
Fortran 90 & 95
Array and Pointer

Techniques
Objects, Data Structures, and Algorithms

with subsets e-LF90 and F

DO NOT COPY
This document was downloaded from

www.fortran.com/fortran
on a single-print license agreement

Making copies without written permission
constitutes copyright violation.

Further information may be obtained from Unicomp, Inc. at
11930 Menaul Blvd. NE, Suite 106; Albuquerque, NM 87112 USA; (505) 323-1758.

Loren P. Meissner

Computer Science Department
University of San Francisco

Fortran 90 & 95
Array and Pointer

Techniques
Objects, Data Structures, and Algorithms

with subsets e-LF90 and F

Loren P. Meissner

Computer Science Department

University of San Francisco

Copyright 1998, Loren P. Meissner

16 September 1998

Copyright © 1998 by Loren P. Meissner. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this book may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system without the prior written permission of the author.

Contents
Contents

Preface

Chapter 1 Arrays and Pointers 1
1.1 WHAT IS AN ARRAY? 1

Subscripts
Multidimensional Arrays
Arrays as Objects
Whole Arrays and Array Sections

Whole Array Operations
Elemental Intrinsic Functions
Array Sections
Array Input and Output
Standard Array Element Sequence
Array Constructors and Array-Valued Constants
Vector Subscripts

1.2 ARRAY TECHNIQUES 11
Operation Counts and Running Time

Operation Counts for Swap Subroutine
The Invariant Assertion Method
Smallest Element in an Array Section

Operation Counts for Minimum_Location
Search in an Ordered Array

Linear Search in an Ordered Array
Binary Search in an Ordered Array
Operation Counts for Binary_Search

Solving Systems of Linear Algebraic Equations
Some Details of Gauss Elimination
Crout Factorization
Iterative Refinement

1.3 POINTERS 36
The Pointer Attribute

Association Status
Automatic Dereferencing
The deallocate Statement

Storage for Pointers and Allocated Targets
Management of Allocated Targets

Pointers as Derived Type Components
Pointers with Arrays

iii

Chapter 2 Introduction to Sorting 42
Computer Sorting

Operation Counts for Sort_3
2.1 SORTING BY SELECTION 44

Operation Counts for Selection Sort
Sorting an Array of Structures
Selection during Output
Duplicate Keys

Selection Sort is not Stable
2.2 SORTING BY INSERTION 52

Straight Insertion
Operation Counts for Straight Insertion
Initially Ordered Data
Straight Insertion Is Stable

Insertion Sort with Pointers
Insertion during Input

Expanding Array
Binary Insertion

Binary Insertion Is Not Stable
Operation Counts for Binary Insertion

2.3 SHELL SORT 62
Operation Counts for Shell Sort
Shell Sort with Array Sections

2.4 HEAPSORT 64
Binary Trees (Array Representation) and Heaps
The Procedure Peck
Building the Heap by Chain Insertion
Sorting the Heap by Selection

Operation Counts for Heapsort
2.5 OPERATION COUNTS FOR SORTING: SUMMARY 75

Sorting Methods Described So Far (Slower to Faster)

Chapter 3 Recursion and Quicksort 77
3.1 RECURSION 77

Recursion Compared with Iteration
A Good Example of Recursion: Towers of Hanoi
A Bad Example of Recursion: The Fibonacci Sequence
Application: Adaptive Quadrature (Numerical Integration)
Application: Recursive Selection Sort
Tail Recursion vs Iteration

Printing a List Forward
Factorial

3.2 QUICKSORT 76
Recursive Partitioning

Quicksort is Unstable for Duplicates
Choosing the Pivot
The Cutoff

Testing a Quicksort Implementation
Storage Space Considerations
Quicksort Operation Counts

iv

Chapter 4 Algorithm Analysis 94
4.1 WHAT IS AN ALGORITHM? 94

Computer Algorithms
4.2 WHAT MAKES A GOOD ALGORITHM? 95

From Thousands to Millions of Data Items
Operation Counts for Sorting

4.3 ASYMPTOTIC ANALYSIS 97
The Role of Constants
The Complexity of an Algorithm: Big Oh
Complexity of Sorting Methods

4.4 MATHEMATICAL INDUCTION 101

Chapter 5 Linked Lists 102
5.1 LINKED LIST NODE OPERATIONS 102

Create List
Insert Target Node
Delete Target Node
Print Target Node
Modify Target Node

5.2 OPERATIONS ON WHOLE LINKED LISTS 106
Making a Linked List by Insertion at the RootPrint List
Delete List
Searching in a Linked List
Maintaining a Large Ordered List

5.3 PROCESSING LINKED LISTS RECURSIVELY 109
5.4 LINKED LISTS WITH POINTERS TO POINTERS 113
5.5 APPLICATIONS WITH SEVERAL LINKED LISTS 118

Multiply Linked Lists
5.6 LINKED LISTS VS. ARRAYS 119

Array Implementation
Unordered Array
Ordered Array

Linked List Implementation
Unordered Linked List
Ordered Linked List

Summary

v

Chapter 6 Abstract Data Structures 121
6.1 STACKS 121

Applications of Stacks
Depth-First Search in a Graph
Stack Operations
Evaluating a Postfix Expression
Stacks and Recursion
Recursive Depth-First Search
Reversing a List

Abstraction, Encapsulation, and Information Hiding
Stack as an Object

Array Implementation of Stack
Linked List Implementation of Stack

A Stack of What?
Generic Stack Module

Stack Objects
6.2 QUEUES 137

Queue Objects
Linked List Implementation of Queue
Array Implementation of Queue
Special Considerations for High Efficiency

Chapter 7 Trees 145
7.1 BINARY SEARCH TREES 145

The Balance Problem
7.2 AVL TREES 149

Rotating a Subtree
7.3 B-TREES 153
7.4 SKIP LISTS 157
7.5 COMPARISON OF ALGORITHMS 162

Index 165

vi

Preface
This book covers modern Fortran array and pointer techniques, including facilities provided by Fortran
95, with attention to the subsets e-LF90 and F as well. It provides coverage of Fortran based data struc-
tures and algorithm analysis.

The principal data structure that has traditionally been provided by Fortran is the array. Data struc-
turing with Fortran has always been possible — although not always easy: one of the first textbooks on
the subject (by Berztiss, in 1971) used Fortran for its program examples. Fortran 90 significantly ex-
tended the array features of the language, especially with syntax for whole arrays and array sections
and with many new intrinsic functions. Also added were data structures, pointers, and recursion. Mod-
ern Fortran is second to none in its support of features required for efficient and reliable implementation
of algorithms and data structures employing linked lists and trees as well as arrays.

Examples shown in this book use some features of Fortran 95, notably derived type component
initialization, pointer initialization with null , and pure functions. Electronically distributed program
examples include the Fortran 95 versions printed in the book, as well as alternative versions acceptable
to the Fortran 90 subsets e-LF90 and F. Each of these subsets supports all essential features of Fortran 90
but omits obsolete features, storage association, and many redundancies that are present in the full
Fortran language; furthermore, they are available at a very reasonable price to students and educators.
Information concerning e-LF90 (“essential Lahey Fortran 90”) is available from Lahey Computer Sys-
tems, Inc.; 865 Tahoe Blvd.; Incline Village, NV 89450; (702) 831-2500; <www.lahey.com> ;
<sales@lahey.com> . Information concerning the F subset is available from Imagine1; 11930 Menaul
Blvd. NE, Suite 106; Albuquerque, NM 87112; (505) 323-1758; <www.imagine1.com/imagine1> ;
<info@imagine1.com> .

The programming style used in this book, and in all three electronically distributed variant versions
of the programming examples, is close to that required by F (the more restrictive of the two subsets). F
version examples conform to the “common subset” described in essential Fortran 90 & 95: Common Subset
Edition, by Loren P. Meissner (Unicomp, 1997), except that short-form read and print statements re-
place the more awkward form that common subset conformance requires. The e-LF90 version examples
incorporate extensions described in Appendix C of essential Fortran, namely: initialization and type defi-
nition in the main program, simple logical if statements, do while , and internal procedures. Fortran
95 version examples (including those printed in the text) do not employ any further extensions except
for facilities that are new in Fortran 95. All versions of the examples have been tested; the Fortran 95
versions were run under DIGITAL Visual Fortran v 5.0c: see <www.digital.com/ fortran> .

 Bill Long, Clive Page, John Reid, and Chuckson Yokota reviewed earlier drafts of this material and
suggested many improvements.

vii

1

Chapter 1 Arrays and Pointers

1.1 WHAT IS AN ARRAY?
Think of a group of objects that are all to be treated more or less alike — automobiles on an assembly
line, boxes of Wheaties on the shelf at a supermarket, or students in a classroom. A family with five or six
children may have some boys and some girls, and their ages will vary over a wide range, but the chil-
dren are similar in many ways. They have a common set of parents; they probably all live in the same
house; and they might be expected to look somewhat alike.

In computer applications, objects to be processed similarly may be organized as an array. Fortran is
especially noted for its array processing facilities. Most programming languages including Ada, C, and
Pascal provide statements and constructs that support operations such as the following:
• Create an array with a given name, shape, and data type

• Assign values to one or more designated elements of an array

• Locate a specific element that has been placed in the array

• Apply a specified process to all elements of a particular array, either sequentially (one element at a
time) or in parallel (all at once).
Two important properties make arrays useful.

1. An array is a homogeneous collection — all of its elements are alike in some important ways. In pro-
gramming language terms, all elements of a given array have the same data type.1 This has two
consequences:

First, it means that all elements of an array permit the same operations — those that are defined
for the data type. For example, if the array elements are integers, operations of arithmetic such as
addition and multiplication can be performed upon them. If their data type is logical, the applicable
operations include and, or, and not.

Second, having a common data type implies that all the elements of a given array have the same
storage representation. The elements each occupy the same amount of space, which means that they
can be stored in a linear sequence of equal-sized storage areas.

2. Each element is identified by a sequential number or index. Along with the fact that each element
occupies some known amount of space in computer storage, this means that the addressing mecha-
nisms in the computer hardware can easily locate any element of a particular array when its index
number is known. A process to be applied to the array elements can proceed sequentially according
to the index numbers, or a parallel process can rely upon the index numbers to organize the way in
which all elements are processed.

1 A Fortran data type can have type parameters. All elements of a given array have the same data type and the
same type parameters.

2

Subscripts
In mathematical writing, the index number for an array element appears as a subscript — it is written in
a smaller type font and on a lowered type baseline: A1 for example. Most programming languages,
including Fortran, have a more restricted character set that does not permit this font variation, so the
index number is enclosed in parentheses that follow the array name, as A(1) . Some languages use
square brackets instead of parentheses for the array index, as A[1] . Regardless of the notation, array
indices are called subscripts for historical reasons.

A subscript does not have to be an integer constant such as 1, 17 , or 543 ; rather, in most contexts it
can be an arbitrary expression of integer type. For example, the array element name Ai+1 is written in
Fortran as A(I + 1) . The value of a subscript expression is important, but its form is not. A specific array
element is uniquely identified (at a particular point in a program) by the name of the array along with the
value of the subscript. The subscript value is applied as an ordinal number (first, second, third, . . .) to
designate the position of a particular element with relation to others in the array element sequence.

In the simplest case, subscripts have positive integer values from 1 up to a specific upper bound; for
example, the upper bound is 5 in an array that consists of the elements

A(1) A(2) A(3) A(4) A(5)

The lower bound may have a different value, such as 0 or –3 in the following arrays:
A(0) A(1) A(2) A(3) A(4)
A(-3) A(-2) A(-1) A(0) A(1)

In any case, the subscript values consist of consecutive integers ranging from the lower bound to the
upper bound.2 The extent is the number of different permissible subscript values; the extent is 5 in each
of the foregoing examples. More generally (for consecutive subscripts), the extent is the upper bound
plus one minus the lower bound.

It should be noted that an array can consist of a single element: its upper and lower bounds can be
the same. Perhaps surprisingly, Fortran (like a few other programming languages) permits an array to
have no elements at all. In many contexts, such an array is considered to have lower bound 1 and upper
bound 0.

Multidimensional Arrays
An array may be multidimensional, so that each element is identified by more than one subscript. The
rank of an array is the number of subscripts required to select one of the elements. A rank-2 array is two-
dimensional and is indexed by two subscripts; it might have six elements:

B(1, 1) B(2, 1) B(3, 1) B(1, 2) B(2, 2) B(3, 2)

On paper, a one-dimensional array is usually written as a sequence of elements from left to right,
such as any of the arrays named A in the previous examples. A two-dimensional array can be displayed
as a matrix in which the first subscript is invariant across each row and the second subscript is invariant
down each column, as in mathematics:

B(1, 1) B(1, 2) B(1, 3)
B(2, 1) B(2, 2) B(2, 3)

There is no convenient way to display an array of three or more dimensions on a single sheet of
paper. A three-dimensional array can be imagined as a booklet with a matrix displayed on each page.
The third subscript is invariant on each page, while the first two subscripts designate the row and col-
umn of the matrix on that page.

2 Array subscripts are normally consecutive. Special Fortran array section notation supports nonconsecutive
subscript values.

Arrays and Pointers

3

C(1, 1, 1) C(1, 2, 1) C(1, 3, 1) (first page)
C(2, 1, 1) C(2, 2, 1) C(2, 3, 1)

C(1, 1, 2) C(1, 2, 2) C(1, 3, 2) (second page)
C(2, 1, 2) C(2, 2, 2) C(2, 3, 2)

C(1, 1, 3) C(1, 2, 3) C(1, 3, 3) (third page)
C(2, 1, 3) C(2, 2, 3) C(2, 3, 3)

C(1, 1, 4) C(1, 2, 4) C(1, 3, 4) (fourth page)
C(2, 1, 4) C(2, 2, 4) C(2, 3, 4)

The shape of an array is a list of its extents along each dimension. Among the arrays just mentioned,
A has shape (5), B has shape (2, 3), and C has shape (2, 3, 4). The total size of an array is the product of the
extents along all its dimensions, so the size of A is 5, the size of B is 6, and the size of C is 24. Note that the
size of a one-dimensional array is the same as its extent (number of elements).

Arrays as Objects
An array is an object with three principal attributes: its data type, its name, and its shape.3 An array
object can be a constant, a variable, an argument to a procedure, or an input or output list item. Here are
some examples of array applications:
Lists. One-dimensional arrays are useful for storing lists. For example, Professor Smythe-Heppelwaite,

who studies the thickness of butterflies’ wings, might store each wing thickness as the value of one
element of a one-dimensional array of real data type. The size of the array is determined by the
number of butterflies in the collection.

As another example, a list of names could be stored as a one-dimensional array of character
strings.

Tables. A table can be implemented as a one-dimensional array of structures. As a simple example, con-
sider a table of 20 California cities containing the name, the latitude, and the longitude of each. Each
row of the table is a structure consisting of a character string for the name and two integers for the
latitude and longitude. Twenty of these structures in a one-dimensional array form the following
table:

3 Modern Fortran views arrays as objects: a procedure dummy argument that is an assumed-shape array matches
the data type and the shape of the corresponding actual argument. Traditional Fortran dialects viewed an
array argument as an area of storage whose attributes were established by declarations in the procedure and
were independent of the referencing program unit.

1.1 WHAT IS AN ARRAY?

4

Jacumba 33 116
Alturas 41 120
Woodside 37 122
Imperial Valley 33 116
Mira Loma 34 117
Glendora 34 118
Herlong 40 120
Temple City 34 118
Big Sur 36 122
Lafayette 38 122
Winterhaven 33 115
Nicolaus 39 122
Dobbins 39 121
Flintridge 34 118
Oakdale 38 121
Corona 34 117
Kensington 38 122
San Luis Obispo 35 121
Pacifica 38 123
Crescent City 42 124

Matrices. Two-dimensional arrays are useful in physical and mathematical applications. An example is
illustrated Fig. 1.1. A horizontal beam supports a system of n vertical forces at positions x1, x2, . . . ,
xn. Each force fi produces a deflection yi = y(xi) at each position xi. We may represent the forces by a
vector f of length n and the deflections by a vector y of length n. The deflections are related to the
forces by the matrix equation y = A· f, where A is an n by n matrix of coefficients of influence or of
flexibility.

Elastic beam

f1 f2 f3 fn

y1 y2 y3 yn

FIGURE 1.1. Elastic beam with forces and deflections

More generally, an n-by-m matrix can represent a linear transformation from an m-dimensional
vector space to an n-dimensional vector space. In particular, an n-by-n square matrix can represent a
linear transformation of an n-dimensional vector space onto itself. Multiplication of a matrix by a
vector or by another matrix is defined mathematically so that it works correctly for this interpreta-
tion.

Three or more dimensions. A multi-dimensional array might be used for tallying the results of a survey
of physical characteristics. For example, a 6-by-5-by-4 array might be used to count the number of
individuals having any of six hair colors, five eye colors, and four skin colors.

Arrays and Pointers

5

Say It with Fortran

Fortran statements and constructs support operations such as the following:
• Create an array with a given name, shape, and data type

• Assign values to one or more designated elements of an array

• Locate a specific element that has been placed in the array

• Apply a specified process to all elements of a particular array.
Modern array facilities employed in this book include the three array classes: explicit shape (de-

clared with bounds written as specification expressions, which may have fixed or varying values), as-
sumed shape (procedure dummy arguments that take their shape from the corresponding actual argu-
ment), and deferred shape (allocatable or pointer target arrays). Programs here show examples of whole
arrays and array sections, array constructors, and array-valued constants; how to combine arrays with
derived-type structures, and arrays with the pointer attribute. Detailed descriptions of modern Fortran
array facilities appear in other books such as Fortran 90/95 Explained, by Metcalf and Reid (Oxford Univ.,
1996).

Whole Arrays and Array Sections
An array is a variable; thus, the array name (without a subscript) represents all elements of the array. For
example, an array name in an input or output list causes input or output of all the array elements. For a
vector, the elements are read or written in the obvious sequence. The standard array element sequence for
arrays of higher rank is described later in this section.

There is a rich set of operations on whole arrays; most scalar operations are extended to whole-array
operands. A whole-array operation is applied to all elements of the array. For example, if B and C are
arrays that have the same shape, the expression B + C means that each element of B is to be added to the
corresponding element of C. The operations of arithmetic and the elementary mathematical intrinsic
functions apply elementwise to whole arrays. (See Elemental Intrinsic Functions later in this section.)

Furthermore, there is a large set of intrinsic functions for performing operations that would other-
wise require indexed do loops. Whole-array constants, as a form of array constructors, are also pro-
vided.

Whole-Array Operations

A whole array, denoted by the array name without a subscript, is an array variable. Fortran permits an
array variable in most contexts where a scalar variable is permitted.

Assignment is permitted between whole arrays of the same shape:

1. The shape of an array is determined by its rank (number of dimensions) and by its extent (number of
elements) along each dimension.

2. Two arrays have the same shape if they have the same rank and if their extents agree along each
dimension. The upper and lower subscript bounds are not required to agree.

The left and right sides of a whole-array assignment statement may have different types and other type
properties, if the type, kind, and character length coercion rules that apply to assignment of scalars are
observed.

1.1 WHAT IS AN ARRAY?

6

! Example of whole-array assignment.
implicit none
real, dimension(5, 7) :: A, B
real, dimension(0: 4, 0: 6) :: C
integer, dimension(5, 7) :: I

! start
read *, B
C = B
I = C

! Elementwise type coercion, with truncation, occurs.
A = I
print *, A

Whole arrays may be combined in array expressions by any operator that can be applied to variables
whose type is that of the array elements. All arrays in such an expression must have the same shape.
Each operator in an array expression denotes an elementwise operation upon corresponding elements
of each array in the expression.

! Arithmetic and relational operations on whole arrays.
implicit none
real, dimension(5, 7) :: A, B, C
logical, dimension(5, 7) :: T
real, dimension(20) :: V, V_Squared

! start
read *, B, C, V
A = B + C
T = B > C
C = A * B
V_Squared = V * V
print *, T, C, V, V_Squared

Note that A * B denotes elementwise whole-array multiplication, not matrix multiplication as de-
fined in linear algebra.

Shape conformance rules for whole-array expressions are extended to permit scalar subexpressions
along with whole array operands. (All array operands in an expression must have the same shape.) The
shapes of two operands are conformable if they are both whole arrays and have the same shape, or if
either of the expressions is a scalar. When an operator has a scalar operand and a whole-array operand,
the result is an array of the same shape as the whole-array operand. Each element of the result is ob-
tained by combining the scalar with the corresponding element of the whole array. For example, the
whole-array operation

A = 2.0 * B

combines the scalar 2.0 with each element of B and assigns the result to the corresponding element of A.
As we shall see, array sections are also conformable with whole arrays of the same shape and with

scalars. This same extended definition of shape conformance also applies to assignment when the object
on the left is a whole array and the expression on the right is scalar valued. Furthermore, actual argu-
ments to certain intrinsic functions may combine scalars with arrays.

An array may be initialized with a scalar; a scalar is interpreted in much the same way in whole-
array initialization as in whole-array assignment.

Of great importance for supercomputers that perform operations in parallel is the fact that Fortran
does not artificially impose any particular element sequence upon whole-array assignment. Although
conceptually all of the elements are processed in parallel, the actual sequence is arbitrary. The point is
that assignment to the array variable named on the left side must not affect the evaluation of the right
side in any way:

Arrays and Pointers

7

real, dimension(L) :: First, Second
:

First = First + Second

A possible model for whole-array assignment assumes a temporary “array-sized register,” or shadow
of the left side, whose elements are assigned as they are calculated. As a final step, the shadow register
is copied into the designated left side array. It is important to note, however, that whole-array assign-
ment can often be implemented without incurring the extra space or time penalties implied by this
model.

Elemental Intrinsic Functions

Many intrinsic functions, notably including the mathematical functions, are classified as elemental. An
elemental intrinsic function accepts either a scalar or an array as its argument. When the argument is an
array, the function performs its operation elementwise, applying the scalar operation to every array
element and producing a result array of the same shape. For elemental intrinsic functions with more
than one array argument, all actual arguments that are arrays must have the same shape. The following
statements apply the intrinsic functions max and sin elementwise to whole arrays:

implicit none
real, dimension(5, 7) :: A, B, C, D
logical, dimension(5, 7) :: T

:
A = max(B, C)
C = max(A, 17.0)
T = sin(A) > 0.5

Array Sections

An especially useful feature permits operations on all the elements in a designated portion of an array.
An array section is permitted in most situations that accept a whole array. Most operations that are valid
for scalars of the same type may be applied (elementwise) to array sections as well as to whole arrays. In
particular, an array section may be an actual argument to an elemental intrinsic function.

The simplest form of array section is a sequence of consecutive elements of a vector. Such an array
section is designated by the array name followed by a pair of subscript expressions that are separated by
a colon and represent the subscript limits of the array section. Either expression (but not the colon) may
be omitted; the default limits are the declared array bounds:

real, dimension(40) :: Baker
real, dimension(5, 17) :: John
real, dimension(144) :: Able

:
Baker(1: 29)
Baker(: 29) ! Default lower limit is 1.
John(5: 11)
John(: 11) ! Default is declared lower bound.
Able(134: 144)
Able(134:) ! Default is declared upper bound.

An array section may be combined in an expression with whole arrays or other array expressions (of
the same shape) and with scalars, and it may appear on the left side in an assignment statement. Each of
the following assignment statements moves a consecutive subset of the elements of a vector.

real, dimension(100) :: X
real, dimension(5) :: Y, Z
X(1: 50) = X(51: 100)
Y(2: 5) = Y(1: 4)
Z(1: 4) = Z(2: 5)

1.1 WHAT IS AN ARRAY?

8

An array section designator may include a third expression. This increment (in this context, often
called the stride) gives the spacing between those elements of the underlying parent array that are to be
selected for the array section:

real, dimension(8) :: A
real, dimension(18) :: V
A = V(1: 15: 2)

Values assigned to A are those of V1, V3, . . . , V15. A negative increment value reverses the normal array
element sequence:

A = B(9: 2: -1)

Here, elements of the reversed array section — the eight elements B9, B8, B7, . . . , B2, in that order — are
assigned to the consecutive elements of A.

A more complicated example is the following:
real, dimension(3, 5) :: E
real, dimension(2, 3) :: F
F = E(1: 3: 2, 1: 5: 2)

Here, on the last line, the first subscript of E takes on values 1, 3 and the second subscript of E takes on
values 1, 3, 5. The array section is a two-dimensional array object whose shape matches that of F.

Any of the three components of an array section designator may be omitted. The final colon must be
omitted if the third component is omitted:

real, dimension(100) :: A
A(: 50) ! Same as A(1: 50) or A(1: 50: 1)
A(: 14: 2) ! Same as A(1: 14: 2)
A(2:) ! Same as A(2: 100) or A(2: 100: 1)
A(2: : 3) ! Same as A(2: 100: 3)
A(: : 2) ! Same as A(1: 100: 2)
A(:) ! Same as A(1: 100) or A(1: 100: 1) or A
A(: : -1) ! Same as A(1: 100: -1); array section of zero size
A(1: 100:) ! Prohibited

The default values for these components are, respectively, the lower subscript bound for the array di-
mension, the upper bound for the array dimension, and 1.

Array section designators may be combined with single subscripts to designate an array object of
lower rank:

V(: 5) = M(2, 1: 5)

Here, the elements M2,1 through M2,5 form a one-dimensional array section that is assigned to the first
five elements of V. As another example, A(3, :) designates the third row of the matrix A (all elements
whose first subscript is 3), and A(:, 5) designates the fifth column of the matrix A (all elements whose
second subscript is 5).

The rank of an array section is the number of subscript positions in which at least one colon appears;
a colon in a subscript position signals that there is a range of subscript values for that dimension. The
extent along each dimension is simply the number of elements specified by the section designator for
that dimension.

In the absence of a colon, a fixed subscript value must appear; fixing one subscript value reduces the
rank by 1. If Fours is an array of rank 4, then Fours(:, :, :, 1) denotes the rank-3 array that consists
of all elements of Fours whose fourth subscript is 1. Fours(:, :, 1, 1) denotes the matrix (rank-2
array) that consists of all elements of Fours whose third and fourth subscripts are both 1. Fours(:, 1,
1, 1) denotes the vector (rank-1 array) that consists of all elements of Fours whose second, third, and
fourth subscripts are all 1. Finally, Fours(1, 1, 1, 1) names a scalar, which, for most purposes, may
be considered a rank-0 array. Note that Fours(1: 1, 1: 1, 1: 1, 1: 1) is not a scalar but an array
whose rank is 4 and whose size is 1. This latter array may also be denoted as Fours(: 1, : 1, : 1,
: 1) .

See also Vector Subscripts, later in this Section.

Arrays and Pointers

9

Array Input and Output

An Input list or an Output list may include a reference to a whole array. The elements are transmitted
according to a standard sequence, defined immediately below. For an array of rank 1, this sequence
consists of the elements in increasing subscript order. A rank-one array section without a stride designa-
tor also causes transmission of a set of contiguous array elements in increasing subscript order.

! Input and output of whole arrays and array sections.
implicit none
integer, parameter :: ARRAY_SIZE = 5
integer, dimension(ARRAY_SIZE) :: Data_Array

! start
read *, Data_Array ! Whole array
print *, " The first four values: ", Data_Array(: 4) ! Array section

Standard Array Element Sequence

Some operations and intrinsic functions on whole arrays require that a standard element sequence be de-
fined. The standard sequence depends on the subscript values: The leftmost subscript is varied first,
then the next subscript, and so on.

Let the declaration for an array be

Type , dimension(UBound1 , UBound2 , UBound3) :: Array name

Then, a reference to

Array name(Subscript1 , Subscript2 , Subscript3)

will designate the element whose sequential position is

S1 + U1 · (S2 − 1) + U1 · U2 · (S3 − 1)

where U represents an upper bound value in the declaration and S represents a subscript in the refer-
ence.

For arrays with explicit lower subscript bounds as well as upper bounds, the formula of course
involves the bound values. If an array is declared with lower bounds L1, L2, L3 and upper bounds U1, U2,
U3, and an element is referenced with subscript values S1, S2, S3, the sequential position of this element
is given by the following formula:

1 + (S1 − L1) + (U1 − L1 + 1) · (S2 − L2) + (U1 − L1 + 1) · (U2 − L2 + 1) · (S3 − L3)

This formula can easily be generalized to more than three dimensions.
Note that U3, the upper subscript range bound for the last dimension, does not appear in this for-

mula. This last upper bound value has a role in determining the total size of the array, but it has no effect
on the array element sequence.

Array Constructors and Array-Valued Constants

Fortran provides a method for constructing a vector by specifying its components as individual expres-
sions or expression sequences. An array constructor consists of a List of expressions and implied do
loops, enclosed by the symbols (/ and /) :

(/ List /)
The expressions in the List may be scalar expressions or array expressions.

Array constructors are surprisingly versatile. For example, two or more vectors may be concat-
enated, or joined end to end, with an array constructor. In the following statement, suppose that X, Y,
and Z are vectors:

Z = (/ X, Y /)

1.1 WHAT IS AN ARRAY?

10

The usual conformance requirements of array assignment apply. Here, the length of Z must be the sum
of the lengths of X and Y, and other attributes of the data must be compatible.

Array constructors are especially useful for constructing array-valued constants, as illustrated by
the following examples. The first two of the following array constructors form constant vectors of real
type, while the third is a constant vector of integer type.

(/ 3.2, 4.01, 6.4 /)
(/ 4.5, 4.5 /)
(/ 3, 2 /)

A named constant may be a whole array:
integer, dimension(5), parameter :: PRIMES = (/ 2, 3, 5, 7, 11 /)

A whole-array variable may be initialized in a type declaration, giving the initial value of the array
by means of a scalar or an array constructor:

real, dimension(100), save :: Array = 0.0
integer,dimension(5), save :: Initial_Primes = (/ 2, 3, 5, 7, 11 /)

The implied do loop form that is permitted in an array constructor is so called because of its resem-
blance to the control statement of an indexed do construct:

(Sublist , Index = Initial value , Limit [, Increment])
For example,

(J + 3, J + 2, J + 1, J = 1, N)

The Sublist consists of a sequence of items of any form that is permitted in the List; an implied do loop
may be included in a sublist within an outer implied do loop. The Index variable (called an array con-
structor implied-do variable or ACID variable) should not be used for any other purpose; furthermore,
it should be a local variable and should not have the pointer attribute.

Constructing an array of higher rank
An array constructor always creates an array of rank 1, but the intrinsic function reshape can be ap-
plied to create an array of higher rank. For example, the following expression constructs an N by N
identity matrix:

reshape((/ ((0.0, J = 1, I - 1), 1.0, (0.0, J = I + 1, N), I = 1, N) /), (/ N, N /))
The intrinsic function reshape has two arguments, source and shape . The first argument, source , is
an array of rank 1, of any type, with the correct total number of elements. The the second argument,
shape , is a vector of one to seven positive integer elements. The number of elements in the shape
vector determines the rank of the result from reshape . Each element of shape gives the size along one
dimension of the result array; thus, the product of the element values of shape gives the total size of the
result.

integer, parameter :: N = 10
integer, dimension(2), parameter :: Y_SHAPE = (/ 3, 2 /), &

Z_SHAPE = (/ N, N /)
integer :: I, J ! I and J are ACID variables.
real, dimension(2) :: X
real, dimension(3, 2) :: Y
real, dimension(N * N) :: Q
real, dimension(N, N) :: Z

! start
X = (/ 4.5, 4.5 /)
Y = reshape((/ (I + 0.2, I = 1, 3), X, 2.0 /), Y_SHAPE)
Q = (/ ((0.0, J = 1, I - 1), 1.0, (0.0, J = I + 1, N), I = 1, N) /)
Z = reshape(Q, Z_SHAPE)

Arrays and Pointers

11

Here Y_SHAPE and Z_SHAPE are named array constants. Another array constant is assigned to X. In the
assignment to Y, the source argument to the reshape function is an array constructor with six compo-
nents: The first three are given by an implied do loop, the next two come from the vector X, and the sixth
is the constant 2.0 . An array constructor is assigned to the vector Q, which is then reshaped to form Z
and becomes an N by N identity matrix.

Vector Subscripts

A vector of integer type may appear as a subscript in an array section designator, along with any of the
other allowed forms. The designated array section is formed by applying the elements of the vector
subscript in sequence as subscripts to the parent array. Thus, the value of each element of the vector
subscript must be within the array bounds for the parent array.

For example, suppose that Z is a 5 by 7 matrix and that U and V are vectors of lengths 3 and 4,
respectively. Assume that the elements of U and V have the following values:

U 1, 3, 2
V 2, 1, 4, 3

Then, Z(3, V) consists of elements from the third row of Z in the following order:
Z(3, 2), Z(3, 1), Z(3, 4), Z(3, 3)

Also, Z(U, 2) consists of elements from the second column:
Z(1, 2), Z(3, 2), Z(2, 2)

And, Z(U, V) consists of the following elements:
Z(1, 2), Z(1, 1), Z(1, 4), Z(1, 3),
Z(3, 2), Z(3, 1), Z(3, 4), Z(3, 3),
Z(2, 2), Z(2, 1), Z(2, 4), Z(2, 3)

In the most useful applications, the elements of the subscript vector consist of a permutation of
consecutive integers, as in these examples. The same integer may appear more than once in a subscript
vector, but this practice is error-prone and should be done only with great care.

Vector subscripts are prohibited in certain situations. In particular, an actual argument to a proce-
dure must not be an array section with a vector subscript if the corresponding dummy argument array
is given a value in the procedure. Furthermore, an array section designated by a vector subscript with a
repeated value must not appear on the left side of an assignment statement nor as an input list item.

The rank of an array section is the number of subscript positions that contain either a colon or the
name of an integer vector (vector subscript). The extent of an array section along each dimension is
simply the number of elements specified by the section designator for that dimension. For a vector
subscript, the extent is determined by the number of elements in the vector.

1.2 ARRAY TECHNIQUES
This section examines some array processing techniques that are generally useful; many of these will be
applied in later chapters.

Operation Counts and Running Time
An important purpose of this textbook is to compare different methods of accomplishing the same re-
sult. Several different factors in this comparison are discussed in Chapter 4, but the major one is running
time. For numerical work, as in most traditional Fortran “number crunching” applications, running time
is dominated by floating point operations (especially by multiplication time). On the other hand, for the
nonnumerical applications that are the subject of this text it is more useful to count comparison opera-
tions and move operations.

