VERIFY

- 25 -

F Syntax Rules (G95/F – duben 2006)

Constraint: In a reference to any intrinsic function
that has a kind argument the corresponding actual argument
must be a named constant.

R1210 function-reference
 is function-name ([actual-arg-spec-list])

R1211 call-stmt
 is CALL subroutine-name ([actual-arg-spec-list])

R1212 actual-arg-spec
 is [keyword =] actual-arg

R1213 keyword
 is dummy-arg-name

R1214 actual-arg
 is expr
 or variable
 or procedure-name

Constraint: The keyword = may be omitted from an actual-arg-spec
only if the keyword = has been omitted from each preceding
actual-arg-spec in the argument list.

Constraint: Each keyword shall be the name of a dummy argument
of the procedure.

Constraint: In a reference to a function, a procedure-name actual-arg
shall be the name of a function.

Constraint: A procedure-name actual-arg shall not be the name
of an intrinsic function or a generic-name.

R1226 return-stmt
 is RETURN

Constraint: The return-stmt shall be in the scoping unit of a function
or subroutine subprogram.

R1227 contains-stmt
 is CONTAINS

Constraint: A local variable declared in the specification part
of a function shall not have the SAVE attribute
(hence also cannot be initialized).

Constraint: The specification-part of a function subprogram
shall specify that all dummy arguments have INTENT (IN)
except procedure arguments and arguments with the POINTER attribute.

Constraint: The specification-part of a subroutine shall specify
the intents of all dummy arguments except procedure arguments
and arguments with the POINTER attribute.

- 26 -

F Syntax Rules (G95/F – duben 2006)

Constraint: In a function any variable which is accessed by host
or use association, or is a dummy argument to a function
shall not be used in the following contexts:

(1) As the variable of an assignment-stmt;

(2) As an input-item in a read-stmt;

(3) As an internal-file-unit in a write-stmt;

(4) As an IOSTAT= specifier in an input or output statement;

(5) As the pointer-object of a pointer-assignment-stmt;

(6) As the target of a pointer-assignment-stmt;

(7) As the expr of an assignment-stmt in which the variable
 is of a derived type if the derived type has a pointer component
 at any level of component selection;

(8) As an allocate-object or stat-variable in an allocate-stmt
 or deallocate-stmt; or

(9) As an actual argument associated with a dummy argument
 with the POINTER attribute.

Constraint: Any subprogram referenced in a function
shall be a function or shall be referenced by defined assignment.

Constraint: Any subroutine referenced by defined assignment
from a function, and any subprogram invoked during such reference,
shall obey all of the constraints above relating to variables
in a function except that the first argument to the subroutine
may have intent OUT or IN OUT.

Constraint: A function shall not contain an open-stmt, close-stmt,
backspace-stmt, endfile-stmt, rewind-stmt, inquire-stmt, read-stmt,
or write-stmt. Note: it may contain a print-stmt.

- 27 -

	F Syntax Rules

