
Fortran Tools

THE FORTRAN COMPANY
www.fortran.com



Library of Congress Catalog Card Number

Copyright © 2005 by The Fortran Company. All rights re-
served. Printed in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part
of this book may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system with-
out the prior written permission of the authors and the pub-
lisher.

9  8  7  6  5  4  3  2  1

ISBN

The Fortran Company
6025 North Wilmot Road
Tucson, Arizona 85750 USA
www.fortran.com

Composition by The Fortran Company



Contents

1 Installation 1-1
1.1 Introduction 1-1
1.2 Implementations Provided 1-1
1.3 Contents 1-1
1.4 Installation 1-1
1.5 Support 1-8
1.6 What is Installed 1-9
1.7 Licenses 1-9
1.8 Source Code 1-10
1.9 Documentation 1-11

2 Command Line Compilation 2-1
2.1 Usage 2-1
2.2 Using g95 with the Fortran Tools 2-2
2.3 Description 2-3
2.4 Some Options 2-3
2.5 Pre-connected Input/Output Information 2-5
2.6 Error Messages 2-5

3 Preprocessors 3-1
3.1 cpp 3-1
3.2 fppr 3-1
3.3 COCO 3-8

4 Photran 4-1
4.1 Introduction to Using Photran 4-1
4.2 Starting Photran 4-1
4.3 Creating a New Project 4-2
4.4 Importing Existing Files 4-3
4.5 Create a New Source File 4-3
4.6 Editing a Source File 4-3



ii    Contents

4.7 Building a Project 4-4
4.8 Running a Program 4-5
4.9 Make Files 4-5
4.10 Deleting a Project 4-7
4.11 Debugging 4-7
4.12 Terminating a Program 4-11
4.13 Other Sources of Information 4-11

5 Calling Fortran and C 5-1
5.1 Calling C Functions 5-1

6 The Input/Output Module 6-1
6.1 EOF and EOR Parameters 6-1
6.2 Standard Unit Numbers 6-1
6.3 Getting a New Unit Number 6-2

7 The Math Module 7-1
7.1 Math Constants 7-1
7.2 The gcd Function 7-1

8 The Slatec Library 8-1
8.1 Finding Roots in an Interval 8-1
8.2 Finding Roots of a Polynomial 8-2
8.3 Computing a Definite Integral 8-3
8.4 Special Functions 8-5
8.5 Solving Linear Equations 8-5
8.6 Differential Equations 8-5

9 Defined Data Types 9-1
9.1 Varying Length Strings 9-1
9.2 Big Integers 9-2
9.3 High Precision Reals 9-3
9.4 Rationals 9-4
9.5 Quaternions 9-5
9.6 Roman Numerals 9-6

10 Matrix Operations 10-1



Contents   iii

10.1 MATRAN 10-1
10.2 BLAS and LAPACK Libraries 10-7
10.3 Atlas Libraries 10-8

11 Plotting 11-1
11.1 Using Gnuplot 11-2
11.2 Running Gnuplot with a Fortran Program 11-2
11.3 Generating Data with a Fortran Program 11-4

A Software License Agreement



iv    Contents



Installation 1

This chapter describes how to install the Fortran compiler,
Eclipse/Photran visual development environment, and related
software.

1.1 Introduction
Before installing the software, please read and abide by the
Software Agreement in Appendix A. Please note that most of
this software is developed by third parties as open source soft-
ware and is subject to the licensing agreements for the soft-
ware.

1.2 Implementations Provided
The implementations provided are for Linux and Windows.

1.3 Contents
The software includes a Fortran 95 compiler, the Eclipse/Phot-
ran development environment, other software (including linear
algebra and plotting software), a manual (of which this is the
first section), several books in PDF format, example programs,
appropriate licenses, some source code, and documentation.

The free version has an F compiler and only one version of
the Atlas linear algebra libraries. The Photran and JRE software
are not in the distribution; they must be downloaded; they are
free.

1.4 Installation
Notes:

1. You may need to have administrative privileges or be root
to install the software.

2. Do not use or create a folder (directory) with a space in its
name for any purpose related to the Fortran Tools.



1-2    Installation

3. In order to run Photran, a Java Runtime Environment (JRE)
must be installed.

4. On Windows, to run Photran and other Fortran Tools, such
as the plotting software, Cygwin, a collection of Unix-like
tools, must be installed. Cygwin contains many tools useful
to the Fortran programmer.

5. Acrobat Reader should be installed to read the documenta-
tion that is in PDF format. It is available free from ado-
be.com if it is not already installed on your system.

1.4.1 Installing the Fortran Tools Files

1.4.1.1 Installing from a CD

The Fortran Tools CD contains one directory (folder) named
FortranTools. Copy this into a folder whose name has no
spaces (i.e., not “Program Files” on Windows). Reasonable
choices are the C (or other) drive on Windows and your home
directory on Linux. If you have the CD that contains Cygwin,
this will take several minutes.

1.4.1.2 Installing the Free Version

Download the Fortran Tools with the F compiler for your sys-
tem and put it in a location of your choice.

Windows: unzip the file FortranTools_windows_f.zip
into a folder whose name has no spaces (i.e., not “Program
Files”). A reasonable choices is the C (or other) drive. This
should create a folder C:\FortranTools (for example).

Linux: untar (tar xzf FortranTools_linux_f.tgz) the file
into a folder whose name has no spaces. A reasonable choices
is your home directory. This should create a directory For-
tranTools.

1.4.2 Cygwin (Windows Only)

Cygwin must be installed. If it is already installed, skip to Sec-
tion 1.4.3.

1.4.2.1 Installing from the CD

If you have the CD containing the Cygwin files, follow these
directions. If not, go to section 1.4.2.2.



Installation   1-3

1. Go to cygwin in the FortranTools folder.

2. Execute setup.exe. Select Next.

3. On the next page, select Install from Local Directory,
then Next.

4. On the page Select Root Install Directory, type
C:\Cygwin for the Root Directory. The Cygwin folder
should be directly under a drive name, such as C:, D:, etc.,
so the only alternatives are to pick a disk drive other than
C:. Defaults for the other selections on the page should be
OK. Then select Next.

5. On the next page, use the current folder for the Local
Package Directory, e.g., C:\FortranTools\cygwin. Select
Next.

6. After a while, you should see a page titled Cygwin Setup -
Select Packages. Change the selection after the heading
+All to Install (if it says Default, or something else, click
on the little icon between +All and Default until it says
+All Install). Sometimes this takes a few seconds. This
will install all of Cygwin. Not everything is needed, but it
is not obvious what is needed. Besides, Cygwin contains
lots of cool stuff, so it is not a bad idea to install every-
thing. Select Next. Select Back to ensure that each category
still indicates Install; in some versions of setup.exe,
each must be selected individually. Then select Next again.

7. The files will be installed in C:\Cygwin (or wherever you
indicated). This can take many minutes. When the installa-
tion is finished, you should see a page asking if you want
to create icons; do so if you want to. Select Finish. You
should see a little box indicating that the installation is
complete. Click OK.

1.4.2.2 Installing from the Internet

Note: this is going to take a long time unless you have a high-
speed connection to the internet.

1. Use your browser (e.g., Mozilla, Netscape, or Internet Ex-
plorer) to access http://www.cygwin.com/mirrors.html.



1-4    Installation

2. Select a mirror site near you for downloading. You should
see a page titled Index of Cygwin. Select setup.exe and
save it to your disk in a folder (near to where you copied
the Fortran Tools) such as C:\FortranTools\cygwin.

3. On your computer, use Explorer (the file manager, not a
web browser) to locate and select the file setup.exe that
you just saved. Select it for execution (usually by double
clicking). On the page Cygwin Net Release Setup Program,
select Next. On the next page, select Download Without In-
stalling and then Next.

4. On the page Select Local Package Directory, select
C:\FortranTools\cygwin (or wherever you put the file
setup.exe). Then select Next.

5. Select the internet connection. Direct Connection should
be appropriate in most cases. Next.

6. On the Choose A Download Site page, you should be able
to pick the same site from which you downloaded the file
setup.exe. Just select the site and click on Next.

7. After some files are downloaded, you should see a page ti-
tled Cygwin Setup - Select. Follow the instructions in
1.4.2.1 (6) above. Select Next.

8. The files should be downloaded. This can take a while—at
least a good part of an hour with a typical home-based
high-speed broadband connection. When the download is
finished, install Cygwin as described in 1.4.2.1.

1.4.2.3 Setting your Path Variable

Make sure that the Cygwin executables are in your path vari-
able as follows. On XP, click Start → Control Panel → System →
Advanced → Environment Variables → System Variables. Scroll
down in the System Variable in the top window (note that the
bottom window is per-user variables) until you get to Path.
Click on Path and edit the value in the line at the bottom of the
screen by adding
C:\Cygwin\bin;C:\Cygwin\usr\local\bin;C:\usr\X11R6\bin



Installation   1-5

(the drive may be something other than C) at the beginning of
the path, preceded by a semicolon to separate it from the fold-
ers already there. Select OK three times.

1.4.2.4 Your Home Directory

Installation of Cygwin should produce a directory (folder)
named home and within it a directory that is your login name.
E.g., C:\Cygwin\home\joan. When you execute the bash com-
mand, you should be taken to this, your home directory. When
running bash, ~ is shorthand for your home directory.

1.4.3 Downloading Files for the Free Version

If you are using the free version, you need to download files
for Photran and JRE.

1.4.3.1 Photran

Go to http://www.eclipse.org/photran/ and select down-
loads in the photran section of the left margin. Click on Full
Photran 3.?.? for Windows or  Full Photran 3.?.? for
Linux/GTK. Save the file in the directory FortranTools/photran
(move it there if the download manager does not give you a choice).

1.4.3.2 JRE

Go to http://www.java.com/. Click on Manual Download. Se-
lect either Windows (Offline Installation) or Linux (self
extracting file). Save it in directory FortranTools/java.

1.4.4 Fortran Tools

For Windows, open a DOS Command Prompt window: Start →
Command Prompt. For Linux, open a terminal window. Type
bash to run the Bourne Again Shell.

Go to the FortranTools directory. E.g.,

cd C:/FortranTools  or  cd ~/FortranTools

One of the files there should be a shell script
install_fortrantools; execute it by typing

./install_fortrantools



1-6    Installation

The installed files must go into /usr/local. You will be
asked to verify that it is OK; if not, the installation will termi-
nate.

Also, unless you have the free version, you will be asked to
select a version of the matrix libraries by typing a number.
Number 0 indicates that the reference Blas and Lapack libraries
are to be loaded and used with Matran. Other options are opti-
mized versions for certain architectures. The PII (Pentium II)
version probably will run on any Intel system. If there is a
problem later with the one you select, simply copy a different
version of the libraries into the file /usr/local/fortran-
tools/lib/libmatrix.a. The other versions are also in
/usr/local/fortrantools/lib, with a slightly different
name, such as libmatrixPII.a.

On Linux, you will be asked to accept a license for the Sun
JRE. Hit the space bar to scroll down, then answer yes.

Make sure that /usr/local/bin is in your PATH variable.
On Linux, this can be accomplished by adding the following
line to ~/.bashrc, for example.

export PATH=/usr/local/bin;/bin;$PATH

You can verify this by typing

which photran

The response should be

/usr/local/bin/photran

On Windows, this is taken care of by modifying the system
path variable (1.4.2.3). Type exit to exit bash and type “echo
%path%” in the Command Prompt window to ensure that the
path is properly set even when not running bash.

1.4.5 Creating a Shortcut (Optional)

If you want to be able to start Photran by clicking on an icon on
the desktop, follow these steps.

1.4.5.1 Windows

1. Use Explore (the file manager) to locate the FortranTools
directory which is the copy of the contents of the CD. Go
into photran, then eclipse.



Installation   1-7

2. Right click on eclipse.exe and select Create Shortcut.

3. Right click on the shortcut and change the name to
Photran (or whatever you like).

4. Move (drag) the icon to the desktop.

5. Right click on the icon and select Properties. Select the
Shortcut tab. In the Target field, add to the end the text:

-vmargs -Xmx512M

This allows Eclipse/Photran to run with more memory.