1.2 ARRAY TECHNIQUES

12

It is assumed here that comparisons and moves account for most of the running time, or else that
these are typical operations and that total running time is proportional to some combination of these.
This assumption is unrealistic in actual practice, of course, for several reasons. First, it ignores the over-
head of loop control, procedure reference, etc., which can dominate the “useful” operations in a tight
loop or in a short procedure. Furthermore, as Bill Long has pointed out, memory loads are probably a
more relevant factor than moves because the processor must wait for their completion, whereas most
processors accomplish memory stores asynchronously.

Consider a procedure for exchanging two array elements with the aid of an auxiliary variable. This
example illustrates the methods and notation that will be used. Declarations and other nonexecutable
statements are omitted. Line numbers are given at the right for reference.

Operation Counts for Swap Subroutine

Aux = Array(I) ! 1
Array(I) = Array(J) ! 2
Array(J) = Aux ! 3

The subroutine performs three move operations and no comparisons.
If I and J have the same value, Swap accomplishes nothing. At the cost of one comparison, the three

move operations might be saved:
if (I /= J) then ! 1

Aux = Array(I) ! 2
Array(I) = Array(J) ! 3
Array(J) = Aux ! 4

end if ! 5
This subroutine always performs one comparison, at line 1, and it sometimes performs three moves.

Which version runs faster? The answer depends upon the relative times of comparison operations
and move operations, and whether the moves are required. Let p be the probability that I and J are
different; then the expected operation counts for the second subroutine are one comparison and 3p
moves.

Assuming for the moment that a comparison takes the same amount of time as a move, the first
subroutine performs three operations and the second performs 3p +1 operations. If p is larger than 0.67,
the first subroutine is faster.

For most applications described in this text, swapping an item with itself is rare (p is close to 1) and
the test should be omitted.

However, the relative timing of comparison and move operations can change from one application
to another. Data base comparisons employ a key that is often a relatively small part of each item; thus the
move operation takes considerably longer than the comparison. For some indexed data base applica-
tions, however, only pointers are moved, so the move time and comparison time are more nearly equal.
For an indexed application with a long key, comparison operations can require more time than moves.

The Invariant Assertion Method
Some array techniques employ a repetitive procedure or loop that can be designed and verified with the
aid of an invariant assertion. Consider the following example.

Suppose that you are a bunk bed salesman. Kensington Residential Academy wants to buy new
bunk beds for its dormitories, which must be long enough for the tallest student at the Academy. You
need to find the tallest student so that you can order beds according to his height. So you stand at the
door of the dining hall as the students file in, one at a time.

How do you proceed? Imagine that you have solved a portion of the problem. Some (but not all) of
the students have entered, and you have found the tallest student among those who are now in the hall.
You have asked this tallest student to stand aside, at the left of the doorway.

Arrays and Pointers

13

One more student enters. What do you have to do to solve this incremental problem? If the next
student is taller than the one standing by the door, you ask the next student to stand there instead. If the
next student is not taller, you leave the previous student standing there. Now the tallest student in the
slightly larger group is standing by the doorway.

An invariant assertion for an event that occurs repeatedly, such as students entering the dining hall
one at a time, is a statement that is true after each repetitive occurrence. For the bunk bed problem, a
suitable assertion is the following:

“The tallest student in the dining hall is now standing by the doorway.”
An invariant assertion has the following properties:
• The assertion must be true initially, before repetition begins.

You must do something special with the first student. When he enters, you ask him to stand
aside, and you start the repetitive process with the second student.

• Each occurrence of the repetitive process must maintain the validity of the assertion. That is, it can
be verified that if the assertion is true prior to a repetitive step, then it remains true after that step.
This is what “invariant” means.

For the bunk bed problem, you check the height of each new student who enters and you re-
place the current tallest student if the new one is taller. This guarantees that the assertion remains
true.

• Validity of the assertion at the end of the repetition describes the goal of the entire process.
When all of the students have entered the hall, the process terminates, and the student standing

by the doorway is the tallest of them all.
The design of a loop can often be facilitated by trying to find an invariant assertion. This is not

always easy. For array applications, by analogy to the problem of finding the tallest student, it often
involves imagining the situation when a typical section of the array (but not all of it) has been processed.
The invariant assertion then tells what should happen when the section is enlarged by one element.

Smallest Element in an Array Section
A procedure for locating the smallest element in a section of an array Array(Lo: Hi) can be con-
structed by analogy to the bunk bed problem. The procedure employs a loop to examine portions of the
array section, incorporating one more element at each iteration. At each step, the variable Min_Val records
the smallest value among the elements examined so far. The location (subscript value) where the smallest
element was found is also recorded.

An appropriate invariant assertion is:
“The variable Min_Val records the smallest element in the current portion of the array,
and Loc records the location (subscript value) where it was found.”

The assertion is made true initially by assigning ArrayLo to Min_Val and Lo to Loc.
Min_Val = Array(Lo)
Loc = Lo

Iteration begins with the element at subscript position Lo + 1. To guarantee the validity of the asser-
tion when a new item ArrayI is incorporated, Min_Val is compared with the new item and replaced if
necessary.

do I = Lo + 1, Hi
if (Array(I) < Min_Val) then

Min_Val = Array(I)
Loc = I

end if
end do

1.2 ARRAY TECHNIQUES

14

At loop termination, the assertion is:
“The variable Min_Val records the smallest element in the entire array section, and Loc
records the location where it was found.”

The array section has grown to encompass the entire array, and the current value of Loc is the desired
result value.

Operation Counts for Minimum_Location

Min_Val = Array(Lo) ! 1
Loc = Lo ! 2
do I = Lo + 1, Hi ! 3

if (Array(I) < Min_Val) then ! <4
Min_Val = Array(I) ! <5
Loc = I ! <6

end if ! <7
end do ! <8

The number of data items processed by this function is P = Hi + 1 – Lo. The function includes one
comparison at line 4 and data moves at lines 1 and 5. Only those steps that move an actual data item are
counted. The loop body contains one comparison and one move. The comparison is executed once for
each iteration of the loop, so there are P – 1 comparisons altogether. The expected number of moves
(including the extra move at line 1) can be shown to be ∑i=1

P(1/i); lnP + 0.6 approximates this sum.4

Say It with Fortran

Fortran provides standard intrinsic functions minval and minloc , which return the value and location
of the smallest element in an array or array section; corresponding functions maxval and maxloc are
also provided. However, these intrinsic functions can be applied only to arrays of integer or real type;
extension to character type is proposed for a future version of Fortran.

Furthermore, coding the operation explicitly illustrates the Fortran techniques involved. The fol-
lowing function locates the smallest element in the portion of an array of strings that is bounded by
subscript limits given as the arguments Lo and Hi. The result variable, Loc, is an integer that locates the
smallest element of Array to be found between subscript positions Lo and Hi.

When this function is used, it will inherit a requirement for explicit type declarations from its host. A
calling program will refer to the function by the name Minimum_Location , but within the function the
result value is called Minimum_Location_R .

The keyword pure in a function heading is recognized by Fortran 95 as an assertion that the func-
tion has no side effects — i.e., it has no external effects except for returning the result value. This keyword
is not recognized by Fortran 90, and the electronically distributed Fortran 90 versions omit it.

4 Paul Zeitz and Chuckson Yokota, private communications. Here, Euler’s constant γ = 0.5772 . . . plus some
further terms (negligible for large P) in the “harmonic sum” are estimated by the constant 0.6; see D. E. Knuth,
Fundamental Algorithms, The Art of Computer Programming, vol. 1 (Reading: Addison-Wesley, 1968), 73ff.

Here ln P is the natural logarithm, base e = 2.718 Natural logarithms appear rarely in this text; the most
useful logarithmic base for algorithm analysis is 2. This text uses the notation lg P for the base 2 logarithm of
P. The value of lg P is about 1.44 times the natural logarithm of P or 3.32 times the common (base 10) logarithm
of P; a Fortran program can compute lg P from either of the expressions 1.44269504 * log(P) or 3.32192809
* log10(P) . Twenty-digit values of these constants are log2 e = 1.4426950408889634074 and log2 10 =
3.3219280948873623479 (from Mathematica®).

Arrays and Pointers

15

! Function to find the smallest string in an array section.
pure function Minimum_Location(Array, Lo, Hi) result(Minimum_Location_R)

Array is an assumed-shape rank-1 array of assumed-length strings: Array extent and character length will be
taken from the actual argument. Lo and Hi are integers. The dummy arguments are declared with intent(in) ,
which means that the function must not redefine them.

character (len = *), intent(in), dimension(:) :: Array
integer, intent(in) :: Lo, Hi
integer :: Minimum_Location_R, Loop

The automatic-length local character variable Min_Val has the same length property as Array .

character (len = Len(Array)) :: Min_Val
! start function Minimum_Location

Min_Val = Array(Lo)
Minimum_Location_R = Lo
do Loop = Lo + 1, Hi

if (Array(Loop) < Min_Val) then
Min_Val = Array(Loop)
Minimum_Location_R = Loop

end if
end do

The return statement before end function or end subroutine is optional, as is a stop statement before
end program . As a matter of programming style preference, however, these redundant statements appear con-
sistently in the examples in this text.

return
end function Minimum_Location

If the function Minimum_Location is implemented as an internal procedure, some efficiency can
be gained by passing the array by inheritance rather than as an argument, with the two subcript bounds
as arguments.

Search in an Ordered Array
Some applications require searching an array for a specified key. If some array element value matches
the key, the search procedure returns the location of the match; otherwise, it returns an indication that no
matching key occurs in the array. For arrays that are not organized in any particular order, it may be
necessary to examine every element. When the elements are known to be in ascending or descending
order, however, searching can be simplified considerably.

Two methods for searching an ordered array are described in this section: linear searching, which can
be expected to require comparison with only half of the elements in an ordered array of random values,
and binary searching, for which the expected number of (3-way) comparisons is approximately lg N,
where N is the size of the array.

Linear Search in an Ordered Array

Linear search in an array, here assumed to be in ascending order, compares the elements one at a time
with a given key. The search may either succeed or fail.

During execution of the search loop, if an array element matches the key, the search is successful and
no more array elements need to be compared, so the iteration terminates.

On the other hand, suppose that there is no matching element in the array. The first few array ele-
ments may be smaller than the key. When an element larger than the key is found, the search has gone
beyond the point where a matching item would be if it were in the array. The search is unsuccessful and
no more array elements need to be compared.

1.2 ARRAY TECHNIQUES

16

A third possibility is that the end of the array is reached without a matching element having been
found; again, the search is unsuccessful.

As pointed out by Charles Zahn in 1974,5 a program must be prepared to take quite different actions
upon completion of a search procedure, depending upon whether the search is successful or unsuccess-
ful. The procedure must return an indication of success or failure, as well as the location of the array
element whose examination caused loop termination.

do Loop = 1, size(Array)
if (Array(Loop) > Key) then

Terminate the search, returning the value of Loop along with an indication that the search is unsuccessful.

:
else if (Array(Loop) == Key) then

Terminate the search, returning the value of Loop along with an indication that the search is successful.

:
else

Continue searching. (The empty else block may be omitted.)

end if
end do

Terminate the search, returning an indication that the search is unsuccessful because the end of the Array was
reached.

A simple strategy is to record two positions, Loc_1 and Loc_2, that indicate array elements between
which the Key value is known to lie. If the search is successful, these are given equal values; if the search
is unsuccessful, they differ by one. The following procedure takes advantage of the Fortran convention
that the index value is N + 1 if the loop is completed without execution of the exit statement:6

do Loop = 1, N
if (Array(Loop) > Key) then

Terminate the search and exit (to the end of the loop). Note that if Array(1) is larger than Key , loop exit will
occur with Loop == 1; the statements that follow the loop will set Loc_1 and Loc_2 to 0 and 1.

exit
else if (Array(Loop) == Key) then

Terminate the search.

Loc_1 = I
Loc_2 = I

The fact that Loc_1 and Loc_2 have equal values indicates that the search is successful. It is undesirable to
exit (to the end of the loop) at this point — the assignment Loc_1 = I - 1 must be skipped. In the Fortran
procedure, a return statement provides an easy way to skip those unwanted steps.

return

[else continue searching.]

end if
end do

Arrays and Pointers

5 C. T. Zahn, “A Control Statement for Natural Top-Down Structured Programming,” Proc. Colloque sur la
Programmation, Paris, April 1974.

6 Recall that the index of a Fortran do loop is incremented before the test for termination is made, and the index
value is preserved at normal termination.

17

The fact that Loc_1 and Loc_2 have unequal values indicates that the search is unsuccessful. Note that if
Array(N) is smaller than Key , the loop will terminate normally with Loop == N +1; Loc_1 and Loc_2 will be
set to N and N +1.

Loc_1 = I - 1
Loc_2 = I

The invariant assertion method can be applied to this problem; an appropriate assertion is:
1 ≤ Loop ≤ N +1 and ArrayLoop–1 ≤ Key < ArrayN+1

For this analysis, imagine that there is an extra fictitous array element at each end: Array0 with a
very large negative value and ArrayN+1 with a very large positive value. (These fictitious elements are
not actually created as part of the array, and they are never referenced by program statements. Their
only role is in the invariant assertion.)

Taking into account the fictitious array elements, the assertion is true when Loop is initialized to 1 by
loop contol processing. Because the array is in ascending order, Arrayi ≤ Arrayj whenever 0 ≤ i ≤ j ≤ N + 1.

The return statement in the if construct is executed only if a match is found. The exit statement
is executed (and Loop is preserved) if ArrayLoop > Key; normal loop termination (with Loop = N + 1, by
Fortran convention) occurs if Key > ArrayN. In either of these two latter cases, the statement following
end do is reached with 1 ≤ Loop ≤ N + 1 and ArrayLoop–1 ≤ Key < ArrayLoop.

Say It with Fortran

The following Fortran function implements linear search for a Key among the elements of an array of
character strings. One detail has been changed because a Fortran function can return an array but it
cannot return two separate scalars. The two bracketing subscript values (named Loc_1 and Loc_2 in the
foregoing discussion) are combined into a vector named Linear_Search_R.

! Linear search in an ordered array.
pure function Linear_Search(Array, Key) result(Linear_Search_R)

Array is an assumed-shape rank-1 array of assumed-length strings; Key is an assumed-length string. Extent
and character length of Array and character length of Key will be taken from the corresponding actual argu-
ments.

character (len = *), intent(in), :: Array(:), Key
integer, dimension(2) :: Linear_Search_R

! start function Linear_Search
do Loop = 1, size(Array)

if (Array(Loop) > Key) then
exit

else if (Array(Loop) == Key) then

The following statement assigns a scalar value to both vector elements.

Linear_Search_R = Loop
return

end if
end do
Linear_Search_R(1) = Loop - 1
Linear_Search_R(2) = Loop
return

end function Linear_Search

1.2 ARRAY TECHNIQUES

18

Binary Search in an Ordered Array

For a large ordered array, a binary search is much more efficient than the linear search just described. The
idea of this method is to cut the search area in two at each step by finding out whether the key value is
in the left half or the right half of the array. Since the array elements are in order, this determination can
be made by examining just one element in the middle of the array. The selected half is again bisected,
either the left half or the right half is chosen, and the process continues. The search area is ultimately
reduced either to a single element that matches the key or else to two adjacent elements between which
the key value lies.

Each time the search area is bisected, only one (3-way) comparison of the key with an array element
is required. (As explained in the discussion of Operation Counts below, a 3-way comparison is equiva-
lent, on the average, to 1.5 simple comparisons.) Therefore, the total number of comparisons, and the
total number of repetitions of the loop, is proportional to lg N where N is the array size. A linear search
in an ordered array of 10,000 elements may be expected to require some 5,000 comparisons, but a binary
search never requires more than 15 three-way comparisons (or 21 simple comparisons). See also Exer-
cise 6 at the end of this section.

The invariant assertion method can be applied to this problem. Let the variables Loc_1 and Loc_2
contain the index values of array elements between which the Key value is known to lie. It is possible, of
course, that the key value is smaller or larger than all elements of the array. Again, the invariant asser-
tion assumes fictitous elements Array0 with a very large negative value and ArrayN+1 with a very large
positive value. An appropriate assertion is:

0 ≤ Loc_1 ≤ Loc_2 ≤ N + 1 and ArrayLoc_1 ≤ Key ≤ ArrayLoc_2
The assertion is made true initially by setting Loc_1 to 0 and Loc_2 to N + 1. The fact that the array is

in ascending order implies that Arrayi ≤ Arrayj whenever 0 ≤ i ≤ j ≤ N + 1.
The loop is executed while the difference Loc_2 – Loc_1 is greater than 1. This difference measures

the extent of the subscript range that currently encloses the Key value:7

Loc_1 = 0
Loc_2 = N + 1
do while (Loc_2 - Loc_1 > 1)

Middle = (Loc_2 + Loc_1) / 2
:

end do

At each iteration, the subscript range that encloses Key is bisected and either Loc_1 or Loc_2 is set to
Middle to preserve the invariant assertion. However, it may happen that ArrayMiddle exactly matches the
search key. In this case, there is no further need to continue bisecting the array, so the loop is terminated:

Loc_1 = 0
Loc_2 = N + 1
do while (Loc_2 - Loc_1 > 1)

Middle = (Loc_1 + Loc_2) / 2
if (Key > Array(Middle)) then

Loc_1 = Middle
else if (Key < Array(Middle)) then

Loc_2 = Middle

7 Recall that Fortran integer division truncates the true quotient. If Loc_1 + Loc_2 is an even integer, the quotient
is exact; if odd, the expression value is the next integer smaller than the true quotient. When Loc_1 and Loc_2
are some distance apart, a slight change in the bisection point has little effect. However, careful analysis is
required when the two values are close together.

Arrays and Pointers

19

else ! Array(Middle) == Key
Loc_1 = Middle
Loc_2 = Middle
exit

end if
end do

If no element of the array matches Key, the loop is completed without execution of the exit state-
ment, with Loc_1 and Loc_2 pointing to the array elements next smaller and next larger than Key, or to 0
or N + 1 if Key is smaller or larger than all array elements. If a match occurs, both result integers point to
the matching element. The loop exit conditions along with the invariant assertion give: 0 ≤ Loc_1 ≤ Loc_2
≤ N and 0 ≤ Loc_2 – Loc_1 ≤ 1 and ArrayLoc_1 ≤ Key ≤ ArrayLoc_2.

Operation Counts for Binary_Search

Loc_1 = 0 ! 1
Loc_2 = size(Array) + 1 ! 2
do while (Loc_2 - Loc_1 > 1) ! 3

Middle = (Loc_1 + Loc_2) / 2 ! < 4
if (Key > Array(Middle)) then ! < 5

Loc_1 = Middle ! < 6
else if (Key < Array(Middle)) then ! < 7

Loc_2 = Middle ! < 8
else ! Array(Middle) == Key ! < 9

Loc_1 = Middle ! < 10
Loc_2 = Middle ! < 11
exit ! < 12

end if ! < 13
end do ! < 14

This function has no data move operations. (We ignore the extra assignments to Loc_1 and Loc_2,
and the comparison in the do while statement. Execution time for these is perhaps comparable to the
loop overhead per iteration of a linear search procedure.)

The if construct has three branches. One comparison is required when the first branch is taken,
which is almost half the time; a second comparison is required when the second branch is taken, which
is almost all of the other half; the rarely executed third branch requires a third comparison. Thus the
expected number of comparisons for the if construct is about 1.5.

In the worst case, no match is found and the loop body is executed lg(N +1) times, where N = size(
Array), or the next lower integer if N is not a power of 2. The operation count for binary search in the
worst case is 1.5 lg N comparisons.

In the best case, a match occurs at the first comparison and the total count is 1 comparison.
According to Knuth,8 the average requires only one less iteration than the worst case, or 1.5·lg (N –

1) comparisons.

Say It with Fortran

The following function implements binary search for a key among the elements of an array of character
strings. The function result is a vector Binary_Search_R of length 2, whose elements perform the roles of
the scalars Loc_1 and Loc_2 in the preceding discussion. If Key is found in the array, both elements of the
result vector are set to its array index. If Key is not found, the elements of the result vector indicate the
two adjacent array elements between which the Key value lies.

1.2 ARRAY TECHNIQUES

8 D. E. Knuth, Sorting and Searching, The Art of Computer Programming, vol. 3 [Reading: Addison-Wesley,
1973], 411.

20

! Binary search in ordered array.
pure function Binary_Search(Array, Key) result(Binary_Search_R)

Array is an assumed-shape rank-1 array of assumed-length strings; Key is an assumed-length string. Extent and
character length of Array and character length of Key will be taken from the corresponding actual arguments.

character (len = *), intent(in) :: Array(:), Key
integer, dimension(2) :: Binary_Search_R, Middle

! start function Binary_Search
Binary_Search_R(1) = 0
Binary_Search_R(2) = size(Array) + 1
do while (Binary_Search_R(2) - Binary_Search_R(1) > 1)

Middle = (Binary_Search_R(1) + Binary_Search_R(2)) / 2
if (Key > Array(Middle)) then

Binary_Search_R(1) = Middle
else if (Key < Array(Middle)) then

Binary_Search_R(2) = Middle
else ! Array(Middle) == Key

exit
end if

end do
return

end function Binary_Search

Solving Systems of Linear Algebraic Equations
Perhaps the most important numerical array application is solving systems of linear algebraic equations
such as the following:

3.0 x + 6.0 y – 6.0 z = – 9.0
1.0 x + 0.0 y + 3.0 z = + 7.0
3.0 x + 4.0 y + 0.0 z = + 3.0

The method of elimination named for Karl Friedrich Gauss (1777–1855) is a systematic way of solving
such problems. As W. Kahan points out, the idea is to replace the given system of equations by another
system that has the same solution but is much easier to solve. There are three kinds of transformations
that do not change the solution set:
1) One of the equations may be multiplied or divided by a scalar constant;

2) A multiple of one of the equations may be added to or subtracted from another; or

3) Two of the equations may be interchanged.
Applying the Gauss method to this example, we divide the first equation by the coefficient of x, and

then subtract appropriate multiples of the modified first equation from the second and third equations
to eliminate x from those equations:

1.0 x + 2.0 y – 2.0 z = –3.0
0.0 x – 2.0 y + 5.0 z = + 10.0
0.0 x – 2.0 y + 6.0 z = + 12.0

Next, we divide the second equation by the coefficient of y, and we subtract a multiple of the second
equation from the third equation to eliminate the second variable from the third equation:

1.0 x + 2.0 y – 2.0 z = –3.0
0.0 x + 1.0 y – 2.5 z = – 5.0
0.0 x + 0.0 y + 1.0 z = + 2.0

Arrays and Pointers

21

We now have a “reduced” set of equations whose solution is easily obtained by “back substitution”: The
value z = 2.0 from the reduced third equation is substituted into the second equation to give y = 0.0, and
these two values are substituted into the first equation to give x = 1.0 .

Well before 1960, John von Neumann and others were already using computers to solve systems of
equations. By the time George E. Forsythe and Cleve B. Moler wrote “Computer Solution of Linear
Algebraic Systems” (Prentice-Hall, 1967), efficient solution and error estimation techniques were well
developed. The present discussion translates, into modern Fortran syntax, the methods described by
Forsythe and Moler more than 30 years ago.9

The usual implementation of Gauss elimination, for a system of n equations, stores the coefficients
as the first n columns of an n by n + 1 matrix A, with right side values in column n + 1. Thus, each row of
A represents one of the equations. As the elimination proceeds, 1s appear in the diagonal positions of A,
representing, for each i, the coefficient of i in the ith equation. Zeros appear below the diagonal, repre-
senting the coefficient of i in equations after the ith. However, as we shall see, the program never actu-
ally refers to positions on and below the diagonal of A.

A “first draft” Gauss elimination program is the following:
do I = 1, N

do K = I + 1, N + 1
A(I, K) = A(I, K) / A(I, I)

end do
do J = I + 1, N + 1

do K = I + 1, N
A(J, K) = A(J, K)- A(J, I) * A(I, K)

end do
end do

end do

Some Details of Gauss Elimination

Array sections. Fortran 90 array section notation can simplify some steps in this program. The first of
the inner loops may be replaced by a single array assignment:

A(I, I + 1: N + 1) = A(I, I + 1: N + 1) / A(I, I)
Similar notation may be employed for subtracting multiples of a given row of this matrix from each

of the rows below it. The doubly nested loop becomes an array section operation, with subscript ranges
in both dimensions, to reduce all elements in the block A(I + 1: N, I + 1: N + 1) .

do I = 1, N
A(I, I + 1: N + 1) = A(I, I + 1: N + 1) / A(I, I)
A(I + 1: N, I + 1: N + 1) = A(I + 1: N, I + 1: N + 1) &

- matmul(A(I + 1: N, I: I), A(I: I, I + 1: N + 1))
end do

The call to matmul forms an outer product of parts of column i and row i of A. The arguments are ex-
pressed as array sections of rank 2, with section subscript range I: I in one of the dimensions of each
argument. It is a Fortran requirement that at least one of the arguments of matmul must have rank 2.

The remaining outer loop (which cannot be converted to array section syntax) applies the reduction
step n times, once for each row, each time generating (“virtual”) zeros below the diagonal in the corre-
sponding column. When row n is reached, there are no rows following it; the subscript range
(I + 1 : N) is empty and no actual reduction occurs at this stage.

1.2 ARRAY TECHNIQUES

9 See W. H. Press et al, Numerical Recipes in Fortran 90 (Cambridge, UK: Cambridge Univ Press, 1996), p. 1014;
and M. J. Maron and R. J. Lopez, Numerical Analysis, 3rd ed. (Belmont, Calif.: Wadsworth, 1991), algorithm
4.4B, p. 220. Example 1 in this section is based on Examples 5.15, 5.28, and 8.5 in essential Fortran, by Loren P.
Meissner (Unicomp, 1997).

22

Choosing the pivotal row. We have seen how to use the ith row to generate zeros below the diagonal in
the ith column. A complication arises in case the diagonal element Aii happens to be zero. In this case, it
is necessary to select another row below the ith where the element in column i is not zero, and to ex-
change that row with row i before proceeding with the reduction. (If all elements in column i below the
diagonal are zeros, the system does not have a unique solution.) The element that is moved to the diago-
nal position is called the pivot element. Some pivot choices are known to result in smaller numerical
error than others. The method described here, called scaled partial pivoting, consists of choosing the larg-
est element in column i, in absolute value, relative to a scale factor si which is the largest coefficient in
row i before reduction begins.

The intrinsic function maxloc may be employed to find the pivot element. The Fortran 90 version of
this intrinsic function returns a vector of length one; a Fortran 95 variant is simpler because it returns a
scalar when the optional dim argument is present.

Loc = maxloc(abs(A(I: N, I) / S(I: N)), dim = 1) ! Fortran 95

The argument of maxloc is a section, with lower bound i, from the vector of absolute values of element-
wise quotients |Aji / sj |, j = i, n. The function result is an integer value that locates the largest element
relative to the beginning of the specified array section; this value must be adjusted to the top of the
actual column. Within A itself, the column subscript value of the largest element is Loc + I - 1 .

Indirect row interchange. It is not necessary to actually interchange the rows of the matrix A. Instead,
elements of a permutation vector p (of integer type) are interchanged, and references to rows of A apply
elements of this vector as subscripts:

do I = 1, N
A(P(I), I + 1: N + 1) = A(P(I), I + 1: N + 1) / A(P(I), I)
A(P(I + 1: N), I + 1: N + 1) = A(P(I + 1: N), I + 1: N + 1) &

- matmul(A(P(I + 1: N), I: I), A(P(I, I), I + 1: N + 1))
end do

Interchange can be performed in three steps:
Temp = P(Loc + I - 1)
P(Loc + I - 1) = P(I)
P(I) = Temp

The permutation vector is initialized with the sequence of integers, 1, 2, . . . , n. An array constructor is
suitable for this initialization:

P =(/ (K, K = 1, N) /)

Back substitution. After reduction has been completed, back substitution takes place. In our Fortran
program, elements of the solution x will replace those of b in row n + 1 of A; we continue to apply the
permutation vector p to row indices. Equation n involves only the nth variable, whose coefficient in the
reduced system is 1. Hence, the value of this variable is the nth right side element in the reduced system,
and is located at An,n+1. Each of the other variables in turn (working backward from n – 1 to 1) is com-
puted as

xi = bi – ∑ k = i + 1
n Aik xk

The sum is of course a scalar product, and can be expressed with the intrinsic function dot_product :
A(P(J), N + 1) = A(P(J), N + 1) &

- dot_product(A(P(J), J + 1: N), A(P(J + 1: N), N + 1))
The first argument of dot_product is row pj of A; the second argument is column n + 1 of A. The
permutation vector p is applied as a row subscript to this column vector.

Arrays and Pointers

23

Say It with Fortran

A Fortran implementation of the Gauss elimination algorithm described in the foregoing paragraphs,
with scaled partial pivoting and back substitution, appears as follows:

subroutine Gauss(A, X, Flag)

A is an assumed-shape N by N + 1 matrix. At entry to the subroutine, the right side vector has been stored in
column N + 1 of A; at exit, the solution vector has replaced it. The subroutine sets Flag to .false. if A is singular. A
permutation vector is applied to all row subscripts to avoid physically interchanging rows. Local arrays have auto-
matic shape. K is an array constructor implied do variable.

real, dimension(:, :), intent (in out) :: A
real, dimension(:), intent (out) :: X
logical, intent (out) :: Flag
real, dimension(size(A, dim = 1)) :: S
integer, dimension(size(A, dim = 1)) :: P
integer :: N, K, I, Loc, Temp

Start subroutine Gauss

N = size(A, dim = 1)

The following steps initialize the permutation vector P to a sequence of consecutive integers, and store a copy of
the largest element (in absolute value) in each row in the corresponding element of S.

P = (/ (K, K = 1, N) /)
S = maxval(abs(A), dim = 2)
Flag = .false.
if (any(S <=0)) then

print *, " One of the row norms is zero. "
return

end if

Block reduction: For each column, the largest element below the diagonal is located; the permutation vector is
modified to record this location. Then the indicated row is divided by the diagonal element, and multiples are
subtracted from each of the remaining rows.

do I = 1, N
Loc = maxloc(abs(A(I: N, I) / S(I: N)), dim = 1)
if (Loc <= 0) then

print *, " A is singular."
return

else
Temp = P(Loc + I - 1)
P(Loc + I - 1) = P(I)
P(I) = Temp

end if
A(P(I), I + 1: N + 1) = A(P(I), I + 1: N + 1) / A(P(I), I)
A(P(I + 1: N), I + 1: N + 1) = A(P(I + 1: N), I + 1: N + 1) &

- matmul(A(P(I + 1: N), I: I), A(P(I: I), I + 1: N + 1))
end do

1.2 ARRAY TECHNIQUES

24

Back substitution: The reduced right side, now stored in row N + 1 of A, is replaced by the required solution.

do I = N, 1, -1
X(I) = A(P(I), N + 1) - dot_product(A(P(I), I + 1: N), X(I + 1: N))

end do
Flag = .true.
return

end subroutine Gauss

Multiple right sides. The Gauss elimination program is easily modified to process multiple right sides
with the same coefficient matrix. The right sides are stored as A(:, N + 1: N + M). Row operations are
extended to column N + M. The scalar product in the back substitution step is changed to use the intrinsic
function matmul , with the same first argument as before and the second argument changed to a matrix
with column subscript N + 1: N + M.

Crout Factorization

In the reduced system generated during Gauss elimination, the coefficient of xi is 1 in the ith equation
and 0 in all subsequent equations. These values do not need to be stored explicitly, however, because the
program never actually refers to them.

A variant known as Crout factorization employs these matrix positions, on and below the main
diagonal of A (taking into account row interchanges), to record the multipliers that are applied when
each row is subtracted from the rows below it. The computation can be rearranged so that all operations
on a given element are performed in sequence. A modern optimizing Fortran compiler can preserve the
common element in a register—even in an extended precision register—for higher speed and accuracy.

The effect of this Crout reduction algorithm is to replace A by a pair of triangular matrices, L and U,
such that A = L × U, where U is an upper triangular matrix and L is lower triangular. Elements of U are
the same as the coefficients in the equations after Gauss elimination has been applied, and elements of L
are the multipliers that are applied to perfom the elimination. The computations required for Crout
factorization are the same as for Gauss elimination except that they are performed in a different se-
quence and the multipliers are saved.

After L and U have been computed from A, the system L c = b (where b is the given right side) is
easily solved for c, because L is a lower triangular matrix. This solution process, called forward substitu-
tion, is described later. The solution vector c from this linear system is identical to the reduced right side
obtained by “ordinary” Gauss elimination. (To see this, note that U = L–1 A and c = L–1 b. The transforma-
tion by which Gauss elimination converts A to U is represented by the matrix L–1; the elimination pro-
cess applies this same transformation L–1 to the right side b.)

The matrices L and U share the storage space of A, replacing the elements of A as factorization
progresses. U is stored above the main diagonal and L is stored below (and on) the diagonal. There is no
storage for the diagonal elements of U; each of these represents a leading coefficient that is set to 1 at the
beginning of a stage of the elimination. The program takes these values into account implicitly, and does
not need to store them.

Arrays and Pointers

25

Incorporating row interchanges, the actual factorization can be represented as P A = L U. The per-
mutation matrix P is defined by interchanging the rows of an identity matrix in the designated manner.
(In the actual program, however, row interchanges are recorded in compact form, as a vector rather than
as a matrix.) The given system A x = b becomes P A x = P b or (after the factorization) L U x = P b. Here
P b is simply the permuted version of the given right side vector, which we may call b~. Once L, U, and
P have been found by the factorization process, forward substitution is applied to solve the lower trian-
gular system L c = b~. As before, back substitution is applied to solve U x = c.

With this method, processing the right side may be postponed until after the factorization is com-
pleted, rather than being accomplished concurrently. The factors L and U are stored and row inter-
changes are recorded. After the factorization is complete, permutation is applied to the right side. For-
ward substitution with L followed by backward substitution with U now gives the solution x.

This postponement of right side processing can be important. Some applications involve several
systems of equations with the same coefficients but with different right sides. The factorization step
involves only the coefficient matrix, and needs to be performed only once. Later, forward and backward
substitution can be applied separately to each of the right sides. The number of computation steps re-
quired for Crout factorization (done only once) is roughly proportional to n3, while the number of steps
for forward and back substitution (repeated for each different right side) is proportional to n2. The fol-
lowing are two such applications:
• For some very common data fitting calculations, A depends upon the characteristics of a measuring

instrument while b is obtained from measured data values. Thus, the factorization can be performed
once and applied to many sets of data over the lifetime of the instrument.