1.4.5.2 Linux

This works on Red Hat. Things may be different on other
Linux distributions.

1. Right click on the background of the desktop. Select New
Launcher.

2. Select the Basic tab and enter Photran (or anything you
like) in the Name field.

3. Enter photran in the Command field.

4. Select the box to the right of Icon; it contains No Icon. In
the dialog box that comes up, use the Browse tab to find
the file photran/eclipse/icon.xpm in the FortranTools
directory. Or just type in the full path of the directory. Se-
lect the icon and then OK. Select OK in the Create Launch-
er box. The icon should appear on the desktop. Selecting it
will run /usr/local/bin/photran.

1.4.6 Java Runtime Environment (JRE)

A JRE must be installed to run Photran. The JRE is not the
same thing as the Java SDK.

1.4.6.1 JRE on Windows

To see whether your browser is configured to use the Java
Runtime Environment (JRE) or not, first open the Windows
Control Panel. From the Start menu button, select Control
Panel to open the Control Panel (this may be different in dif-
ferent versions of Windows). You should see the Java Coffee



1-8    Installation

Cup logo icon in the Control Panel. If you do not see the coffee
cup icon in the Windows Control Panel, you do not have the
latest version of the Sun JRE installed on your computer. Install
it as follows:

1. Go to java in the FortranTools folder copied from the
CD.

2. Execute the file jre*.exe.

3. Choose Typical setup and click Accept.

4. After installation is completed, check that all is OK as de-
scribed in the first paragraph of this section.

To Java enable your browser (probably not necessary to
run the Fortran Tools):

1. Double-click the Java icon in the Control Panel to open the
Java Control Panel.

2. In the Java Control Panel, select the Advanced tab.

3. Under Settings, click on + icon against <Applet> tag sup-
port.

4. Make sure the box next to Internet Explorer, Netscape, or
Mozilla is checked.

5. If it is not checked, click the checkbox to enable the JRE for
your Web browser.

6. Click Apply.

1.4.6.2 JRE on Linux

On LInux, a JRE was installed when you installed the Fortran
Tools.

1.5 Support
If you have any difficulties or technical queries, please send
email to info@fortran.com.



What is Installed   1-9

1.6 What is Installed
A script photran is in /usr/local/bin. It starts up Photran,
the graphical development environment. Photran also can be
started in Windows by clicking on the shortcut icon created as
described in 1.4.5.

The Fortran compiler also is located in /usr/local/bin. It
can be run from Photran or executed as a command.

The directory /usr/local/fortrantools/lib contains
Fortran program libraries and some files needed by Photran.

In the directory where you copied the files from the CD,
there is a subdirectory photran. It contains a subdirectory
eclipse created during installation that contains the execut-
able file eclipse.exe, which starts Eclipse/Photran. This direc-
tory must not be removed or Fortran Tools will not work (but
the Fortran compiler can still be run from the command line).

Also in the same directory are some example programs
(examples) and the Fortran Tools documentation (doc).

1.7 Licenses

1.7.1 Eclipse and Photran

Eclipse and Photran are licensed under the Eclipse Public Li-
cense; it is the file epl-v10.html in the doc directory. Use is
also controlled by the Eclipse Software Agreement in the file
eclipse_software_ agreement.htm.

1.7.2 g95

The Fortran compiler is licensed under the Free Software Foun-
dation General Public License; it is the file gpl.txt in the doc
directory.

1.7.3 Cygwin (Windows)

Most of the Cygwin tools are covered by the GNU General
Public License (GPL); it is the file gpl.txt in the doc directory.
However, some are public domain, and others have a X11-style
copyright. To cover the GNU GPL requirements, the basic rule
is if any binaries are distributed, the source also must be made
available.

The Cygwin API library found in the winsup subdirectory
of the source code is also covered by the GNU GPL. By default,
all executables link against this library (and in the process in-



1-10    Installation

clude GPLʹd Cygwin glue code). This means that unless you
modify the tools so that compiled executables do not make use
of the Cygwin library, your compiled programs will also have
to be free software distributed under the GPL with source code
available to all.

Please also see the -mno-cygwin option for g95.

1.7.4 Java Runtime Environment

The JRE is subject to the license agreement you were required
to read when installing the JRE.

1.7.5 Matran

The copyright and license information for Matran are found in
the file Matran.html in the doc directory of the Fortran Tools
distribution.

1.7.6 Blas, Lapack, Atlas, and Slatec

These software libraries are distributed without restrictions by
Netlib: http://www.netlib.org/.

1.7.7 Other Software

Other software in the Fortran Tools may be controlled by notic-
es in the software or documentation for that software.

1.8 Source Code

1.8.1 Eclipse and Photran

Source files for Eclipse may be found at
http://www.eclipse.org/downloads/.

1.8.2 g95

Source files for the Fortran compiler may be found at
http://www.g95.org/g95_source.tgz.

1.8.3 Cygwin (Windows)

The source files for Cygwin are cygwin*.bz2 in the src directo-
ry of the distribution.

1.8.4 Matran

Source code for Matran may be found at
http://www.cs.umd.edu/~stewart/matran/Matran.html.



Documentation   1-11

1.8.5 Blas, Lapack, Atlas, and Slatec

Source code for these software libraries are found at
http://www.netlib.org/

1.8.6 Other Software

Source code for some of the other software is in the src
directory of the distribution.

1.9 Documentation
The doc directory copied from the CD contains the following
documentation.

• The complete Fortran Tools manual, of which this is the
first section. This manual describes how to run Fortran
Tools and contains information about the software provid-
ed by The Fortran Company.

• G95Manual.pdf and g95_docs.html describe the Fortran
compiler g95. Additional information may be found at the
g95 website http://www.g95.org. This site lists lots of pro-
grams that work with g95. There is also information about
how to suspend execution of a program and resume execu-
tion at the same place.

• Eclipse documentation may be found at the Eclipse website
http://www.eclipse.org.

• The file Cygwin.pdf in the doc directory of the Fortran
Tools distribution contains a users manual for Cygwin.

• Matran is described in MatranWriteup in PDF format in the
doc directory of the distribution.

• Documentation for Gnuplot is in the file Gnuplot.pdf in
the doc directory of the distribution.

• Copies of several books, including Programmers Guide to
Fortran 95 Using F, Key Features of Fortran 95, and Fortran
Array and Pointer Techniques.

• Documentation of several other programs provided with
the Fortran Tools is in the doc directory of the distribution.

For additional information about Fortran, visit



1-12    Installation

http://www.fortran.com/

or contact

The Fortran Company
6025 North Wilmot Road
Tucson, Arizona 85750 USA
+1-877-355-6640 (voice & fax)
+1-520-760-1397 (outside North America)
info@fortran.com



Command Line Compilation 2

Note: If you are using the F subset compiler in the free distri-
bution, please substitue “F” for “g95” in most places that it oc-
curs in this and later sections.

The F subset is equivalent to invoking the g95 compiler
with the -std=F option. However, some of the default settings
and options may be different. For example, bounds checking is
on by default in F and real and complex arrays are initilized to
NaN, so that the use of an undefined value can be detected eas-
ily.

The syntax of F is described in the file F_bnf.html in the
doc directory of the Fortran Tools distribution.

2.1 Usage
Let us go through the steps to create, compile, and run a sim-
ple Fortran program. Suppose we want to find the value of
sin(0.5).

The first step is to use any editor to create a file with the
suffix .f95 that contains the Fortran program to print this val-
ue. On Linux or Windows with Cygwin, the editor Emacs or Vi
might be used as follows:

$ vi print_sin.f95

In a Windows command line window, Edit or Notepad might
be used to create the file.

Suppose the file contains the following Fortran program:

program print_sin
   print *, sin(0.5)

end program print_sin

A nice convention is to name the file the same as the name of
the program, but with the .f95 suffix.

The next step is to compile the program. The Fortran com-
mand has the following form:



2-2    Command Line Compilation

g95 [ option ] . . . [ file ] . . .

so the command for our example is:

$ g95 print_sin.f95

On a Linux or Unix system, this produces the executable pro-
gram named a.out, which can be executed by entering:

$ ./a.out

On Windows, the executable file is named a.exe and can be
run by entering the command a or a.exe.

2.2 Using g95 with the Fortran Tools
When using the special software that comes with the Fortran
Tools, it is often necessary to add information to the command
line to tell the compiler where this software is located. For ex-
ample, to use the new_unit subroutine in the input/output
module, the compiler command must look something like

g95 -I/usr/local/fortrantools/lib \
   the_program.f95 \

   -L/usr/local/fortrantools/lib -lfortranttols

which can be typed all on one line without the backslashes.
It might be convenient to create and environment variable

with the value /usr/local/fortrantools/lib to save some
typeing. This can be done using the Control Panel in Windows
or by a command (possibly placed in a startup file such as
.bashrc). In bash, the command would be

export FT_LIB=/usr/local/fortrantools/lib

Then the command aobe could be written

g95 -I$FT_LIB the_program.f95 \
    -L$FT_LIB -lfortranttols

Please see the individual sections describing the tools to
determine which options are required.



Description   2-3

2.3 Description
g95 is a Fortran 95 compiler. It translates programs written in
Fortran into executable programs, relocatable binary modules,
assembler source files, or C source files.

The suffix of a filename determines the action g95 per-
forms upon it. Files with names ending in .f90 or .f95 are tak-
en to be Fortran source files. Files ending in .F90 or .F95 are
taken to be Fortran source files requiring preprocessing (Sec-
tion 3.2). The file list may contain file names of any form.

Modules and include files are expected to exist in the cur-
rent working directory or in a directory named by the -I op-
tion.

Options not recognized by g95 are passed to the link phase
(gcc).

2.4 Some Options
-c

Compile only (produce .o file for each source file); do not
link the .o files to produce an executable file.

-Dname

Defines name as a preprocessor variable. This is equivalent
to passing the -D option directly to the preprocessor.

-fbounds-check

Checks array and substring bounds at runtime.

-ffixed-form

Assumes the source file is fixed source form.

-ffree-form

Assumes the source file is free source form.

--help

Display information about the compiler.

-i8

Sets the default kind of integers to 8.



2-4    Command Line Compilation

-r8

Sets the default kind of reals to 8.

-d8

Equivalent to both -i8 and -r8.

-I pathname

Add pathname to the list of directories which are to be
searched for module information (.mod) files and include files.
The current working directory is always searched first, then
any directories named in -I options.

-lx

Load with library libx.a. The loader will search for this
library in the directories specified by any -Ldir options
followed by the normal system directories.

-Ldir

Add dir to the list of directories for library files.

-o output

Name the output file output instead of a.out (a.exe on
Windows). This also may be used to specify the name of the
output file produced under the -c and -S options.

-O

Normal optimization.

--version

Print version information about the compiler.

-std=f95

Check that program conforms to Fortran 95 standard.

-std=F

Check that program conforms to the F subset.

-S

Produce assembler output only. Do not assemble and link.



Pre-connected Input/Output Information   2-5

-Wall

Enable most warning messages.

2.5 Pre-connected Input/Output Information
Standard error (stderr) unit number = 0
Default standard input (stdin) unit number = 5
Default standard output (stdout) unit number = 6

2.6 Error Messages
The following table gives the correspondence between runtime
error numbers and the cause of the error.

−2 End of record
−1 End of file
0 Successful return

1 - 199 Operating system errno codes
200 Conflicting statement options
201 Bad statement option
202 Missing statement option
203 File already opened in another unit
204 Unattached unit
205 FORMAT error
206 Incorrect ACTION specified
207 Read past ENDFILE record
208 Corrupt unformatted sequential file
209 Bad value during read
210 Numeric overflow on read
211 Out of memory
212 Array already allocated
213 Deallocated a bad pointer
214 Bad record read on input



2-6    Command Line Compilation



Preprocessors 3

Preprocessors are available with the F distribution. cpp was
written as a C preprocessor, but it works for Fortran, also. fppr
is a simpler preprocessor written by Michel Olagnon. COCO
(conditional compilation) is an ancillary Fortran standard.