• The process of iterative refinement, which is a simple way to improve the accuracy of the solution of
many linear algebraic systems and to estimate the validity of the result, is described below. This
process requires solving a related system with the same matrix A and with a new right side that is
not available at the time of the original reduction process, being computed as a high precision re-
s i d u a l .
Factorization alternates between reducing a column of L (below the diagonal) and a row of U (to the

right of the diagonal). A preliminary Crout factorization program that ignores row interchanges and
“unrolls” all array section operations into explicit loops appears as follows:

do I = 1, N
! Reduce column I
do J = I, N

do K = 1, I - 1
A(J, I) = A(J, I) - A(J, K) * A(K, I)

end do
end do
! Reduce row I
do J = I + 1, N

do K = 1, I - 1
A(I, J) = A(I, J) - A(I, K) * A(K, J)

end do
A(I, J) = A(I, J) / A(I, I)

end do
end do

1.2 ARRAY TECHNIQUES

26

Column reduction. Each element in column i of L is reduced by subtracting products of elements, ob-
tained by multiplying an element in the row to the right of that element with a corresponding element in
the column of U above the diagonal. (Note that there is nothing to subtract when i is 1).

do J = I, N
do K = 1, I - 1

A(J, I) = A(J, I) - A(J, K) * A(K, I)
end do

end do

The computation in the inner loop is equivalent to subtracting a scalar product of two vectors; the range
of values of the index variable k becomes the row subscript range for one of the vectors and the column
subscript range for the other vector:

do J = I, N
A(J, I) = A(J, I) - dot_product(A(J, : I - 1) * A(: I - 1, I))

end do

This loop is eliminated by further use of array section notation. The row vectors are combined into a
matrix that is multiplied by the same column vector as before:

A(I:, I) = A(I:, I) - matmul(A(I:, : I - 1) * A(: I - 1, I))
A special Fortran rule permits one (but not both) of the arguments of matmul to have rank 1.

To reflect row interchanges, the permutation vector p must be applied to all row subscripts of A:
A(P(I:), I) = A(P(I:), I) &

- matmul(A(P(I:), : I - 1) * A(P(: I - 1), I))

Row reduction. Each element in the row of L is similarly reduced. Note that when i = 1 the inner loop
collapses and the only effect is to divide the row by its diagonal element; also, the outer loop collapses
when i = n.

do J = I + 1, N
do K = 1, I - 1

A(I, J) = A(I, J) - A(I, K) * A(K, J)
end do
A(I, J) = A(I, J) / A(I, I)

end do

As before, the loops can be converted to array section and matrix multiplication operations. Row inter-
changes are applied, and division by the diagonal element is incorporated into the assignment opera-
tion:

A(P(I), I + 1:) = (A(P(I), I + 1:) &
- matmul(A(P(I), : I - 1), A(P(: I - 1), I + 1:))) / A(P(I), I)

The column reduction loop and the row reduction loop have each been reduced to a single array assign-
ment statement. Only the outer loop remains.

Arrays and Pointers

27

Say It with Fortran

In the following Fortran implementation, the subroutine Factor computes the factors L and U (stored in
A) and the permutation vector p.

! Crout Factorization with scaled partial pivoting.
subroutine Factor(Flag)

A, P, and N are inherited from a containing program unit. A is an N by N matrix; P is an integer vector of length N; At
entry to the subroutine, the coefficient matrix is stored in A. Upon completion, the factors of A have replaced A and
the permutation is recorded in P. The local array S has automatic shape. K is an array constructor implied do
variable.

logical, intent(out) :: Flag
real, dimension(size(A, dim = 1)) :: S
integer :: K, I, Loc, Temp

! start subroutine Factor
Flag = .false.

The following steps initialize the permutation vector P to a sequence of consecutive integers, and store a copy of
the largest element (in absolute value) in each row in the corresponding element of S.

P = (/ (K, K = 1, N) /)
S = maxval(abs(A), dim = 2)
if (any(S <=0)) then

print *, " One of the row norms is zero. "
return

end if

Column reduction and row reduction are performed alternately.

do I = 1, N

Reduce column I.

A(P(I:), I) = A(P(I:), I) &
- matmul(A(P(I:), : I - 1), A(P(:I - 1), I))

Find the largest element (in absolute value) in the reduced column.

if (all(A(P(I:), I) == 0)) then
print *, " All pivot candidates are zero. "
return

else
Loc = maxloc(abs(A(P(I:), I)) / S(P(I:)), dim = 1)
Temp = P(Loc + I - 1)
P(Loc + I - 1) = P(I)
P(I) = Temp

end if

Reduce row I.

A(P(I), I + 1:) = (A(P(I), I + 1:) &
- matmul(A(P(I), : I - 1), A(P(: I - 1), I + 1:))) / A(P(I), I)

end do
Flag = .true.
return

end subroutine Factor

1.2 ARRAY TECHNIQUES

28

A separate subroutine applies the result of Crout factorization to a right side vector. This subroutine
could easily be modified to process multiple right sides. The arguments B and X and the local array C
would all be changed to n by m matrices; scalar products in the forward and back substitution steps
would be changed to matrix multiplication.

subroutine For_Bak(B, X)

A, P, and N are inherited from a containing program unit. A previous call to Factor has replaced A with its LU
factorization, and has recorded the permutation in P. The vectors B and X have length N.

real, dimension(:), intent(in) :: B
real, dimension(:), intent(out) :: X
real, dimension(N) :: C
integer :: I

Start subroutine For_Bak

Forward substitution.

do I = 1, N
C(I) = (B(P(I)) - dot_product(A(P(I), : I - 1), C(: I - 1))) / A(P(I), I)

end do

Back substitution.

do I = N, 1, -1
X(I) = C(I) - dot_product(A(P(I), I + 1:), X(I + 1:))

end do
return

end subroutine For_Bak

Iterative Refinement

Once upon a time, a linear system A x = b was considered difficult if the determinant of its coefficient
matrix A was small. It is now understood that a much more significant criterion is the condition number of
the coefficient matrix. This number, cond (A), is the product of the norms of A and of its inverse. Multi-
plying an n by n matrix by a scalar k has no effect on the condition number, but multiplies the determi-
nant by kn. It is possible to obtain a fairly accurate and rather inexpensive estimate of cond (A) as a
byproduct of solving the linear system.

Forsythe and Moler (page 20) describe cond (A) as a measure of the maximum distortion that the
linear transformation with matrix A makes on the unit sphere, which is a bound for the ratio of the
relative uncertainty of the solution x to that of the given right side b. The value of cond (A) is always 1 or
greater; if its order of magnitude is 10n, the solution can contain approximately n fewer correct signifi-
cant decimal digits than the data. Thus, in single precision on typical IEEE hardware the data is repre-
sented with about 6 decimals, and a condition number as large as 106 can indicate that the solution is
worthless.

Small matrices as “ill conditioned” as this do not appear every day, but they are not extremely rare,
either: As an example, the 2 by 2 matrix A with aij = n + i + j, where n is large, has determinant –1 and
(depending on the norm) condition number approximately 4n2: The condition number of the matrix

499 500
500 501

is about 106.

Arrays and Pointers

29

The accuracy of a computed solution xc can be checked by calculating the residual vector r = b - A xc
which would be zero if there were no numerical errors. In practice (as Wilkinson discovered early in the
days of computing), any well constructed Gauss elimination or Crout factorization program produces a
solution with an acceptably small residual, so practically nothing is learned by simply calculating the
residual. However, solving the system A e = r gives an estimate of (x – xc), the error in x:

r = b – A xc = A x – A xc = A (x – xc)
The solution e can be used as an error estimate or can be added to xc to refine the solution. For the latter
purpose, the residual must be calculated with high precision.

If the data is represented with 6 digits and the relative error norm(e) / norm(xc) is 10–2, we say that the
solution contains 4 fewer significant digits than the data, and we may estimate cond(A) as 104. Loosely
speaking, with 6-decimal hardware we might have expected the relative error to be as small as10-6 but
we find it to be 104 times as large as we expect; the factor 104 is attributable to the large condition
number. We may add e to xc to obtain a refined solution.

If we iterate this process, we find that the relative error decreases by about the same amount each
time: in this example, the relative error should be about 10–4 after the first refinement and about 10–6 (as
good as can be obtained with 6-digit arithmetic) after the second. For further details, see Chapter 13 of
the book by Forsythe and Moler. The electronically distributed examples include program D01C which
applies the Crout method without iterative refinement, and D01 with refinement. The first set of ex-
ample data is an ill-conditioned problem with a known solution; the Crout solution (and the first step of
iterative refinement) contains two or three correct decimal digits; after the third iteration, the solution is
correct to IEEE hardware precision.

Iterative refinement costs very little (see Exercise 7 below), especially in view of the valuable infor-
mation that it provides. As pointed out earlier, most of the computational effort of the Crout method is
in the factorization. If the factors are saved, little extra work is required for solving the related system
A e = r. Each step of iterative refinement computes a new residual and applies forward and back substi-
tution to obtain a new estimate of the error.

Example 1. The following program performs Crout factorization with partial pivoting, indirect
row interchange, and iterative refinement. It processes multiple right sides, as described earlier. (If there
is only one right side, it must be formatted as an n by 1 array and not as a vector.) Working storage
employs private allocatable arrays at the module level. These remain allocated so that new right sides
may be processed.

! Example 1. Linear Algebraic Equations by Crout Factorization
! with Iterative Refinement
module D01_M

Specification part

implicit none
public :: Solve, Iterate
private :: Factor, For_Bak, Residual
integer, parameter, private :: HI = kind(1.0d0)
integer, save, private :: N
real, dimension(:, :), allocatable, save, private :: LU
real(kind = HI), dimension(:, :), allocatable, save, private :: Save_A
integer, dimension(:), allocatable, save, private :: P
logical, save, private :: Saved, Exist = .false.
integer, private :: I

Procedure part

contains

1.2 ARRAY TECHNIQUES

30

subroutine Solve(A, B, X, Rel_Err, Flag)

This subroutine solves the system of simultaneous linear algebraic equations A X = B, where A is an N by N matrix
and X and B are N by M matrices. A and B are assumed-shape arrays supplied by the calling program. X, Rel_Err,
and Flag are computed and returned by Factor. Solve does not change A or B. On return from Solve, X contains the
solution and Rel_Err contains an estimate of the relative error in X. However, if Flag is false, the contents of X and
Rel_Err are unpredictable, since the algorithm has short-circuited. The problem size N, a copy of A, and the LU
decomposition matrix (with permutation vector P) are saved as private module-level variables, and are not changed
except when Solve is called.

DUMMY ARGUMENTS and LOCAL DATA (K is an array constructor implied do variable.)

real, dimension(:, :), intent (in) :: A, B
real, dimension(:, :), intent (out) :: X
real, intent (out) :: Rel_Err
logical, intent (out) :: Flag
integer :: K

Start subroutine Solve. Determine problem size; initialize private arrays

Saved = .false.
Flag = .false.
N = size(A, dim = 1)
if (size(A, dim = 2) /= N &

.or. size(B, dim = 1) /= N &

.or. any(shape(X) /= shape(B))) then
print *, " SOLVE argument shape incompatibility."
return

end if

Allocate working arrays. Exist is a logical variable at the module level that is true when the necessary arrays have
been allocated. Save a high-precision copy of A (without row interchanges) for the residual calculation. Store row
norms in S.

if (Exist) deallocate(Save_A, LU, P)
if (N == 0) then

Exist = .false.
return

end if
allocate(Save_A(N, N), LU(N, N), P(N))
Exist = .true.
Save_A = real(A, kind = HI)
LU = A
P = (/ (K, K = 1, N) /)
call Factor()

Saved is a logical variable at the module level that is true when a Crout factorization has been performed and the
necessary arrays have been saved so that a solution can be calculated from any given right side.

if (Flag) then
Saved = .true.
call For_Bak(B, X)
call Iterate (B, X, Rel_Err)
if (Rel_Err > 0.5)) then

print *, " Relative Error > 0.5.", Rel_Err
Flag = .false.

end if
end if
return

Arrays and Pointers

31

contains

Internal procedure to perform factorization A = L * U with scaled partial pivoting. Column reduction and row reduc-
tion are performed alternately.

subroutine Factor()

LOCAL DATA

real, dimension(N) :: S
integer :: I, Loc, Temp

Start subroutine Factor

Flag = .false.
S = maxval(abs(LU), dim = 2)
if (any(S <= 0)) then

print *, " Row norms: ", S
print *, " One of the row norms is zero. "
return

end if
do I = 1, N

Reduce column I.

LU(P(I:), I) = LU(P(I:), I) &
- matmul(LU(P(I:), : I - 1), LU(P(:I - 1), I))

Find the largest element (in absolute value) in the reduced column; record row interchange in P.

if (all(LU(P(I:), I) == 0)) then
print *, " All pivot candidates are zero. "
return

else
Loc = maxloc(abs(LU(P(I:), I)) / S(P(I:)), dim = 1) + I - 1
Temp = P(Loc)
P(Loc) = P(I)
P(I) = Temp

end if

Reduce row I.

LU(P(I), I + 1:) = (LU(P(I), I + 1:) &
- matmul(LU(P(I), : I - 1), LU(P(: I - 1), I + 1:))) &
/ LU(P(I), I)

end do

Flag = .true.
return

end subroutine Factor

end subroutine Solve

1.2 ARRAY TECHNIQUES

32

subroutine Iterate (B, X, Rel_Err)

DUMMY ARGUMENTS and LOCAL DATA

real, dimension(:, :), intent (in) :: B
real, dimension(:, :), intent (out) :: X
real, intent (out) :: Rel_Err
real, dimension(size(B, dim = 1), size(B, dim = 2)) :: R, E

Start subroutine Iterate

if (.not. Saved &
.or. size(B, dim = 1) /= N &
.or. any(shape(X) /= shape(B))) then
print *, " ITERATE argument shape incompatibility."
return

end if

Calculate high-precision residual for right side B and solution X, using Save_A from latest call to Factor. For each
right side column, calculate norm of the residual; find largest such norm among all right sides.

R = real(real(B, kind = HI) - matmul(Save_A, real(X, kind = HI)))
print *, " Residual: ", maxval(sqrt(sum(R ** 2, dim = 1)))

Use the calculated residual to “refine” X. For each right side, divide norm of the error estimate by norm of the
solution; find largest such ratio among all right sides. Reference to tiny guarantees no division by zero.

call For_Bak(R, E)
X = X + E
Rel_Err = maxval(sqrt(sum(E ** 2, dim = 1)) &

/ max(sqrt(sum(X ** 2, dim = 1)), 8 * tiny(1.0)))
return

end subroutine Iterate

The subroutine For_Bak performs forward and back substitution, using LU and P stored at the latest call to Factor.
B is M right side vectors. The result will be returned in X.

subroutine For_Bak(B, X)

DUMMY ARGUMENTS and LOCAL DATA

real, dimension(:, :), intent (in) :: B
real, dimension(:, :), intent (out) :: X
integer :: I
real, dimension(size(B, dim = 1), size(B, dim = 2)) :: C

Start subroutine For_Bak

do I = 1, N
C(I, :) = (B(P(I), :) &

- matmul(LU(P(I), : I - 1), C(: I - 1, :))) / LU(P(I), I)
end do
do I = N, 1, -1

X(I, :) = C(I, :) - matmul(LU(P(I), I + 1:), X(I + 1: , :))
end do
return

end subroutine For_Bak

end module D01_M

Arrays and Pointers

33

As in the following test driver, the main program must provide space for data arrays A and B as well
as for the result array X. Here, these are allocated after the array size has been read. A call to Solve
computes an approximate solution and performs one step of iterative refinement to estimate the relative
error. The program calls Iterate as necessary to reduce the relative error to an acceptable value. Fi-
nally, the arrays allocated at the main program level are deallocated.

program D01

Example driver program for Crout factorization with iterative refinement.

use D01_M
implicit none
integer :: EoF, I, M, N, Loop
real, dimension(:, :), allocatable :: A, B, X
real :: Rel_Err
logical :: Flag

Start program. Connect input file and read N, the number of equations, from the first record.

open (unit = 1, file = "gaudata.txt", &
status = "old", action = "read", position = "rewind")

read (unit = 1, fmt = *, iostat = EoF) N
if (EoF /= 0) then

print *, " Data error at start of file. "
end if

Allocate A and read values for A, by rows. Echo print A.

allocate(A(N, N))
do I = 1, N

read (unit = 1, fmt = *) A(I, :)
if (EoF /= 0) then

print *, " Insufficient data for A. "
end if
print *, " Matrix A, Row ", I, A(I, :)

end do

Read M, the number of right sides. Allocate arrays for B and for results. Read B by rows and echo print it.

read (unit = 1, fmt = *, iostat = EoF) M
if (EoF /= 0) then

print *, " Insufficient data for M. "
end if
allocate(B(N, M), X(N, M))
do I = 1, N

read (unit = 1, fmt = *) B(I, :)
if (EoF /= 0) then

print *, " Insufficient data for B. "
end if
print *, " Matrix B, Row ", I, B(I, :)

end do

1.2 ARRAY TECHNIQUES

34

Solve for X in A X = B. Print initial error estimate.

call Solve(A, B, X, Rel_Err, Flag)
if (.not. Flag) then

print *, " Factor cannot solve this one."
stop

else
print *, 0, " Relative error: ", Rel_Err

end if

(Optional) Iterative refinement. Stop when relative error is small or after 10 iterations; print the relative error esti-
mate for each iteration.

do Loop = 1, 10
if (Rel_Err < 1.0e-7) exit
call Iterate(B, X, Rel_Err)
print *, Loop, " Relative error: ", Rel_Err

end do

Print the final result.

do I = 1, M
print *, " Matrix X, Column ", I, X(:, I)

end do
stop

end program D01

Another driver is distributed electronically as example D01X. This driver generates a rather large
ill-conditioned matrix, inverts it, and then re-inverts the inverse; the driver also estimates the time re-
quired for the computation.

Section 1.2 Exercises
1. If the next student is taller than the one standing by the door, you ask the next student to stand there

instead. If the next student is not taller, you leave the previous student standing there. Explain how
this repeated step preserves the invariant assertion, “The tallest student in the dining hall is now
standing at the left of the doorway.”

2. For the function Minimum_Location , show that executing an iteration of the loop preserves the
invariant assertion.

a) Is the procedure correct when Loc_1 and Loc_2 have the same value?

b) Does the procedure work correctly for an array of size zero (e.g., when Loc_1 is 1 and Loc_2 is
zero)? If not, what changes should be made?

3. For the function Linear_Search , show that executing an iteration of the loop preserves the invari-
ant assertion.

a) If the procedure terminates because the key matches an array element, show that the assertion is
true.

b) Show that the invariant assertion is always preserved during every iteration of the loop.

c) In case the loop exit is taken, the invariant assertion is true and 1 ≤ i ≤ N. Show that the key value
lies between Arrayi–1 and Arrayi even if i is 1.

d) In case the loop exit is not taken, the invariant assertion is true and the value of i is N + 1. Show
that the key value lies between Arrayi–1 and Arrayi .

e) What will happen if the given array has zero length (i.e., if size(Array) is zero)?

Arrays and Pointers

351.2 ARRAY TECHNIQUES

4. Study the function Binary_Search .

a) Show that Middle is always between 1 and N inclusive: i.e., Array(Middle) is always an
element within the designated array section and is never one of the fictitious elements Array(0)
or Array(N + 1).

b) Show that the integer division step preserves the relation Loc_1 ≤ Middle ≤ Loc_2.

c) Show that if Loc_1 and Loc_2 differ by exactly two at the beginning of an iteration, they differ
by exactly one at the end of the same iteration. (Consider all possible combinations of odd and
even values.)

d) Show that the invariant assertion is always preserved during every iteration of the loop; show
that it would still be preserved without the exact match shortcut.

e) In case the key matches an array element, at loop termination the invariant assertion is true and
the while condition is also true. Since the key cannot match a fictitious element, Loc_1 is at
least 1 and Loc_2 is at most N. Show that the key value lies between Array(Loc_1) and
Array(Loc_2) .

f) In case the key does not match any Array element, at loop termination the invariant assertion is
true and the while condition is false. Show that the key value lies between Array(Loc_1)
and Array(Loc_2) , even if Loc_1 is zero or Loc_2 is N + 1.

g) What happens when the given array has one element? Consider the case in which the key matches
the array element, as well as the case in which it does not match.

h) What happens when the size of the given array is zero?

5. Rewrite Binary_Search to use recursion instead of iteration.

6. The three-way comparison in Binary_Search is more efficient than a simple two-way compari-
son if the search key actually appears in the array. Quantify the expected improvement in terms of p,
the probability that the key is present in the array.

7. For the Crout algorithm with iterative refinement, matrix factorization requires on the order of n3

operations. Forward substitution, back substitution, and calclulating the residual each require on
the order of n2 operations. Give arguments to support the following conjectures.

a) If n ≥ 10, the amount of computation required for iterative refinement is insignificant.

b) If n < 10, the amount of computation required for iterative refinement is insignificant.

Compare B.W. Kernighan and P.J. Plauger, “The Elements of Programming Style” (McGraw-Hill,
1974), p. 9.

8. Run the program of Example 1 with the electronically distributed file gaudata.txt , and estimate
the condition number of each (nonsingular) matrix in the data set.

36

 Root Temp

1.3. POINTERS

The Pointer Attribute
A variable of any data type may be declared to have the pointer attribute. The value of such a variable
is stored in the form of a pointer to a target object of the specified type:

real, pointer :: Root, Temp ! type declaration

The type declaration creates (reserves space for) pointers as local objects in automatic or static storage.

Association Status

A pointer that is currently associated with a target has a defined value that indicates the particular
target.
The association status of a pointer is “associated” if the pointer is currently associated with a target, and
it is “disassociated” if the pointer is not currently associated with a target. When a pointer has no target,
its value is undefined and the pointer is said to be null.

There are four ways to give a pointer a defined association status:
1. Pointer assignment with the intrinsic function reference null() , as in the following type declara-

tion, sets the association status to disassociated. This is the only way to nullify a pointer initially:

real, pointer :: Root => null(), Temp => null()
As a matter of good programming practice, all pointers should be initially nullified in this way. In
Fig. 1.2, the symbol ∅ indicates that the association status is disassociated.

FIGURE 1.2. A null pointer has no target

2. Executing a nullify statement sets the association status of a pointer to disassociated, indicating
that the pointer does not currently have a target:

nullify(Root, Temp)

3. Executing an allocate statement for a pointer creates (reserves space for) a new target object in
heap storage, sets the pointer value to indicate that the pointer is associated with the newly created
object, and sets the association status to associated:

allocate(Root)

Arrays and Pointers

37

FIGURE 1.3. An allocate statement creates a new target for the pointer

After execution of the allocate statement, the pointer has a value that indicates or “points to” the
new target. In Fig. 1.3, the “target” symbol indicates that the association status is associated. (The
allocate statement may be used with allocatable arrays as well as pointers: See Examples 6, 7, 19, 21,
and 25.)

4. Executing a pointer assignment statement can associate the pointer with an existing target object:

Pointer_1 => Pointer_2

The assignment sequence is from right to left, as usual, even though the direction of the arrow might
seem to indicate otherwise. The effect of such a pointer assignment is to “copy” Pointer_2 to
Pointer_1 . That is, the existing association status and target (if any) of Pointer_2 now also
become the association status and the target, respectively, of Pointer_1 . If Pointer_2 is null, the
same will be true of Pointer_1 after the pointer assignment has been executed.

For example, executing the following statement will set Temp to point to the same target (if any)
as Root :

Temp => Root ! Pointer assignment

The current target (if any) of the pointer named Root is now also the target of the pointer named
Temp. The pointer assignment may be read as follows: “Assign the target of Root as the (new)
target of Temp.” Executing a later statement that changes Root (by means of a nullify statement,
an allocate statement, or a pointer assignment statement) will not change the association status
or the target of Temp. (See Fig. 1.4.)

1.3 POINTERS

FIGURE 1.4. Executing the pointer assignment statement gives Temp the same target as
Root

Automatic Dereferencing

Fortran does not give a separate name to the target of a pointer. The target has the same name as its
pointer. When a variable has the pointer attribute, Fortran is able to determine from the context whether
an occurrence of the name is intended to designate the target or the pointer itself. A name designates the
target when it appears in an expression, when it appears on the left side of an assignment statement, or

 Root

 Root Temp

38

when it appears in an allocate or deallocate statement. It designates the pointer when it appears in
a nullify statement or when it appears in a pointer assignment statement.

The only way to detect that a pointer has been nullified is by means of the intrinsic function refer-
ence associated(Temp) , which examines the association status of the pointer.

associated(Temp) ! intrinsic function reference

The result value is true if Temp is currently associated with a target so that its association status is asso-
ciated. The function result is false if Temp has been nullified so that its association status is disassociated.

The deallocate Statement

Executing the statement
deallocate(Root)

where Root is a pointer whose target has been created by execution of an allocate statement, releases
the space occupied by the target object. If the target had a defined value prior to deallocation, that value
is lost. Thus the association between the pointer and the target is destroyed, and the pointer is nullified.
(See Fig. 1.5.)

Arrays and Pointers

 Root

FIGURE 1.5. Executing the statement deallocate(Root) releases the space occupied by
the target object and nullifies the pointer

Deallocation is permited only if the current association status of the pointer is associated (that is, if
the pointer is currently associated with a target) and if the target is an object that was created by execu-
tion of an allocate statement. After the deallocate statement has been executed, the association
status of the designated pointer becomes defined as disassociated. The pointer value becomes unde-
fined because the pointer no longer has a target.

Storage for Pointers and Allocated Targets
Recall that a type declaration creates (reserves space for) an object of the declared type in automatic
storage (or in static storage if the object has the save attribute) at the beginning of execution of the main
program or procedure in which the declaration appears. The same is true when the declared object is a
structure (of a derived type). If a declared object has the pointer attribute, the pointer is created (space
is reserved for it) in static or automatic storage, but initially no target is created.

Also recall that executing the statement allocate(Root) (where Root is an existing pointer that
may or may not have been previously allocated or nullified) has two effects:
1. It creates (reserves space for) a new target object of the type specified in the declaration for Root .

2. It associates the pointer Root with the new target.
Storage for allocated pointer targets is obtained from a “heap” of free space that is administered by a
sophisticated storage management system. Storage for allocatable arrays is allocated from this same
heap.

39

Management of Allocated Targets

Executing an allocate statement for a pointer causes space from the heap to be reserved for the target,
and gives the pointer a value that permits Fortran to gain access to the target via the pointer. At this
point, Fortran has no other way of obtaining access to the target — that is, to the area of heap space that
has just been allocated.

Some care is required here to avoid storage management problems. If the pointer value is destroyed
(by nullification, reallocation, or pointer assignment) but the target is not deallocated, the heap space
becomes “garbage” — that is, it is still reserved by the storage management system but it is inaccessible
to the program for which it was reserved. To ensure that the target space will be returned to the heap for
possible further use when the pointer is nullified, a deallocate statement should be employed.

After a pointer assignment with a pointer on the right is executed, on the other hand, there is more
than one pointer with the same target. So long as at least one of these pointers remains associated with
the target, the others may be nullified.

But another problem can arise in this case. When two or more pointers have the same target,
deallocating one of the pointers deletes the target object (and releases heap storage space) without af-
fecting the other pointers. The other pointers are now said to be “dangling references” — pointers to
heap space that is no longer reserved.

Programs that manipulate pointers should strictly observe the following important rules:
1. If there is only one pointer currently pointing to a particular target object, do not change the value of

(nullify , reallocate, or assign to) the pointer without first deallocating it.

2. If there is more than one pointer currently pointing to a particular target object, do not deallocate any
of these pointers.
Some processors provide little assistance for diagnosing allocation errors such as heap overflow.

Fortran provides a second (optional) clause in the allocate statement, of the form stat = Status
variable. During execution, the Status variable will be set to zero if the allocation is successful, or to a
positive value in case of an allocation error such as insufficient heap storage space:

allocate(Temp_NP, stat = Err)
if (Err > 0) then

:

Pointers as Derived Type Components
A component of a derived type may have the pointer attribute. Note the following points:
• The type specified for each component in a derived type definition, except for components that have

the pointer attribute, must be an intrinsic type or a previously defined derived type.

• A derived type may have a component that is a pointer to the same type. Such components most
frequently occur in derived types that are intended for linked list applications.

• Initial nullification may be specified for pointer components. (This feature was introduced in For-
tran 95 and is not available with Fortran 90. See the electronically distributed examples for alterna-
tive programming strategies.)

• Any pointer component that has the dimension attribute must have deferred shape — its actual
subscript bounds are specified when the target array is allocated rather than in the type definition.

1.3 POINTERS

40

 Nuc_Count
 Abundance

I_Type

 El_Name

 Symbol

 Atomic_Num Atomic_Mass

 Prin % Nuc_Count
 Prin % Abundance

Chem_El_Type

! Pointer as a derived type component.
program Finger

implicit none
type :: I_Type ! Derived type definition

integer :: Nuc_Count = 0
real :: Abundance = 0.0

end type I_Type
type :: Chem_El_Type ! Derived type definition

character (len = 16) :: El_Name = ""
character (len = 2) :: Symbol = ""
real :: Atomic_Num = 0.0, Atomic_Mass = 0.0
type (I_Type) :: Prin ! Previously defined derived type
type (Chem_El_Type), pointer :: Next_P => Null()

end type Chem_El_Type
type (Chem_El_Type) :: Carbon_12 ! Type declarations
type (Chem_El_Type), pointer :: Root_P => Null()

! start program Finger
Carbon_12 % Prin % Nuc_Count = 5 ! Component of substructure Prin
allocate(Carbon_12 % Next_P)
Carbon_12 % Next_P % Symbol = "He"

:
allocate(Root_P)

end program Finger

The derived type named Chem_El_Type has a component that is a structure of the previously
defined derived type I_Type . An additional component of Chem_El_Type is a pointer to another
structure of the same type.

Carbon_12 is declared to be a structure of type Chem_El_Type . The type declaration creates a
structure of this type in automatic storage, with six components named El_Name, Symbol , Atomic_Num ,
Atomic_Mass , Prin , and Next_P . The first four of these are ordinary scalars, Prin is a substructure of
type I_Type , and Next is a pointer. The type declaration for Root_P creates a disassociated pointer.
See Fig. 1.6.

Arrays and Pointers

FIGURE 1.6. Components of the derived type Chem_El_Type

The assignment statement
Carbon_12 % Prin % Nuc_Count = 5

changes the value of the component Nuc_Count of the substructure Carbon_12 % Prin from its initial
zero value to 5. The statement

allocate(Carbon_12 % Next_P)

41

creates a target structure named Carbon_12 % Next_P in heap storage. The assignment statement
Carbon_12 % Next_P % Symbol = "He"

assigns the string "He" to the component Symbol in the structure Carbon_12 % Next.
Note carefully the difference between two deceptively similar assignment statements.

type :: I_Type ! Derived type definition
integer :: Nuc_Count = 0
real :: Abundance = 0.0

end type I_Type
type :: Chem_El_Type ! Derived type definition

character (len = 16) :: El_Name = ""
character (len = 2) :: Symbol = ""
real :: Atomic_Num = 0.0, Atomic_Mass = 0.0
type (I_Type) :: Prin ! Previously defined derived type
type (Chem_El_Type), pointer :: Next_P => Null()

end type Chem_El_Type
type (Chem_El_Type) :: Carbon_12 ! Type declarations

:
Carbon_12 % Prin % Nuc_Count = 5
Carbon_12 % Next_P % Symbol = "He"

The variable name Carbon_12 % Prin % Nuc_Count consists of the name of a declared (automatic
storage) structure, the name of a substructure, and the name of a component of the substructure. On the
other hand, in the reference to the variable Carbon_12 % Next_P % Symbol , the component named
Next_P has the pointer attribute, so Carbon_12 % Next_P refers to the structure (in heap storage)
that is the target of the pointer, and Symbol is a component of that target structure.

A pointer variable can be created in automatic storage as an independent object that is not part of a
structure. The type declaration creates Root_P as a pointer to type Chem_El_Type . Executing the al-
locate statement creates a structure named Root_P .

Pointers with Arrays
Fortran does not provide arrays of pointers. (A variable with pointer and dimension attributes is a
pointer to an array, not an array of pointers.) However, it is possible to define a structure with a single
component that is a pointer, and then to create an array of these structures. This feature is illustrated in
Examples 24 and 25 (in Chapter 7).

1.3 POINTERS

42

Chapter 2 Introduction to Sorting

Your mail has just arrived. Your bank has sent you a statement with last month’s cancelled checks en-
closed. There are only three checks, which need to be arranged in numerical order and stored away for
future reference.

You don’t have to undertake an elaborate research project to decide how to put three checks in order.
Here is a simple method:
1. Lay the three checks down side by side. Compare the checks that are in the first and second posi-

tions, and interchange them if they are in the wrong order.

2. Compare the checks that are now in the first and third positions, and interchange them if they are in
the wrong order.

3. Compare the checks that are now in the second and third positions, and interchange them if they are
in the wrong order.
The comparison depends on a sort key. Here we assume that the key is a check number that appears

on each check. (The sort key might instead be the date or the amount.) Objects can be sorted into either
increasing or decreasing order, depending upon how the comparison is made. At first, it will be as-
sumed that all of the objects have different key values. Duplicate keys cause no real difficulty, but they
introduce some minor complications that will be considered later in this chapter.

Computer Sorting
Many computer applications, from maintaining and updating simple arrays to data base indexing,

require sorting of data. It may be that the elements are simply numbers or character strings to be ar-
ranged by numerical value, or they may be structures that can be viewed as rows of a table. For example,
the table of California cities mentioned earlier might be sorted with respect to any of three keys: alpha-
betically by the name of the city, or numerically by latitude or by longitude.

Inside the computer, data to be sorted is usually stored in an array. The sorting procedure converts
an array of unsorted elements into an array of sorted elements. For most applications, large quantities of
extra space are not available — a sorting method that requires as much additional space as the array to
be sorted would usually be considered unacceptable. The sorted data should end up in the same array
originally occupied by the unsorted data.10 Initially, the unsorted data occupies the entire array, and
there is no sorted data.

For example, numbers to be sorted by the three-item sorting method just considered would be stored
in an array of length three:

10 This is not true of certain methods such as merge sort that are used mainly for sorting data from external files.

43

subroutine Sort_3(Array)
real, intent(in), dimension(3) :: Array

! start subroutine Sort_3
if (Array(1) > Array(2)) call Swap(1, 2)
if (Array(1) > Array(3)) call Swap(1, 3)
if (Array(2) > Array(3)) call Swap(2, 3)
return

end subroutine Sort_3

Some computer sorting methods are simple and easy to understand and are adequate for sorting a
few (up to perhaps 10,000) data items. As we shall see, these simple methods are impossibly inefficient
for large quantities of data.
• Selection sorting is probably the easiest of all known methods to understand and to implement.