3.1 cpp
cpp is invoked with the g95 -cpp option. For a description of
cpp, consult Linux, Unix, or GNU documentation.

3.2 fppr
fppr is a preprocessor and “pretty printer”. Here is a simple
example.

$define WINDOWS 0
$define FPPR_KWD_CASE FPPR_LOWER

$define FPPR_USR_CASE FPPR_LEAVE

$define FPPR_MAX_LINE 132

program test_fppr

$if WINDOWS

character(len=*), parameter :: slash = “\”

$else

character(len=*), parameter :: slash = “/”

$endif

character(len=*), parameter :: file_name = &

   “.” // slash // “fppr.f95”

integer :: ios

character(len=99) :: line

open (file=file_name, unit=35, &

      iostat=ios, status=”old”, &

      action=”read”, position=”rewind”)

if (ios == 0) then

   print *, “Successfully opened “, file_name



3-2    Preprocessors

   read (unit=35, fmt=”(a)”) line

   print *, “First line: “, trim(line)

else

   print *, “Couldn’t open “, file_name

   print *, “IOSTAT = “, ios

end if

end program test_fppr

[walt@localhost Examples]$ fppr < fppr_in.F95 > \

                           fppr.f95

This is f90ppr: @(#) fppridnt.f90

     V-1.3 00/05/09 Michel Olagnon

( usage: f90ppr < file.F90  > file.f90 )

[walt@localhost Examples]$ F fppr.f95

[walt@localhost Examples]$ ./a.out

 Successfully opened ./fppr.f95

 First line: program test_fppr

Running fppr with input from fppr_in.F95 (shown
above) produces an output file fppr.f95. fppr must be execut-
ed explicitly; it is not invoked by the Fortran compiler based on
the suffix .F95, the way cpp is. Because the fppr variable WIN-
DOWS is not defined to be true, the generated code will include
the parameter statement that sets the variable slash to the for-
ward slash; if WINDOWS were true, it would be the backslash.
Here is the output file fppr.f95.

program test_fppr
!

      character (len=*), parameter :: slash = “/”

!

      character (len=*), parameter :: file_name = &

          “.” // slash // “fppr.f95”

      integer :: ios

      character (len=99) :: line

!

      open (file=file_name, unit=35, iostat=ios, &

         status=”old”, action=”read”, &

         position=”rewind”)

      if (ios == 0) then

         print *, “Successfully opened “, file_name

         read (unit=35, fmt=”(a)”) line

         print *, “First line: “, trim (line)



fppr   3-3

      else

         print *, “Couldn’t open “, file_name

         print *, “IOSTAT = “, ios

      end if

!

end program test_fppr

fppr does not make use of any command line argument,
and the input and output files need thus to be specified with
redirection, (they default to the standard input and the stan-
dard output).

3.2.1 Options

All options have to be specified through the use of directives.

3.2.2 Directives

All fppr directives start with a dollar symbol ($) as the first
nonblank character in an instruction. The dollar sign was cho-
sen because it is an element of the Fortran character set, but has
no special meaning or use. The question mark, which is also an
element of the Fortran character set with no special meaning, is
used as a “vanishing” separator (see $define below)

$define name token-string

Replace subsequent instances of name with token-string.
name must be identified as a token. In order to enable replace-
ment of sub-strings embedded within tokens, ? is a special
“vanishing” separator that is removed by the pre-processor.

$define name $”token-string”

Replace subsequent instances of name with token-string
where token-string must not be analyzed since it may consist of
multiple instructions, for instance.

$eval name expression

Replace subsequent instances of name with value where val-
ue is the result, presently of default real or integer kind, of the
evaluation of expression.

$undef name



3-4    Preprocessors

Remove any definition for the symbol name.

$include “filename”

Read in the contents of filename at this location. This data is
processed by fppr as if it were part of the current file.

$if constant-expression

Subsequent lines up to the matching $else, $elif, or $en-
dif directive, appear in the output only if constant-expression
yields a nonzero value. All non-assignment Fortran operators,
including logical ones, are legal in constant-expression. The logi-
cal constants are taken as 0 when false, and as 1 when true.
Many intrinsic functions are also legal in constant-expression.
The precedence of the operators is the same as that for F. Logi-
cal, integer, real constants and $defined identifiers for such
constants are allowed in constant-expression.

$ifdef name

Subsequent lines up to the matching $else, $elif, or $en-
dif appear in the output only if name has been defined.

$ifndef name

Subsequent lines up to the matching $else, $elif, or $en-
dif appear in the output only if name has not been defined, or
if its definition has been removed with an $undef directive.

$elif constant-expression

Any number of $elif directives may appear between an
$if, $ifdef, or $ifndef directive and a matching $else or
$endif directive. The lines following the $elif directive ap-
pear in the output only if all of the following conditions hold:

• The constant-expression in the preceding $if directive eval-
uated to zero, the name in the preceding $ifdef is not de-
fined, or the name in the preceding $ifndef directive was
defined.

• The constant-expression in all intervening $elif directives
evaluated to zero.

• The current constant-expression evaluates to non-zero.



fppr   3-5

If the constant-expression evaluates to non-zero, subse-
quent $elif and $else directives are ignored up to the match-
ing $endif. Any constant-expression allowed in an $if

directive is allowed in an $elif directive.

$else

This inverts the sense of the conditional directive otherwise
in effect. If the preceding conditional would indicate that lines
are to be included, then lines between the $else and the
matching $endif are ignored. If the preceding conditional indi-
cates that lines would be ignored, subsequent lines are includ-
ed in the output. Conditional directives and corresponding
$else directives can be nested.

$endif

End a section of lines begun by one of the conditional di-
rectives $if, $ifdef, or $ifndef. Each such directive must
have a matching $endif.

$macro name ( argument [ , argument ] . . . ) token-string

Replace subsequent instances of name, followed by a paren-
thesized list of arguments, with token-string, where each occur-
rence of an argument in token-string is replaced by the
corresponding token in the comma-separated list. When a mac-
ro with arguments is expanded, the arguments are placed into
the expanded token-string unchanged. After the entire token-
string has been expanded, fppr does not re-start its scan for
names to expand at the beginning of the newly created token-
string, the opposite of the C preprocessor.

3.2.3 Macros and Defines

Macro names are not recognized within character strings dur-
ing the regular scan. Thus:

$define abc xyz
print *, “abc”

does not expand abc in the second line, since it is inside a quot-
ed string.

Macros are not expanded while processing a $define or
$undef. Thus:



3-6    Preprocessors

$define abc zingo
$define xyz abc

$undef abc

xyz

produces abc. The token appearing immediately after an $if-
def or $ifndef is not expanded.

Macros are not expanded during the scan which deter-
mines the actual parameters to another macro call. Thus:

$macro reverse(first,second) second first
$define greeting hello

reverse(greeting,        &

$define greeting goodbye &

)

produces

$define greeting goodbye greeting.

3.2.4 Options

A few pre-defined keywords are provided to control some fea-
tures of the output code:

FPPR_FALSE_CMT !string

Lines beginning with !string should not be considered as com-
ments, but processed. For instance, one may define:

$define FPPR_FALSE_CMT !HPF$

in order to use HPF directives in one’s code.

FPPR_MAX_LINE expression

The current desirable maximum line length for deciding
about splitting to a continuation line is set to the value result-
ing of evaluation of expression. If the value is out of the range 2-
132, the directive has no effect.

FPPR_STP_INDENT expression



fppr   3-7

The current indentation step is set to the value resulting of
evaluation of expression. If the value is out of a reasonable
range (0-60), the directive has no effect. Note that it is recom-
mended to use this directive when current indentation is zero,
otherwise unsymmetrical back-indents would occur.

FPPR_NMBR_LINES expression

If expression evaluates to true, or non-zero, or is omitted, line
numbering information is output in the same form as with cpp.
If expression evaluates to 0, line numbering information is no
longer output.

FPPR_FXD_IN expression

If expression evaluates to true, or non-zero, or is omitted,
the input treated as fixed-form. If expression evaluates to 0, the
input reverts to free-form.

FPPR_USE_SHARP expression

If expression evaluates to true, or non-zero, or is omitted,
the sharp sign (#) may be used as well as the dollar sign as the
first character of pre-processing commands. If expression evalu-
ates to 0, only commands starting with dollar are processed.

FPPR_FXD_OUT expression

If expression evaluates to true, or non-zero, or is omitted,
the output code is intended to be fixed-form compatible. If ex-
pression evaluates to 0, the output code reverts to free-form.

FPPR_KWD_CASE expression

If expression evaluates to 1, or is the keyword FPPR_UPPER, F
keywords are output in upper case. If expression evaluates to 0,
or is the keyword FPPR_LEAVE, Fortran keywords are output in
mixed case. If expression evaluates to −1, or is the keyword
FPPR_LOWER, F keywords are output in lower case.

FPPR_USR_CASE expression

If expression evaluates to 1, or is the keyword FPPR_UPPER,
user-defined Fortran identifiers are output in upper case. If ex-
pression evaluates to 0, or is the keyword FPPR_LEAVE, user-de-
fined Fortran identifiers are output in the same case as they



3-8    Preprocessors

were input. If expression evaluates to −1, or is the keyword
FPPR_LOWER, user-defined Fortran identifiers are output in low-
er case.

3.2.5 Output

Output consists of a copy of the input file, with modifications,
formatted with indentation, and possibly changes in the case of
the identifiers according to the current active options.

3.2.6 Diagnostics

The error messages produced by fppr are intended to be self-
explanatory. The line number and filename where the error oc-
curred are printed along with the diagnostic.

3.2.7 Source Code

The source code is available in the src directory of the F distri-
bution. It is provided by Michel Olagnon and more informa-
tion about this program and others provided by Michel may be
found at

http://www.ifremer.fr/ifremer/ditigo/molagnon/

3.3 COCO
The program coco provides preprocessing as per Part 3 of the
Fortran Standard (coco stands for “conditional compilation”).
It implements the auxiliary third part of ISO/IEC 1539-1:1997
(better known Fortran 95). (Part 2 is the ISO_VARYING_
STRINGS standard, which is sometimes implemented as a
module.) A restore program, similar to that described in the
standard, is also available for download.

The Fortran source code for coco may be found at
http://users.erols.com/dnagle..

Generally, coco programs are interpreted line by line. A
line is either a coco directive or a source line. The coco direc-
tives start with the characters ?? in columns 1 and 2. Lines are
continued by placing & as the last character of the line to be
continued. Except for the ?? characters in columns 1 and 2,
coco lines follow the same rules as free format lines in Fortran
source code. A coco comment is any text following a ! follow-
ing the ?? characters. A coco comment may not follow the &.



COCO   3-9

A description of coco may be found in the file coco.html
in the Docs directory. Here is a simple example.

Statement of the problem to be solved: A Fortran program
needs to use full path names for file names. The separator in
the file names should be / if the system is not Windows and \
if it is Windows. A file slash.inc contains the following,
which indicates whether the system is Windows or not.

?? logical, parameter :: windows = .false.

Then the following program will produce the correct character.

module slash

?? include “slash.inc”

   character, parameter, public :: &

?? if (windows) then

      slash = “\”

?? else

      slash = “/”

?? end if

end module slash

program p

   use slash

   print *, “Path is usr” // slash // “local”

end program p

The COCO preprocessor is run with

coco < slash.f90 > new_slash.f95

which produces the file new_slash.f95:

module slash

!?>?? include “slash.inc”

!?>??! INCLUDE slash.inc

!?>?? logical, parameter :: WINDOWS = .false.

!?>??! END INCLUDE slash.inc



3-10    Preprocessors

   character, parameter, public :: &

!?>?? if (windows) then

!?>      slash = “\”

!?>?? else

      slash = “/”

!?>?? end if

end module slash

program p

   use slash

   print *, “Path is usr” // slash // “local”

end program p

Compiling and running the program produces the output:

 Path is usr/local



Photran 4

Photran is a graphical interface for Fortran. It may be used to
edit, compile, run, and debug Fortran programs. It is based on
the Eclipse open source software (http://www.eclipse.org).
Photran itself consists of plugins for eclipse developed at the
University of Illinois (http://www.photran.org). Photran also
is open source software. In addition, some enhancements have
been provided by The Fortran Company.

4.1 Introduction to Using Photran
You can always run Fortran programs from the command line,
but if you want to use the Photran graphical interface to edit,
compile, run, and debug Fortran programs, follow the instruc-
tions in this section. But first a little jargon so you can read ad-
ditional documentation about Eclipse and Photran.

When using Photran, your code is organized into workspac-
es and projects. A project usually will contain the code for one
complete program, consisting of a main program and possibly
some modules. These files, and others used by the Photran sys-
tem, usually are stored in one directory whose name is the
name of the project. A workspace consists of projects; it uses a
directory whose name is the name of the workspace to store
the project directories. A workspace might contain only one
project.

To use Photran for Fortran programs, you create a project,
which is part of some workspace. You then add source code to
the project, either by copying existing files into the project or
by creating new source files and typing in the code. Then, us-
ing Photran, the project can be built, run, and debugged.

4.2 Starting Photran

1. On Windows, if you created a shortcut to Photran, select it.
Otherwise, type photran. If this does not work, in Win-
dows, you can use Explore to find eclipse.exe and select



4-2    Photran

it for execution. In Linux, type its full path name or go to
its directory and type ./eclipse. The Photran logo should
appear and after a while Photran should be running.

2. If the screen contains only some logos, select the curved ar-
row labelled Workbench to start running some Fortran pro-
grams.

3. You will be asked to select a workspace. It is probably a
good idea to select a directory different from the location
of the software installed from the CD.

4.3 Creating a New Project
Here are the steps to create a new project. As with most other
Photran operations, there are several ways to do it. Here is one.

1. Select the File tab at the upper left corner of the screen,
then New, then Standard Make Project. If you see a screen
asking you to select a wizard, expand the Make option and
select Standard Make Project.

2. On the next screen, pick a name for the project, such as
a_simple_project. The default workspace directory
should be a good choice for this example. Select Next (not
Finish).

3. On the next screen, select the Error Parsers tab. Check the
following parsers and uncheck the rest:

CDT GNU Make Error Parser
CDT GNU C/C++ Error Parser

CDT GNU Assembler Error Parser

CDT GNU Linker Error Parser

Photran Error Parser for G95 Fortran

4. Select the Binary Parsers tab on the same screen. If you
are using Windows, select PE Windows Parser. The binary
parser for Linux should be Elf Parser. Now select Finish.

5. Select the + symbol to the left of the project name in the
Navigator view and you will see files that have been put
there by Photran. They contain information about the
project.



Importing Existing Files   4-3

If projects have been created previously, some or all of
these settings may already be in place.

4.4 Importing Existing Files
Right click on the project name and select Import from the list
of options. Select File System from the next screen and then
Next. On the File System screen, use the Browse button to find
the directory /usr/local/fortrantools/lib. Select Makefile.
Then Finish to copy it to the current project. This file needs to
be present in every project unless you create your own Make-
file.

Or you can simply copy Makefile into the directory con-
taining your project files.

4.5 Create a New Source File
To create a new source file, select File in the upper left corner
of your screen, then New, then Source File. There are also icons
to do this; determine which ones by putting your curser over
the icons to see what they do. Enter a name (use sine.f95 for
example) for the source file and Finish.

4.6 Editing a Source File

1. Double click on the file. This will display the contents of
that file in the editor view, which occupies the upper cen-
tral portion of the screen.

2. If you make a change to the file (this will be indicated by
an asterisk by the file name just above the edit view), save
the file by selecting the save (floppy disk) icon near the up-
per left corner of your screen.

To provide a simple example, enter the following program:

program sine
   print *, “The sine of 0.5 is”, sin(0.5)

end program sine

Note the syntax highlighting of Fortran code by Photran.
Comments, character strings, and keywords appear in different
colors so that they may be identified readily.



4-4    Photran

Line numbers do not appear in the edit window, but the
line number and character position within the line of the cursor
are displayed below the edit window.

Here is another nice feature of Photran. If you want to
comment a whole block of statements, it is necessary to put the
comment symbol (!) at the beginning of each statement. To do
this using Photran, select the lines to be commented (or un-
commented), right click in any open space in the Edit View
and select Comment (or Uncomment).

4.7 Building a Project
To build the program, select the project name in the Navigator
View and select Project. Then select Build Project from the
pulldown menu. If the Build Project option cannot be select-
ed, uncheck the Build Automatically option and try again.
For a_simple_project, something like the following should
appear in the Console view near the bottom of your screen
(make sure the Console tab is highlighted).

make -k clean all
rm -f *.mod *.o RUN* f_Makefile

perl /usr/local/fortrantools/lib/mkmf.pl -t 

/usr/local/fortrantools/lib/mkmf_args \

   -p RUN -m f_Makefile -x

make[1]: Entering directory \

   `/home/walt/FortranTools/workspace/test'

g95 -g -Wall -fbounds-check \

   -I/usr/local/fortrantools/lib \

   ./sine.f95

g95 trig_plot.o -o RUN \

   -L/usr/local/fortrantools/lib -lfortrantools \

   -lslatec -lmatrix -lg2c

make[1]: Leaving directory \

   `/home/walt/FortranTools/workspace/test'

If nothing happens, select the project name again in the
Navigator view, select the Project pulldown menu, and select
Clean. Select the Clean selected projects button and OK.

The important steps are those that begin with g95. The first
of these compiles the program sine.f95 and the second cre-
ates the executable file RUN. You will notice some new files ap-



Running a Program   4-5

pearing in the project in the Navigator view, including the file
RUN.

4.8 Running a Program
A run configuration must be established before any program
can be run from Photran. To check if this has been done, select
the Run As tab above the edit window. If a tab showing Local
Fortran Application appears, then simply click it and the
program should begin execution.

If only a Run tab appears, then select it. A window in which
a run configuration can be established should appear. Fortran
Local Application should appear in the window to the left. Se-
lect New (lower left). Enter any name; the name of the project
might be a good choice.

Select the Main tab. Enter the name of the project and enter
RUN.exe (Windows) or RUN (Linux) as the Fortran Applica-
tion.

On Windows, select the Environment tab and then New. En-
ter the name LD_LIBRARY_PATH and the value C:\Cygwin\bin.

Next select the Debugger tab and select  GDB Debugger.
Then select Apply and either Run or Close.
Once the run configuration has been set up, instead of se-

lecting Run tab and Run As, click on the Run button (the little
green arrow). After the program has been run successfully, se-
lecting the Run button may cause it to be recompiled if the
source code has been changed.

The Console view is used for read * and print *; make
sure that view is selected when typing.

On Linux, before each read operation from the Console
view, it is necessary to force any previous output (such as a
prompt) to be displayed; this is done with call

flush(6)—unit 6 is the standard output unit for g95.

4.9 Make Files
When a Fortran program is complicated, it may be necessary to
write your own Makefile. This can be done by simply editing
the file named Makefile in your project. The Makefile that is
provided executes a Perl script (mkmf.pl) which builds another
make file (f_Makefile) based on the organization of modules
and use statements in the project. Then that file is used to
build the executable program. This is the Makefile provided.



4-6    Photran

FT_LIB = /usr/local/fortrantools/lib
all:

   perl $(FT_LIB)/mkmf.pl \

      -t $(FT_LIB)/mkmf_args -p RUN \

      -m f_Makefile -x

clean:

   rm -f *.mod *.o RUN* f_Makefile

Note that the lines executing perl and rm begin with a tab
character, not spaces.

This process can be modified in a few simple ways by edit-
ing the file mkmf_args (make makefile arguments) located in
/usr/local/fortrantools/lib. The one provided is:

FC = g95
FFLAGS = -g -Wall -fbounds-check \

   -I/usr/local/fortrantools/lib

LD = g95

LDFLAGS = -L/usr/local/fortrantools/lib \

-lfortrantools -lslatec -lmatrix -lg2c

The first and third lines indicate that g95 is to be used to com-
pile and load the program. The second line provides options to
the compiler. -g is used for debugging, -Wall says to check for
as many errors as possible (subscripts out of bounds, for exam-
ple), and -I tells the compiler where to find some modules
provided with Fortran Tools. When the program is ready for
production use, this line might be changed to

FFLAGS = -O -I/usr/local/fortrantools/lib

to turn off error checking and turn on optimization. The -I op-
tion can be deleted from FFLAGS and the -L and -l options can
be deleted from LDFLAGS if no Fortran Tools modules are being
used.

Documentation for mkmf.pl is in the doc directory of the
Fortran Tools distribution.

To see how the make file system works, let’s go through an
example provided by the test_make project.

1. Create a new project named test_make and import the file
Makefile in the directory /usr/local/fortrantools/lib.



Deleting a Project   4-7

2. Import the files m1.f95, m2.f95, m3.f95, and p.f95 from
the examples directory of the distribution.

3. Look at the source files. There are three modules and a
main program. Module m1 contains declarations of the pa-
rameters pi and e. m2 contains a subroutine s that uses
module m1 and prints the value of pi. m3 uses m1 and m2
and contains a subroutine s3 that calls s to print pi and
also prints e. The main program p uses m1 so it can print
the values of e and pi. It contains a subroutine ss that uses
m3 and calls its module procedure s3.

4. Build the program. Note the compile commands that are
executed and the order in which they are executed.

5. Experiment by changing one of the source files and then
rebuilding the program. For example, change m2 so that the
subroutine prints 2*pi. Don’t forget to save the changed
file and select the project before selecting Build Project.
Note the compile commands when the project is rebuilt.
Change the subroutine in m2 and rebuild. Then change the
value of e in m1 and rebuild. In all cases, only the files that
need to be recompiled are recompiled. This is not impor-
tant for such a small program, but is for a big complicated
one.

4.10 Deleting a Project
To delete a project, right click on the project name in the Navi-
gator view and select Delete. The next screen gives you the
option of keeping or deleting the contents of the project direc-
tory when the project is deleted.

4.11 Debugging

Programs can be debugged using the same Photran interface
that is used to edit, build, and run the programs. The debugger
has a lot of features, some of which take some effort to learn,
but if all you use it for is a replacement for debugging by in-
serting print statements, learning just the simplest features to
do that will be well worth the effort.

Let’s learn about some of the features with an example.

1. Create a new project named buggy in your workspace.



4-8    Photran

2. Import the file buggy.f95 in the examples directory of the
Fortran Tools distribution. Take a look at it if you like.

3. If you are on Windows, select the project, then select the
Project tab and select Properties from the pulldown
menu. From the list on the left, select Make Project. Select
the Binary Parser tab and check PE Windows Parser, if it is
not already selected. Select Apply and then OK. On Linux, it
should be the Elf Parser.

4. Build the project.

5. Run the program. There appears to be a problem; if you
can figure it out, great, but if not we need to do some de-
bugging.

6. Select the project name; select the RUN tab near the top of
the screen; then Debug. If you see a window with Create,
manage, and run configurations. Select the Debugger tab.
Then uncheck the box labelled Stop at main(0) on start-
up.

7. Set a breakpoint: with the source file buggy.f95 in the edit
window, place the cursor in the left margin of the edit win-
dow to the left of the statement

j = 1

Right click and select Toggle Breakpoint. Notice that a
small blue circle appears in the margin to indicate the pres-
ence of the breakpoint. If you don’t set a breakpoint, execu-
tion of the program may hang and you will have to
terminate the program gdb by other means (see 4.12).

8. Select the project name; select the RUN tab near the top of
the screen; then Debug As; then Debug Local Fortran Ap-
plication. If a list pops up, select GDB Debugger. The ar-
rangement of views changes significantly.

9. In the upper right corner of the screen, there is a little win-
dow that says Debug. This used to say Make. With the little
icon to the left of this window you can change the perspec-
tive (the arrangement of the views) to Debug or Make. Try it.



Debugging   4-9

10. With the perspective set at Debug, the program appears in a
view near the center of the screen. The program is sus-
pended at the breakpoint as indicated by the little arrow in
the left margin pointing to the program statement.