• Insertion sorting is faster than selection for “random” data, and is only slightly more complicated.
Some variations can considerably increase the speed of this method.
The remainder of this chapter is devoted to sorting by the two simplest methods, selection and

insertion.11 Two more sophisticated methods that are related to insertion, Shell sort and heapsort, are
also described here. Quicksort, a method that is usually implemented recursively, is discussed in Chap-
ter 3.

Operation Counts for Sort_3

if (Array(I) > Array(J)) call Swap(1, 2) ! 1
if (Array(I) > Array(K)) call Swap(1, 3) ! 2
if (Array(J) > Array(K)) call Swap(2, 3) ! 3

There are six possibilities, which are equally likely for random data.
A B C
A C B →→→→→ A B C
B A C →→→→→ A B C
B C A →→→→→ A C B →→→→→ A B C
C A B →→→→→ A C B →→→→→ A B C
C B A →→→→→ B C A →→→→→ A C B →→→→→ A B C

The first of these situations requires no swaps, the next two require one swap, the next two require two
swaps, and the last one requires three swaps. Thus the expected number of calls to Swap for random
data is 1.5. Each call to Swap performs three move operations. The subroutine therefore requires 3 com-
parisons and 4.5 moves (for random data). In practice, however, these basic operations are completely
dominated by procedure call overhead.

11 Another well-known simple method, bubble sorting, is not discussed in this text.“The bubble sort seems to
have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical
problems”: Knuth, Sorting and Searching, 111. “If you know what bubble sort is, wipe it from your mind; if you
don’t know, make a point of never finding out!”: Press, et al, Numerical Recipes in Fortran, Second Ed. (Cam-
bridge: Cambridge Univ. Press, 1992), 321.

44

2.1 SORTING BY SELECTION

Selection is probably the easiest sorting method to understand, although it is far from the fastest. Begin-
ning with a set of unsorted data items, this method constructs a set of sorted items by moving one item
at a time from the unsorted set to the sorted set. The method proceeds in the following way:
1. Find the data item that belongs at the first position in the sorted sequence; this is the smallest un-

sorted item. Remove it from the unsorted sequence and place it as the first sorted item.

2. Find the data item that belongs at the second position in the sorted sequence; this is now the smallest
unsorted item. Remove it from the unsorted sequence and place it as the next sorted item.

3. Repeat this process, each time finding the smallest unsorted item and moving it into place as the
next sorted item, until all items have been moved from the unsorted sequence to the sorted se-
quence.

The sorted and unsorted data items share an array. The set of sorted data items (initially empty) occu-
pies the low-numbered subscript positions, and the set of unsorted items occupies the high-numbered
end of the array. Note that at each stage all of the sorted items are smaller than all of the unsorted items.
Rawlins12 illustrates this situation as follows:

12 G.J.E. Rawlins, Compared to What? An Introduction to the Analysis of Algorithms. [New York: Computer Science
Press, 1991].

A selection sort procedure employs an indexed loop construct. The loop index, I, varies from from 1
up to N, the number of data items. Subscript positions 1 to I – 1 contain sorted data; positions beginning
at position I contain unsorted data. When I is 1, the sorted portion is empty.

For each value of I, one data item is moved from the unsorted portion to the sorted portion. The
following steps are performed:
1. Examine all of the unsorted items to find the one with the smallest key.

2. Move this smallest unsorted item to position I. But wait — position I is already occupied by an
unsorted data item that must be moved out of the way. A good maneuver is to swap the smallest
unsorted item with the one in position I.

3. The item in position I has been appended to the sorted data, which is now located at subscript
positions 1 to I. These items will never be moved again, nor even examined, during remaining
iterations of the selection sort loop.

Fig. 2.1 shows the sequence of steps for sorting, by selection, an array containing the characters
QUICKLYSELECT.

Introduction to Sorting

45

FIGURE 2.1. Example of sorting by selection

When I is 1, the unsorted data items occupy all 13 positions in the array. The smallest item is C; this item
is moved to position 1 where it becomes the first sorted item, and the J that was formerly in that position
moves to the place vacated by C.

When I is 2, there are 12 unsorted data items as shown on the second line in Fig. 2.1. The smallest is
C, which is swapped with the element U in position 2. There are now two sorted items, both C, which
will never again be examined or moved.

The process continues until I reaches 12 and all items except Y have been moved to the sorted por-
tion.

The final iteration of the loop, with I = N, is supposed to search among the unsorted items to find the
largest, and move it to position N. Since there is only one item in the portion to be searched, and it is
already in position N, this final iteration accomplishes nothing and can be omitted. Thus, the upper loop
bound should be N – 1, where N is the size of the array.

N = size(Array)
do I = 1, N - 1

Location = Minimum_Location(I, N)
call Swap(I, Location)

end do

2.1 SORTING BY SELECTION

← Sorted Unsorted →

LKCIQ EMTROU SY

C

USTRY

USTYMLKIC ROE Q

UYTMLKIC SROE Q

UYMLKIC TSROE Q

YMLKIC UTSROE Q

MLKIC YUTSROE Q

MLKIC OE Q

LKQI EMTROYU S

LKQI UMTROY SC E

LKQ UMTROY SIC E

LQ UMTROY SKIC E

Q UMTROY SLKIC E

UQTROY SLKIC E M

UQTRYSMLKIC E O

46

The function Minimum_Location is implemented as an internal procedure that inherits Array from
the host program, so only the two subcript bounds are passed as arguments. The subroutine Swap also
inherits Array; subscript values for the items to be exchanged are passed as dummy arguments.

Operation Counts for Selection Sort

N = size(Array) ! 1
do I = 1, N - 1 ! 2

Location = Minimum_Location(I, N) ! < 3
call Swap(I, Location) ! < 4

end do ! < 5
Each Swap call requires 3 move operations, as stated earlier. For random data, each reference to the

function Minimum_Location(I, N) requires N – I + 1 comparisons and 0.7·lg (N – I) + 0.6 moves.
Thus, the loop body (lines 3 and 4) performs N – I + 1 comparisons and 4.6 + 0.7·lg (N – I) moves. These
formulas are to be summed over all N – 1 iterations of the loop.
• Terms independent of I are multiplied by N – 1:

N + 1 comparisons times N – 1 = N2 – 1; 4.6 moves times N – 1 = 4.6·N – 4.6

• Terms in I:
Sum of – I comparisons for I = 1 to (N – 1) is – 0.5·N2 + 0.5·N

• Terms logarithmic in I:
A sum of logarithmic terms can be estimated by analogy to the integral ∫ln z = z(ln z – 1);
 noting that lg k is about 1.4 ln k, the sum from a to b of lg k is approximately

b lg b – a lg a – 1.4 (b – a).
Let k = N – I; the loop is executed with k = N – 1 to 1 so the sum is

(N – 1) lg(N – 1) – 1·lg 1 – 1.4 (N – 2)
Total comparisons: 0.5·N2 + 0.5·N – 1

Total moves: 0.7·N lg(N – 1) + 5.6·N – 0.7·lg(N – 1) – 6.6
A benchmark, run with a 50 MHz 486DX computer, sorted 20,000 random real numbers by selection

in 350 seconds.

Say It with Fortran

Example 2. This version sorts an array of strings. The subroutine Se_Sort contains two internal
procedures, the function Minimum_Location and the subroutine Swap. The subroutine Se_Sort is
contained in the module D02_M along with a subroutine to print the aray. A main program to test the
module is shown as well.

! Example 2. Sorting an array of strings by selection.
module D02_M

implicit none
public :: Se_Sort

contains

subroutine Se_Sort(Array) ! Module subprogram

The dummy argument Array has assumed shape (with rank 1), character type, and assumed length. (The array
size and the length of the strings in the array will be taken from the actual argument.) Its intent attribute is in
out , which means that the corresponding actual argument array must be definable (for example, it must not be an
array-valued expression that contains operators). Its elements must be defined before they are used: here it is
assumed that they have defined values at entry to the subroutine.

character (len = *), intent(in out), dimension(:) :: Array

Introduction to Sorting

47

integer :: N, I, Location
! start subroutine Se_Sort

N = size(Array)
do I = 1, N - 1

Location = Minimum_Location(I, N)
call Swap(I, Location)

end do
return

contains

pure function Minimum_Location(Lo, Hi) result(Minimum_Location_R)
:

end function Minimum_Location

subroutine Swap(I, J)
integer, intent(in) :: I, J

Exchanging the values of the two array elements requires an auxiliary or temporary variable of the same type. The
character length is derived from that of the assumed-length dummy argument Array .

character (len = len(Array)) :: Aux
:

end subroutine Swap

end subroutine Se_Sort

end module D02_M

The following main program creates an array and calls Sort.

program D02

The following statement incorporates the sorting module into the main program.

use D02_M
implicit none
integer, parameter :: L = 13
character (len = 1), dimension(L) :: Array

! start program D02

The right side is an array constructor.

Array = (/ "Q", "U", "I", "C", "K", "L", "Y", &
"S", "E", "L", "E", "C", "T" /)

call Se_Sort(Array)
write (*, "(13 A2)") Array
stop

end program D02

Sorting an Array of Structures

Example 3. The following example illustrates the modifications necessary for sorting data of a differ-
ent type — in this case, an array of structures that contain the name, latititude, and longitude of Califor-
nia cities. Any sorting method can be adapted in this way; this example shows a variant of the selection
sort method.

Note that comparison operations are applied only to the sort key (the city name in this case) while
move operations (in the subroutine Swap) involve whole structures.

2.1 SORTING BY SELECTION

48

! Example 3. Sorting an array of structures by selection.
module D03_M

implicit none
public :: Se_Sort
integer, parameter, private :: NAME_LEN = 20

Derived type definition. The data to be sorted is an array of structures of this type. The use statement in the main
program imports the type definition for City_Data_Type as well as the procedures Sort and Print_Array .

type, public :: City_Data_Type
character (len = NAME_LEN) :: City_Name
integer :: Latitude, Longitude

end type City_Data_Type

contains

subroutine Se_Sort(Array)

The data to be sorted is a rank-1 assumed shape array of structures of the new derived type.

type (City_Data_Type), intent(in out), dimension(:) :: Array
integer :: N, I, Location

! start subroutine Se_Sort
N = size(Array)
do I = 1, N - 1

Locate the structure with the smallest key value, in the array of structurs.

Location = Minimum_Location(I, N)
call Swap(I, Location)

end do
return

contains

pure function Minimum_Location(Lo, Hi) result(Minimum_Location_R)
integer, intent(in) :: Lo, Hi
integer :: Minimum_Location_R, I

Min_Val must have the same type as the key component.

character (len = NAME_LEN) :: Min_Val
! start function Minimum_Location

The array is inherited from the host subroutine. Array references must include the key component selector. (See
another variant, below.)

Min_Val = Array(Lo) % City_Name
Minimum_Location_R = Lo
do Loop = Lo + 1, Hi

if (Array(Loop) % City_Name < Min_Val) then
Min_Val = Array(Loop) % City_Name
Minimum_Location_R = Loop

end if
end do
return

end function Minimum_Location

Introduction to Sorting

49

subroutine Swap(I, J)
integer, intent(in) :: I, J

Exchanging the values of the two array elements requires an auxiliary or temporary variable of the same type.

type (City_Data_Type) :: Aux
! start subroutine Swap

Aux = Array(I)
Array(I) = Array(J)
Array(J) = Aux
return

end subroutine Swap

end subroutine Se_Sort

subroutine Print_Array(Array)
type (City_Data_Type), intent(in), dimension(:) :: Array

:
end subroutine Print_Array

end module D03_M

Example 3A. An alternative is to pass the array of keys — here, the array of City_Name structure
components — as an argument to Minimum_Location . This slightly complicates the function reference
but simplifies the internal workings of the function. Experiments indicate that this variant runs faster on
many Fortran processors.

! Example 3A. Selection Sort with Array Argument
:

Location = Minimum_Location(Array % City_Name, I, N)
:

pure function Minimum_Location(A, Lo, Hi) result(Minimum_Location_R)
character (len = *), dimension(:), intent(in) :: A
integer, intent(in) :: Lo, Hi
integer :: Minimum_Location_R, Loop

The local variable Min_Val must have the same properties (except dimension) as the argument array.

character (len = Len(A)) :: Min_Val
! start function Minimum_Location

Min_Val = A(Lo)
Minimum_Location_R = Lo
do Loop = Lo + 1, Hi

if (A(Loop) < Min_Val) then
Min_Val = A(Loop)
Minimum_Location_R = Loop

end if
end do
return

end function Minimum_Location

2.1 SORTING BY SELECTION

50

Selection during Output
In some applications, the sorted data is immediately written to an external file and is put to no further
internal use. The sorting and output operations can be combined, as shown in this example. The selec-
tion method is especially well suited for sorting during output. Furthermore, for some applications the
total time required may be dominated by the output phase so that the comparison operations cost noth-
ing.

Say It with Fortran

Example 4.

! Example 4. Sorting integers by selection during output.
subroutine Se_Sort_And_Write(Array)

integer, intent(in out), dimension(:) :: Array
integer :: N, I, Location

! start subroutine Se_Sort_And_Write
N = size(Array)
do I = 1, N

Location = minloc(Array(I:), 1) + I - 1
print *, Array(Location)

There is no need to perform a complete Swap operation, since Array(I) will never be referenced again.

Array(Location) = Array(I)
end do
return

end subroutine Se_Sort_And_Write

The actual argument to minloc is an array section, so the intrinsic function returns the location
relative to the beginning of the section; I – 1 must be added to adjust for the lower bound offset. The
offset can be eliminated by reversing the sort, keeping unsorted items at the left end of the array, so that
the lower bound of the array section is always 1:

do I = N, 1, -1
Location = minloc(Array(: I), 1)
print *, Array(Location)
Array(Location) = Array(I)

end do

Duplicate Keys
Suppose that two or more data items in an array to be sorted have the same key. Two different cities (in
different states, presumably) might have the same name but different latitude and longitude coordi-
nates. The foregoing sorting programs will process such data without difficulty; only the comparison
operations are affected.

Recall that selection sort employs the function Minimum_Location to find the smallest item in a
designated portion of the array:

Min_Val = Array(Lo)
do Loop = Lo + 1, Hi

if (Array(Loop) < Min_Val) then
Min_Val = Array(Loop)
Minimum_Location_R = Loop

end if
end do

Introduction to Sorting

51

If the smallest key value appears more than once, its first occurrence will be recorded as the value of
Location; subsequent occurrences of the same key value will not change this result. However, if the
condition Array(Loop) < Min_Val is changed to Array(Loop) ≤ Min_Val, Location is replaced whenever a
duplicate of the smallest key is found, and its final value records the last occurrence.

Selection Sort is not Stable.

A stable sorting method maintains the relative positions of data items that have duplicate keys. For
example, transactions may be entered chronologically and then sorted by a customer identification num-
ber. It is often required that the transactions for a given customer be maintained in chronological order,
even after data for the various customers has been separated. For such applications, a stable method is
required. As we shall see, this requirement is not satisfied by the selection sort procedure.

The two following displays illustrate the effect on selection sorting when the condition in
Minimum_Location is changed. Here the data array contains four occurrences of the letter E and two
each of L, O, N, and T. In these displays, subscripts have been appended to the duplicate letters for
identification, but are assumed to be ignored by the comparison operations. (This example was actually
constructed by sorting an array of structures, each consisting of a character key along with an integer
that is different for each occurrence of a repeated character.)

The final results are, of course, the same with regard to the key values. However, the sequemce of
occurrences of duplicated characters in the final arrays are often different for the two strategies. Inter-
mediate values differ especially toward the right side of the display — for example, compare the two
displays with regard to the columns headed by E3, P, and E4.

Both versions of the selection sort are obviously unstable. The sequence of swaps introduces an
erratic behavior that is difficult to predict — some sets of duplicate items end up in their original order,
some are reversed, and some (such as the Es in the first display) are permuted in other ways.

Choosing the first occurrence of a duplicate key:
#S1 E1 L1 E2 C T1 I O1 N S2 O2 R T2 E3 X A M P L2 E4
 A #E1 L1 E2 C T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C #L1 E2 E1 T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C E2 #L1 E1 T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C E2 E1 #L1 T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C E2 E1 E3 #T1 I O1 N S2 O2 R T2 L1 X S1 M P L2 E4
 A C E2 E1 E3 E4 #I O1 N S2 O2 R T2 L1 X S1 M P L2 T1
 A C E2 E1 E3 E4 I #O1 N S2 O2 R T2 L1 X S1 M P L2 T1
 A C E2 E1 E3 E4 I L1 #N S2 O2 R T2 O1 X S1 M P L2 T1
 A C E2 E1 E3 E4 I L1 L2 #S2 O2 R T2 O1 X S1 M P N T1
 A C E2 E1 E3 E4 I L1 L2 M #O2 R T2 O1 X S1 S2 P N T1
 A C E2 E1 E3 E4 I L1 L2 M N #R T2 O1 X S1 S2 P O2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 #T2 R X S1 S2 P O2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 #R X S1 S2 P T2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P #X S1 S2 R T2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P R #S1 S2 X T2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P R S1 #S2 X T2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P R S1 S2 #X T2 T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P R S1 S2 T2 #X T1
 A C E2 E1 E3 E4 I L1 L2 M N O1 O2 P R S1 S2 T2 T1 #X

Choosing the last occurrence of a duplicate key:

2.1 SORTING BY SELECTION

52

#S1 E1 L1 E2 C T1 I O1 N S2 O2 R T2 E3 X A M P L2 E4
 A #E1 L1 E2 C T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C #L1 E2 E1 T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 E4
 A C E4 #E2 E1 T1 I O1 N S2 O2 R T2 E3 X S1 M P L2 L1
 A C E4 E3 #E1 T1 I O1 N S2 O2 R T2 E2 X S1 M P L2 L1
 A C E4 E3 E2 #T1 I O1 N S2 O2 R T2 E1 X S1 M P L2 L1
 A C E4 E3 E2 E1 #I O1 N S2 O2 R T2 T1 X S1 M P L2 L1
 A C E4 E3 E2 E1 I #O1 N S2 O2 R T2 T1 X S1 M P L2 L1
 A C E4 E3 E2 E1 I L1 #N S2 O2 R T2 T1 X S1 M P L2 O1
 A C E4 E3 E2 E1 I L1 L2 #S2 O2 R T2 T1 X S1 M P N O1
 A C E4 E3 E2 E1 I L1 L2 M #O2 R T2 T1 X S1 S2 P N O1
 A C E4 E3 E2 E1 I L1 L2 M N #R T2 T1 X S1 S2 P O2 O1
 A C E4 E3 E2 E1 I L1 L2 M N O1 #T2 T1 X S1 S2 P O2 R
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 #T1 X S1 S2 P T2 R
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P #X S1 S2 T1 T2 R
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P R #S1 S2 T1 T2 X
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P R S2 #S1 T1 T2 X
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P R S2 S1 #T1 T2 X
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P R S2 S1 T2 #T1 X
 A C E4 E3 E2 E1 I L1 L2 M N O1 O2 P R S2 S1 T2 T1 #X

Section 2.1 Exercises
1. Modify Example 1 to sort an array of 12 real numbers.

2. Modify Example 2 to sort the same array by latitude instead of by city name.

2.2 SORTING BY INSERTION
It is said that every flock of chickens has a pecking order — a social hierarchy in which each bird knows its
rank. A bird pecks another lower in the scale without fear of retaliation and submits to pecking by one of
higher rank. When a new bird is added to the flock, a certain amount of random pecking occurs at first,
but then the new bird establishes its rank and settles into the hierarchy accordingly.

The idea of sorting by insertion is to introduce new chickens (unsorted data items) into the flock one
at a time, systematically placing each new bird in its correct position before bringing in the next. Initially,
the flock consists of just one chicken and the pecking order is correct by definition. The second chicken
is then compared with the first chicken, which either remains at the bottom of the pecking order or rises
above the new bird. Each new bird is compared with those already in the flock to establish its rank.

Insertion sorting may be illustrated as follows:

Introduction to Sorting

53

S O R T EQ U I C K ML Y

UQ

I UQ

C I UQ

C I K UQ

I K L QC U

K L Q YI UC

L Q S YC K UI

O Q S YC I L UK

Q R S YC I K O UL

Q R S T YC I K L O U

Q

YQ R S TC I K L O UM

Q

Unsorted

Sorted

U

I

C

K

L

Y

S

O

R

T

M

E

Computer sorting is rarely applied to chickens; more commonly, data items to be sorted are num-
bers or character strings in an array. Assume that the data is to be sorted into ascending order. Initially,
the sorted portion of the array consists only of the item in the first subscript position; the remaining
items are unsorted. After some items have been sorted, smaller items are at the left end of the array and
larger items are at the right end. Fig. 2.2 shows the sequence of steps for sorting, by insertion, an array
containing the characters QUICKLYSORTME.

FIGURE 2.2. Example of sorting by insertion

Straight Insertion
At the beginning of each pecking episode, the flock is arranged by increasing rank in Array1 to ArrayI,
where I is initially 1. The new bird to be introduced to the flock is taken from the first position in the
unsorted portion of the array, that is, from ArrayI+1.

The new bird is removed from the flock — copied to the auxiliary variable Next — and is then com-
pared with those already in the flock, beginning with the highest ranking bird and tentatively pecking
its way down until it finds a bird that it can dominate. At that point, the pecking stops and the new bird
takes its place in the hierarchy. The program accomplishes this by comparing the auxiliary variable Next
with data items in the sorted portion of the Array, beginning at the right and scanning toward the left
until an item smaller than Next is found.

Note that the pecking process — search for the correct position and insertion into that position —
has a slightly specialized form in the straight insertion procedure. The new bird does not challenge
other birds at random. It is as though the existing flock were lined up with the highest ranking bird
closest to the entrance, so that the new bird must proceed in order of decreasing rank until it finds its
correct position. When the new bird arrives, a space is made available next to the entrance, ahead of the

2.2 SORTING BY INSERTION

54

currently highest ranking bird. The new bird challenges the current leader; if the challenge is unsuccess-
ful, the leader moves up into the new space next to the entrance and remains as the highest ranking bird.
This vacates the space formerly occupied by the leader. The new bird then challenges the other birds in
turn, moving along in order of decreasing rank. Whenever a challenge is unsuccessful, the challenged
bird moves up, vacating its former space. When the challenge is successful, the new bird slips into the
vacant space just above the bird that lost the challenge.

Each complete pecking episode increases the size of the sorted portion of the array from J to J + 1.
Space at position ArrayJ+1 is made available when the first unsorted item is copied to Next. During the
scan, Next is compared with ArrayI, where I begins at J and decreases. Note that ArrayI+1 is “vacant” —
its value is no longer needed — at the time Next is compared with ArrayI. If Next is less than ArrayI, that
array element is moved right by one position, into the vacant space; otherwise ArrayI remains in place
and Next is inserted at ArrayI+1, completing the scan. It may happen that all of the previously sorted
items are larger than Next, so that they are all moved and Next is inserted at Array1. Or it may happen
that Next is the new dominant item, in which case the scan terminates immediately and Next is simply
stored back in ArrayJ+1.

The pecking operation is repeated for values of J from 1 to size(Array) – 1.
do J = 1, size(Array) - 1

The first J items are sorted. Copy the first unsorted item, Array(J +1) , to Next ; call Peck to move this new
item to its correct position.

Next = Array(J + 1)
call Peck(1, J, Next)

end do
:

subroutine Peck(L, R, Next)

Working from right to left in the sorted portion, Array(L: R) , the subroutine Peck moves larger items to the right
and inserts Next as a new sorted item.

do I = R, L, -1

Exit (to the end of the loop) if Next is smaller than an item in the sorted portion.

if (Array(I) <= Next) exit
Array(I + 1) = Array(I)

end do

The loop terminates normally if all items in the sorted portion are larger than Next .

Array(I + 1) = Next
return

Operation Counts for Straight Insertion

do J = 1, size(Array) - 1 ! 1
Next = Array(J + 1) ! < 2
call Peck(1, J, Next) ! < 3

end do ! < 4

Introduction to Sorting

55

subroutine Peck(L, R, Next)
do I = R, L, -1 ! < 5

if (Array(I) <= Next) exit ! << 6
Array(I + 1) = Array(I) ! << 7

end do ! << 8
Array(I + 1) = Next ! < 9
return ! < 10

Each iteration of the loop in the subroutine (lines 6 to 8) requires one comparison. If the exit does not
occur, the move operation at line 7 is executed.

In the “worst case,” when the given data is presented in reverse order, the early exit never occurs so
lines 5 to 8 perform J comparisons and J moves. There are two additional move operations, at lines 2 and
9. These J comparisons and J + 2 moves are repeated for J = 1 to N – 1, where N is the size of Array. Thus
the total in the worst case is 0.5·N (N – 1) = 0.5·N2 – 0.5·N comparisons and 0.5·N (N – 1) +2·(N – 1) =
0.5·N2 +1.5·N – 2 moves.

For the “average case” (random data), the loop at lines 6 to 8 will be iterated J / 2 times before exit
occurs, so lines 3 to 8 perform 0.5·J comparisons and 0.5·J – 1 moves; adding the moves at lines 2 and 9
gives 0.5·J + 1 moves for the body of the outer loop, lines 2 to 4. Repeating these for J = 1 to N – 1, the
average case total is 0.25·N2 – 0.25·N comparisons and 0.25·N2 +0.5·N – 1 moves.

Note that insertion sorting requires about half the number of comparisons and moves required by
selection. This is because insertion searches a sorted array section, and thus requires only an expected
0.5·J comparisons, terminating when the insertion point is found. Selection, on the other hand, searches
an unsorted array section and must examine every item.

In the “best case,” when the given data is already in the correct order, exit occurs at the first iteration
of the inner loop so the total count for lines 3 to 8 is one comparison and no moves (independent of J);
lines 2 to 4 require one comparison and two moves. The entire procedure requires N – 1 comparisons
and 2·N – 2 moves in the best case.

Initially Ordered Data

Straight insertion is an excellent method for large amounts of data that is already almost in order. In the
extreme case of data already completely in order, each item is compared with only one other and no
move operations are required. Otherwise, the number of comparisons and moves for an item depends
only upon the distance between its original and final positions. Benchmark time for 1 million real num-
bers already in order, on a 50 MHz 486DX computer, was found to be 4 seconds.

Straight Insertion Is Stable

For straight insertion sorting, each unsorted item is compared only with items that preceded it in the
original unsorted array. The comparison relation causes termination of the insertion loop when a smaller
or equal item is encountered. When an equal item is found, that item remains in place and the new item
is inserted on its right. (To continue searching for a strictly smaller item would exactly reverse all dupli-
cate items, besides being inefficient.) Thus it can be seen that the insertion sort method, if implemented
with a bit of care, is stable.

2.2 SORTING BY INSERTION

56

 I1 #N1 S1 E1 R1 T1 I2 O N2 S2 O R2 T2 E2 X A M P L E3
 I1 N1 #S1 E1 R1 T1 I2 O N2 S2 O R2 T2 E2 X A M P L E3
 I1 N1 S1 #E1 R1 T1 I2 O N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 N1 S1 #R1 T1 I2 O N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 N1 R1 S1 #T1 I2 O N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 N1 R1 S1 T1 #I2 O N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 R1 S1 T1 #O N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 O R1 S1 T1 #N2 S2 O R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 N2 O R1 S1 T1 #S2 O R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 N2 O R1 S1 S2 T1 #O R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 N2 O O R1 S1 S2 T1 #R2 T2 E2 X A M P L E3
 E1 I1 I2 N1 N2 O O R1 R2 S1 S2 T1 #T2 E2 X A M P L E3
 E1 I1 I2 N1 N2 O O R1 R2 S1 S2 T1 T2 #E2 X A M P L E3
 E1 E2 I1 I2 N1 N2 O O R1 R2 S1 S2 T1 T2 #X A M P L E3
 E1 E2 I1 I2 N1 N2 O O R1 R2 S1 S2 T1 T2 X #A M P L E3
 A E1 E2 I1 I2 N1 N2 O O R1 R2 S1 S2 T1 T2 X #M P L E3
 A E1 E2 I1 I2 M N1 N2 O O R1 R2 S1 S2 T1 T2 X #P L E3
 A E1 E2 I1 I2 M N1 N2 O O P R1 R2 S1 S2 T1 T2 X #L E3
 A E1 E2 I1 I2 L M N1 N2 O O P R1 R2 S1 S2 T1 T2 X #E3
 A E1 E2 E3 I1 I2 L M N1 N2 O O P R1 R2 S1 S2 T1 T2 X

Say It with Fortran

For small amounts of data, or for data that is already nearly in order, insertion sorting is very suitable for
Fortran (why?)

Example 5. Here, subroutine Peck has been moved in-line for efficiency. The subroutine Print_Array
and the main program to test the module are the same as for Example 1 (except for the use statement in
the main program).

! Example 5. Sorting an array of strings by straight insertion.
subroutine In_Sort(Array)

character (len = *), intent(in out), dimension(:) :: Array

The dummy argument Array has assumed shape (with rank 1), character type, and assumed length. (The array
size and the length of the strings in the array will be taken from the actual argument.) Its intent attribute is in
out , which means that the corresponding actual argument array must be definable (for example, it must not be an
array-valued expression that contains operators), and all of its elements must have defined values at entry to the
subroutine.

character (len = len(Array)) :: Next
integer :: I, J

! start subroutine In_Sort
do J = 1, size(Array) - 1

Next = Array(J + 1)
do I = J, 1, - 1

The value of J will be retained if an exit occurs.

if (Array(I) <= Next) exit
Array(I + 1) = Array(I)

end do

Introduction to Sorting

57

If the loop terminates normally, the value of I is 0 and Next is inserted at position 1.

Array(I + 1) = Next
end do
return

end subroutine In_Sort

Insertion Sort with Pointers
Suppose that the structures in an array are very large. Would it be possible to sort them without moving
them? This example shows how to move a corresponding array of pointers until the first pointer points to
the item with the smallest key, etc. For purposes of illustration, in this example each data item consists of
a string (City_Name), two scalar integers (Latitude and Longitude), and an array of 1,000 integers (Stuff).
(In the following example, all elements of Stuff are zero. In practice, the data to be sorted would be
generated by means that are not of concern here.)

In database terminology, the sorted array of pointers is an index to the data array. Pointer techniques
can be applied with any of the sorting methods, but it is particulary advantageous for insertion since (as
we have seen) much of the effort of this method occurs in moving the data elements.

The steps in this Sort subroutine parallel those of Example 5. The only changes are to move the
pointers instead of the array elements.

Say It with Fortran

Example 6. Fortran does not provide arrays of pointers. (A variable with pointer and dimension
attributes is a pointer to an array, not an array of pointers.) However, it is possible to define a structure
having a single component that is a pointer, and then to create an array of these structures. (See the data
type BOX in the following example.) Further examples of this technique are shown in Chapter 5.

! Example 6. Sort an array of structures by straight insertion with pointers.
program D06

implicit none
integer, parameter :: NAME_LEN = 20
type :: City_Data_Type

character (len = NAME_LEN) :: City_Name
integer :: Latitude, Longitude
integer, dimension(1000) :: Stuff = 0

end type City_Data_Type
type :: BOX

type (City_Data_Type), pointer :: DP
end type BOX
integer :: Array_Size, Loop
type (City_Data_Type) Array
type (City_Data_Type), dimension(:), allocatable, target :: Array

X(I) % DP is a pointer to City_Data_Type .

type (BOX), dimension(:), allocatable :: X

! start program D06
open (1, file = "jacumba.dat", status = "old", action = "read", &

position = "rewind")
read (1, *) Array_Size
allocate(Array(Array_Size), X(Array_Size))

2.2 SORTING BY INSERTION

58

Load sample data into Array .

do Loop = 1, Array_Size
read (unit = 1, fmt = "(a, 2i)") Array(Loop) % City_Name, &

Array(Loop) % Latitude, Array(Loop) % Longitude
end do
call In_Sort()
call Print_Array()
deallocate(Array, X)
stop

contains

Array, which contains the data to be sorted, is an intent(in) argument; it will not be changed during execution of
Sort. The intent(out) argument X is an array of type BOX; its pointer components will be set so that the first pointer
points to the item with the smallest key, etc..

subroutine In_Sort()
type (City_Data_Type), Pointer :: Next
integer :: I, J

! start subroutine In_Sort

Array(1) becomes the target of the first pointer.

X(1) % DP => Array(1)
do J = 1, size(Array) - 1

The first I items are sorted. The next unsorted item becomes the target of Next .

Next => Array(J + 1)
do I = J, 1, - 1

Compare the target of Next with the target of an already sorted pointer.

if (X(I) % DP % City_Name <= Next % City_Name) exit

Move a pointer. (Note that elements of Array never move.)

X(I + 1) % DP => X(I) % DP
end do

Copy Next to insert it among the sorted pointers.

X(I + 1) % DP => Next
end do
return

end subroutine In_Sort

subroutine Print_Array(X)
integer :: I

! start subroutine Print_Array
do I = 1, size(X)

Print components of the target of X(I) % DP, including an arbitrary component of the array Stuff

print *, I, ': "', X(I) % DP % City_Name, '" ', &
X(I) % DP % Latitude, X(I) % DP % Longitude, X(I) % DP % Stuff(17)

end do
return

end subroutine Print_Array

end program D06

Introduction to Sorting

59

Insertion during Input
Some applications read data from an external file and sort it. The two operations can be combined, as
shown in this example. For sorting during input, the insertion method is especially well suited, because
it considers the unsorted items one at a time. Furthermore, for some applications the total time required
may be dominated by the input phase so that the comparison and move operations cost nothing.

Expanding array.

The structure Elastic in this program illustrates use of an expanding array to hold a variable amount of
data. The maximum amount of data that can be processed is limited by the size of the array, which is
fixed at the time the array is created. It is convenient to enclose an expanding array in a structure along
with an integer that holds the current length — i.e., the current number of array elements to which
actual data has been assigned. The (maximum) array size is also recorded in the structure.

Say It with Fortran

Example 7.