11. To determine the problem, we want to execute a few state-
ments and then see how things look. One way to do this is
to use the icons above the Debug view. Move your cursor
over them to see what they do. Restart begins execution
of the program from the beginning. Resume continues exe-
cution from the current place in the program until it hits a
breakpoint. Terminate (the red square) stops the program.
Step Into executes one Fortran statement; if it involves a
function evaluation or a subroutine call, it stops at the be-
ginning of the procedure invoked. Step Over executes one
statement, but does not stop inside a procedure that is in-
voked. Another similar operations is Run to Line; there is
no icon for this, but can be performed by right clicking in
open space in the Debug view and selecting it; it causes the
program to run to the point where a line is selected with
the cursor.

12. Use Step Over or Step Into to run to the first if statement.
check the value of the variables i and j by examining the
Variables view in the upper right portion of the screen.

13. Perform Step Over several times to watch the loop get exe-
cuted three or four times. Look at the Variables view and
notice that each time j changes, it turns red. In fact, since
the loop exits only when i > n, and i never changes during
the loop, that explains the problem. Fix it by changing the
test to use j instead of i. Probably the easiest way to do
this is to terminate the program by selecting the red
square, edit the source file, and rebuild the project.

14. We have fixed the bug, but let’s try a few more things with
the debugger to see how they work. After rebuilding the
project, set a breakpoint at the first print statement and
start the debugger again

15. When the program stops at the breakpoint, look in the
Variables view. j is 11, as it should be. To see the values
of my_array, select the + symbol to its left. Note that the el-



4-10    Photran

ements of the array are numbered from 0. This is because
the debugger is derived from a C debugger. To see the val-
ue of the character string c, do the same thing. It is treated
as an array by the debugger because in C, a character
string is treated as an array of characters.

16. Use Step Into until you get to the call statement. Be sure
to use Step Into again (maybe a couple of times) to enter
the subroutine SubA.

17. Place the cursor on the line

zed(i) = FuncB(y)

right click in the open space in the window and select Run
To Line. Note that the variables local to the subroutine
have been added to the bottom of the list. Also, there are
variables i with two different values; one is the i declared
local to the subroutine and the other is the i in the main
program.

18. Step Into FuncB. Notice that the variables local to the
function (e.g., xx and B_result) have been added to the
Variables view.

19. Suppose we think all is OK in FuncB. Step Return to com-
plete execution of FuncB and go back to SubA.

20. Now suppose we suspect that something goes wrong dur-
ing the last iteration or two of the do loop in SubA. It would
be tedious step through the loop more than 300 times. In-
stead we can set a conditional breakpoint. First, set a
breakpoint at the line

y = i

Then right click on the blue circle and select Breakpoint
Properties. Alternatively, select the Breakpoints tab near
the upper right corner of the screen, right click on the
break point just created and select Properties. In the Con-
dition field, type

i > 357

Another option would be to type something like 355 in the
Ignore field so that the breakpoint would be passed 355



Terminating a Program   4-11

times before the program is stopped. Select OK. Note the ?
over the blue circle representing the breakpoint.

Resume to run to the breakpoint just set. Look at the Vari-
ables window and check to be sure that the loop was exe-
cuted until the breakpoint condition was met. If this
doesn’t work, remove the breakpoint at the print state-
ment and start the debugging process over again

21. Select the array zed to look at some of its values. Note that
you can select portions of the array, which is very conve-
nient if the array is large.

22. Select the red square to terminate the program. Return to
the Fortran perspective.

4.12 Terminating a Program
Usually, an executing program can be stopped by clicking on
the red square.

Sometimes, an instance of RUN or gdb may be left running
when you thought everything was terminated. This happens
especially during debugging. For example, the compiler may
not be able to create a new version of RUN if the program is run-
ning. If this appears to be a problem, terminate all instances of
the programs RUN and gdb. In Windows, Ctrl-Alt-Del to get
the task manager; in Linux, use ps and kill.

4.13 Other Sources of Information

1. With Photran running, select the Help tab and Help Con-
tents. The leads you to the Workbench Users Guide.

2. The Workbench Users Guide is also available at

http://www.eclipse.org/documentation/main.html

Unfortunately, at this time, there is no additional documen-
tation specific to Photran.

3. In the doc directory of the distribution, the file cdt.pdf
contains the C/C++ Development Toolkit User Guide. Because
some of the Photran software was developed from this
toolkit, there is a lot of information that is applicable to
Photran, particularly the debugger information.



4-12    Photran



Calling Fortran and C 5

Fortran programs may call C programs compiled with gcc.

5.1 Calling C Functions
Calling a C function is a little complicated because of the dif-
ference in data types, calling conventions, and other things.
Fortran 2003 will make this much easier. In the meantime, here
is simple example.

typedef struct { float r, i;} Complex;

void csub_ (i, d, a, s, c, slen)

int *i;

double *d;

float a[];

char *s;

Complex *c;

int slen;

{

printf (“The value of i is %d\n”, *i);

printf (“The value of d is %f\n”, *d);

printf (“The value of a[3] is %f\n”, a[3]);

printf (“The value of s is %s\n”, s);

printf (“The value of slen is %d\n”, slen);

printf (“The value of c is (%f, %f)\n”,

         c->r, c->i);

}

This can be compiled with the command

gcc -c csub.c

A Fortran program that calls csub is

program f_calls_c
   integer, parameter :: n = 4



5-2    Calling Fortran and C

   integer, parameter :: double = &

        selected_real_kind(9)

   real(kind=double), pointer :: dp

   integer :: i

   real, dimension(0:9) :: ra = &

         ( (/ (1.1*i, i=0,9) /) )

   character(len=3) :: s = “abc”

   complex :: c = (1.1, 2.2)

   allocate (dp)

   dp = 4.2_double

   call csub (n, dp, ra, s, c)

end program f_calls_c

The program can be compiled and linked by the command

g95 csub.o f_calls_c.f95

Executing the program produces the output

The value of i is 42
The value of d is 4.200000

The value of a[3] is 3.300000

The value of s is abc

The value of slen is 3

The value of c is (1.100000, 2.200000)

Note that the name of the C function has an underscore (_)
appended. Also, the real and complex dummy arguments are
pointers to correspond to the addresses passed for the actual
argument.

These programs are in the examples directory of the For-
tran Tools distribution.

5.1.1 Data Types

The following table shows the correspondence between Fortran
and C data types.

where the form of Complex, DComplex, and QComplex are
given by

typedef struct { float re, im; } Complex;
typedef struct { double re, im; } DComplex;

typedef struct { long double re, im; } QComplex;



Calling C Functions   5-3

***For Fortran character actual arguments, there must be two C
dummy arguments: char * for the string and int for the
length. The length arguments must be at the end of the dummy
argument list in the correct order.

F data type C data type

integer (8 bits) signed char

integer (16 bits) short

default integer (32bits) int

integer (64 bits) long long

logical (8 bits) char

logical (16 bits) short

default logical (32 bits) int

logical (64 bits) long long

real (single) float

real (double) double

real (quadruple) long double

complex (single) Complex

complex (double) DComplex

complex (quadruple) QComplex

character ***



5-4    Calling Fortran and C



The Input/Output Module 6

The input/output module contains a few useful parameters
and a subroutine that returns a unit number that exists, but is
not connected.

When compiling using the command line, the following
compiler options must be used.

-I/usr/local/fortrantools/lib prog.f95\
-L/usr/local/fortrantools/lib -lfortrantools

6.1 EOF and EOR Parameters
The I/O module contains parameters with the values returned
by iostat= when encountering an end of record or end of file,
respectively. The parameter names are end_of_record and
end_of_file.

use io_module
   . . .

do

   read (iostat = ios, unit = 17) x

   if (ios == end_of_file) exit   ! End of file

      . . .

6.2 Standard Unit Numbers
The I/O module contains parameters with the values of the
standard I/O units. The names of the parameters and their val-
ues are

standard_input_unit  = 5
standard_output_unit = 6

standard_error_unit  = 0

Example:

use io_module
   . . .

read (unit=standard_input_unit, fmt=*, . . .



6-2    The Input/Output Module

6.3 Getting a New Unit Number
The I/O module provides a function new_unit that is a unit
number that exists, but is not open (connected). The value −1
(an illegal unit number) is returned if none is available.

use io_module
integer :: unit_a, unit_b

    . . .

call new_unit(unit_a)

open (unit=unit_a, file= . . .)

call new_unit(unit_b)

open (unit=unit_b, file= . . .)

Without the first open statement, new_unit would return
the same value both times, finding the same unit number that
exists but is not open.



The Math Module 7

When using these features and compiling from the command
line the following options must be used.

-I/usr/local/fortrantools/lib prog.f95\
-L/usr/local/fortrantools/lib -lfortrantools

7.1 Math Constants
The module math_module contains definitions of parameters
for the constants π, e, φ, and γ. The names of the constants are
pi, e, phi, gamma, pi_double, e_double, phi_double, and
gamma_double. An example of its use is

program print_pi

   use math_module

   print *, pi_double

end program print_pi

7.2 The gcd Function
Also in the math module is the elemental function gcd that
computes the greatest common divisor or two integers or two
integer arrays.

program test_gcd
   use math_module

   print *, gcd((/432,16/),(/796,48/))

end program test_gcd

which prints
 4 16



7-2    The Math Module



The Slatec Library 8

The Slatec library is a collection of mathematical routines de-
veloped jointly by Sandia National Laboratories, Los Alamos
National Laboratory, and the Air Force Phillips Laboratory, all
in New Mexico.

With Fortran Tools, they may be used in a Fortran program
as a “built-in” module. Invoke any of the procedures described
below from any Fortran program containing the following
statement:

use slatec_module

When compiling using the command line, the compiler op-
tions

-I/usr/local/fortrantools/lib prog.f95\
-L/usr/local/fortrantools/lib -lslatec

must be used.

8.1 Finding Roots in an Interval

find_root_in_interval(f, a, b, root, indicator)

is a subroutine that searches for a zero of a function f(x) be-
tween the given values a and b.

f is a function of one variable. a and b specify the interval
in which to find a root of f. root is the computed root of f in
the interval a to b. These are all type default real.

indicator is an optional default integer argument—if it is
zero, the answer should be reliable; if it is negative, it is not.

Here is an example using the subroutine
find_root_in_interval.

module function_module

   public :: f

contains



8-2    The Slatec Library

function f(x) result(r)

   real, intent(in) :: x

   real :: r

   r = x**2 - 2.0

end function f

end module function_module

program find_root

   use function_module

   use slatec_module

   real :: root

   integer :: indicator

   call find_root_in_interval&

        (f, 0.0, 2.0, root, indicator)

   if (indicator == 0) then

      print *, “A root is”, root

   else

      print *, “Root not found”

   end if

end program find_root

Running this program produces

A root is   1.4142114

8.2 Finding Roots of a Polynomial
The subroutine

find_roots_of_polynomial &
      (coefficients, roots, indicator)

accepts the coefficients of a polynomial and finds its roots (val-
ues where the polynomial is zero).



Computing a Definite Integral   8-3

coefficients is a default real array; the element with the
smallest subscript is the constant term, followed by the first de-
gree term, etc. Thus, a reasonable choice is to make the lower
bound of coefficients 0 so that the subscript matches the
power of the coefficient.

roots is a complex array with at least as many elements as
the degree of the polynomial. The roots of the polynomial will
be found in this array after calling find_roots_

of_polynomial.
indicator is a default integer optional argument; if it is

negative, the solution is not reliable. In particular, if indicator
is −1, a solution was not found in 30 iterations, if it is −2, the
high-order coefficient is 0, if it is −3 or −4, the argument array
sizes are not appropriate; if it is −5, allocation of a work array
was not successful.

Here is a simple example that computes the roots of x2 - 3x
+ 2 = 0.

program poly_roots

   use slatec_module

   complex, dimension(2) :: roots

   integer :: ind

   call find_roots_of_polynomial &

         ( (/ 2.0, -3.0, 1.0 /), roots, ind)

   print *, “Indicator”, ind

   print *, “Roots”, roots

end program poly_roots

Running the program finds the roots 1 and 2.