! Example 7. Sort structures by straight insertion during input.
program D07

implicit none
integer, parameter :: NAME_LEN = 20
type :: City_Data_Type

character (len = NAME_LEN) :: City_Name
integer :: Latitude, Longitude
integer, dimension(1000) :: Stuff = 0

end type City_Data_Type

The derived type Elastic holds the expanding array of structures along with an integer, Current_Length ,
that records the current number of array elements to which actual data has been assigned. The (maximum) array
size is also recorded in the structure for convenience.13

type :: Elastic
type (City_Data_Type), dimension (:), pointer :: Array

Initialize Current_Length to zero .

integer :: Current_Length = 0, Maximum_Length
end type Elastic
type (Elastic) :: A

! start program D07
open (1, file = "jacumba.dat", status = "old", action = "read" &

position = "rewind")
read (1, *) A % Maximum_Length
allocate(A % Array(A % Maximum_Length))
call Read_And_Sort()

13 It should be noted that a standard Technical Report on Enhanced Derived Type Facilities supports allocatable
arrays as derived type components; with Fortran versions that do not implement this report, pointers may be
employed instead.

Component initialization in a derived type definition is a Fortran 95 enhancement; for versions that do not
implement this feature, the declared initialization must be replaced by assignment statements in the main
program.

2.2 SORTING BY INSERTION

60

call Print_Array()
deallocate(A % Array)
stop

contains

subroutine Read_And_Sort()
type (City_Data_Type) :: Next
integer :: I, J, EoF

! start subroutine Read_And_Sort
do J = 0, A % Maximum_Length - 1

read (1, "(a, i3, i4)", iostat = EoF) Next % City_Name, &
Next % Latitude, Next % Longitude

if (EoF < 0) exit
do I = J, 1, - 1

Compare and move operations involve the array Array , which is a component of the structure A of type Elas-
tic .

if (A % Array(I) % City_Name <= Next) exit
A % Array(I + 1) = A % Array(I)

end do
A % Array(I + 1) = Next
A % Current_Length = J + 1

end do
return

end subroutine Read_And_Sort

subroutine Print_Array()
integer :: I

! start subroutine Print_Array
do I = 1, A % Current_Length

print *, I, ": ", A % Array(I) % City_Name, &
A % Array(I) % Latitude, A % Array(I) % Longitude, &
A % Array(I) % Stuff(17)

end do
return

end subroutine Print_Array

end program D07

Binary Insertion
Any of the insertion methods that have been described, when applied to random data, compare the Jth
new item with about J/2 sorted items. The expected number of comparisons can be reduced to lg J with
binary searching. (Knuth notes that the idea of binary insertion was described by Mauchly as early as
1946 in a paper on nonnumerical computing.)

The steps must be reorganized a bit to separate the search process from the move operation. Instead
moving up the sorted items one by one as they are found to exceed the new item, they are all moved up
together after the insertion point has been located.

The binary search function (displayed earlier) is applied to the array of items that are already sorted,
to obtain a 2-element vector. The second element of the result vector locates the smallest previously
sorted item (or possibly a rather arbitrary one of two or more equal smallest items) that is at least as large
as the new unsorted item to be inserted.

Introduction to Sorting

61

do J = 1, size(Array) - 1

Array(1: J) contains previously sorted data.

Next = Array(J + 1)

Use binary search to locate Next in the array section Array(1: J) . The insertion point, returned as Location(2),
is between 1 and J +1, inclusive.

Location = Binary_Search(Array(: J), Next)

Move all items between Array(Location(2)) and Array(J) one position to the right; insert Next at
Array(Location) . Note that nothing is moved if Location(2) is J +1.

Array(Location(2) + 1: J + 1) = Array(Location(2) : J)
Array(Location(2)) = Next

end do

Example 8.
The program examples distributed electronically include an expanded implementation of binary

insertion during input. This algorithm will later be compared with linked list and tree algorithms for the
same application.

Binary Insertion Is Not Stable

A disadvantage for some applications is that this method is not stable for duplicate items.

Operation Counts for Binary Insertion

do J = 1, size(Array) - 1 ! 1
Next = Array(J + 1) ! < 2
Location = Binary_Search(1, J, Next) ! < 3
Array(Location(2) + 1: J + 1) = Array(Location(2) : J) ! < 4
Array(Location(2)) = Next ! < 5

end do ! < 6
In the average case, with arguments (1, J, Next) , 1.5·(lg(J +1) –1) compares and no moves are

required; the array section assignment performs 0.5·I moves. The loop body (lines 2 – 6) performs 1.5·(lg(
J +1) – 1) compares and 0.5·I +2 moves. This must be summed for J from 1 to N – 1, where N is the array
size.

Let k = J + 1; the loop is executed with k = 2 to N, so the sum is
N lg N – 2·lg 2 – 1.4·(N – 2) = N lg N – 1.4·N + 0.8

Comparisons: 1.5·N lg N – 2.1·N – 0.3
Moves: 0.25 N (N – 1) +2.0 (N – 1) = 0.25 N2 +1.75·N – 2
The search scheme employed here is efficient — about 1.5 N lg N total comparisons — but it re-

quires slightly more move operations, 0.25·N2 +1.75·N – 2, than straight insertion. However, modern
pipeline and parallel processors can move contiguous array sections at high speed.

In the worst case, when the data is in reverse order, the array section assignment makes twice as
many moves as straight insertion, in total 0.5·N2 +1.5·N – 2. In the best case, when the data is already in
order, the array section assignment moves nothing so the total move count is 2.0 N – 2.0. For sorting a
large amount of data that is almost in order, the 1.5 N lg N comparison count makes binary insertion
inferior to straight insertion.

A benchmark, run with a 50 MHz 486DX computer, sorted 20,000 random real numbers in 65 sec-
onds.

2.2 SORTING BY INSERTION

62

2.3 SHELL SORT
Donald Shell in 1959 proposed a “diminishing increment” sort method. As Sedgwick explains, “Inser-
tion sort is slow because it exchanges only adjacent elements. For example, if the smallest element hap-
pens to be at the end of the array, N steps are needed to get it where it belongs. Shell sort is a simple
extension of insertion sort which gains speed by allowing exchanges of elements that are far apart.”14

Shell sort consists of a sequence of insertion sorts applied to nonconsecutive sections of the given
array. At first, widely spaced elements are sorted by insertion. The spacing is then diminished until the
final stage, which is a straight insertion sort of the entire array. The effect of the earlier stages is to
guarantee that the array is almost in order before the final sort is applied.

Various increment sequences are possible. A popular sequence employs integers of the form floor(
3p/2), beginning with the largest such value that does not exceed the array size. For example, if the
array size is more than 29,524 but less than 88,573 the sequence is 29,524, 9,841, 3,280, 1,093, 364, 121, 40,
13, 4, 1. Note that 3p is odd for any positive integer p, so floor(3p/2) = (3p – 1) / 2. The initial increment
can be calculated as pmax = log3(2·N + 1) = log3(e)·ln(2·N + 1):

P_Max = int(LOG3_OF_E * log(2.0 * N + 1.0))
do P = P_Max, 1, -1

H = (3 ** P) / 2
do J = 1, N - H

Next = Array(J + H)
do I = J, 1, -H

if (Array(I) <= Next) exit
Array(I + H) = Array(I)

end do
Array(I + H) = Next

end do
end do

Suppose that 13 ≤ N < 40 (for example, N = 28) so that the increment sequence is 13, 4, 1; and
consider the second stage, when the increment is 4. This stage begins by comparing position 5 with
position 1; later on, position 9 is compared with the sorted sequence in positions (5, 1); position 13 is
compared with the “chain” of sorted data at positions (9, 5, 1); position 17 is compared with the chain
(13, 9, 5, 1); position 21 is compared with the chain (17, 13, 9, 5, 1); and finally position 25 is compared
with the chain (21, 17, 13, 9, 5, 1). The effect is a straight insertion sort of the chain (25, 21, 17, 13, 9, 5, 1).

The straight insertion sorts (for a given increment) are are interleaved. For example, elements in
positions between 21 and 25 are examined as they naturally occur. Immediately after element 21 is
inserted into the chain (17, 13, 9, 5, 1), the next step is to insert element 22 into the chain (18, 14, 10, 6, 2),
then to insert element 23 into the chain (19, 15, 11, 7, 3), and so on.

Shell sort is not a stable sorting method.

Operation Counts for Shell Sort

The running time for Shell sort is very difficult to predict, and is known to depend heavily upon the
increment sequence. Sedgewick states that N1.5 is a provable upper bound on the number of compari-
sons for a wide variety of sequences including the one given here; for other carefully chosen increment
sequences the bound N4/3 can be proved and N7/6 is conjectured empirically.

A benchmark, run with a 50 MHz 486DX computer, sorted 1 million random real numbers in 201
seconds. This timing is consistent with an estimate of 1.2·N1.3 comparison operations and the same num-
ber of move operations.

14 R. Sedgewick, Algorithms, Second Ed. [Reading: Addison-Wesley, 1988], 107.

Introduction to Sorting

63

Shell Sort with Array Sections
Example 9. It is possible to subdivide the outer do construct so that each chain is separately com-
pletely ordered:

do K = 1, min(H, N - H)
do J = K, N - H, H

Next = Array(J + H)
do I = J, 1, -H

if (Array(I) <= Next) exit
Array(I + H) = Array(I)

end do
Array(I + H) = Next

end do
end do

The two inner loops can now be replaced by a call to In_Sort with a noncontiguous array section
argument. In_Sort is the normal straight insertion sort procedure (as in Example 5) with an assumed
shape array dummy argument. From the viewpoint of In_Sort , the dummy argument is a contiguous
array object; the loop increment value inside the procedure In_Sort is one.

Say It with Fortran

When the increment value is H, the following modified Shell sort procedure makes H calls to In_Sort
with different array sections that all have stride H:

! Example 9. Shell Sort with array Sections
subroutine Sh_Sort(Array)

real, intent(in out), dimension(:) :: Array
integer :: N, P_Max, P, H, K
real, parameter :: LOG3_OF_E = 0.9102392227

! start subroutine Sh_Sort
N = size(Array)
P_Max = LOG3_OF_E * log(2.0 * N + 1.0)
do P = P_Max, 1, -1

H = (3 ** P) / 2
do K = 1, min(H, N - H)

Call straight insertion sort procedure. The actual argument is an array section whose stride is the current Shell sort
increment. See the discussion of Explicit Interface, below.

call In_Sort(Array(K: N : H)) ! Array section
end do

end do
return

end subroutine Sh_Sort

Explicit Interface

Under certain conditions, reference to a procedure requires that interface information for the procedure
be explicit at the point of reference (see any complete Fortran 90 or 95 handbook or textbook; for ex-
ample, Appendix D.6 in Fortran 90 by Meissner). One such condition is the appearance of a dummy
argument that is an assumed shape array, like In_Sort in this example. Other conditions that require
explicit interface information are pointer arguments, optional or keyword arguments, and function re-
sults whose properties are established during execution.

2.3 SHELL SORT

64

We recommend making all procedure interfaces explicit. This can be accomplished by entirely avoid-
ing external procedures; the recommended alternatives are internal procedures and module procedures,
whose interfaces are automatically explicit. In the electronic versions of Example 9, In_Sort is imple-
mented either as an internal procedure contained in Sh_Sort or else as a module procedure in the same
module. If an external procedure is unavoidable for some reason, an interface block may be provided in
the referencing program unit or module.

2.4 HEAPSORT
Heapsort, like insertion sort, compares unsorted items against a chain of items that are already in or-
der.15 A “peck” operation compares a new item to items in the chain, beginning with the largest, promot-
ing each item that is larger and inserting the new item just above the first one that is smaller or equal. As
with Shell sort, a chain does not consist of consecutive array elements; however, instead of being evenly
spaced, heapsort chains “fan out”: the subscript value approximately doubles at each step as the chain
is traversed.

Binary Trees (Array Representation) and Heaps
A binary tree is a set of nodes (data items) with a root node. As many as two “child” nodes may be con-
nected to each node in the tree; thus the tree is divided into layers according to the distance of nodes from
the root. If a node in the kth layer has any children, they are in the k + 1st layer. Each layer may poten-
tially contain twice as many nodes as the previous layer.

A binary tree can be constructed within an array by interpreting array subscript values in a special
way. (Unlike the trees described in Chapter 7, this representation does not employ pointers.) Each layer
occupies a set of consecutive array elements. The root, layer 0, is stored at Array1. Space for nodes in the
first layer is reserved at array element positions 2 and 3; for the second layer at positions 4, 5, 6, and 7;
etc. In general, the kth layer is stored at positions 2k through 2k+1 – 1. Array elements form the binary tree
as follows:
• Element Array1 is the root node in the tree.
• An element ArrayJ has zero, one, or two children. If there is one child, it is at Array2J; if there are two,

the second is at Array2J+1.
• Unless the element ArrayJ is the root, its parent is at Arrayfloor(J/2). (In a Fortran program, the subscript

for a parent can be computed by integer division.)
A heap16 is a binary tree represented in an array (in the manner just described), with the following

two additional properties:
1. A heap has a structure property called completeness: each layer is filled from left to right. Since each

layer is stored consecutively, this means that there are no “holes” (unoccupied elements) in the
array. A tree with N nodes, where N is at least 2p but is less than 2p+1, has layers 0, ..., p. In all layers
except the last two, every node must have two children. In layer p – 1, any nodes with two children
must be at the left end of the layer, followed by at most one node with a single child, and then by any
nodes with no children. Items in layer p have no children.
Elements in the right half of the array (all of layer p and possibly the left end of layer p – 1) have no
children, because a child must have a subscript at least twice that of its parent. The following can be
verified by closer examination: For odd N, all elements at positions up to (N – 1)/2 have two chil-

15 If data items are not simply numbers, ordering is of course based on a sort key.
16 This use of the term heap has no relation to dynamic storage. It was applied to the storage scheme used in this

sorting algorithm in 1964 by the discoverers, J.W.J. Williams and R.W. Floyd. (Knuth, Sorting and Searching,
145).

Introduction to Sorting

65

dren and all elements beginning with (N +1)/2 have no children. For even N, element N / 2 has one
child; all preceding elements have two children and all following elements have no children.

Thus nodes with a single child are rare: there is exactly one such a node when the number of nodes
is even, and there is no such node when the number of nodes is odd. This means, as we shall see
later, that the single-child case has little effect on timing estimates.

2. A heap has a rather loose order property: In terms of key value, any node must always be larger than
each of its children, if it has any. If there are two children, either one of them may be the larger. Note
that the root, at layer 0, will always be the largest in the entire heap. The second-largest node may be
either child of the root, at layer 1; the third-largest may be (at layer 1) the other child of the root, or
it may be (at layer 2) either child of the second-largest node.
Note that removing one or more elements from the end of the array does not destroy the complete-

ness property nor the heap order property.
For example, the following heap has 14 elements in layers 0, 1, 2, and 3. Layer 3 is not full. The three

largest nodes are W, T, and S.

DORSPTW AANEOOH

D

O AH E A

P

S OR

T

NO

W

1

The Procedure Peck
Heapsort consists of two phases. First, a heap is constructed from data items already stored in the array.
Second, the largest item in the heap is repeatedly selected and removed to a sorted region. Each phase
employs a “pecking order” procedure.

subroutine He_Sort(Array)
real, dimension(:) :: Array
integer :: N, J

! start subroutine He_Sort
N = size(Array)
do J = N / 2, 1, -1

call Peck(J, N)
end do
do J = N, 2, -1

call Swap(1, J)
call Peck(1, J - 1)

end do
return

end subroutine He_Sort

2.4 HEAPSORT

66

PAEHAOD WONTROS

D

O A

H E A P

S O R T N O W

The procedure Peck is applied to subtrees that have the heap order property except at the root. This
procedure orders the entire subtree by moving the root item down a chain that chooses the larger child at
each branch.

Except for the fact that the chain elements are not equally spaced in the array, and that the scan
moves toward the right rather than toward the left, this procedure closely resembles the pecking order
procedure of insertion sort or of Shell sort. The root item is set aside — copied to an auxiliary variable —
and it is then compared with data items in the chain, beginning with the larger child of the root element
and scanning down until it dominates some element in the chain. At that point, the scan terminates and
the former root item takes its place in the chain. For random data, the expected insertion point is about
half way down the chain. The following steps may be compared with the insertion sort procedure:

subroutine Peck(L, R)
Next = Array(L)
I = 2 * L
do while (I <= R)

Choose larger child at each branch. If the number of elements is even, the last element has no sibling.

if (I < R) then
if (Array(I) < Array(I + 1)) I = I + 1

end if
if (Array(I) <= Next) exit

Use integer division to find the new position Array(I / 2) .

Array(I / 2) = Array(I)
I = 2 * I

end do
Array(I / 2) = Next

Note the importance of choosing the larger child at each branch of the chain: When a data item is
moved upward in the chain, it becomes the parent of its former sibling; the order property is preserved
because the new parent is larger than the former sibling that becomes its child.

Building the Heap by Chain Insertion
The first phase of heapsort constructs a heap from data that is already stored in the array. Note that the
element at position floor(N / 2) is the rightmost array element that has a child. The procedure Peck is
applied to the array elements in turn, beginning at position floor(N / 2) and moving to the left. The effect
is to construct small heap-ordered trees and merge them into larger trees. Thus, when Peck moves an
item into position its children (if any) are already in their correct positions.

As an example, consider the following initially unordered data set:

Introduction to Sorting

2

67

O WE N A PR

E

E

T

T

T

A PR N

O W

S

S

S

OT W NR AE PO

H

H

H

E A P

O

R

T

NO

W

Here, the size of the data set, N, is 14. Heap construction begins with the rightmost element that has a
child, which is P in subscript position N / 2 at the right end of layer 2. The procedure Peck is applied to
the chain that begins with this element.

In the following diagrams, items in the current chain are enclosed in diamond shapes, and the ele-
ment to be inserted is shown with a shaded background.

3

P

W

W

W

P

P

5

W

A

A

O

PON

A

O PN

W

6

4

2.4 HEAPSORT

68

W

W

ORST NOH AEO

W

P

P

P

A

A

A

D

D

D

O

H E A

S

O

R

T

NO

PW OR DST NOH AEO A

DO

AH E A

P

S

O

R

T

NO

W

7

8

9

10

P

P

OTS NRH AEO P

W

W

W

A

A

A

H E A

S

O R

T

N

O

T

T

T

W O PS NH AE AO

R

R

R

O

O

O

AH E A

S O P

NO

W

Introduction to Sorting

69

11

PT OR DOS

P O DO NH EA

NOH AEA

A

A

A

S

R

O

S R O

S R O

DO

H EA

P

N

O

WT

NOH AE

W P OR DST NOH AEO A

P OR DA

A

A

T

S

O

T S O

T S O

DO

H E A

P

O

R

N

W

12

2.4 HEAPSORT

It may be verified that the result is a heap with the required structure and loose order properties.

Sorting the Heap by Selection
After the heap has been constructed, the second phase begins. As mentioned earlier, because of the heap
order property the largest item is now the root element, Array1.

This phase resembles selection sort in that it repeatedly finds the largest item in the (unsorted) heap,
removes it from the heap, and stores it as the smallest sorted item. Because of the loose order property of
the heap, a chain of only lg J elements must be traversed to reorder the heap so that the largest of J items
is in the root position.

A sorted section is constructed, beginning at the right end of the array. For each value of J from N
down to 2, the largest remaining item, at Array1, is removed from the heap and is added to the sorted
section at ArrayJ. The operation actually performed is to swap ArrayJ with Array1. This removes ArrayJ
from the heap and decreases the size of the heap by one item while maintaining the heap structure
property.

The swap operation does not reorder any of the items in the heap except the one just moved to
Array1. Applying the procedure Peck to the chain beginning at Array1 restores heap order and again
guarantees that the largest unsorted item is at the root.

So long as J (the number of items in the heap) is two or more, J is decreased by one and the process
is repeated. In the following diagrams, the first two rows at the bottom show the heap before the swap
and the entire array after the swap. As before, diamonds indicate the pecking chain, and the item en-
closed in a diamond with a shaded background is the one that is to be inserted.

70

PR OO DNO

O DNO AH A

AH EA

E

E

E

OP

OP

O

P

D

O

AH A

N O

R WS T

13

OP EO DNO

O E DN H A

AH A

A

A

A

OO

OO

O

O

D

H

E

A

N

O

RP S T W

14

15

Introduction to Sorting

PS OO DOR

P OO D A EA

NAH EA

N

N

N

R

O

H

R O H

R O H

D

A EA

P

O O

T WS

71

16

OO EA DHN

A DHN

A

A

A

A

EO

EO

E

O

DH A

N

O SR TPO W

17

D

E AA

EO AA DHN

D

D

D

HN

HN

H

N

A

E

A

O RPOO WTS

18

2.4 HEAPSORT

OO EA DNO

OA EA D

H A

A

A

HNO

HNO

H

N

O

D

O

A E

O SR TP W

72

19

A

AE AD

A

A

A

D

D

D A

NE OH PO RO T WS

20

AD A

A

A

A

A

A

A

D E H N O O O P R S T W

21

22

AD

EH AAD

A

A

A

E

E

ED

A

N OH O PO S TR W

Introduction to Sorting

E A

EN AADH

A

A

A

H

D

H D

H D

E

A

R TPO OON WS

73

23

During this second selection phase, insertion of items into the chain is definitely not random — in this
example, A occurs as the item to be inserted on 10 of the 13 occasions. The item to be inserted has just
been swapped into the root position from the last layer of the tree, so it is likely to be much smaller than
average and insertion is unlikely to occur until almost the end of the chain.

Operation Counts for Heapsort

N = size(Array) ! 1
do J = N / 2, 1, -1 ! 2

call Peck(J, N) ! 3
end do ! 4
do J = N, 2, -1 ! 5

call Swap(1, J) ! 6
call Peck(1, J -1) ! 7

end do ! 8

subroutine Peck(L, R)
Next = Array(L) ! 9
I = 2 * L ! 10
do while (I <= R) ! 11

if (I < R) then ! 12
if (Array(I) < Array(I + 1)) I = I + 1 ! 13

end if ! 14
if (Array(I) <= Next) exit ! 15
Array(I / 2) = Array(I) ! 16
I = 2 * I ! 17

end do ! 18
Array(I / 2) = Next ! 19

At line 13, the two siblings ArrayI and ArrayI+1 are compared unless ArrayI has no sibling (a case that
is rare enough to have no significant effect upon timing, as noted earlier).

The loop at lines 11 – 18 processes a chain of approximate length (lg R – lg L), but may exit before
reaching the end of the chain. Each iteration requires two data item comparisons and one move, except
for the last iteration in case of early exit.

As described earlier, by analogy to the integral the sum of logarithms ∑i=a
b lg i can be estimated as b

lg b – a lg a – 1.4·(b – a).
• First phase, building the heap by insertion, lines 1 – 4: ∑i=N/2

1 Pecki,N

For random data, exit during the first phase is expected at the midpoint of each chain. Thus the
operation count for Peck consists of one move (line 9), plus two comparisons and one move for each
iteration of lines 11 – 18. The number of iterations is

∑i=N/2
1 0.5·(lg N – lg i)

= 0.5·∑i=N/2
1 lg N – 0.5·∑i=N/2

1 lg i
= 0.25·N lg N – 0.5·(0.5·N (lg N – lg 2)) – lg 1 – 1.4·(0.5·N) + 1.4)
= 0.25·N +0.35·N – 0.7 (Note that the terms in N lg N cancel.)
= 0.6·N – 0.7

2.4 HEAPSORT

A A

A

A

A

A D E H N O O O P R S T W

74

The number of comparisons (two per iteration) is 1.2·N – 1.4; the number of moves (one per iteration)
is 0.6·N + 0.3

• Second phase, sorting the heap by selection, lines 5 – 8: Three moves plus ∑i=N/2
1 Peck1,i–1

As noted earlier, exit is likely to occur near the end of the chain. For the worst case (exit at the
end), the number of iterations is

∑i=2
N lg(i – 1) = ∑k=1

N–1 lg k
= (N – 1) lg(N – 1) – 1.4·(N – 2)
= N lg(N – 1) – lg(N – 1) – 1.4·N + 2.8; approximating lg(N – 1) by lg N:
= N lg N – lg N – 1.4·N +2.8

The estimated number of comparisons is 2·N lg N – 2·lg N – 2.8·N +5.6 and the number of moves is
N lg N – lg N – 1.4·N +·5.8
• Total for lines 1 – 8:

Comparisons: 2·N lg N – 2 lg N – 1.6 N +4.2
Moves: N lg N – lg N – 0.8 N +4.5
A heapsort benchmark, run with a 50 MHz 486DX computer, sorted one million random real num-

bers in 117 seconds. Inlining Peck and Swap (as in the following Fortran procedure) reduces the time to
108 seconds. (As wil be seen later, quicksort under the same conditions sorted one million random
numbers in 56 seconds.) Knuth17 shows that the worst case behavior for heapsort is only about ten
percent slower than the average case; thus heapsort is the only internal sorting method with guaranteed
N lg N behavior.

Say It with Fortran

Example 10. To reduce procedure call overhead, two copies of Peck are incorporated as in-line code;
benchmarks show that this moderately decreases running time (by about 10%). Since the two Peck
operations are written as separate statement sequences, it is possible to slightly simplify the swap opera-
tion at the beginning of the second phase: the item to be inserted into a chain is not actually stored at
Array1 but instead is moved to Next.

! Example 10. Heapsort [L P Meissner, 12 Nov 1995]
subroutine He_Sort(Array)

real, dimension(:), intent(in out) :: Array
integer :: N, I, J
real :: Next

! start subroutine He_Sort

N = size(Array)

Build the heap. Start by “pecking” with the last element that has a child.

do I = N / 2, 1, - 1
Next = Array(J)
J = I + I
do while (J <= N)

if (J < N) then
if (Array(J) < Array(J + 1)) J = J + 1

end if

17 Sorting and Searching, 149

Introduction to Sorting

75

if (Array(I) <= Next) exit
Array(J / 2) = Array(J)
J = J + I

end do
Array(J / 2) = Next

end do

Now sort by selection. Move Array(1) to the sorted portion, then restore the heap order property.

do I = N, 2, - 1
Next = Array(I)
Array(I) = Array(1)
J = 2
do while (J < I)

if (J < I - 1) then
if (Array(J) < Array(J + 1)) J = J + 1

end if
if (Array(J) <= Next) exit
Array(J / 2) = Array(J)
J = J + I

end do
Array(J / 2) = Next

end do
return

end subroutine He_Sort

2.5 OPERATION COUNTS FOR SORTING:
SUMMARY

Swap
Comparisons: 0
Moves: 3

Swap with test; p is the probability that the items to be exchanged are actually different.
Comparisons: 1
Moves: 3p

Min_Location
Comparisons: N – 1
Moves: = 0.7·lgN + 0.6

Binary_Search
Comparisons: 1.5·lg N – 1.5
Moves: 0

Sort_3
Comparisons: 3
Moves: 4.5

2.4 HEAPSORT

76

Sorting Methods Described So Far (Slower to Faster)

Benchmark results are consistent with about ½ million compares or 1½ million moves per second on a 50
MHz 486DX. These numbers include the accompanying overhead.
Se_Sort (selection)

Comparisons: 0.5·N2 +0.5·N – 1
Moves: 0.7·N lg (N – 1) + 5.6·N – 0.7·lg (N – 1) – 6.6
Benchmark time for 20,000 random real numbers: 350 seconds

In_Sort (straight insertion)
Timing is strongly data-dependent.
Average Case (random data):

Comparisons: 0.25·N2 – 0.25·N
Moves: 0.25·N2 +0.5·N – 1
Benchmark time for 20,000 random real numbers: 291 seconds.

Best Case (data in order)
Comparisons: N – 1
Moves: 2·N – 2

Benchmark time for 1 million real numbers already in order: 4 seconds
Worst Case (data in reverse order)

Comparisons: 0.5·N2 – 0.5·N
Moves: 0.5·N2 +1.5·N – 2

Binary Insertion with block move.
Timing is strongly data-dependent.
Average Case (random data):

Comparisons: 1.5·N lg N – 2.1·N – 0.3
Moves: 0.25·N2 + 1.75·N – 2
Benchmark time for 20,000 random real numbers: 65 seconds.

Best Case (data in order)
Comparisons: 1.5·N lg N – 2.1·N – 0.3
Moves: 2·N – 2

Worst Case (data in reverse order)
Comparisons: 1.5·N lg N – 2.1·N – 0.3
Moves: 0.5·N2 + 1.5·N – 2

Sh_Sort (Shell sort) with array sections. Conjectured operation counts are based on benchmark.
Timing is dependent on choice of intervals.
Comparisons: 1.2·N1.3

Moves: 1.2·N1.3

Benchmark time for 1 million random real numbers: 201 seconds

He_Sort (heapsort)
Comparisons: 2·N lg N – 1.6·N – 2·lg N + 4.2
Moves: N lg N – 0.8·N – lg N + 4.5
Benchmark time for 1 million random real numbers: 104 seconds

Introduction to Sorting

77

Chapter 3 Recursion and Quicksort
The sorting methods descibed up to this point employ iteration to cycle through the data. A completely
different approach to repetition is recursion, as illustrated in Fig 3.1. Quicksort, the fastest known sorting
method, is most naturally implemented with recursion.

Start of Recursion

Base of Recursion

FIGURE 3.1. Recursion

This form of repetition starts with a call to a procedure that performs the set of steps to be repeated.
The procedure continues the repetition by calling another instance of itself, unless no further repetitions
are needed. In that case — called the base of the recursion — the recursion begins to unwind by termi-
nating execution of all the recursive procedure calls, beginning with the last called instance.

3.1 RECURSION
Discussion of recursive sorting is here preceded by an overall description of the application and imple-
mentation of recursion. The implementation concept most crucial for making recursion work is that the
system allocates a separate block of local storage for each instance of the recursive procedure when it is
called.

Consider a recursive method for printing a list of data items in reverse order:
To reverse-print a list of integers:
If the list is empty, do nothing.
Otherwise, reverse-print a smaller list that consists of all except the first integer, and then
print the first integer.

78

Some features of this description are common to many recursive problems:
1. The method for performing a sequence of tasks (“reverse-print a list of integers”) is described quite

differently from the method for performing a component task (“print an integer”).

2. The way to perform a component task (“print an integer”) is supposed to be already known or to be
defined elsewhere.

3. The way to perform a sequence of tasks (“reverse-print a list”) is never completely specified; it is
described only incrementally — the procedure itself is composed from a derivative sequence of tasks
(“reverse-print a smaller list”) and a component task (“print an integer”).

4. However, the performance of a certain base sequence (“reverse-print an empty list”) is described
completely.
Recursive procedures should be created with some care. It is especially necessary to be sure that the

sequence of derivations generated at step 3 will eventually lead to the base. A very common class of
recursive procedures involves an integer argument that decreases with each recursive call; with a small
integer base, such as 1 or 0, eventual termination is assured.

The print application employs a slightly different strategy: It employs a list that grows shorter at
each derivation, with an empty list as the base. Suppose that the input file holds three integers, 101, 201,
301, and 0, in this order. The zero is a “sentinel” value that is not considered part of the list; it merely
terminates the list and is not to be printed.

Reverse-print “101, 202, 303” by doing the following:
Reverse-print “202, 303” by doing the following:

Reverse-print “303” by doing the following:
Reverse-print “” (an empty list) by doing nothing;
Print “303”.

Print “202”.
Print “101”.

Stop.

Example 11. The following recursive procedure reads a data item and tests whether it is zero; if not,
it calls itself recursively to read and process another item:

! Example 11. Reverse-print a list of integers.
program D11

implicit none
! start program D11

call Reverse_Print()
stop

contains
recursive subroutine Reverse_Print()

integer :: A
! start subroutine Reverse_Print

read *, A

Skip the recursive call when zero is read (the base case).

if (A /= 0) then
call Reverse_Print()
print *, A

end if
return

end subroutine Reverse_Print

end program D11

Recursion and Quicksort

79

The program declares only one variable, A, and yet it could apparently process an arbitrarily large
number of data items. What happens to the earlier data items while later items are being read and
printed? As mentioned earlier, the crucial idea in the implementation of recursion is to give each in-
stance of a recursive procedure its own activation record, which is a block of storage that contains an
instance of each local variable declared in the procedure.18 This block also contains procedure argu-
ments (if any — in the form of values or references) for the current procedure instance, as well as infor-
mation needed for returning to the reference point.

Let us examine the execution sequence for Reverse_Print in detail.
• The main program calls Reverse_Print . Since there will be several instances of Reverse_Print ,

let us call the first one RP1.

• RP1 reads the integer 101 and assigns it to the variable A in the activation record for RP1, which we
designate as “RP1’s A”. Since A is not zero, it calls Reverse_Print — i.e., RP2.

• RP2 reads 202 and assigns it to the variable A, this time designated as “RP2’s A”. Again A is not zero
so it calls Reverse_Print — i.e., RP3.

• RP3 reads 303 and assigns it to the variable “RP3’s A”. Again A is not zero so it calls RP4.

• RP4 reads 0 and assigns it to the variable “RP4’s A”. This time A is the sentinel which is not to be
processed. RP4 makes no further procedure call and exits, thus returning control to RP3 at the point
just after the call to RP4.

• RP3 continues by printing its copy of the variable A, namely “RP3’s A” which is 303. This is the first
number that has been printed during program execution up to this point. After the print step, RP3
returns control to RP2 at the point just after the call to RP3.

• RP2 prints “RP2’s A”, which is 202, then returns control to RP1.

• RP1 prints “RP1’s A”, which is 101, then returns control to the main program and stops.

Recursion Compared with Iteration
Some problems can be described more naturally as recursive processes than as iterative processes. If you
normally think of a factorial as an integer times a smaller factorial, you can translate that problem de-
scription directly into a recursive program. On the other hand, recursion usually entails some loss in
efficiency, including extra procedure-call overhead and hidden storage requirements.

This text recommends that program comprehension be viewed as the primary objective, giving
somewhat less importance to efficiency of execution. In the 1970s, emphasis on “structured program-
ming” awakened computer users to the fact that small gains in efficiency can easily be lost due to errors
introduced by failure to understand a problem.
• Some applications can be viewed with almost equal ease either iteratively or recursively. Iteration is

always somewhat more efficient — it requires less overhead and less space — so iteration is prefer-
able when there is no special reason to choose recursion.

• Some problems are very naturally understood with recursion and exceedingly awkward in iterative
form. Tree structures (see Chapter 7) are processed naturally by means of recursion, because a tree
consists of subtrees that have essentially the same structure as the tree itself. Quicksort (to be ex-
plained next) depends naturally on recursion. Even in Fortran, such applications should not be
forced into an unsuitable iterative form. Effort may be directed toward making the recursive version
as efficient as possible.