 Indicator 0
 Roots (2.00000,0.00000E+00) 

(1.00000,0.00000E+00)

8.3 Computing a Definite Integral

integrate(f, a, b, value, tolerance, indicator)



8-4    The Slatec Library

is a general purpose subroutine for evaluation of one-dimen-
sional integrals of user defined functions. integrate will pick
its own points for evaluation of the integrand and these will
vary from problem to problem. Thus, it is not designed to inte-
grate over data sets.

f must be a function with a single argument. a and b are
the limits of integration. tolerance is an optional requested er-
ror tolerance; if it is not present, 10−3 is used. value is the calcu-
lated integral. These are all type default real.

If the returned value of the optional default integer argu-
ment indicator is negative, the result is probably not correct.
A positive value of indicator represents the number of inte-
grand evaluations needed.

module sine_module

public :: sine

contains

function sine (x) result (sine_result)

   intrinsic :: sin

   real, intent (in) :: x

   real :: sine_result

   sine_result = sin (x)

end function sine

end module sine_module

program integration

use sine_module

use slatec_module

real :: answer

integer :: indicator

call integrate(sine, a=0.0, b=3.14159, &

              value=answer, tolerance=1.0e-5, &

              indicator=indicator)



Special Functions   8-5

print *, “Indicator is”, indicator

print *, “Value of integral is”, answer

end program integration

Running this program produces

 Indicator is 25
 Value of integral is   2.0000000

8.4 Special Functions
ln_gamma(x) is a function that returns the natural logarithm of
the gamma function for positive real values of x. asinh(x),
acosh(x), and atanh(x) return the inverse hyperbolic function
values. The program

program test_gamma
use slatec_module

print *, “4! = “, exp(ln_gamma (5.0))

end program test_gamma

produces

 4! =   24.0000000

8.5 Solving Linear Equations
The Slatec linear equation solving program has bugs. Use the
Matran solver or call the Lapack routines directly (see the Ma-
trix chapter).

8.6 Differential Equations

solve_ode &
      (f, x0, xf, y0, yf, tolerance, indicator)

is a subroutine that solves an ordinary differential equation

using a fifth-order Runge-Kutta method.
f must be a function of two variables. x0 is the initial value

of x. y0 is the initial value of y. xf is the final value of x. yf is
the final solution value of y. tolerance is an optional request-

du
dx
------ f x u,( )=



8-6    The Slatec Library

ed tolerance; if not present 10−3 is used. All of these are type
default real.

indicator is an optional default integer value—if it is neg-
ative, the solution is not reliable; a value of 2 indicates success.

Here is a simple example with f(x, u) = −0.01y, x0 = 0, y0 =
100, and xf = 100.

module f_module

   public :: f

contains

function f(x, y) result(r)

   real, intent(in) :: x, y

   real :: r

   r = -0.01 * y

end function f

end module f_module

program test_ode

use slatec_module

use f_module

real :: x0 = 0.0, xf = 100.0, &

        y0 = 100.0, yf

call solve_ode (f, x0, xf, y0, yf)

print *, “Answer is”, yf

end program test_ode

Running the program produces

 Answer is  36.7878761



Defined Data Types 9

There are several modules available to the Fortran programmer
that define new data types and a selection of operations on
those types. The code for varying strings, big integers, ratio-
nals, quaternions, and Roman numerals all conform to the F
subset; the source for each of these modules is available in the
src directory to provide information about the modules and
examples of how to build these abstract data types.

When compiling using the command line, the compiler op-
tions

-I/usr/local/fortrantools/lib prog.f95\
-L/usr/local/fortrantools/lib -lfortrantools

must be used.

9.1 Varying Length Strings
The ISO varying string module provides the type
iso_varying_string with the operations you would expect to
have for character string manipulations (concatenation, in-
put/output, character intrinsic functions). Unlike Fortran char-
acter variables, a varying string variable has a length that
changes as different values are assigned to the variable. Here is
a simple program illustrating these features.

program string
   use iso_varying_string

   type(varying_string) :: s

   call get(string=s)

   s = s // s

   call put(string=s)

   print *, len(s)

end program string

The following lines show what happens when the program
is compiled and run.



9-2    Defined Data Types

$ F string.f95
$./a.exe

A nice string.

A nice string.A nice string. 28

The current version of the source code is from Rich
Townsend and has been modified slightly so that we have an F
conformant version. This program is in the source code directo-
ry.

9.2 Big Integers
The big_integer data type can represent very large nonnega-
tive integers. The representation of a big integer is a structure
with one component that is an array of ordinary Fortran inte-
gers. In this version, the largest integer that can be represented
is fixed, but the size is specified by a parameter that can be
changed. The module may then be recompiled. The source for
this module is in the examples directory of the distribution. All
of the intrinsic operations and functions for intrinsic Fortran
integers are available for big integers.

program factors
   use big_integer_module

   type(big_integer) :: b, n, s

   b = “9876543456789”

   n = 2

   call check_factor()

   s = sqrt(b)

   n = 3

   do

      if (n > s) exit

      call check_factor()

      n = n + 2

   end do

   if (b /= 1) then

      call print_big(b)

      print *

   end if

contains



High Precision Reals   9-3

   subroutine check_factor()

      do

         if (modulo(b, n) == 0) then

            call print_big(n)

            print *

            b = b / n

            s = sqrt(b)

         else

            exit

         end if

      end do

   end subroutine check_factor

   

end program factors

Running the program produces

3
3

3

3

17

97

1697

43573

9.3 High Precision Reals

9.3.1 The MP Module

This module provides the capability of computing with large
precision real values. It was written by David Bailey of
Lawrence Berkeley National Laboratory. A description of the
module is in the files mp.ps and mp.pdf in the doc directory.
More information may be found at http://www.nersc.gov/
~dhbailey/mpdist/mpdist.html. Here is a simple example of
its use.

program mp
   use mp_module

   type(mp_real) :: pi

   call mpinit()



9-4    Defined Data Types

   pi = 4.0 * atan(mpreal(1.0))

   call mpwrite(6, pi)

end program mp

The result printed consists of quite a few digits of π.

10 ^      0 x  
3.1415926535897932384626433832795028841971693993
7510582097,

9.3.2 The XP Module

This module also provides the capability of computing with
large precision real values. It was written by David Smith. A
description of the module is in the file xp.txt in the doc direc-
tory. Here is a simple example of its use.

program test_xp
   use xp_real_module

   type (xp_real) :: x, y

   x = 1.0

   y = 4.0

   call xp_print(y*atan(x))

end program test_xp

 3.141592653589793238462643383279502884197E+0

9.4 Rationals
A module to compute with rational numbers is provided by
Dan Nagle of Purple Sage Computing Solutions, Inc. Some de-
tails are provided in the file rationals.txt in the doc directo-
ry. Here is a simple example.

program test_rationals
   use rationals_module

   type(rational) :: r1, r2

   r1 = (/3, 4/)

   r2 = (/5, 6/)

   r1 = r1 + r2

   print *, real(r1)

end program test_rationals

   1.5833333333333333



Quaternions   9-5

9.5 Quaternions
The quaternions module was written by David Arnold of the
College of the Redwoods. The only documentation is the
source file quaternions_module.f95 in the src directory.
There is some information about quaternions in the file
quaternions.pdf in the doc directory and the original article
about quaternions presented by William Hamilton in 1843 can
be found at http://www.maths.tcd.ie/pub/HistMath/

People/Hamilton/Quatern2/Quatern2.html. Here is an
example.

program Quaternions
  use Quaternions_module

  type(quaternion) :: u, v

  u=quaternion(1,2,3,4)

  v=quaternion(5,6,7,8)

  call quaternion_print(u+v)

  print *, 3+4

  print *

  call quaternion_print(u-v)

  print *, 3-4

  print *

  call quaternion_print(3.0*u)

  call quaternion_print(u*v)

  print *, 3*4

  print *

  call quaternion_print(conjg(u))

  print *, conjg((3,4))

  print *

  print *, (abs(u))

  print *, abs((3,4))

end program Quaternions

(    6.000000    8.000000   10.000000   12.000000)
 7

(   -4.000000   -4.000000   -4.000000   -4.000000)

 -1

(    3.000000    6.000000    9.000000   12.000000)

(  -60.000000   12.000000   38.000000   24.000000)

 12



9-6    Defined Data Types

(    1.000000   -2.000000   -3.000000   -4.000000)

 (3.0000000,-4.0000000)

   5.4772258

   5.0000000

9.6 Roman Numerals
This module to compute with Roman numbers was written by
Jeanne Martin, former convenor of the international Fortran
standards committee and an author of The Fortran 95 Handbook.
The only documentation available is in the source file in the
src directory.

program test_roman
use roman_numerals_module

implicit none

type(roman) :: r

integer :: i

write (unit=*, fmt=”(a)”) “Integer  Roman Number”

do i = 1900, 2000

  r = i

  write (unit=*, fmt=”(/, tr4, i4, tr2)”, &

         advance = “NO”) i

  call print_roman (r)

end do

write (unit=*, fmt=”(/)”)

end program test_roman

Here is the result of running the program.

 Integer  Roman Number

    1900  MCM

    1901  MCMI

    1902  MCMII

    1903  MCMIII

    1904  MCMIV

    1905  MCMV

    1906  MCMVI



Roman Numerals   9-7

     . . .

    1998  MCMXCVIII

    1999  MCMXCIX

    2000  MM



9-8    Defined Data Types



Matrix Operations 10

Fortran has extensive built-in operations on arrays, which may
be used to do matrix manipulations when the matrices are rep-
resented as ordinary Fortran arrays. For example, two matrices
may be added by writing

A + B

and their matrix product may be formed as

matmul(A, B)

because matmul is a standard Fortran intrinsic function.
However, more complicated operations require sophisticat-

ed programs to do the calculations effectively and efficiently.
Fortunately, a lot of work has been done in this area and the re-
sults are included in the Fortran Tools. The BLAS and LAPACK
libraries have been used widely for years; in addition, MAT-
RAN (may-tran) provides a higher level interface to these rou-
tines.

When compiling using the command line, the compiler op-
tions

-I/usr/local/fortrantools/lib prog.f95\
-L/usr/local/fortrantools/lib -lmatrix -lg2c

must be used.

10.1 MATRAN
MATRAN is a collections of modules containing procedures
that may be used to perform a variety of matrix operations,
such as solving linear equations and computing eigenvalues.
These procedures call BLAS and LAPACK routines.

All computations are performed with double precision real
values.

MATRAN was developed by G. W. (Pete) Stewart, Depart-
ment of Computer Science, Institute for Advanced Computer
Studies, University of Maryland. The web site is:



10-2    Matrix Operations

http://www.cs.umd.edu/~stewart/

A few of the features of MATRAN are described here.
More complete documentation may be found in MatranWriteup
in PDF format in the doc directory of the Fortran Tools distri-
bution.

10.1.1 The Rmat and Rdiag Derived Types

Most of the matrix computations in MATRAN are performed
on objects of type Rmat (real matrix) and Rdiag (real diagonal
matrix). These are derived types provided with MATRAN. For
example, when solving a system of linear equations, objects of
type Rmat are passed to the solver, not plain Fortran arrays.
Here is a partial description of the Rmat type:

type :: Rmat
   real(wp), pointer :: a(:,:) => null()

   integer :: nrow = 0, ncol = 0

      . . .

end type Rmat

The first component a is a real array pointer. wp is the kind of
the working precision, which is default real for the libraries
provided with the Fortran Tools. The component a is default
initialized to null, which means that it will be initialized to the
null pointer for each Rmat object created. nrow and ncol are the
number of rows and columns of the matrix, respectively.

For example if X is declared to be type Rmat

X % ncol

is the number of columns in matrix X and

X % a(nrow, :)

is the last row of the matrix.

Thus, Rmat objects may be manipulated directly (their compo-
nents are not private) as well as with the procedures provided
by MATRAN.

The type Rdiag (real diagonal matrix) represents a diago-
nal matrix as a one-dimensional array, consisting of the diago-
nal elements, and other components, such as the size of the
matrix.



MATRAN   10-3

10.1.2 Example: Linear Equations

Let us look at some of the MATRAN operations used to con-
struct a program to solve a set of linear equations.

Here is the program; it solves Ax = b.

program matran_linear_equations

use MatranRealCore_m

integer, parameter :: n = 3

integer :: i, j

type(Rmat) :: A, b, x

! Put some values in the matrix A

A = reshape( (/ ((real(i+j),i=1,n),j=1,n) /), &

     shape = (/ n,n /) )

A%a(n,n) = -A%a(n,n) ! Make sure A is not singular

! Put some values in the vector b

b = reshape( (/(real(i), i = 1, n)/), (/n,1/))

b = A * b

! Solve the linear equations

x = A .xiy. b

call Print(A, 15, n, "Array A", e=1)

call Print(b, 15, n, "Vector B", e=1)

print *

print *

print "(a, 3f7.4)", &

   "The solution to Ax = B is", x%a(1:n, 1)

print *

call Clean(A)

call Clean(b)

call Clean(x)

end program matran_linear_equations

The program could be run using Photran or from the com-
mand line by entering (on one line, if desired)



10-4    Matrix Operations

 g95 matran_linear_equations.f95 \
   -I/usr/local/bin/FortranTools \

   -L/usr/local/bin/FortranTools -lmatrix

A, b, and x are type Rmat objects. All three are, in effect,
representations of matrices, even though in this program we
think of b and x as vectors to hold the constants of the equa-
tions and the solution to the equations, respectively. Remember
that Fortran is case insensitive, but case is used in the program
in the traditional way: uppercase for matrices and lowercase
for vectors.

The use statement in the subroutine accesses a module
containing many of the MATRAN features. To use other MAT-
RAN features, additional use statements may be needed; see
the eigenvalues example in 10.1.3.

A and b are given values using an extended assignment
statement. In the statement

b = A * b

the operation is matrix multiplication, provided by MATRAN.
This assigns values to b that will produce a solution we will
recognize.

The statement

x = A .xiy. b

assigns the solution to x by computing A-1b using the operator
.xiy., which is intended to suggest “x inverse times y”. (Of
course, the inverse of A is not actually calculated in order to
solve the equations.)

The MATRAN subroutine Print is used to verify the val-
ues of A and b used for the equations.

The subroutine Clean releases allocatable storage. Note
that there are other MATRAN subroutines that deal with the
deallocation of dummy arguments of type Rmat.

Here is the output from the program.

  Array A
 3 3 3 3 GE T 0

                 1              2              3

 1        2.000E+0       3.000E+0       4.000E+0

                 1              2              3

 2        3.000E+0       4.000E+0       5.000E+0



MATRAN   10-5

                 1              2              3

 3        4.000E+0       5.000E+0      -6.000E+0

 Vector B

 3 1 3 1 GE T 0

                 1

 1        2.000E+1

                 1

 2        2.600E+1

                 1

 3       -4.000E+0

 The solution to Ax = B is 1.0000 2.0000 3.0000

10.1.3  Example: Eigenvalues

For this example, we assume that the main program uses ordi-
nary Fortran arrays to store matrices. To compute the eigenval-
ues of a matrix, we want to call the subroutine eigenvalues,
passing such an array. This subroutine will use MATRAN ob-
jects and the routine Eig to compute the eigenvalues.

The program could be run using Photran or from the com-
mand line by entering (on one line, if desired)

 g95 matran_eigenvalues.f95 \
   -I/usr/local/bin/FortranTools \

   -L/usr/local/bin/FortranTools -lmatrix

Here is the program.

program matran_eigenvalues

integer, parameter :: n = 5

real, dimension(n,n) :: A

complex, dimension(n) :: e

integer :: i, j

! Put some values in the matrix A

call random_seed()

call random_number(A)

A = 10.0 * A - 5.0

call eigen_values(A, e)



10-6    Matrix Operations

print *

print *, "The eigenvalues of A are:"

print *

do i = 1, n

   print "(i3, 2(f7.2, a))", i, &

         real(e(i)), " +", &

         imag(e(i)), "i"

end do

print *

print *

contains

subroutine eigen_values (D, e)

   use MatranRealCore_m

   use RmatEig_m

   real, dimension(:, :), intent(in) :: D

   complex, dimension(:), intent(out) :: e

   type(Rmat) :: RD

   type(RmatEig) :: eigD

   RD = D

   call Print(RD, 9, 2, "Array D", e = 1)

   call Eig(eigD, RD)

   ! D is the eigenvalue component of eigD

   e = eigD % D

   call Clean(RD)

   call Clean(eigD)

end subroutine eigen_values

end program matran_eigenvalues

The Fortran instrinsic subroutines random_seed and
random_number are used to put some values in the array A. The
statement



BLAS and LAPACK Libraries   10-7

A = 10.0 * A - 5.0

causes the numbers to be between −5 and +5 instead of be-
tween 0 and 1. The array A is passed to the subroutine Eig with
a vector e to hold the eigenvalues. The dummy argument D is
assigned to the variable RD of type Rmat. The array is printed.

The call to subroutine Eig computes the eigenvalues of RD
and stores the results in eigD, a MATRAN object of type
RmatEig, defined in the module RmatEig_m. The component D
(not the same as the dummy array D) contains the eigenvalues
and this is assigned to the dummy array e, which is returned
as the value of the actual argument e. The eigenvalues stored
in e are then printed.

Here is the result of one execution of the program.
 Array D

 5 5 5 5 GE T 0

           1        2        3        4        5

 1  -3.54E+0 -1.88E+0  3.01E+0  2.51E+0  3.33E+0

           1        2        3        4        5

 2   4.19E+0  2.04E+0 -4.80E+0 -3.19E+0  1.02E+0

           1        2        3        4        5

 3  -3.99E+0  7.37E-1 -3.98E+0 -1.34E+0 -7.92E-1

           1        2        3        4        5

 4  -3.44E+0  3.74E+0  1.49E-1 -3.59E+0 -1.79E+0

           1        2        3        4        5

 5  -4.16E+0 -1.70E-1  1.48E+0  4.89E+0  4.46E+0

 The eigenvalues of A are:

  1  -1.31 +   7.13i

  2  -1.31 +  -7.13i

  3  -3.02 +   1.91i

  4  -3.02 +  -1.91i

  5   4.05 +   0.00i

10.2 BLAS and LAPACK Libraries
It is possible to invoke any of the BLAS or LAPACK proce-
dures directly in a Photran project or from the command line
by using the -lmatrix option on the compile command.

An extensive description of LAPACK is found at

http://www.netlib.org/lapack/lug/index.html/



10-8    Matrix Operations

10.3 Atlas Libraries
The Atlas libraries are optimized versions of the Blas and
Lapack routines. They must be built for each architecture and
operating system. If, when installing, you specified the refer-
ence libraries by entering the number 0, you have not installed
the Atlas libraries; you have installed the reference libraries. If
you specified a different matrix library, the MATRAN pro-
grams should run considerably faster. However, if there is
some problem, you can always use the reference libraries by
doing one of the following:

• Use -lmatrix0 instead of using -lmatrix on the
command line when compiling.

• In the file /usr/local/fortrantools/lib, edit the file
named mkmf_args to use -lmatrix0 instead of -lmatrix.

• Reinstall the Fortran Tools and specify a different matrix li-
brary.

Conversely, if the reference libraries were installed, you can
use the Atlas library be specifying -lmatrixPII (or the appro-
priate library name).



Plotting 11



11-2    Plotting

The Fortran Tools use Gnuplot to do plotting. It is part of the
Linux distribution and Cygwin.

11.1 Using Gnuplot
One way to use Gnuplot is to type the commands into the
gnuplot program. On Windows, be in a Cygwin window and
type startx to produce an X window; or in a DOS window
type bash<C:\Cygwin\usr\X11R6\bin\startx. The default file
format is x11, so this is necessary only if the default output file
format is not changed. On either system, type gnuplot. Enter
Gnuplot commands, such as

$ gnuplot
> plot sin(x)

> exit

11.2 Running Gnuplot with a Fortran Program
To run Gnuplot with a Fortran program, create a project and
copy Makefile as usual. Then create a new file called, for ex-
ample, trig_plot.gp containing the following Gnuplot com-
mands, which produce the plot on page 11-1.

# Plot some trig functions with Gnuplot

# Draw the axes

set xzeroaxis lt 22

set yzeroaxis lt 22

set xlabel "X"

set ylabel "Y"

# Establish the time stamp

set time "Plotted 20%y-%m-%d at %H:%M" \

   45,27 "Helvetica,6"

# Provide identifying label

set label "Graph of trig functions" at 4,0.6 \

   font "Helvetica,12"

# Set plot type and output file

set terminal pdf

set output "trig_plot.pdf"



Running Gnuplot with a Fortran Program   11-3

# Create the plot

plot [-pi:3*pi] cos(x)/2 lt 2 lw 2, \

                sin(x)/2 lt 1 lw 2, \

                sin(x)/x lt 3 lw 2

Create a Fortran program that runs gnuplot as follows:

program trig_plot

   call system ("gnuplot ""trig_plot.gp""")

   

end program trig_plot

Note that the double quotes are there so that the value of
the command will be

gnuplot “trig_plot.gp”

The plot is placed in the output file trig_plot.pdf, which
may be viewed with Acrobat Reader.

In this case, another way to run the plot is to change Make-
file to

all:
      gnuplot "trig_plot.gp"

clean:

      rm -f *.mod *.o RUN* f_Makefile

and simply build the project, which will run gnuplot. Remem-
ber that the first character in the lines after all: and clean:
must be a tab, not spaces.

11.2.1 Some Gnuplot Commands

We can use the file named plot_heat.gp to briefly examine
some of the common Gnuplot commands. Complete descrip-
tions of all the commands may be found in Gnuplot.pdf in the
docs directory of the Fortran Tools distribution.

set xzeroaxis lt 22

indicates that the x axis is to be drawn on the plot with line
type (lt) 22. To see the line types and point types, execute
gnuplot and type test. The next three commands then do
what is expected.



11-4    Plotting

set time "Plotted 20%y-%m-%d at %H:%M" \
   45,27 "Helvetica,6"

puts a time stamp on the graph at a position indicated by char-
acter offsets 45 (x) and 27 (y). The format is given by the first
character string and the font and size by the second.

set label "Graph of trig functions" at 4,0.6 \
   font "Helvetica,12"

places a label at coordinate position (4, 0.6) in Helvetica 12-
point font.

set terminal pdf
set output "trig_plot.pdf"

indicate the format of the output file is PDF and the plot will
be put in file trig_plot.pdf.

plot [-pi:3*pi] cos(x)/2 lt 2 lw 2, \
                sin(x)/2 lt 1 lw 2, \

                sin(x)/x lt 3 lw 2

This command generates the plot, with three curves, the label,
the axes, the axis labels, and the time stamp. The notation in
brackets indicates the range of x values to include in the plot.
pi is a built-in variable. lt indicates the line type and lw means
the line width is to be two times the normal size. Line types 1,
2, and 3 produce lines with color red, green, and blue, respec-
tively.