• Some applications require a more difficult choice between a recursive version that is a bit easier to
understand and an iterative version that runs a bit faster or uses less storage. If efficiency is truly the
dominant factor, iteration should be chosen. Otherwise, the recursive approach should be adopted

18 The activation record does not include variables with the save or allocatable attributes.

3.1 RECURSION

80

?

0

1

2

?

if it seems more natural: a program that is more natural or easier to understand may justify some
moderate loss of efficiency.

Another example is linked list insertion (see Section 5.2). The recursive method is significantly more
elegant than iteration, but can be very wasteful of space if the list is very long. Algorithms (such as
recursive linked list insertion) for which the depth of recursion is close to N (the amount of data) are
useful only for small quantities of data.

• It has been shown that iteration is equivalent to a special form of recursion called tail recursion, which
may be recognized by the fact that a recursive call is executed as the last step of the recursive pro-
cess. In principle, therefore, iteration can invariably be converted to recursion, but the converse is
not always true.19 Some modern optimizing compilers detect tail recursion and translate it auto-
matically to iteration. Thus, it is sometimes possible to maximize comprehensibility without sacri-
ficing efficiency.

A Good Example of Recursion: Towers of Hanoi
A puzzle known as The Towers of Hanoi lends itself well to a recursive solution. The puzzle consists of
three pegs, one of which holds a pile of discs of different sizes arranged in order with the largest disc on
the bottom and the smallest disc on top. Typical versions of the puzzle have between three and six discs.
The pile of discs is to be moved to one of the empty pegs; at each step only one disc is to be moved, and
a larger disc must never be placed on top of a smaller disc. The pegs may be numbered 0, 1, and 2, with
the discs on peg 0 at the beginning and on peg 2 at the end.

Suppose, for the moment, that a method were known for moving the pile of discs except the largest
one from one peg to another. This smaller pile could be moved from peg 0 to peg 1; then a simple move
would transfer the large disc from peg 0 to peg 2; and finally the hypothetical method would move the
smaller pile from peg 1 to peg 2, thus moving the entire original pile from 0 to 2 as required.

19 For an excellent discussion of iteration versus (linear) recursion, see H. Abelson and G. J. Sussman, Structure
and Interpretation of Computer Programs (Cambridge, Mass.: MIT Press, 1985), 30–34. As noted in Section 5.2,
some tail-recursive linked list processing techniques are apparently not directly convertible to Fortran itera-
tive syntax. See also T. W. Pratt, Pascal, A New Introduction to Computer Science (Englewood Cliffs, N.J.: Prentice
Hall,1990), Section 12.7.

Recursion and Quicksort

FIGURE 3.2. Solution to 3-disc Hanoi puzzle

81

Like the reverse-print procedure, the foregoing paragraph never completely tells how to “move a
pile of discs”; it describes only a similar but simpler task (“move all of the discs except the largest one”)
and a component task (“transfer the largest disc”):
To move n discs from peg i to peg j:

• If n is 1, simply transfer the single disc from peg i to peg j;

• Otherwise, move n – 1 discs (all except the largest) from peg i to peg k (the peg that is neither i nor j),
transfer the largest disc from peg i to peg j, and move n – 1 discs from peg k to peg j.
For a more complicated iterative solution, place the pegs at the vertices of an equilateral triangle

and alternate between moving the smallest disc clockwise and moving the only other available disc
counterclockwise.

The number of moves for n discs is 2n – 1. As we shall see in the following chapter, this algorithm is
unfeasible if n is large. However, an algorithm that simulates each of the individual moves will unavoid-
ably require an amount of calculation approximately proportional to 2n. The size of the task is inherent
in the problem, and not in the method of solution. The recursive solution seems to give more insight into
the problem than the iterative version.

A Bad Example of Recursion: The Fibonacci Sequence
About 800 years ago Leonard of Pisa, surnamed Fibonacci, posed the following problem: “A certain man
put a pair of rabbits in a place surrounded by a wall. How many pairs of rabbits can be produced from
that pair in a year, if it is supposed that every month each pair begets a new pair which from the second
month on becomes productive?” The number of pairs each month is given by the Fibonacci sequence 1, 1,
2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . ., in which each number after the first two is the sum of the two previous
numbers:

pure recursive function Fibonacci(N) result(Fibonacci_R)
integer, intent(in) :: N
integer :: Fibonacci_R

! start function Fibonacci
if (N <= 2) then

Fibonacci_R = 1
else

Fibonacci_R = Fibonacci(N - 1) + Fibonacci(N - 2)
end if
return

end function Fibonacci

This recursive function produces the correct result so long as N is small enough. For the result to be
representable as a 4-byte IEEE integer, N must not exceed 46; however, the procedure is intolerably slow
for values of N near the upper end of this range. Each call to the function with N > 2 generates two more
calls to the same function; the total number of recursive function calls is the same as the result being
calculated: approximately 1.6N calls, or more than 107 (46 seconds on our benchmark machine) for N =
36, 108 (almost nine minutes) for N = 41, and 109 function calls (more than 1.5 hours) for N = 46.

Much simpler methods are available. Fibonacci numbers can be calculated iteratively by a method
whose running time is linear in N. The following steps begin with the first two Fibonacci numbers, both
of which are 1. The two previous values are saved at each step.

3.1 RECURSION

82

Fibonacci_R = 1
if(N > 2) then

Prev_1 = 1
do Loop = 3, N

Prev_2 = Prev_1
Prev_1 = Fibonacci_R
Fibonacci_R = Prev_1 + Prev_2

end do
end if

Still more simply (and with constant running time, independent of N), the Nth Fibonacci number can
be calculated directly from the formula (αN – βN)/(α – β), where α and β are roots of the quadratic
equation x2 – x – 1 = 0; namely, (1 ± √5) / 2 , i.e., 1.618033989 and −0.618033989 . With IEEE eight-byte real
representation, this formula gives correct results (to the nearest integer) for N ≤ 46.

! Fibonacci numbers by direct calculation from formula
program Fibonacci

integer, parameter :: SRK9 = selected_real_kind(9)
real(kind = SRK9), parameter :: ALFA = 1.618033988749895_SRK9, &

BETA = - 0.618033988749895_SRK9, &
DELTA = 2.23606797749978969641_SRK9

integer :: N
! start program Fibonacci

do
print *, " Please enter an integer between 0 and 46"
print *, " Enter an integer larger than 46 to stop."
read *, N
if ((N < 0) .or. (N > 46)) stop
write (*, "(t2, i4, f20.0)") N, (ALFA ** N - BETA ** N) / DELTA

end do
stop

end program Fibonacci

Since β is smaller than 1, it turns out that βN can be ignored if the “nearest integer” function is applied:
write (*, "(t2, i4, i24.0)") N, nint(ALFA ** N / DELTA)

Application: Adaptive Quadrature (Numerical Integration)

Example 12. A numerical application that employs recursion is adaptive quadrature. A one-step
Simpson Rule calculation is applied to the whole interval (A, B); the result is compared with the sum of
one-step calculations applied separately to the left and right halves of the interval. If these are nearly
equal, the sum is accepted as the final answer; otherwise, adaptive quadrature is applied recursively to
each half interval. The effect is to apply smaller step sizes where the integrand has greater functional
variation. It has been pointed out that this technique is successful for most problems because each sub-
division typically decreases the approximation error by a factor of 15 but tightens the accuracy require-
ment by only a factor of two.20 (For Fortran 95 versions, which declare Quad as a pure function, the
integrand Func must also be a pure function. See also the electronic examples, in which the integrand
is implemented as a dummy procedure.)

Recursion and Quicksort

20 R. L. Burden and J. D. Faires, Numerical Analysis, th ed. (Boston: PWS Publishing,)

83

! Example 12. Adaptive Quadrature (Numerical Integration)

:
integer, parameter, public :: HI = selected_real_kind(12)
type, public :: Result_Type

real(kind = HI) :: X, Err_Loc
logical :: Error

end type Result_Type
:

recursive pure function Quad(A, B, I, Tol, M_Int) result(Quad_R)
real(kind = HI), intent (in) :: A, B, I, Tol, M_Int
type(Result_Type) :: Quad_R
type(Result_Type) :: R1, R2
real(kind = HI) :: Y, Z, M

! start function Quad
M = (A + B) / 2.0_HI
Y = Simpson(A, M)
Z = Simpson(M, B)
if (abs(Y + Z - I) > Tol) then

if (abs(B - A) < M_Int) then ! Not OK but interval is too small
Quad_R = Result_Type(I, M, .true.)

else ! Not OK: Subdivide interval again
R1 = Quad(A, M, Y, Tol / 2.0_HI, M_Int)
R2 = Quad(M, B, Z, Tol / 2.0_HI, M_Int)
Quad_R % X = R1 % X + R2 % X
Quad_R % Error = R1 % Error .or. R2 % Error
if (Quad_R % Error) then

Quad_R % Err_Loc = merge(R1 % Err_Loc, R2 % Err_Loc, R1 % Error)
end if

end if
else ! OK: Accept current value.

Quad_R = Result_Type(Y + Z, M, .false.)
end if
return

end function Quad

pure function Simpson(A, B) result(Simpson_R)
real (kind = HI), intent(in) :: A, B
real (kind = HI) :: Simpson_R
real (kind = HI) :: M

! start function Simpson
M = (A + B) / 2.0_HI
Simpson_R = (B - A) * (Func(A) + 4.0_HI * Func(M) + Func(B)) / 6.0_HI
return

end function Simpson

3.1 RECURSION

84

Application: Recursive Selection Sort
The selection sort method is easy to describe as a recursive algorithm: If there is more than one item to
sort, find the largest item, swap it with the last item, and then apply the selection sort algorithm to
everything else.

module Recursive_Select
use Swap_Reals_M
implicit none
private
public :: Selection_Sort

contains
recursive subroutine Selection_Sort(Unsorted) ! Module subprogram

real, dimension(:), intent (in out) :: Unsorted
integer :: N
integer, dimension(1) :: Loc

! start subroutine Selection_Sort
N = Size(Unsorted)
if (N > 1) then ! End recursion if only one element remains.

Loc = maxlLoc(Unsorted) ! Location of largest element
call Swap(Unsorted(N), Unsorted(Loc(1)))
call Selection_Sort(Unsorted(1: N - 1)) ! Recursion

end if
return

end subroutine Selection_Sort
end module Recursive_Select

Tail Recursion vs Iteration

Printing a List Forward

Consider a recursive method for printing a list of data items in forward order:
To forward-print a list of integers:
If the list is empty, do nothing.

Otherwise, print the first integer, and then forward-print the remainder of the list (consisting of the
original list except for the first integer).

recursive subroutine Forward_Print()
integer :: A

! start subroutine Forward_Print
read *, A

Skip the recursive call when zero is read (the base case).

if (A /= 0) then
print *, A
call Forward_Print()

end if
return

end subroutine Forward_Print

85

This recursive algorithm has the special form mentioned earlier (a recursive call is executed as its last
step) so it can be converted to an iterative procedure. The recursive call can simply be changed to a go
to statement, as follows:

1 read *, A
if (A /= 0) then

print *, A
go to 1

end if
Better programming style would be the equivalent do construct:

subroutine Forward_Print() ! iterative, with do construct
integer :: A

! start subroutine Forward_Print
do

read *, A
if (A == 0) then

exit
else

print *, A
end if

end do
return

end subroutine Forward_Print

Factorial

Viewed recursively, the factorial of a nonnegative integer n is n times the factorial of n – 1; the factorial of
zero is 1:

pure recursive function Factorial(N) result(Factorial_R)
integer :: Factorial_R

! start function Factorial
if (N < 1) then

Factorial_R = 1
else

Factorial_R = N * Factorial(N - 1)
end if
return

end function Factorial

The procedure call overhead of this tail-recursive implementation makes it terribly inefficient, as
compared to iteration (except with optimizers that perform the conversion automatically). See Exercise
2 below. However, if you view the recursive definition as more natural, and if efficiency is not especially
important, you might still prefer this version. Anyway, on typical hardware the factorial function is
representable as an ordinary integer only for quite small values of N: for example, the factorial of 13 is
too large to be represented as an IEEE 4-byte integer.

Section 3.1 Exercises
1. Write a recursive subroutine that simulates the moves in a Towers of Hanoi puzzle, and prints each

move. Subroutine dummy arguments are n, i, and j. (Hint: set k to 3 – (i + j).) Write a main program
that calls the subroutine with n = 4, i = 0, j = 1.

2. Write an iterative factorial function with a do construct.

86

Pivot

3.2 QUICKSORT

Recursive Partitioning
Quicksort is a partition sort method (sometimes called split sorting). The idea is to partition (i.e., to split)
the data into two sets, with smaller items in one set and larger items in the other. This is done by choos-
ing a pivot and then moving the data so that items on the left are at least as small as the pivot and items
on the right are at least as large as the pivot, as in the following sketch based on Rawlins’ diagram:

Recursion and Quicksort

The partitioning operation is then applied recursively to each of the two sets; recursion terminates
when a set to be partitioned contains only one item.

Ideally, each recursive partitioning step would divide the data set into two equal subsets. To make
this work, it would be necessary to choose the median of the data items as the pivot at each step; how-
ever, finding the median of a large number of items is not easy. A recommended alternative is to apply a
3-item sort to the elements at the left end, middle, and right end of of the array, and to choose the
resulting middle item for the pivot. This pivoting strategy (called median-of-3) will be discussed later
and will be compared to other strategies.

Once a pivot has been selected, partitioning proceeds by moving data items that are on the wrong
side of the pivot. A significant feature of Quicksort is its pair of very fast inner loops that scan inward
from opposite ends of the data array until they meet. For maximum efficiency, it is crucial that nonessen-
tial operations be avoided in these inner loops. The necessary steps include modifying an index variable
and comparing the corresponding array element with the pivot; it is possible, and highly preferable, to
avoid additional comparison steps involving the index value itself. These loops lend themselves well to
optimization since they compare a sequence of adjacent array elements to a fixed pivot value.

Suppose that Array(L: R) is to be partitioned, and suppose that the pivot has been selected by the
median-of-3 strategy.
Initialize I to L and J to R. The invariant assertion is: “All items to the left of Array(I) are at least as small as
Pivot , and all items to the right of Array(J) are at least as large as Pivot .”

I = L
J = R

Make separate searches, scanning to the right with I until a large data item (Array(I) >= Pivot) is found, and
then scanning to the left with J until a small data item (Array(I) <= Pivot) is found. (It has been shown that
testing for >= and <= works better than testing for > and < in case there are many equal key values.)

87

do
do

I = I + 1
if (Array(I) >= Pivot) exit

end do
do

J = J - 1
if (Array(J) <= Pivot) exit

end do

If the two scans have met or crossed, this partition is complete. Otherwise, swap the large and small data items and
continue scanning to the right with I and to the left with J .

if (I >= J) exit
call Swap(I, J)

end do
call Recursive_QS(L, J)
call Recursive_QS(J + 1, R)

Here is an example.
 S O R T M E Q U I C K L Y

A 3-item sort is applied to S, Q, and Y, thus changing S Q Y to Q S Y, and S (the median of these three
items) is chosen as the Pivot. The scans begin moving inward from each end.

 Q> O R T M E S U I C K L <Y

Starting from the left end and moving toward the right, T is the first item that is at least as large as S;
starting from the right end and moving toward the left, L is the first item that is at least as small as S.
These two items are swapped; then the inward scans continue, comparing the items that remain be-
tween the two that were swapped.

 Q O R L> M E S U I C K <T Y

Moving right, S is at least as large as S; moving left, K is at least as small as S. Therefore, S and K are
swapped, and the scans continue.

 Q O R L M E K> U I C <S T Y

Moving right, U is at least as large as than S; moving left, C is at least as small as S. After U and C are
swapped, the scans continue.

 Q O R L M E K C> I <U S T Y

Moving right, U is again at least as large as S; moving left, I is at least as small as S. The scans have now
crossed, so no swap occurs.

 Q O R L M E K C <I U> S T Y

This partition is now complete. The first nine items are at least as small as S, and the last four items are
at least as large as S. Note that the pivot does not necessarily end up adjacent to the partition.

 Q O R L M E K C I# U S T Y

Recursively, each of the two groups is now partitioned. Consider the first group of nine items. The
scans begin after Q, M, and I have been sorted and M has been chosen as the Pivot.

 I> O R L M E K C <Q

Moving right, O is at least as large as M; moving left, C is at least as small as M. These two items are
swapped and the scans continue.

 I C> R L M E K <O Q

Moving right, R is at least as large as M; moving left, K is at least as small as M. These two items are
swapped and the scans continue.

 I C K> L M E <R O Q

3.2 QUICKSORT

88

Moving right, M is at least as large as M; moving left, E is at least as small as M, so M and E are swapped
and the scans continue.

 I C K L E> <M R O Q

Moving right, M is at least as large as M; moving left, E is at least as small as M. The scans have now
crossed, so no swap occurs.

 I C K L <E M> R O Q

The first five items are at least as small as M, and the last four items are at least as large as E.
 I C K L E# M R O Q

Quicksort continues, recursively partitioning each of these two groups.

Quicksort is Unstable for Duplicates

It is easy to see that quicksort is unstable for duplicate items. (Here, subscripts are shown only for
identification and are not part of the key.) The pivot for the first partition is E1:

 A1 B1 C1 D1 E1 A2 B2 C2 D2 E2
 A1> B1 C1 D1 E1 A2 B2 C2 D2 <E2
 A1 B1 C1 D1 D2> A2 B2 C2 <E1 E2
 A1 B1 C1 D1 D2 A2 B2 <C2 E1> E2
 A1 B1 C1 D1 D2 A2 B2 C2# E1 E2

For positions 1 to 8, the pivot is C2:
 A1 B1 C1 D1 D2 A2 B2 C2
 A1> B1 C1 C2 D2 A2 B2 <D1
 A1 B1 B2> C2 D2 A2 <C1 D1
 A1 B1 B2 A2> D2 <C2 C1 D1
 A1 B1 B2 <A2 D2> C2 C1 D1
 A1 B1 B2 A2# D2 C2 C1 D1

For positions 1 to 4, the pivot is A2:
 A1 B1 B2 A2
 A1> A2 B2 <B1
 A1 <A2> B2 B1
 A1 A2# B2 B1

For positions 1 to 2, the pivot is A1:
 A1 A2
 A1> <A2
<A1 A2>
 A1# A2

For positions 3 to 4, the pivot is B2:
 B2 B1
 B2> <B1
<B2 B1>
 B2# B1

For positions 5 to 8, the pivot is D2:

Recursion and Quicksort

89

 D2 C2 C1 D1
 C2> D2 C1 <D1
 C2 C1> <D2 D1
 C2 <C1 D2> D1
 C2 C1# D2 D1

For positions 5 to 6, the pivot is C2:
 C2 C1
 C2> <C1
<C2 C1>
 C2# C1

For positions 7 to 8, the pivot is D2:
 D2 D1
 D2> <D1
<D2 D1>
 D2# D1

For positions 9 to 10, the pivot is E1:
 E1 E2
 E1> <E2
<E1 E2>
 E1# E2

The final sorted array appears as follows:
 A1 A2 B2 B1 C2 C1 D2 D1 E1 E2

Choosing the Pivot

Properly implemented, quicksort is the fastest known sorting algorithm. However, as Sedgewick21 points
out, the algorithm is “fragile”: small changes in some of the program steps can destroy the efficiency of
the method or can lead to undesirable and unexpected effects for some inputs.

“Once a version has been developed and seems free of such effects, this is likely to be the program to
use for a library sort or for a serious sorting application. But [one must be] willing to invest the effort
to be sure that a quicksort implementation is not flawed. . . .”
One change that can have dramatic effects relates to the choice of a pivot element for each partition.

As stated earlier, the ideal pivot would be the median of the data items, so that the partitioning process
would produce equal subgroups. However, the extra time required to find the true median would de-
stroy the fast performance of quicksort.

Some published quicksort algorithms choose a specific array element, such as ArrayL or ArrayL+R/2,
as the pivot. Others generate a random subscript value between L and R.

Warnock22 suggests using the median-of-3 pivot strategy mentioned earler, based on the first and
last items and an item between them chosen at random. A random array element can be selected with
the intrinsic subroutine random_number :

call random_number(X)
C = L + int(X * real(R - L))
call Sort_3(L, C, R)
Pivot = Array(C)

21 Sedgewick, Algorithms, 116.
22 Private communication

3.2 QUICKSORT

90

Use of the actual median of a tiny sample of the data tends to equalize the partitions somewhat.23 It
has the additional advantage that a bit of the sorting is done along with the pivot choice, so the scan can
omit the item at each end — for most other strategies, the elements at each end are not examined before
the scans begin, so I must be initialized to L – 1 and and J to R + 1. Furthermore, median-of-3 pivoting
guarantees that both inner loops will exit without running off the ends of the array; other strategies may
require extra steps to avoid disaster. (The index values could be tested in the inner loop, of course, but
this would dramatically increase the total sort time.)

The Cutoff

One variation of quicksort can significantly improve the performance of the algorithm. Quicksort is very
effective for large amounts of data but is not especially fast for sorting fewer than a dozen items. Fur-
thermore, sorting small groups of items by quicksort requires several recursive calls and thus introduces
a disproportionate amount of overhead.

A quicksort implementation may specify a cutoff value to avoid recursively processing small sets,
i.e., sets for which the difference between right end and left end subscripts does not exceed the cutoff. In
the algorithms presented here, small sets are left unsorted and a final pass is made over the whole array
with straight insertion, taking advantage of the efficiency of this latter method for data that is nearly in
order.24

The optimum cutoff value depends somewhat on hardware characteristics. Some experimentation
usually reveals a very shallow minimum, with any cutoff from about 5 to 20 giving an improvement
between 5% and 15%, even after taking into account the extra time required for the final insertion sort.

Testing a Quicksort Implementation
At least three tests should be made to improve confidence in an implementation of quicksort.
1. Sequence check. It goes without saying that the data should be in order after it has been processed by

quicksort.

2. Timing comparison with insertion sort. Many implementations of quicksort end with a straight inser-
tion pass, so a quicksort procedure that is not working at all will produce a correct data sequence if
the insertion sort is implemeted correctly. For about 10,000 random data items, a correct quicksort
procedure is at least 100 times as fast as insertion. If your procedure is only slightly faster than
insertion, most of the work is being done during the final insertion pass.

3. Asymptotic running time. Quicksort should be applied to several large sets of random data of differ-
ent sizes — for example, 100,000 items and one million items. The elapsed time ratio should verify
the N lg N asymptotic behavior that is characteristic of quicksort: One million items should take
between 10 and 15 times as long as 100,000 items.

23 According to Moret and Shapiro (B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP, Redwood City CA:
Benjamin/Cummings, 1990, 516), consistently choosing any specific element as the pivot (or choosing the
pivot at random) results in an expected split of 25:75; the median-of-3 strategy gives an expected split close to
33:67 and reduces the probability of a 25:75 or worse split to about 0.3.

A strategy sometimes suggested is simply to use the leftmost data array element as the pivot. However, if this
method is applied to a set of data that happens to be in order (or in reverse order) already, each group of k
items will be partitioned into a single item and a group of k – 1 items. The method is nearly as bad for data that
is almost in order: quicksort becomes merely an inefficient recursive version of selection sort. Since sorting
algorithms are often applied to data that is nearly in order, the effect of this bad pivot choice is “quite embar-
rassing,” to quote Knuth.

24 In a paged environment, it may be preferable to sort the small sets by insertion or selection as they are created,
as Moret and Shapiro note: “This strategy preserves the excellent locality of quicksort, whereas the final sweep
of a single insertion sort pass would trigger another series of page faults.”

Recursion and Quicksort

91

Storage Space Considerations
When a procedure with an array argument calls itself recursively, does each instance of the procedure
store another copy of the array? Probably not — array arguments are almost invariably passed by refer-
ence, so each instance stores only an address. For Fortran assumed-shape arrays this is a reference to the
array descriptor.

It is not difficult to entirely eliminate the array argument from a recursive procedure. A nonrecursive
“wrapper” procedure with an array argument is constructed, with the recursive procedure as an inter-
nal procedure inside it. The recursive procedure inherits the original array from the wrapper and has
only two integer scalar arguments, the left and right end index values. A less flexible alternative that
eliminates the wrapper (and, perhaps surprisingly, seems to run almost twice as fast on some systems)
declares a public data array in the module where the recursive sort is defined. (The F subset does not
support internal procedures; the nonrecursive wrapper and the recursive procedure are module proce-
dures at the same level, so the recursive procedure can inherit only from the specification part of the
module. A public array may be employed as just described, or the array may be passed as an argument
to the wrapper and then copied to a private array declared at the module level.)

 For ideal partitioning (and with zero cutoff), the maximum depth of recursion would be lg N. Ex-
periments with random data and with the median-of-3 pivot strategy find a maximum recursive depth
only slightly greater than lg N, but it can be 2 to 3 times this large — in one test with a million items (lg
N = 20) and cutoff 16, the maximum depth reached 52 levels of recursion. However, the extra recursive
levels do not consume much space because the activation record for each instance needs to store only
two scalar integer arguments (the endpoint index values L and R), a local variable for the partition point
J, and a few items of system information — a few hundred extra bytes altogether for a million data
items. The following implementation employs three additional local variables, I, C, and Pivot; to mini-
mize local storage space in the recursive procedure, these three variables may be moved to the wrapper
subroutine or to the specification part of the containing module.25

Say It with Fortran

Example 13.

! Example 13. Quicksort

Nonrecursive “wrapper”

subroutine Qu_Sort(Array)
real, dimension(:), intent(in out) :: Array
integer :: N

! start subroutine Qu_Sort
N = size(Array)
call Recursive_QS(1, N)
if (CUT_OFF > 0) call In_Sort()
return

contains

3.2 QUICKSORT

25 If very deep recursion occurs due to unusual data characteristics, the endpoints of the larger partition may be
pushed on a user-defined stack and the smaller partition processed iteratively. As Moret and Shapiro note (p.
516), this technique insures that the stack does not contain more than lg N entries. Sedgewick (p. 122) gives a
Pascal implementation of this iterative (pseudo-recursive) version.

92

Recursive Quicksort procedure, with Median-of-3 pivot strategy

recursive subroutine Recursive_QS(L, R)
integer, intent(in) :: L, R
integer, parameter :: CUT_OFF = 12
integer :: J, I, C
real :: Pivot

! start subroutine Recursive_QS
if (L + CUT_OFF < R) then

call random_number(X)
C = L + int(X * real(R - L))
call Sort_3(L, C, R)
Pivot = Array(C)
I = L
J = R
do

do
I = I + 1
if (Array(I) >= Pivot) exit

end do
do

J = J - 1
if (Array(J) <= Pivot) exit

end do
if (I >= J) exit
call Swap(I, J)

end do
call Recursive_QS(L, J)
call Recursive_QS(J + 1, R)

end if
return

end subroutine Recursive_QS
end subroutine Qu_Sort

Quicksort Operation Counts

N = size(Array) ! 1
call Recursive_QS(1, N) ! 2
if (CUT_OFF > 0) call Insertion_Sort() ! 3
return ! 4

recursive subroutine Recursive_QS(L, R) ! 5
if (L + CUT_OFF < R) then ! 6

call random_number(X) ! 7
C = L + int(X * real(R - L)) ! 8
call Sort_3(L, C, R) ! 9
Pivot = Array(C) ! 10
I = L ! 11
J = R ! 12

Recursion and Quicksort

93

do ! 13
do ! < 14

I = I + 1 ! << 15
if (Array(I) >= Pivot) exit ! << 16

end do ! << 17
do ! < 18

J = J - 1 ! << 19
if (Array(J) <= Pivot) exit ! << 20

end do ! << 21
if (I >= J) exit ! < 22
call Swap(I, J) ! 23

end do ! 24
call Recursive_QS(L, J) ! 25
call Recursive_QS(J + 1, R) ! 26

end if ! 27

Sort_3 uses 3 comparisons and 4.5 moves (but sorting the three items by insertion can decrease these
counts slightly). An estimate for the outer loop (lines 13 – 24) is 0.25·N iterations, with each inner loop
iterating twice. Each iteration of the outer loop body performs 4 data item comparisons (2 in each inner
loop) and one swap (3 move operations) almost always. Thus lines 13 – 24 require N comparisons and
0.75·N moves; the total for lines 1– 24 (ignoring the call to random_number) is N + 3 comparisons and
0.75·N + 4.5 moves.

For a recursive procedure, the operation count formula for a given number of items often depends
upon the same formula applied to a smaller number of items — that is, it must be expressed as a recur-
rence relation. The operation count for lines 25 and 26 has the form TN = A + B·N + TJ+1–L + TR–J, where T
is either the number of comparisons or the number of moves. For the case of ideal partitioning, TJ+1–L and
TR–J are nearly equal so that TN = A +B·N +2 TN/2. Moret and Shapiro26 show how to solve such recurrence
relations, by difference equation methods that are similar to well-known methods for initial value prob-
lems in differential equations, to obtain a closed-form formula for TN. In this case, if N is a power of 2 the
solution with T(1) = 0 is TN = B·N lg N +A·(N – 1). Although the solution of recurrences is beyond the
scope of this text, Section 4.3 shows how to use mathematical induction to show consistency between a
recurrence relation and the derived closed-form formula.

For comparison operations, A is 3 and B is 1 giving CN = N lg N +3·N – 3; for move operations, A is 4.5
and B is 0.75 giving MN = 0.75·N lg N +4.5·N – 4.5

A benchmark, run with a 50 MHz 486DX computer, sorted one million random real numbers in 56
seconds, with median-of-3 pivot strategy and cutoff 12.
• Quicksort

The worst-case operation count is proportional to N2, but median-of-3 pivot strategy with the
middle element chosen at random makes the worst case extremely unlikely. A “cutoff” value
between 5 and 20 is recommended, with a final straight insertion sort.
Comparisons: N lg N +3·N – 3
Moves: 0.75 N lg N +4.5·N – 4.5
Benchmark time for 1 million random real numbers: 56 seconds

3.3 QUICKSORT OPERATION COUNTS

26 Algorithms from P to NP, 61-81. The substitution K = lg N converts the recurrence to S(K) = A +B·2K + 2·S(K -1);
S(0) = 0. See also Sedgewick, Algorithms, 77.

94

Chapter 4 Algorithm Analysis

4.1 WHAT IS AN ALGORITHM?
The sorting methods described in Chapter 2 are examples of algorithms — each is a sequence of steps
for accomplishing a specific task. There is an important difference between an algorithm and a com-
puter program: The algorithm describes the general method for performing a task, without regard to the
details of its implementation. In principle, a given algorithm should be capable of implementation in
any of several computer languages, or even by some other means without using a computer at all. An
example of an algorithm that would usually be implemented without a computer is a recipe for baking
apple pie, which is a description of the sequence of steps that are required to perform this specific task.

To constitute an algorithm, a sequence of steps should have the following properties:
1. The steps in an algorithm must not be too big nor too small. The size of an appropriate step depends

upon the executor of the algorithm, which could be a machine, a person, a trained chimpanzee, or
whatever. Each step should be the right size for the executor to perceive as a single unit of work.

An apple pie recipe in an old-fashioned cookbook consists of instructions appropriate for some-
one with a reasonable amount of experience as a baker of pies. A cookbook for a sixth grade cooking
class would be much more detailed, while a baker with many years’ experience might require only
one or two notes.

2. An algorithm must be finite: the list of steps must be finite in length, and its execution sequence
must eventually terminate. If some of the steps will be repeated (iteratively or recursively), the
repetition must be guaranteed to terminate and not to continue forever. For some algorithms, progress
toward completion can be measured by an integer — for example, the selection sort algorithm re-
moves one item from the unsorted sequence at each step, so the number of unsorted items will
eventually reach zero.

3. Each step of an algorithm must be definite. That is, the executor must know precisely what to do at
each point. The steps are not strictly required to be deterministic; some algorithms, such as one for
counting “heads” in a sequence of coin tosses, may incorporate random elements. But the executor
must know precisely how to proceed in any possible situation; for example, how to toss the coin,
how to decide whether it is “heads,” and how to accumulate the count value.
Most useful algorithms have some degree of generality — they are adaptable for solving any one

task from a class of related tasks. For example, a general sorting algorithm can be applied to any number
of items.

Computer Algorithms
When an algorithm is to be executed by a computer, it must be expressed in steps each of which can be
undertaken as a unit. An algorithm may be written initially in pseudocode, i.e., as a list human-readable
statements that cannot be interpreted directly by the computer but can easily be transformed into any of
several programming langauges such as Fortran, C++, or Pascal.

95

Some of the pseudocode steps — for example, “add a given item to the end of the sorted sequence” —
will correspond to a single statement in Fortran. Others, such as “find the smallest unsorted item,” may
become a procedure that consists of several Fortran statements.

Ultimately, the actual computer hardware executes the algorithm as a sequence of machine-lan-
guage instructions that the compiler generates from the program statements.

4.2 WHAT MAKES A GOOD ALGORITHM?
For most applications that are implemented with Fortran, speed of execution is a primary objective.
Fortran compilers perform many extensive and sophisticated optimizations, such as detecting program
statements that can be moved out of a loop. For example, suppose that the selection sort procedure were
written as follows:

do I = 1, size(Array) - 1
Location = Minimum_Location(I, size(Array))
call Swap(I, Location)

end do

An optimizing compiler might recognize that the statements as written call for repeated execution of the
intrinsic function reference

size(Array)
(in the actual argument list for Minimum_Location) at every iteration of the loop, even though the
same result value is returned at every reference. This expression can be evaluated once before the loop
begins, instead of once for every iteration of the loop; moving this statement would save a total of N – 2
calls to the intrinsic function size . (Bill Long observes that no reasonable compiler would need to make
an actual procedure reference to determine the size of an array — even one that is dynamically allo-
cated. Nevertheless, we proceed with the example for purposes of hypothetical illustration.)

For sorting 1,000 items by selection, the optimization saves almost 1,000 intrinsic function calls.
The 50 MHz processor of our estimates performs the sort in about 1 second; the optimization saves
perhaps 200 microseconds or less than 0.2%. On the other hand, sorting the same 1,000 items by binary
insertion takes about 0.19 second and thus saves about 80%; quicksort takes 0.03 second and saves 97%.

Moral: There may be more gain from choosing a suitable algorithm than from cleverly optimizing
an unsuitable one. Choice of a suitable algorithm can have an even greater effect for larger amounts of
data.

Relative speed is not the only criterion for judging algorithms, however.
Another traditional criterion is the storage space required. Although this factor seems less impor-

tant in a typical modern computing environment, there are some scientific applications (such as hydro-
dynamics calculations involved in weather research or in simulations of the effects of explosives) for
which space availability significantly affects the precision of the results. Modern utility software such as
operating systems, word processors, spreadsheets, and database systems is often space limited, so space
economy is an important criterion for the sorting, searching, and similar algorithms that are imbedded
in this software.