11.3 Generating Data with a Fortran Program

The program heat.f95 illustrates how a Fortran program can
generate the data for a plot. This program generates data for
many plots, in fact, and displays them sequentially. To run this
program with Photran, be sure to start Photran in an X win-
dow; how to do this is explained in 11.1. If not using Photran,
execute the program in an X window. Here is the program:

!  A simple solution to the heat equation using
!  pointers. Results are plotted with Gnuplot.

program heat



Generating Data with a Fortran Program   11-5

implicit none

integer, parameter    :: nn = 20, &  ! Size of grid

                         plot_frequency = 10, &

                         pause_time = 1

real, dimension(nn,nn), target :: plate

real, dimension(nn-2,nn-2)     :: temp

real, pointer, dimension(:,:) :: n,e,s,w, inside

real, parameter      :: tolerance = 1.0e-3

character(len=20)    :: filename = "heat_data."

real    :: diff

integer :: i,j, niter, ios

open(unit=11, file="heat.gp", status="replace",&

     action="write", iostat=ios)

if (ios > 0) then

   print *, "Couldn't open heat.gp"

   stop

end if

call system("rm -f head_data.*")

write(unit=11, fmt="(a)") &

      "set terminal x11", &

      "set pm3d", &

      "set palette", &

      "set ticslevel 0", &

      "set view 0,0"

write(unit=11, fmt="(a, i0)") &

      "pause_seconds=", pause_time

! Set up initial conditions

plate = 0

plate(1:nn,nn) = 1.0  ! boundary values

plate(1,1:nn) = (/ ( 1.0/nn*j, j = 1, nn ) /)

!  Point to parts of the plate

inside => plate(2:nn-1,2:nn-1)

n => plate(1:nn-2,2:nn-1)

s => plate(3:nn,2:nn-1)

e => plate(2:nn-1,3:nn)



11-6    Plotting

w => plate(2:nn-1,1:nn-2)

! Iterate

niter = 0

do

   niter = niter + 1

   temp = (n + e + s + w)/4.0

   diff = maxval(abs(temp-inside))

   inside = temp

   if (modulo(niter, plot_frequency) == 0) then

      call print_data()

   end if

   if (diff < tolerance) exit

end do

if (modulo(niter, plot_frequency) /= 0) then

   call print_data()

end if

close (unit=11, status="keep")

call system("gnuplot -persist ""heat.gp""")

contains

subroutine print_data()

   write(unit=filename(11:), fmt="(i0)") niter

   open(file=trim(filename), &

        unit=22, status="replace", &

        action="write", iostat=ios)

   if (ios>0) then

      print *, "File open failed:", niter

      stop

   end if

   do i = 1,nn

      write (unit=22, fmt="(999f7.3)") &

            plate(1:nn,i)

   enddo

   close(unit=22, status="keep")

   write (unit=11, fmt="(a)") &

      "splot """ // trim(filename) // &

      """ matrix pt 0", "pause pause_seconds"



Generating Data with a Fortran Program   11-7

end subroutine print_data

end program heat

A constant heat source is placed along one edge of an nn x
nn grid and a linearly diminishing heat source is placed along
an adjacent edge. The steady state condition of each point in
the grid is found by iteratively replacing each value in the inte-
rior of the grid (the pointer variable inside is an alias of this
portion of the plate) by the average of the points (n, e, s, w)
around it. If the iteration is a multiple of plot_frequency, the
values in the grid are placed in a file for plotting.
pause_seconds indicates the number of seconds delay between
plot displays. If the largest difference between an old value and
a new value in the grid is less than the parameter tolerance,
no more iterations are performed and the data for the last plot
is generated, if it has not been generated already.

The system routine is called to execute the Gnuplot com-
mand file heat.gp generated by the program. Here is the con-
tent of the file generated in this case.

set terminal x11
set pm3d

set palette

set ticslevel 0

set view 0,0

pause_seconds=1

splot "heat_data.10" matrix pt 0

pause pause_seconds

splot "heat_data.20" matrix pt 0

pause pause_seconds

   . . .

splot "heat_data.150" matrix pt 0

pause pause_seconds

splot "heat_data.157" matrix pt 0

pause pause_seconds

This sets the file format to x11 and the style to a special
three-dimensional format (pm3d). The view is from straight
above the plot (0,0). It draws three-dimensional (projected on
the two-dimensional screen, of course) plots (splot) for each of
the data files generated by the Fortran program. matrix indi-



11-8    Plotting

cates that the data in the file is in matrix (two-dimensional ar-
ray) format. pt 0 indicates that the point style is 0. Because the
command that executes this file is

gnuplot -persist heat.gp

the last plot remains displayed until closed. Here is the final
plot.



Software License Agreement A

Read the terms and conditions of this license agreement care-
fully before installing the Software on your system.

By installing the Software you are accepting the terms of
this Agreement between you and The Fortran Company. If you
do not agree to these terms, promptly destroy all files and oth-
er materials related to the Software.

“Software” means the programs developed by The Fortran
Company. The Fortran compiler, Eclipse, Photran, and other
programs not developed by The Fortran Company are licensed
under agreements with their developers.

The Fortran Company grants to you a nonexclusive license
to use the Software with the following terms and conditions: 

The Fortran Company retains title and ownership of the
Software. This Agreement is a license only and is not a transfer
of ownership of the Software.

The Software is copyrighted. You may copy the software
provided that you include a copy of this license.

You may adapt and modify any source programs, but may
not reverse engineer any object or executable files.

You may not sell, rent, or lease the software.
This license is effective until terminated by The Fortran

Company. It will terminate automatically without notice if you
fail to comply with any provision of this license. Upon termi-
nation, you must destroy all copies of the Software.

The failure of either party to enforce any rights granted un-
der this Agreement or to take action against the other party in
the event of any breach of this Agreement will not be deemed a
waiver by that party as to subsequent enforcement of rights or
subsequent action in the event of future breaches. If applicable
statute or rule of law invalidates any provision of this Agree-
ment, the remainder of the Agreement will remain in binding
effect.

THE FORTRAN COMPANY MAKES TO WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A



A-2    

PARTICULAR PURPOSE OR PERFORMANCE OR ACCURA-
CY. THE FORTRAN COMPANY SHALL IN NO EVENT BE LI-
ABLE TO THE LICENSEE FOR ANY DAMAGES (EITHER
INCIDENTAL OR CONSEQUENTIAL), EXPENSE, CLAIM, LI-
ABILITY, OR LOSS, WHETHER DIRECT OR INDIRECT, ARIS-
ING FROM THE USE OF THE SOFTWARE.


	Contents
	1 Installation 1-1
	1.1 Introduction 1-1
	1.2 Implementations Provided 1-1
	1.3 Contents 1-1
	1.4 Installation 1-1
	1.5 Support 1-8
	1.6 What is Installed 1-9
	1.7 Licenses 1-9
	1.8 Source Code 1-10
	1.9 Documentation 1-11

	2 Command Line Compilation 2-1
	2.1 Usage 2-1
	2.2 Using g95 with the Fortran Tools 2-2
	2.3 Description 2-3
	2.4 Some Options 2-3
	2.5 Pre-connected Input/Output Information 2-5
	2.6 Error Messages 2-5

	3 Preprocessors 3-1
	3.1 cpp 3-1
	3.2 fppr 3-1
	3.3 COCO 3-8

	4 Photran 4-1
	4.1 Introduction to Using Photran 4-1
	4.2 Starting Photran 4-1
	4.3 Creating a New Project 4-2
	4.4 Importing Existing Files 4-3
	4.5 Create a New Source File 4-3
	4.6 Editing a Source File 4-3
	4.7 Building a Project 4-4
	4.8 Running a Program 4-5
	4.9 Make Files 4-5
	4.10 Deleting a Project 4-7
	4.11 Debugging 4-7
	4.12 Terminating a Program 4-11
	4.13 Other Sources of Information 4-11

	5 Calling Fortran and C 5-1
	5.1 Calling C Functions 5-1

	6 The Input/Output Module 6-1
	6.1 EOF and EOR Parameters 6-1
	6.2 Standard Unit Numbers 6-1
	6.3 Getting a New Unit Number 6-2

	7 The Math Module 7-1
	7.1 Math Constants 7-1
	7.2 The gcd Function 7-1

	8 The Slatec Library 8-1
	8.1 Finding Roots in an Interval 8-1
	8.2 Finding Roots of a Polynomial 8-2
	8.3 Computing a Definite Integral 8-3
	8.4 Special Functions 8-5
	8.5 Solving Linear Equations 8-5
	8.6 Differential Equations 8-5

	9 Defined Data Types 9-1
	9.1 Varying Length Strings 9-1
	9.2 Big Integers 9-2
	9.3 High Precision Reals 9-3
	9.4 Rationals 9-4
	9.5 Quaternions 9-5
	9.6 Roman Numerals 9-6

	10 Matrix Operations 10-1
	10.1 MATRAN 10-1
	10.2 BLAS and LAPACK Libraries 10-7
	10.3 Atlas Libraries 10-8

	11 Plotting 11-1
	11.1 Using Gnuplot 11-2
	11.2 Running Gnuplot with a Fortran Program 11-2
	11.3 Generating Data with a Fortran Program 11-4

	Installation �1
	1.1 Introduction
	1.2 Implementations Provided
	1.3 Contents
	1.4 Installation
	1.4.1 Installing the Fortran Tools Files
	1.4.1.1 Installing from a CD
	1.4.1.2 Installing the Free Version
	1.4.2 Cygwin (Windows Only)

	1.4.2.1 Installing from the CD
	1.4.2.2 Installing from the Internet
	1.4.2.3 Setting your Path Variable
	1.4.2.4 Your Home Directory
	1.4.3 Downloading Files for the Free Version

	1.4.3.1 Photran
	1.4.3.2 JRE
	1.4.4 Fortran Tools
	1.4.5 Creating a Shortcut (Optional)

	1.4.5.1 Windows
	1.4.5.2 Linux
	1.4.6 Java Runtime Environment (JRE)

	1.4.6.1 JRE on Windows
	1.4.6.2 JRE on Linux

	1.5 Support
	1.6 What is Installed
	1.7 Licenses
	1.7.1 Eclipse and Photran
	1.7.2 g95
	1.7.3 Cygwin (Windows)
	1.7.4 Java Runtime Environment
	1.7.5 Matran
	1.7.6 Blas, Lapack, Atlas, and Slatec
	1.7.7 Other Software

	1.8 Source Code
	1.8.1 Eclipse and Photran
	1.8.2 g95
	1.8.3 Cygwin (Windows)
	1.8.4 Matran
	1.8.5 Blas, Lapack, Atlas, and Slatec
	1.8.6 Other Software

	1.9 Documentation
	Command Line Compilation �2

	2.1 Usage
	2.2 Using g95 with the Fortran Tools
	2.3 Description
	2.4 Some Options
	2.5 Pre-connected Input/Output Information
	2.6 Error Messages
	Preprocessors �3

	3.1 cpp
	3.2 fppr
	3.2.1 Options
	3.2.2 Directives
	3.2.3 Macros and Defines
	3.2.4 Options
	3.2.5 Output
	3.2.6 Diagnostics
	3.2.7 Source Code

	3.3 COCO
	Photran �4

	4.1 Introduction to Using Photran
	4.2 Starting Photran
	4.3 Creating a New Project
	4.4 Importing Existing Files
	4.5 Create a New Source File
	4.6 Editing a Source File
	4.7 Building a Project
	4.8 Running a Program
	4.9 Make Files
	4.10 Deleting a Project
	4.11 Debugging
	4.12 Terminating a Program
	4.13 Other Sources of Information
	Calling Fortran and C �5

	5.1 Calling C Functions
	5.1.1 Data Types
	The Input/Output Module �6


	6.1 EOF and EOR Parameters
	6.2 Standard Unit Numbers
	6.3 Getting a New Unit Number
	The Math Module �7

	7.1 Math Constants
	7.2 The gcd Function
	The Slatec Library �8

	8.1 Finding Roots in an Interval
	8.2 Finding Roots of a Polynomial
	8.3 Computing a Definite Integral
	8.4 Special Functions
	8.5 Solving Linear Equations
	8.6 Differential Equations
	Defined Data Types �9

	9.1 Varying Length Strings
	9.2 Big Integers
	9.3 High Precision Reals
	9.3.1 The MP Module
	9.3.2 The XP Module

	9.4 Rationals
	9.5 Quaternions
	9.6 Roman Numerals
	Matrix Operations �10

	10.1 MATRAN
	10.1.1 The Rmat and Rdiag Derived Types
	10.1.2 Example: Linear Equations
	10.1.3 Example: Eigenvalues

	10.2 BLAS and LAPACK Libraries
	10.3 Atlas Libraries
	Plotting �11

	11.1 Using Gnuplot
	11.2 Running Gnuplot with a Fortran Program
	11.2.1 Some Gnuplot Commands

	11.3 Generating Data with a Fortran Program

	Software License Agreement �A