Other criteria that are harder to measure can be at least as important in the long run. In a choice
between two algorithms, one of them might be easier to understand, to code, to debug, and to maintain;
or one might be less dependent on properties of a particular operating environment and hence more
portable; or one might be more robust — i.e., less likely to have difficulty in the face of unexpected
circumstances such as improper input data. Differences like these should often be weighted ahead of
slight improvements (say 10 percent) in speed.

Sorting is a good introductory subject for the study of algorithm efficiency, both because the subject
has been extensively studied and because it has many practical applications. This text covers several of
the best-known and most useful sorting algorithms.

4.2 WHAT MAKES A GOOD ALGORITHM

96

For any computer application that is to be applied to large amounts of data, it is important to obtain
good advice concerning various algorithms that are available. A few selected applications are described
in this text.

From Thousands to Millions of Data Items

If you write a selection sorting program, prepare 1,000 data items to be sorted, and type “sort ” or
whatever command is required to begin execution, the results will be available one second later —
almost as soon as you finish entering the command. The same task requires 0.2 second by binary inser-
tion and 0.03 second by quicksort.

For realistic modern computer applications, the time required for searching or sorting operations
with 1,000 items is nearly insignificant unless the sorting process is to be executed many times as a part
of a larger application. Data sets that contain several million items are not uncommon.
• A good example is the Automatic Teller Machine at your local bank. You insert your ATM card and

punch in your “PIN number.” If your bank is part of a large chain, you are using a terminal that is
connected to perhaps 10 million accounts. Yet, you wait only a second or two for the response.

• The word processor file for a textbook such as this one contains a few million characters of text.
Searching a million characters for a specific string with a 50 MHz computer takes less than 2 sec-
onds.
To search for a given key in an unordered array of N items, in case there is in fact no matching item,

every element must be examined. One million items requires a million comparisons and takes perhaps
2 seconds.

In an ordered array of one million items, binary search takes only about 60 microseconds. Would it be
better to sort the million unordered items with quicksort and then do a binary search? For a single
search, the answer is no. As shown in the table below, quicksort for a million items requires about a
minute, much longer than the unordered search.

Operation Counts for Sorting

With comparison operations weighted as 3 and move operations as 1, an estimate of 1.5 million weighted
operations per second is reasonably consistent with times actually measured on the 50 MHz computer
used for benchmark testing. Times measured on a 200 MHz Pentium Pro are faster by about a factor of
20 than those listed here. The following formulas, except the last, assume random data.
• Selection Sort: 1.5·N2 + 0.7·N lg N + 3.5·N – 0.7·lg N – 3

• Insertion Sort, straight insertion: N2 – 0.25·N – 1

• Binary Insertion Sort: 0.25·N2 + 4.5·N lg N – 4.8·N – 2.9

• Shell sort (conjectured): 4.8·N1.3

• Heapsort: 7·N lg N – 5.6·N – 7·lg N + 17.1

• Quicksort: 3.75·N lg N + 13.5·N – 13.5

• Straight insertion sort (data known to be already nearly in order): 5·N – 5
Here are some values calculated from these formulas for the 50 MHz benchmark computer:

Algorithm 1,000 items 20,000 items 1 million items
SLOW ALGORITHMS
Selection 1.01 sec 350 sec 6.9 days
Straight insertion 0.67 sec 291 sec 4.6 days
Binary insertion 0.19 sec 65 sec 28 hrs
FAST ALGORITHMS
Shell sort 0.03 sec 1.31 sec 201 sec
Heapsort 0.04 sec 1.26 sec 104 sec
Quicksort 0.03 sec 0.89 sec 59 sec

Algorithm Analysis

97

If you prepare and sort 1,000 data items, the time actually spent in sorting, even with one of the slow
algorithms, is negligible in comparison to other parts of the task (unless the sorting process is to be
executed many times as a part of a larger application). If you have 20,000 items and no program for any
of the fast algorithms is immediately available, you could start a slow sort algorithm and take a 5 minute
coffee break; when you come back, the sort will be finished. For a million items, the fast algorithms take
a minute or so; to tie up your computer for hours or days with a slow algorithm would be ridiculous.

Quicksort is 1.5 to 2 times as fast as heapsort for random data, but it has two disadvantages. First,
quicksort requires some extra stack space (proportional to lg N) for recursion; and second, quicksort has
bad “worst case” behavior — in rare cases, it can be as slow as selection sort. To sort a million integers on
the benchmark computer used here, heapsort will always take less than two minutes (no more than 10%
above its average time, as noted earlier); quicksort will almost always take less than one minute, but
certain rare data sets could require almost a week.

Shell sort is difficult to analyze. Sedgewick asserts that its asymptotic behavior is between O(N1.2)
and O(N1.5) for various “good” interval sequences. Experiments (using array sections and the interval
sequence described earlier) are consistent with the formula 4.8·N1.3. For a million items, Shell sort takes
about twice as long as heapsort and 3 to 4 times as long as quicksort.

4.3 ASYMPTOTIC ANALYSIS
Some parts of an operation count formula have very little effect on the result. The tabulated values

for selection sort and for binary insertion sort would not change significantly if the formulas were sim-
plified to 1.5·N2 and 0.25·N2, respectively. The following table compares counts (3·C + M) computed
from the complete formulas with those computed by ignoring all terms except the first.

Selection Sort Binary Insertion Sort
N All Terms First Term All Terms First Term
50 4.12·103 3.75·103 1.66·103 0.63·102
1,000 1.51·106 1.50·106 2.90·105 2.50·105
20,000 6.00·108 6.00·108 1.01·108 1.00·108

For 50 items, the first term in the selection sort formula accounts for about 90% of the total; the first
term for binary insertion sort accounts for only about 38%. For 20,000 items, the first term values are
within 1% of the total.

How can one decide which parts of such a formula to ignore? The sort formulas include combina-
tions of terms in N2, N, lg N, and N·lg N. Which of these terms are most significant, and which can be
ignored?

We have noted that the execution times for most algorithms are negligible when N is small (say, up
to a few thousand data items) in comparison to other parts of the task such as data acquisition and
preparation. The important criterion is asymptotic behavior of the execution time — its limit as N “tends
toward infinity.” The relative significance of various terms in an operation count formula is determined
by the limiting behavior of each term.

Although terms in N2, N, lg N, or N·lg N all have infinite limits, some of these have a faster growth
rate than others. It is easy to compare N with N2 or lg N with N·lg N, but other comparisons such as N2

vs lg N are a bit more difficult. If simple algebra fails, the limiting ratio of two functions when both are
unbounded can be evaluated by L’Hospital’s Rule,27 i.e., by comparing their growth rates (derivatives
with respect to N) in the limit.

27 See, for example, G. B. Thomas, Jr. and R. L. Finney, Calculus and Analytic Geometry, Ninth Edition (Reading
MA: Addison Wesley, 1996). [Get page ref for L’Hospital in 9th edition]

4.3 ASYMPTOTIC ANALYSIS

98

Function Derivative
lg N 1 / N
N 1
N lg N lg N + 1
N2 2·N

Among these four functions, only the last two have unbounded derivatives; to compare these two,
it is necessary to apply L’Hospital’s rule more than once. A comparison of these four functions and some
others that will arise during analysis of some of the algorithms in this text produces a hierarchy of
functional forms. In the following list, the limiting ratio of any function to another that is farther down
the list is zero.

The second and third formulas in the list are (lg N)k and Nα. The parameters k and α in these formu-
las are supposed to be constants, with k > 1 and 0 < α < 1. In the limit as N tends to infinity, it can be
shown (see Exercise 4 at the end of this section) that (lg N)k for any large fixed k > 1 is less than Nα for any
small fixed α between 0 and 1. Two algorithms being compared may both have the same one of these
forms, but with different values of k or α.

Hierarchy of Functional Forms:
1
lg N
(lg N)k for k > 1
Nα for 0 < α < 1
N
N lg N
N (lg N)k for k > 1
N1+α for 0 < α < 1
N2

· · ·
N3

· · ·
(1 + α)N for 0 < α < 1

2N

Functions commonly encountered in algorithm analysis include products of (integer and fractional)
powers of N and of lg N, where N is a measure of the amount of data. Algorithms whose execution time
formula has N as an exponent, such as (1 + α)N or 2N, are impractical in general — that is, they are
impractical except for special applications that involve very small amounts of data — because execu-
tion time ultimately grows faster than any fixed power of N. Other “impractical” functions that some-
times occur are the factorial N! and other exponential forms such as NN. (According to Stirling’s for-
mula, N! grows slightly faster than NN).

The Role of Constants
It happens to be true that the limiting ratio for any pair of (different) functions in the hierarchy listed
above is either zero or infinity. Multiplying any of these functions by a constant (or changing from one
logarithmic base to another; for example, lg N = 1.44. . .·ln N.) does not change this limiting behavior.

Not all functions have this behavior.28 For example, tan– 1 N (the principal value) approaches the
constant π/2 as N → ∞. The asymptotic behavior of any rational function (ratio of two polynomials) in N
is determined by the degrees and leading coefficients of the numerator and denominator polynomials.

28 Some functions of N have no limit as N → ∞ . Obvious examples are simple periodic functions such as sin N or
cos N. Such functions are of no value for asymptotic analysis, and we will not consider them further.

Algorithm Analysis

99

Consider the two rational functions (a N5 + ...) / (N2 + ...) and (b N5 + ...) / (N2 + ...) where the omitted
parts are polynomials of lower degree that may be different for the two functions. The functions have
asymptotic behavior a N3 and b N3 respectively; the limiting ratio of the two rational functions is a / b.

The Complexity of an Algorithm: Big Oh
Asymptotic analysis employs a notation that reduces a formula to its most significant terms, ignoring
terms that are insignificant in the limit. The asymptotic order of a function is found as follows:

Express the function as a sum of terms.
In principle, it is necessary to compare each term with all of the others. If the limiting ratio of any

two terms F and G is zero, F may be deleted from the sum.
All of the terms that remain have the same asymptotic behavior. Any such term, with constant

factors deleted, may be said to be the asymptotic behavior of the function.
Consider the formula f(N) = N2 (3 +4 tan– 1 N) +lg N. Expressed as a sum of terms, this formula

becomes 3N2 +4·N2 tan–1 N + lg N. The logarithm is not significant in the limit, so it is deleted and two
terms remain. The asymptotic behavior of f(N) can be said to be either N2 or N2 tan– 1 N — the simpler
form would ordinarily be preferred.

We say that f(N) is O(N2) or is O(N2 tan– 1 N); again, the simpler form is preferred. Orally, one would
say that f(N) is “big oh” N2 or that it has “big oh” N2 asymptotic behavior. This means that some constant
multiple of N2 is an upper bound for f(N) as N grows large. If f(N) is an estimate for the running time of
some algorithm, it can be said that the “complexity” of the algorithm is N2.

It is not always easy to find such an upper bound for the running time of an algorithm, in terms of
the amount of data. If such bounds can be obtained for different algorithms that might be applied to the
same application, they can be used to compare the algorithms with regard to asymptotic running time or
complexity.

Asymptotic upper bounds do not give the whole story, of course. Average behavior estimates can
also be valuable; lower bounds are sometimes useful as well. The quicksort operation count formula
3.75·N lg N + 13.5·N – 13.5 is an estimate of average behavior. The worst case for this algorithm (if each
pivot happens to be the largest or smallest data item) is O(N2), but careful implementation of the algo-
rithm can ensure that this case occurs rarely. The best case (lower bound) for straight insertion sorting
(but not for binary insertion) is proportional to N, which is achieved when the data is already in order,
because the inner loop always exits after the first comparison in that case.

When two algorithms have the same complexity, it may be desirable to compare them further, tak-
ing into account constants that appear in the bounds or estimates, and perhaps other considerations as
well:
• The formula 1.5·N2 + 0.7·N lg N + 3.5·N – 0.7·lg N – 3 for selection sorting is an upper bound, but it

differs only slightly from the estimated average and from the lower bound. The binary insertion
formula 0.25·N2 + 4.5·N lg N – 4.8·N – 2.9 is again an estimated average; the worst case for this
algorithm is 0.5·N2 +4.5·N lg N – 4.8·N – 2.9 and its best case is 4.5·N·lg N – 4.3·N – 2.9. For sorting a
large amount of data that is almost in order, the term in N lg N makes binary insertion inferior to
straight insertion.

• For random data, both Quicksort and Heapsort have complexity O(N lg N), but the constant factor
in the leading term for Heapsort is about twice that of Quicksort. However, the complexity of
Quicksort in the worst case is O(N2) while the worst case for Heapsort remains O(N lg N).

4.3 ASYMPTOTIC ANALYSIS

100

Complexity of Sorting Methods
• Selection: O(N2)
• Insertion (straight insertion): O(N2)
• Binary insertion: O(N2)
• Shell sort, conjectured: O(N1.3)
• Heapsort: O(N lg N)
• Quicksort: O(N lg N)
• Straight insertion with ordered data: O(N)

Selection and insertion (except for insertion with ordered data) are O(N2) algorithms; quicksort and
heapsort are O(N lg N) algorithms.

Section 4.2 Exercises
1. In the “Hierarchy of Functional Forms” on page 78, compare each function on the list with the one

that immediately follows it. For each pair of functions, show that the limiting ratio is zero as N → ∞.
Apply L’Hospital’s rule one or more times, if necessary.

2. Consider the formulas N100 and 2N. Use the approximation 210 = 103.

a) Show that for N = 100, the first formula is about 10200 while the second is about 1030.

b) Show that for N = 1,000, both formulas are approximately 10300.

c) Show that for N = 10,000, the first is about 10400 while the second is about 103000.

d) Which of the two formulas is asymptotically larger?

3. Suppose that two functions each have the form (lg N)k with different values of k. Show that the
limiting ratio (with the smaller k value in the numerator) is zero. Do the same for two functions of
the form Nα with different values of α.

4. The preceding discussion states that (lg N)k (for any fixed k such that k > 1) is less than Nα (for any
fixed α such that 0 < α < 1) in the limit as N → ∞. Compare (lg N)3 with N0.2. For large N, it is easier
to compare logarithms: substitute L for lg N and compare 3·lg L to 0.2·L. When N is about one
million, observe that L is about 20 and lg L is between 4 and 5, so the first formula is larger than the
second. Show that the “crossover point,” beyond which the second formula is larger than the first,
occurs between L = 99 and L = 100 (N is about 1030). You may use the following table of base-2
logarithms:

L lg L

95 6.570
96 6.585
97 6.600
98 6.615
99 6.630
100 6.644
101 6.658
102 6.673
103 6.687
104 6.701
105 6.714

Algorithm Analysis

101

4.4 MATHEMATICAL INDUCTION
According to Section 3.3, the forumula tn = b·n lg n + a·(n – 1) satisfies the recurrence relation t1 = 0, tn =
a + b·n + 2·tn/2 when n is a power of 2. The present section shows how to use the method of mathematical
induction to verify this formula, and how to apply the method to other similar problems.

The method depends upon the Induction Principle, which states that a function of an integer argu-
ment is valid for all nonnegative values of its argument, provided that both of the following can be
shown:
1. The function is valid for the argument value 0; and

2. Validity of the function for any nonnegative argument value m implies validity for m + 1.
In this particular application, the substitution n = 2k+1 gives a new independent variable k that takes

on nonnegative integer values. With sk+1 = tn; sk = tn/2, it is to be shown that the function sk = b·k·2k + a·(2k–
1) satisfies the recurrence relation sk+1 = a + b·2k+1 + 2·sk with s0 = 0.

Step one of the method requires that the proposed function be verified for k = 0:
s0 = b·0·20 + a(20 – 1) = 0
Step two assumes that the proposed function is correct for an arbitrary (nonnegative) value k = m:
s(m) = b·m·2m + a·2m – a

and then uses this assumption to compute the function value for k = m + 1 from the given recurrence
relation:

sm+1 = a + b·2m+1 +2·(b·m·2m + a·2m – a) = b·(m + 1)·2m+1 + a·2m+1 – a
This calculation shows that the assumption for k = m implies that the proposed function is correct for

the next value k = m + 1.
Thus both requirements of the Induction Principle are satisfied and the proposed function is correct

for all nonnegative values of k. The original formula in n is therefore valid whenever n is a power of 2
with a positive integer exponent.

Section 4.4 Exercises
1. Fibonacci numbers: Use mathematical induction to prove that the recurrence F0 = 0, F1 = 1, Fm+2 =

Fm+1 + Fm is satisfied by the formula FN = (αN – βN)/(α – β). First, show that the formula gives the
correct result when N is zero or 1. Then, assuming that the formula is correct for N = m and for N =
m + 1, write out Fm+1 + Fm. Show algebraically that this sum is equal to (αm+2 – βm+2)/(α – β), using the
fact that α and β are roots of the equation x2 – x – 1 = 0.

2. Shell sort interval sequence: Use mathematical induction to prove that the recurrence h0 = 1, hk+1 =
3·hk + 1 is satisfied by the formula hk = (3·k – 1) / 2.

4.4 MATHEMATICAL INDUCTION

102

Chapter 5 Linked Lists

Although arrays can be accessed very rapidly and efficiently, they have one major shortcoming: An
array has a fixed size that cannot be changed after data has been stored in it. On the other hand, a linked
list is stored dynamically and becomes larger or smaller when data is added or removed. Data can be
inserted or deleted at the beginning or end of a linked list or at a specific position in the middle.

A linked list is a sequence of nodes connected with pointers. Each node is a structure, and one of its
components is a pointer to the remainder of the list. For example:

type :: Node_Type
type (Info_Type) :: Info
type (Node_Type), pointer :: Next_NP

end type Node_Type

The pointer in the last node of a linked list is null because the remainder of the list is empty.
A linked list is accessed through a root pointer whose target is the first node — unless the list is

empty, in which case the root pointer is null. The root is declared as a variable with the pointer attribute,
of the data type that has been defined for the node structures.

type (Node_Type), pointer :: Root_NP => null()
The root is declared as a pointer variable in a main program, a subprogram, or a module. The root
pointer itself is usually not a dynamically allocated object, but its target node is allocated in dynamic
storage during program execution, by the following statement:

allocate(Root_NP)
Each additional node in the list is allocated dynamically as required, as the target of the pointer compo-
nent in a previously allocated node.

5.1 LINKED LIST NODE OPERATIONS

Let the nodes of a linked list be structures of type Node_Type , with a data component named Info and
a pointer component named Next_NP:

type :: Node_Type
type (Info_Type) :: Info
type (Node_Type), pointer :: Next_NP => null()

end type Node_Type

The declared (target) type of the pointer component is Node_Type ; this pointer provides access to the
remainder of the linked list beyond the node in which it appears. Nodes are initialized with a null
pointer component; thus a new node has no target until steps are taken to incorporate it into the linked
list.

103

Node_Type

Info_Type

Next_NP

Key

Count(2)Count(1)

Info

The data component, Info, occupies a structure of type Info_Type ; for simplicity, let this structure
consist of a character string component named Key and an integer vector component named Data. The
type definition for Info_Type specifies default initialization for the character and integer components.

type :: Info_Type
character (len = S_LEN) :: Key = " "
integer :: Data(2) = 0

end type Info_Type

FIGURE 5.1. Derived types for linked list nodes

The forward pointer in each node and the root pointer may be viewed as pointers to the remainder
of the list, not merely to the next node. Unless the remainder of the list is empty, it is a node that contains
an information component and a pointer to the (further) remainder.29

Create List
A linked list is created by a type declaration for the root pointer. Initially, there are no nodes in the list;
the root pointer has no target (see Fig. 5.2a). The derived type definition specifies initial nullification for
the root pointer.30

type (Node_Type), pointer :: Root_NP => null()

5.1 LINKED LIST NODE OPERATIONS

29 This point of view is explored further by Brainerd, et al in Programmer’s Guide to F (Albuquerque: Unicomp,
1996), 280

30 Default initiallization of structure components as shown here, including initial nullification of pointers, is
possible with Fortran 95. Fortran 90 requires assignment statements to initialize data components and nul-
lify() statements for pointers. Electronically distributed examples include alternative Fortran 90 versions.

104

a) Create List

b) Insert Target Node

?

?

c) Delete Target Node

?

?

FIGURE 5.2. Operations to Create, Insert, and Delete a linked list node

Insert Target Node
A simple operation on a linked list is the insertion of a new node as the target of a given pointer (see Fig.
5.2b). For example, a node may be added to an empty list by inserting it as the target of Root_NP; or a
node may be added as the target of the forward pointer in an existing node. An information structure to
be assigned as the Info component of the new node may be passed as an argument to an insertion proce-
dure. The operation Insert_Target(Arg_NP, Item) has two parts:
1. Allocate a new node as the target of a temporary pointer, Temp_NP. Give values to all components of

the new node. Copy Arg_NP (by pointer assignment) to the forward component of the new node,
Temp_NP % Next_NP , thus linking the remainder of the list to the newly allocated node.

Arg_NP must be copied before it is changed; otherwise, changing Arg_NP would remove the only
pointer to the remainder (if any) of the linked list, and the remainder of the list would be lost.

2. Copy Temp_NP (by pointer assignment) to Arg_NP, thus linking the remainder of the list (including
the new node) to Arg_NP .

subroutine Insert_Target(Arg_NP, Item)
type (Node_Type), pointer :: Arg_NP, Temp_NP
type (Info_Type), intent(in) :: Item

! start subroutine Insert_Target
allocate(Temp_NP)
Temp_NP % Info = Item
Temp_NP % Next_NP => Arg_NP
Arg_NP => Temp_NP
return

end subroutine Insert_Target

As shown below, a linked list can be generated by calling this procedure repeatedly with the root
pointer Root_NP as the argument. Each call will allocate a new node and insert it as the target of Root_NP.
Thus, after each call the new node will be the first node in the linked list and the sequence of nodes that
previously comprised the linked list will follow the new node.

Linked Lists

105

Delete Target Node
The procedure Delete_Node(Arg_NP) deletes the linked list node that is the target of Arg_NP, as
illustrated in Fig. 5.2c. The successor of the deleted node becomes the target of Arg_NP (unless the
deleted node was the last node in the linked list, in which case the null successor pointer is copied to
Arg_NP). Here, the procedure is implemented as a function whose result value is a copy of the Info
component of the deleted node. The procedure consists of the following steps:
1. Copy Arg_NP (by pointer assignment) to Temp_NP. This must be done before Arg_NP is changed (at

step 3); otherwise, there would be no way to delete the node that is the target Arg_NP . If Arg_NP has
a target, continue with the remaining steps; otherwise, skip them. (In the latter case, the function
result variable retains its default initialization value).

2. Assign the Info component, in the node that will be deleted, to the function result variable.

3. Change Arg_NP so that its target is the successor (if any) of the node to be deleted — that is, the
Next_NP component of the node to be deleted is copied (by pointer assignment) to Arg_NP . If the
deleted node has no successor, its Next_NP component is a null pointer and copying it has the effect
of nullifying Arg_NP .

4. Deallocate Temp_NP, which is now the only pointer whose target is the node to be deleted; thus,
deallocating Temp_NP deletes the node. This deallocation must take place after Next_NP has been
copied to Arg_NP (at step 3).

function Delete_Target(Arg_NP) result(Item)
type (Node_Type), pointer :: Arg_NP, Temp
type (Info_Type) :: Item

! start function Delete_Target
Temp => Arg_NP
Item = Arg_NP % Info
Arg_NP => Arg_NP % Next_NP
deallocate(Temp)
return

end function Delete_Target

Print Target Node
The procedure Print_Target(Arg_NP) prints components of the target of Arg_NP. Fortran does not
permit pointers in input or output lists; only the nonpointer component Arg_NP % Info is printed.

subroutine Print_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Print_Target
print *, " Print: ", Arg_NP % Info
return

end subroutine Print_Target

5.1 LINKED LIST NODE OPERATIONS

106

Modify Target Node
The procedure Modify_Target(Arg_NP) performs a predetermined modification upon the node
that is the target of Arg_NP. In our examples, we increment Arg_NP % Info % Data(2) . This element
thus contains a count of the number of occurrences of the corresponding key, if it was given the value 1
when the node was inserted.

subroutine Modify_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Modify_Target
Arg_NP % Info % Data(2) = Arg_NP % Info % Data(2) + 1
return

end subroutine Modify_Target

5.2 OPERATIONS ON WHOLE LINKED
LISTS

Making a Linked List by Insertion at the Root
The subroutine Insert_Target can be called repeatedly with Root_NP as its argument. A loop such as
the following will read data and insert it at the root until the end of input is detected.

type (Node_Type), pointer:: Root_NP
:

do
read (1, *, iostat = EoF) Temp_NP % Key
if (EoF < 0) exit
Temp_NP % Data(1) = Loop
Temp_NP % Data(2) = 1
call Insert_Target(Root_NP, Temp_NP)

end do

The read statement accepts data for a node of the linked list and inserts the node as the target of
Root_NP. The data that was read first will be at the end of the linked list, and the data that was read most
recently will be in the node that is the final target of Root_NP.

Print List
Very common in linked list applications is the use of a declared “traveling node pointer,” here called
Trav_NP, that points to the current node and then advances to the next node.

The first execution step copies Root_NP to Trav_NP. Just before the end of each iteration, the forward
pointer component of the current node, Trav_NP % Next_NP , is copied to Trav_NP. When the end of the
list is reached, Trav_NP is null. The subroutine Print_List prints data from the current node and then
advances to the next node to print the remainder of the list. The entire list will be printed in order,
beginning with the root and proceeding to the tail.

Linked Lists

107

type (Node_Type), pointer:: Root_NP
:

subroutine Print_List()
type (Node_Type), pointer :: Trav_NP

! start subroutine Print_List
Trav_NP => Root_NP
do while (associated(Trav_NP))

call Print_Target(Trav_NP)
Trav_NP => Trav_NP % Next_NP ! Advance to next node

end do
return

end subroutine Print_List

Delete List
A traveling pointer is not needed for repeatedly deleting the first node (the target of the root pointer)
until the list is empty:

type (Node_Type), pointer:: Root_NP
:

do while (associated(Root_NP))
print *, " Deleted: ", Delete_Target(Root_NP)

end do

Searching in a Linked List
A linked list search can easily be implemented with a traveling pointer. The following example shows
how to perform a linear search in a list, beginning at Root_NP, for a node wherein Info % Key matches
the Key component of the input Item. When a match is found, a message is printed and data in the target
node is modified. If the end of the list is reached, the message " Not Found." is printed.

type (Node_Type), pointer:: Root_NP
:

subroutine Search_List(Item)
type (Info_Type), intent(in) :: Item
type (Node_Type), pointer:: Trav_NP

! start subroutine Search_List
Trav_NP => Root_NP
do

if (associated(Trav_NP)) then
if (Item % Key == Trav_NP % Info % Key) then

print *, Item % Key, " Found."
call Modify_Target(Trav_NP, Item % Data(1))
return

end if
else

print *, Item % Key, " Not Found."
return

end if
Trav_NP => Trav_NP % Next_NP ! Keep searching.

end do
end subroutine Search_List

5.2 OPERATIONS ON WHOLE LINKED LISTS

108

The situation is not quite so simple, however, if the linkage is to be modified when a particular key is
found in the middle of a linked list. Procedures such as Insert_Target and Delete_Target (de-
scribed earlier) link remaining nodes of the list only to Trav_NP which is a copy of the an actual list link;
they do not correctly modify the linkage of the actual list. This situation is discussed in more detail in the
following paragraphs.

Maintaining a Large Ordered List
Suppose that a linked list is ordered according to a key, and a new item is to be inserted. A linear search
for the new key, beginning at the root of the linked list, has three possible outcomes.
1. An item in the linked list with a matching key may be found. In this case no new item is to be

inserted. In our examples, the matching item is modified. When the search terminates, the target of
Trav_NP is the node with a matching key.

2. If all items in the list have keys smaller than the new one, the end of the linked list will be reached. In
this case, Trav_NP is null when the search terminates. The new item is to be inserted at the end, as
the new successor of the previous target of Trav_NP .

3. Otherwise, the search terminates when an item with a larger key is found. The node with the larger
key is the target of Trav_NP , and the new item is to be inserted as the new successor of the previous
target of Trav_NP .
There is a difficulty in either case 2 or case 3, because Trav_NP has already moved beyond the inser-

tion point when the search terminates and a larger key or a null pointer has been encountered. It would
be easy to insert a new item as the successor of the Trav_NP target node: it is only necessary to call
Insert_Target with Trav_NP % Next_NP as the argument. But the forward node pointer in the
preceding node is no longer accessible.

A similar problem arises when an item that matches a given key is to be deleted from a linked list.
With the linked list search procedure described earlier, Trav_NP has again moved beyond the deletion
point when the search terminates, and the pointer whose target is to be deleted from the linked list is no
longer accessible.

The heart of the difficulty lies in the fact that Trav_NP is a copy of the pointer Next_NP in the prede-
cessor node; therefore, deleting the target of Trav_NP or creating a new target for Trav_NP does not
change the actual linkage of the linked list.

 The obvious solution to this difficulty, described by many authors, is very inelegant and wasteful: A
travelling pointer points to the predecessor of the node that is currently being examined. This requires
extra steps at the beginning of a search (or other traversal of the linked list). One method declares the
root as a separate pointer; this requires that a different sequence of statements be executed to examine
the root target node. An alternative method creates the list with an otherwise unused “header node” as
the target of the root pointer.

Two strategies that avoid these complications are discussed in Sections 5.3 and 5.4:
1. The search may be performed recursively, with the forward node pointer as the argument at each

recursive call; or

2. The forward node pointer — or, in Fortran, a BOX containing the forward node pointer — may be
assigned as the target of the traveling pointer. With a BOX that performs the role of the predecessor
node, the Fortran syntax is still somewhat complicated. However, this method does not require a
separate statement sequence nor a separate header node with wasted space for nonpointer node
components (which, in some applications, can be significant).

Linked Lists

109

5.3 PROCESSING LINKED LISTS
RECURSIVELY

The actual argument to a recursive linked list procedure is a pointer to the remainder of a list (initially
Root_NP, the pointer to the entire list). The procedure processes the current node and then calls itself
recursively to process the remainder (unless the remainder is empty). While processing the current node,
the procedure may modify the dummy argument pointer. Such modifications affect the actual linkage of
the list, and not merely a copy of the argument pointer.

The following example shows how to insert a new item into an ordered linked list. Arguments in the
initial call to the recursive subroutine are Root_NP and the data to be inserted.

The outer if construct tests whether the current node pointer is associated (i.e., whether it has an
actual target).
• If the current node pointer is not null, the inner if construct compares the Key in the current node,

referred to as Arg_NP % Info % Key , with the Key component of the given item. This comparison
has three possible outcomes:

1. If the keys match, information in the current node is to be modified.

2. If Arg_NP % Info % Key is larger, no matching key will be found — the search has passed the
point where a match would have occurred — so the given item is inserted ahead of the given
node. The procedure Insert_Target discussed earlier performs this operation and correctly
modifies the current input pointer.

3. Otherwise, Arg_NP % Info % Key is smaller than the search key, so the procedure is called
recursively to search the remainder of the list.

• If the current node pointer is null, the else block of the outer if construct is executed and the given
item is inserted at the end of the list.

recursive subroutine Look_Up(Arg_NP, Item)
type (Node_Type), pointer :: Arg_NP
type (Info_Type), intent(in) :: Item

! start subroutine Look_Up
if (associated(Arg_NP)) then

if (Item % Key == Arg_NP % Info % Key) then
call Modify_Target(Arg_NP, Item)

else if (Arg_NP % Info % Key > Item % Key) then
call Insert_Target(Arg_NP, Item) ! Insert before next node.

else
call Look_Up(Arg_NP % Next_NP) ! Keep looking.

end if
else

call Insert_Target(Arg_NP, Item) ! Insert at end of linked list.
end if
return

end subroutine Look_Up

This recursive approach is very elegant, but the time and space overhead imposed by recursion
leave some scholars unconvinced of its merits. A new activation record (see Section 3.1) is created at
each recursive call — that is, for each node encountered by the linked list operation. For a very long
linked list, the amount of extra storage occupied by these activation records may be intolerable. On the
other hand, a long list will itself necessarily occupy a great deal of storage unless the amount of data in
each node is trivial.

5.2 OPERATIONS ON WHOLE LINKED LISTS

110

Nevertheless, for long lists it is well to minimize the space occupied by each activation record. In
particular, the procedure Look_Up has an argument Item that might be a large data structure in an
actual application; it would be well to avoid storing redundant copies of this Item. A solution is to con-
struct the subroutine Look_Up as a nonrecursive “wrapper.” The application program calls Look_Up ,
which in turn calls a recursive internal procedure R_Look_Up that inherits Item from the wrapper. The
argument Item is stored only in the activation record for the wrapper; the activation record for R_Look_Up
is now quite small because there are no local variables and the only argument is a pointer.

Say It with Fortran

Example 14

! Example 14. Linked List with Recursion
module D14_M

implicit none
public :: Look_Up, Print_List, Delete_List
integer, parameter, public :: S_LEN = 20
type, public :: Info_Type

character (len = S_LEN) :: Key
integer, dimension(2) :: Data = (/ 0, 1 /)

end type Info_Type
type, private :: Node_Type

type (Info_Type) :: Info
type (Node_Type), pointer :: Next_NP => Null()

end type Node_Type
type (Node_Type), pointer, private :: Root_NP => Null()

contains

subroutine Look_Up(Item)
type (Info_Type), intent(in out) :: Item

! start subroutine Look_Up
call R_Look_Up(Root_NP)
return

contains

recursive subroutine R_Look_Up(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine R_Look_Up
if (associated (Arg_NP)) then

if (Item % Key == Arg_NP % Info % Key) then
call Modify_Target(Arg_NP, Item)

else if (Arg_NP % Info % Key > Item % Key) then
call Insert_Target(Arg_NP, Item) ! Insert ahead of next node.

else
call R_Look_Up(Arg_NP % Next_NP) ! Keep looking.

end if
else

call Insert_Target(Arg_NP, Item) ! Insert at end of linked list.
end if
return

end subroutine R_Look_Up

Linked Lists

111

subroutine Modify_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Modify_Target
Arg_NP % Info % Data(2) = Arg_NP % Info % Data(2) + 1
return

end subroutine Modify_Target

subroutine Insert_Target(Arg_NP, Item)
type (Node_Type), pointer :: Arg_NP, Temp_NP
type (Info_Type), intent(in) :: Item

! start subroutine Insert_Target
allocate(Temp_NP)
Temp_NP % Info = Item
Temp_NP % Next_NP => Arg_NP
Arg_NP => Temp_NP
return

end subroutine Insert_Target

end subroutine Look_Up

subroutine Print_List()
! start subroutine Print_List

call R_Print_List(Root_NP)
return

contains

subroutine R_Print_List(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine R_Print_List
if (associated (Trav_NP)) then

call Print_Target(Trav_NP)
call R_Print_List(Arg_NP % Next_NP) ! Advance to next node

end if
return

end subroutine R_Print_List

subroutine Print_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Print_Target
print *, " Print: ", Arg_NP % Info
return

end subroutine Print_Target

end subroutine Print_List

subroutine Delete_List()
! start subroutine Delete_List

call R_Delete_List(Root_NP)
return

contains

5.3 PROCESSING LINKED LISTS RECURSIVELY

112

subroutine R_Delete_List()
! start subroutine R_Delete_List

if (associated (Root_NP)) then
print *, " Deleted: ", Delete_Target(Root_NP)

Delete at root: Next call deletes at the same point.

call R_Delete_List()
end if
return
end subroutine R_Delete_List

function Delete_Target(Arg_NP) result(Item)
type (Node_Type), pointer :: Arg_NP, Temp
type (Info_Type) :: Item

! start function Delete_Target
Temp_NP => Arg_NP
Item = Arg_NP % Info
Arg_NP => Arg_NP % BOX % Next_NP
deallocate(Temp_NP)

end function Delete_Target

end subroutine Delete_List

end module D14_M

program D14
use D14_M
implicit none
integer :: EoF
type (Info_Type) :: Item

! start program D14
open (1, file = "dxf.txt", status = "old", action = "read", &

position = "rewind")
do

read (1, *, iostat = EoF) Temp_NP % Key
if (EoF < 0) exit
Item % Data(1) = Item % Data(1) + 1
call Look_Up(Item)

end do
call Print_List()
call Delete_List()
stop

end program D14

As mentioned earlier, a linked list may be viewed as a recursive data structure: Each node contains
data as well as a pointer to the remainder of the list. Besides its philosophical elegance, recursive linked
list processing fortuitously circumvents a syntactic shortcoming of Fortran and of some other program-
ming languages. The recursive technique passes the pointer argument (at each recursive call) by refer-
ence: what is actually transmitted is a pointer to the argument pointer. Pointers to pointers are needed,
and recursion provides this facility in a (syntactically) simple manner. This philosophical elegance and
syntactic simplicity are achieved at the expense of extra space and time overhead imposed by the mecha-
nism of recursion, although with some care the space overhead can be minimized. Converting the tail
recursion in this program to iteration without introducing significant syntactic complication seems im-
possible.

Linked Lists

113

Johnson

 Predecessor Node

Remainder of List
Lincoln

Current Node

Traveling Pointer
Root Pointer

Washington

 Predecessor Node

Traveling Pointer
Root Pointer

5.4 LINKED LISTS WITH POINTERS TO
POINTERS

Some programming languages support pointers to pointers. Fortran does not permit a pointer whose
target is a pointer, but it permits a pointer to a structure whose only component is a pointer. (Compare
arrays of pointers, described in Chap. 2). Such a structure is here called a BOX: its type is BOX_Type and
its only component is a node pointer named Next_NP, as shown in Fig. 5.3. A pointer to a BOX provides
a Fortran substitute for a pointer to the node pointer inside the BOX. This permits iterative linked list
search with insertion and deletion of nodes.

Here each linked list node has two components, one of which holds data, as before. The second
component is now a BOX whose node pointer component Next_NP designates the remainder of the list:
The target of Next_NP is the linked list successor node, if there is one; otherwise, Next_NP is null. The
root of the linked list is a BOX named Root; if the linked list is empty, the node pointer component of Root,
designated as Root % Next_NP , is null.

type, private :: BOX_Type
type (Node_Type), pointer :: Next_NP => Null()

end type BOX_Type
type, private :: Node_Type

type (Info_Type) :: Info
type (BOX_Type) :: BOX

end type Node_Type
type (BOX_Type), pointer, private :: Trav_BP ! "traveling" BOX pointer
type (BOX_Type), target, private, save :: Root

FIGURE 5.3. Fortran Pointer-to-Pointer technique

The traveling BOX pointer Trav_BP points to a BOX in the predecessor node; the node pointer in this
BOX is Trav_BP % Next_NP , the forward pointer to the current node. If Trav_BP % Next_NP is null, no
current node is the “target of the target” of Trav_BP. Otherwise (with Fortran’s automatic dereferencing),
the components of the current node are referred to as Trav_BP % Next_NP % Info and Trav_BP %
Next_NP % BOX. The latter is a BOX that contains a pointer to the remainder of the linked list; Trav_BP
advances when this BOX is assigned as its new target: Trav_BP => Trav_BP % Next_NP % BOX.

5.4 LINKED LISTS WITH POINTERS TO POINTERS

114

Fig. 5.4 illustrates insertion of a new node ahead of the current node. The subroutine Insert_Target
is called with argument Trav_BP % Next_NP to insert the new node as the target of the forward node
pointer in the predecessor node. The only change from the version shown at the beginning of this chap-
ter appears in the pointer assignment Temp_NP % BOX % Next_NP => Arg_NP that links the current
target of Arg_NP to the forward pointer Temp_NP % BOX % Next_NP in the new node.

subroutine Insert_Target(Arg_NP, Item)
type (Node_Type), pointer :: Arg_NP
type (Info_Type), intent(in) :: Item
type (Node_Type), pointer :: Temp_NP

! start subroutine Insert_Target
allocate(Temp_NP)
Temp_NP % Info = Item
Temp_NP % BOX % Next_NP => Arg_NP
Arg_NP => Temp_NP
return

end subroutine Insert_Target

Fig. 5.5 illustrates the procedure Delete_Target , which is called with the actual argument Trav_BP
% Next_NP , the forward node pointer in the predecessor node. The only change from the earlier version
appears in the pointer assignment Arg_NP => Arg_NP % BOX % Next_NP .

function Delete_Target(Arg_NP) result(Item)
type (Node_Type), pointer :: Arg_NP
type (Info_Type) :: Item
type (Node_Type), pointer :: Temp_NP

! start function Delete_Target
Temp_NP => Arg_NP

Johnson

Remainder of List

 Predecessor Node

Remainder of List

Remainder of List

Lincoln

Johnson

Kennedy

Johnson

Lincoln

Kennedy

Lincoln

Current Node

New Node

Current Node Predecessor Node

New Node

 Predecessor Node

Traveling Pointer

Traveling Pointer

Traveling Pointer

Temporary Pointer

Temporary Pointer

Root Pointer

Root Pointer

Root Pointer

FIGURE 5.4. Inserting a new node ahead of the current node

Linked Lists

1155.4 LINKED LISTS WITH POINTERS TO POINTERS

Remainder of List
Johnson

Kennedy

Lincoln

Current Node Predecessor Node

Traveling Pointer

Temporary Pointer

Root Pointer

Remainder of List
Johnson Kennedy Lincoln

Current Node Predecessor Node

Traveling Pointer

Temporary Pointer

Root Pointer

FIGURE 5.5. Deleting the current node

Item = Arg_NP % Info
Arg_NP => Arg_NP % BOX % Next_NP
deallocate(Temp_NP)
return

end function Delete_Target

The first step of the procedure Look_Up assigns Root (which has been declared in the module
Linked_List_Ops) as the initial target of Trav_BP.

type (BOX_Type), target :: Root
:

subroutine Look_Up(Item)
type (Info_Type), intent(in) :: Item

! start subroutine Look_Up
Trav_BP => Root ! Make Root the target of Trav_BP
do

if (associated(Trav_BP % Next_NP)) then
if (Item % Key == Trav_BP % Next_NP % Info % Key) then

call Modify_Target(Trav_BP % Next_NP)
else if (Item % Key < Trav_BP % Next_NP % Info % Key) then

call Insert_Target(Trav_BP % Next_NP, Item)
else

Trav_BP => Trav_BP % Next_NP % BOX ! Move to successor node.
cycle ! Keep looking.

end if
else

call Insert_Target(Trav_BP % Next_NP, Item) ! Insert at end.
end if
return

end do
end subroutine Look_Up

This iterative procedure is equivalent to the earlier recursive version, modified by tail recursion
removal and with the introduction of pointers to pointers.

116

Say It with Fortran

Example 15. Shown here is a slightly modified version of the subroutine Look_Up for the Pointer to
Pointer technique, along with a main program. The BOX named Root is declared in module. Procedures
that operate at the target level are the same as with recursion.

! Example 15. Linked list with pointers to pointers.
module D15_M

implicit none
public :: Look_Up, Print_List, Delete_List
integer, parameter :: S_LEN = 20
type, public :: Info_Type

character (len = S_LEN) :: Key
integer, dimension(2) :: Data = (/ 0, 1 /)

end type Info_Type
type, private :: BOX_Type

type (Node_Type), pointer :: Next_NP => Null()
end type BOX_Type
type, private :: Node_Type

type (Info_Type) :: Info
type (BOX_Type) :: BOX

end type Node_Type
type (BOX_Type), pointer, private :: Trav_BP !"traveling" BOX pointer
type (BOX_Type), target, private, save :: Root

contains

subroutine Look_Up(Item)
type (Info_Type), intent(in) :: Item

! start subroutine Look_Up
Trav_BP => Root ! Make Root the target of Trav_BP

The if constructs have been rearranged to agree with the recursive Fortran program shown earlier. Note that the
end do statement is never reached except from the cycle statement, which transfers control to the top of the do
block.

do
if (associated (Trav_BP % Next_NP)) then

if (Item % Key == Trav_BP % Next_NP % Info % Key) then
call Modify_Target(Trav_BP % Next_NP)

else if (Item % Key < Trav_BP % Next_NP % Info % Key) then
call Insert_Target(Trav_BP % Next_NP, Item)

else
Trav_BP => Trav_BP % Next_NP % BOX ! Move to successor node.
cycle ! Keep looking.

end if
else

call Insert_Target(Trav_BP % Next_NP, Item) ! Insert at end.
end if
return

end do
contains

subroutine Modify_Target(Arg_NP)
:

end subroutine Modify_Target

Linked Lists

117

subroutine Insert_Target(Arg_NP, Item)
:

end subroutine Insert_Target

end subroutine Look_Up

subroutine Print_List()
! start subroutine Print_List

Trav_BP => Root
do while (associated (Trav_BP % Next_NP))

call Print_Target(Trav_BP)
Trav_BP => Trav_BP % Next_NP % BOX ! Advance to next node

end do
return

contains

subroutine Print_Target(Arg_BP)
:

end subroutine Print_Target

end subroutine Print_List

subroutine Delete_List()
! start subroutine Delete_List

do while (associated (Root % Next_NP))
print *, " Deleted: ", Delete_Target(Root)

end do
return

contains

function Delete_Target(Arg_NP) result(Item)
:

end function Delete_Target

end subroutine Delete_List

end module D15_M

Section 5.4 Exercises
1. Write a recursive subroutine Print_List that prints information from the nodes of a linked list in

reverse order: If the argument pointer is not null, call Print_List with the forward pointer (i.e.,
the remainder of the list) as its actual argument and then call Print_Target to print the current node.
Calling Print_List with the root node as the actual argument will print the entire list in reverse
order.

2. Write a recursive subroutine Delete_List that deletes nodes from a linked list in reverse order: If
the argument pointer is not null, call Delete_List with the forward pointer (i.e., the remainder of
the list) as its actual argument and then call Delete_Target to delete the current node. (Print the
Info component of each node as it is deleted.) Because the remainder of the list has already been
deleted, the current node is the last node at the time it is deleted, and its deletion nullifies the argu-
ment pointer. Calling Delete_List with the root node as the actual argument will delete the entire
list in reverse order.

4. Implement the operation Look_Up with the data structure Item declared as a module variable;
modify the module procedures to inherit Item and modify the main program to import it.

5.4 LINKED LISTS WITH POINTERS TO POINTERS

118

5.5. APPLICATIONS WITH SEVERAL
LINKED LISTS

The foregoing examples provide a single linked list whose root is declared in the list definition module.
However, for many applications it is preferable to permit the consumer to create more than one list and
to designate a specific list for each linked list operation. A root for each separate list is declared in the
application program and can be passed to any of the linked list procedures. In the Pointer to Pointer
version shown here, each separate list is declared as a BOX, which becomes the initial target of Trav_BP
in subroutine Look_Up .

type :: BOX_Type
type (Node_Type), pointer :: Next_NP => Null()

end type BOX_Type
type :: Node_Type

type (Info_Type) :: Info
type (BOX_Type) :: BOX

end type Node_Type
:

subroutine Look_Up(Arg_B, Item)
type (BOX_Type), intent(in) :: Arg_B
type (Info_Type), intent(in) :: Item

! start subroutine Look_Up
Trav_BP => Arg_B
:

! Main program
:

type (BOX_Type), target :: List1, List2, . . .
:

call Look_Up(List1, Item)
:

An array of linked lists may be required for some applications:
! Main program

:
type (BOX_Type), target, dimension(17) :: List

:
call Look_Up(List(I), Item)

:

Multiply Linked Lists
Some lists have more than one pointer in each node.

In a doubly-linked list, each node has both a forward pointer (to the successor node) and a backward
pointer (to the predecessor node). All of the node-level procedures are essentially unchanged except for
the extra overhead of modifying both pointer nodes during insertion or deletion. In a circular list, the last
node points back to the first (i.e., in most implementations, to the successor of the root). These ways of
organizing the list are especially useful for certain applications, where it is necessary to access to the
predecessor of a given node or for data with a circular structure that has no natural beginning and end.

A threaded list consists of a single set of data that can be accessed according to any of several se-
quences (threads). For example, it might be desirable to order a mailing list so that it could be printed
sequentially by name or by postal ZIP code. Each node in a threaded list contains a pointer for each

Linked Lists

119

different key sequence that is to be applied; to facilitate insertions and deletions, each thread may be
linked both forward and backward.

5.6 LINKED LISTS VS. ARRAYS
A great many data processing applications store a collection of data items each of which contains a key
identifying a unique item in the collection. For some applications the key is expanded to include a
secondary key that distinguishes different items with the same primary key; in other cases a collection
with unique keys merely serves as an index to the actual data — for example, a collection of pointers to
sets of items that share a given key.

The two principal operations to be performed upon such a collection are:
• Insert a new item into the collection if the key is not matched by that of any current item, or modify

the existing item (in some predetermined manner) if the key is matched.

• Search and delete an item with a given key.
Each of these operations begins with a search to determine whether or not the the key is matched by

that of any item that is currently in the collection. For insertion, either outcome may be expected and
appropriate actions are specified for either case. For deletion, however, an unmatched search key is
considered an error.

Either an array or a linked list could be employed to hold such a collection. In either case, the data
items may be stored either in key order or in some other manner unrelated to the key values. The follow-
ing paragraphs discuss the advantages and disadvantages of these four possibilities. For the most part,
it is assumed that the set of different keys in the collection at any given time is random and that keys
presented for insertion or deletion are random. However, some timing assumptions can have consider-
able effect — for example, some applications insert almost all items into the collection before making
any deletions, so the current size of the collection at the time of a deletion is always nearly its maximum
size. In any case, it is assumed here that the modification phase of the insertion operation is straightfor-
ward and does not require any significant further effort when the key is matched; also, the effort of
processing a deletion error is ignored. The most significant disadvantage of arrays, that the maximum
size of the collection must be known in advance, is not discussed at this point — it is assumed here that
sufficient array space is provided.

Array Implementation

Unordered Array

The search phase requires a linear search through the entire collection. If the search key is matched, the
expected number of comparisons is one-half the current size of the collection; if not, a comparison is
required for every item currently in the collection.

If the search key is not matched, insertion is trivial: the new item is merely appended at the next
higher subscript position beyond the current last item in the collection.

Deletion can occur at any point. Deleting an item requires that all items on its right be moved to the
left so that no gaps will remain between data items in the array. The expected number of items to be
moved as a result of the deletion is one-half the current size of the collection.

Ordered Array

Search in an ordered array can employ the binary search algorithm. Whether or not the search key is
matched, the expected number of comparisons is lg N where N is the current size of the collection.

5.5 LINKED LISTS VS. ARRAYS

120

If there is no match, the search locates the point at which the new item must be inserted. All items to
the right of the insertion point must be moved farther to the right (to a higher subscript position in the
array) to make room for the new item. The expected number of items to be moved is one-half the current
size of the collection.

After the search phase, deletion is the same as for an unordered array: All items to the right of the
deletion point, estimated as one-half the current size of the collection, must be moved.

Linked List Implementation

Unordered Linked List

As in the array implementation, the search phase requires a linear search through the entire collection. If
the item is present, the expected number of comparisons is one-half the current size of the collection;
otherwise, a comparison is required for every item currently in the collection.

If the search key is not matched, insertion is trivial: the new item is merely inserted at the root of the
linked list.

After the search phase, deletion of an item at any point in a linked list (properly implemtented) is
also trivial.

Ordered Linked List

Binary search in a linked list is not possible; however, algorithms more or less equivalent to binary
search may be implemented with trees or with skip lists (see Chapter 7). A linear search terminates (with
or without a match) when an item with a larger or equal key is encountered; thus the expected number
of comparisons is one-half the current size of the collection. Perhaps surprisingly, ordering a linked list
gives no advantage in the matching case.

Insertion and deletion are trivial, as for an unordered linked list.

Summary
Aside from the requirement that the size of an array must be known in advance, the most efficient
implementation for searching is an ordered array, because of the applicability of binary search; however,
algorithms more or less equivalent to binary search may be implemented with trees or with skip lists
(see Chapter 7).

For insertions and deletions, linked lists are clearly superior to arrays because there is no need to
move large amounts of data, and keeping the list in order gives a slight advantage. For insertions, the
number of comparisons with an unordered linked list implementation is no better than with an unor-
dered array.

The relative cost of comparisons and moves is also sometimes a factor. Comparison is expensive for
long keys. Moving is expensive when the data items are large, but in such cases the implementation can
be designed so that the data remains in place and only a pointer moves.

For many applications, neither a linked list application nor an array application is ideal.
Almost all transactions at a bank’s Automated Teller Machine are modifications that update an

existing account balance. Opening and closing accounts (insertion and deletion) is handled separately
and with much less severe time constraints. Thus an ordered array would be appropriate; however, a
balanced tree or a skip list is even better, as we shall see (Chapter 7).

Mailing list maintenance consists mainly of insertions and deletions; modifying the address of an
existing customer is much more rare. An ordered linked list would be preferable to an array in this case.

Linked Lists

121

Chapter 6 Abstract Data Structures

6.1 STACKS

Applications of Stacks

Depth-First Search in a Graph

In Greek mythology, we read of the hero Theseus who killed a monster called a Minotaur to win the
hand of the maiden Ariadne. Ariadne helped him find his way to the Minotaur, which was kept in a
labyrinth; she gave him a ball of thread to unwind as he searched through the corridors of the labyrinth,
while she held one end of the thread firmly in her hand. After killing the monster, Theseus returned to
claim the maiden by rewinding the thread. The labyrinth can be simulated with a program that follows
Theseus as he searches for the Minotaur, finds and kills it if it is in an accessible part of the labyrinth, and
returns to Ariadne.

The solution presented here employs a depth-first search of the undirected graph whose nodes are the
N rooms in the labyrinth and whose arcs are the corridors. For purposes of the program, the rooms are
numbered with consecutive integers. An N × N matrix of logical type, called the adjacency matrix, is true
in position (i, j) if there is a corridor leading from room i to room j. A list which (as we shall see) is
implemented as a stack) represents the thread — it gives, in order, the numbers of the rooms through
which the thread currently passes. Whenever Theseus leaves a room, he records its number on the thread
list as he “unwinds the thread.”

The myth neglects to mention that Theseus also carries a piece of chalk, with which he marks each
room that he visits.31 A logical array stores the chalk marks (initially false) for all rooms in the labyrinth.

The search proceeds as follows:
• If the Minotaur is in the current room, Theseus kills it and returns to his lover by rewinding the

thread.

• Otherwise, Theseus marks the current room with his chalk so that he will not visit it again. Then he
selects the next corridor in order from the adjacency list for his current position, and looks down
that corridor to see whether there is a chalk mark in the room at the far end. If he sees a chalk mark
in the new room, he ignores that corridor and makes another selection from the adjacency list. When
he finds a corridor leading to an unmarked room, he records the current room number on the thread
list, unwinding the thread as he moves to the room at the far end of the selected corridor.

• After all of the corridors on the adjacency list for the current room have been explored, Theseus
looks at the thread list to find the number of the room from whence he traveled to the current room.
He rewinds the thread as he moves to that room, deleting its room number from the list. However,

31 It is not strictly necessary to mark each room as it is visited, provided that the corridors from a given room are
traversed in order (for example, according to the adjacency list sequence). However, the marking technique
considerably improves the efficiency of the algorithm.

122

if Theseus finds that the thread list is empty, this means that he has returned to Ariadne without
finding the Minotaur — the beast is in a part of the labyrinth that cannot be reached from the given
initial position.
As an example, consider the labyrinth in Fig. 6.1. Suppose that Theseus and Ariadne are initially in

room 8 and the Minotaur is in room 6. The thread list is initialized with Room 8. Theseus unwinds the
thread as he searches rooms 7, 4, 2, and 1, choosing the lowest-numbered adjacent corridor from each
room and marking each room as he visits it. When he reaches room 1, the rooms on the thread are 8, 7, 4,
and 2.

FIGURE 6.1. A labyrinth

From room 1 Theseus first looks down the corridor leading to room 2, but he sees a chalk mark
indicating that this room has already been visited. There are no more adjacent rooms that have not been
visited, so he rewinds the thread to room 2. He selects the next room from the adjacency list for room 2
and moves to room 3, unwinding the thread. Rooms on the thread at this point are 8, 7, 4, and 2.

The only rooms adjacent to room 3 are rooms 2 and 4, both of which have been visited, so Theseus
again rewinds to room 2. All rooms adjacent to room 2 have now been visited, so he rewinds the thread
and returns to room 4. The rooms now on the thread are 8 and 7.

Rooms adjacent to room 4 are 2, 3, 5, 6, and 7. On his previous visit to room 4, Theseus selected the
corridor leading to room 2 and to the adventures just described. He now looks down the next corridor
on the adjacency list, but it leads to room 3 which he visited earlier, so he selects another corridor and
moves to room 5. Rooms 8, 7, and 4 are on the thread.

From room 5, Theseus looks down the corridor leading to room 4; has previously visited that room
so he tries again, this time selecting room 6. Here he finds the Minotaur, kills it, rewinds the thread via
rooms 5, 4, and 7, and returns in triumph to Ariadne who still waits paitently in room 8 for her heroic
lover.

A suitable data structure to represent the thread is a stack of integers: the operation Pop will return
the integer most recently placed on the stack by a Push operation. Theseus unwinds the thread by
pushing the current room number onto the stack as he moves to the next room. He rewinds the thread by
popping a room number from the top of the stack and returning to the indicated room, where he re-
sumes his search.

logical, dimension(20, 20) :: Adjacent
logical, dimension(20) :: Mark = .false.
integer :: Tried(20) ! Number of adjacent nodes already tried

:
read *, Maid, Goal
Here = Maid
print *, Here, " Start."

1211

108 97

6

5

4

3

1

2

Abstract Data Structures

123

Node: do
if (Here /= Goal) then

Mark(Here) = .true. ! Mark the current node.
do Next = Tried(Here) + 1, Many ! Find next adjacent node, if any.

Tried(Here) = Next
if (Adjacent(Here, Next) then

print *, Here, Next, " Look down corridor."
if (Mark(Next)) then

print *, Here, Next, " Already visited."
else

call Push(Here) ! Move to next node.
print *, Here, Next, " Unwind thread."
Here = Next
cycle Node ! Continue from new node.

end if
end do
print *, Here, " Dead end."
if (Is_Empty()) exit Node
call Pop(Here)
print *, Here, " Resuming."

else
print *, Here, " Minotaur is dead."
do

if (Is_Empty()) exit
call Pop(Here)
print *, Here, Next, " Going home in triumph."

end do
end if
stop

end if
end do Node
print *, Here, " Minotaur is inaccessible. "

Stack Operations

The mechanism of a stack is “last in, first out” or LIFO. Stacks are also called pushdown structures by
analogy to a stack of physical objects (saucers in a cafeteria are often suggested) stored in a hole and
supported by a spring with only the top item visible. A Push operation pushes previous items farther
down into the hole and gives the stack a new Top item; a Pop operation removes the current Top item and
exposes the item below it as the new Top.

Several different operations are required for manipulating a stack:
• Push(Here) appends the value of the variable Here to the stack as a new item (which becomes

the new Top).

• Pop(Here) removes the most recently appended item (the current Top) from the stack and returns it
as the value of the variable Here .

• Is_Empty() returns .true. if the stack is currently empty.
Two additional stack operations are often useful:
• Peek(Here) returns the most recently appended item (the current Top) as the value of the vari-

able Here , but does not remove it from the stack.

• Is_Full() returns .true. if the stack is currently full — that is, if the implementation does not
permit any further items to be appended to the stack.

6.1 STACKS

124

These stack operations do not permit access to any part of the stack except the current Top item —
i.e., the stack item that was most recently appended. An item lower in the stack can be retrieved only by
a sequence of Pop operations that remove all items above it.

Although a Pop operation is not permitted when a stack is empty and a Push operation is not
permitted when it is full, the inverse operations are quite legal. In particular, the stack may become
empty at one or more points during execution of an application, after which Push operations may again
activate the stack. In the labyrinth example, the search does not fail when Theseus returns to Ariadne
without killing the Minotaur unless all corridors from Ariadne’s room have been explored and a rewind
(Pop) is attempted while the stack is empty. (In Fig. 6.1, consider the case in which Ariadne is in room 4
and the Minotaur is in room 8.)

Fig. 6.2 shows the contents of the array at each step of a successful search in the labyrinth of Fig. 6.1.
Ariadne is in room 8 and the Minotaur is in room 6.

FIGURE 6.2 Push and Pop operations during Labyrinth search

Evaluating a Postfix Expression

Stacks are suitable for many different applications. For example, some hand-held calculators employ a
stack for evaluating expressions entered in postfix form, which means that an operator such as + or ∗
must follow the numbers or expressions that are its operands. For example, 2 ∗ (3 + 4) is entered as
2 3 4 + ∗ and (2 + 3) ∗ 4 is entered as 2 3 + 4 ∗ . One advantage of postfix notation is that no parentheses
are required, provided that each operator has a known number of operands.

Whenever a number is entered, it is pushed on the stack. When an operator is entered, its operands
are popped from the stack, the operation is performed, and the result is pushed on the stack. The calcu-
lator display shows the top of the stack at any point. For example, the two postfix expressions 2 3 4 + ∗
and 2 3 + 4 ∗ are evaluated in the following manner:

Entry Stack (Top, ...)
2 2
3 3 2
4 4 3 2
+ 7 2
∗ 14

8

78

478

2478

12478

2478

32478

2478

478

5478

65478

5478

478

78

8

Abstract Data Structures

125

2 2
3 3 2
+ 5
4 4 5
∗ 20

Stacks and Recursion

We have noted earlier that the activation record for a procedure contains space for local variables (ex-
cept those for which space is reserved statically and those that are explicitly allocated in dynamic stor-
age), for dummy argument values or their locations, for function result values, and for a few bytes of
information that are needed for returning execution control to the point from which the procedure was
referenced. In the absence of recursion, only one copy of the activation record for each procedure is
required, and some processors set aside space for all of these before execution of the main program
begins.

On the other hand, a procedure that calls itself recursively needs to save a copy of its activation
record for each recursive call, so that the previous instance can be restored at exit. The usual implemen-
tation of recursion employs a stack of activation records, sometimes called the central stack. The activa-
tion record for each procedure (also called a stack frame) is pushed onto this stack at the time of proce-
dure entry and is popped from the stack at procedure exit. While stack storage of activation records is
also possible for nonrecursive procedure calls, stack storage (or some other form of dynamic storage) is
absolutely essential for recursion because the depth of recursion and hence the number of activation
records required cannot be predicted in advance.

The stack model is appropriate for activation record storage because procedure entry and exit al-
ways conforms to a Last-In-First-Out (LIFO) discipline. However, the activation record stack fails in one
respect to conform to the usual definition of a stack, which permits access only to the top element. In
cases such as inheritance by an internal procedure of a variable from its host, the currently executing
procedure makes reference to a local variable in a procedure whose activation record is not at the top of
the stack.

Recursive Depth-First Search

The following recursive procedure corresponds to a part of the iterative program presented earlier. Here
the central stack performs the role of the programmed stack in the earlier example.

r ecursive subroutine Depth_First(Here)
integer, intent (in) :: Here

integer :: Next
! start subroutine Depth_First

Mark(Here) = .true. ! Mark the current node.
if (Here /= Goal) then

!.. Find next unmarked adjacent node, if any.
do Next = 1, Many

if (Adjacent(Here, Next) .and. .not. Mark(Next)) then
call Depth_First(Next) ! Move to new node.
if (Found) return

end if
end do

else
Found = .true.
return

end if
return

end subroutine Labyrinth

6.1 STACKS

126

Reversing a List

How does a railroad train turn around?

Abstract Data Structures

FIGURE 6.3. Using a stack to reverse a list

All of the cars are pushed onto a side track, which plays the role of a stack, and they are then popped
onto the main line in the opposite direction, as indicated in Fig. 6.3. Similarly, a stack whose elements are
single characters (strings of length one) can be used to reverse the characters of a string:

do I = 1, String_Length
Push (String(I: I))

end do
do I = 1, String_Length

Pop (String(I: I))
end do

Previous examples have illustrated the use of a recursion to reverse a list. For example, a procedure
to print a string in reverse order would appear as follows:

call Print_Remainder(Whole_String)
:

subroutine Print_Remainder(String)
call Print_Remainder(String(2:))
print *, String(1:1)
return

end subroutine Remainder

A curious affinity can be observed among the concepts of stacks, recursion, and list reversal.

Abstraction, Encapsulation, and Information Hiding
Notice that nothing has been said up to this point about how a program should implement a stack. It is
quite possible to understand the concept of a stack, and how it can be applied in a problem such as
depth-first search in an unordered graph, without knowing how stack information is stored and ma-
nipulated in the computer. Creating an application program requires only interface specifications for
stack operations such as those just described.

In this sense, the stack concept is an abstraction. A stack has certain structural characteristics and
must behave in certain defined ways, regardless of its actual programming language implementation.
The structural part of the stack abstraction is fixed by the requirement that it must be able to hold data

127

items of a certain type — for example, it may be a stack of integers, a stack of character strings of a
specific length, or a stack of structures of a particular derived type. The behavioral part is determined by
a list of stack operations, with a precise description of the way in which each operation affects (or is
affected by) the stack.

Data abstraction — definition of the structure and behavior of an object, independent from its
implementaion (as exemplified by the stack concept) — is a technique that has been shown to permit
significant improvements in program design and reliability. Data abstraction and two other techniques,
object encapsulation, and information hiding, are important principles in object design methodology.

Object encapsulation combines the structural and behavioral aspects of an object into a self-con-
tained set of program statements. For encapsulation, Fortran provides modules that contain the data
type definitions and variable declarations for an abstract object, along with procedures that define each
of the required operations.

Information hiding protects the implementation from inadvertent modification by a consumer pro-
gram. Some of the derived types and variables in the module are accessible to the consumer. The con-
sumer also has access to interface information for the procedures that perform each of the required
operations. But derived types or their components, as well as the inner details of module procedures,
can be made inaccessible from outside the module. The most important Fortran feature for information
hiding is the private declaration, which may appear in the specification part of a module with a list of
names that are not to be imported when a use statement for the module appears in the main program or
in a consumer module. Internal procedures within module subprograms are also automatically inacces-
sible outside the module.

Consequently, a programming team can be organized so that consumers of an abstract object such
as a stack are insulated from the producers. The producers create a module to implement the Stack
abstraction and they make it available (perhaps only in the form of compiled machine instructions) to
consumers along with written information concerning the external interface. Consumer programs call
upon the module Stack to create objects and to perform operations on them but cannot modify or even
examine Stack data except through the operations provided.

In a less formal environment, there may be only one programmer who wears two hats, sometimes
acting as producer and sometimes as consumer. Nevertheless, a programmer can wear only one hat at a
time and, while in the consumer role, must simulate information hiding by pretending to know only the
external interface.

Stack as an Object
A Stack can be implemented in any of several ways; the two most obvious implementations employ an
array or a linked list. The necessary type definitions, variable declarations, and procedure definitions
are encapsulated in a module that is imported to an application by a use statement.

The two following program examples present an array implementation module and a linked list
implementation module for the same Stack abstraction, along with a single main program that can use
either module. This demonstrates the possibility of constructing a Stack module so that a consumer
without access to the source program cannot tell whether it employs an array or a linked list (except
perhaps by some trick that might reveal the limited capacity of the former).

These two examples, and the other stack examples that follow, show the stack operations Push ,
Pop, and Peek implemented as functions of logical type, omitting Is_Empty and Is_Full . Push re-
turns .true. unless the stack is full (which, in the linked list versions, we assume cannot occur). Pop
and Peek return .true. unless the stack is empty; the top item is returned as an intent(out) argu-
ment. Push , Pop, and Peek are not pure functions because they modify nonlocal data. In the examples
distributed electronically, the subset versions implement these operations as subroutines (and include
separate Is_Empty and Is_Full procedures), because neither subset permits intent(out) function
arguments.

6.1 STACKS

128

Array Implementation of Stack

A stack of integers may be implemented as a one-dimensional array, along with an integer scalar that
stores the Current_Size of the stack. Unlike the saucer analogy, the most convenient array implementa-
tion is analogous to a stack of bricks or other physical objects that sit on a fixed base so that the top of the
stack moves up (to a larger array subscript value) with each Push operation and down (to a smaller
subscript value) with each Pop. See Fig. 6.4.

Initially, the stack is empty and Current_Size is zero. A Push operation increases Current_Size to 1
and stores the new item at position 1; if this is followed by another Push operation, Current_Size is
increased to 2 and the new item is stored at position 2, and so on. A Pop operation, when the current
stack size is N, returns the element at position N and decreases the Current_Size to N – 1. Thus the current
stack size becomes the subscript value during push and pop operations.

MAXIMUM_SIZE of the stack, which is the size of the array, is declared as a named constant. The
stack is full if Current_Size is equal to MAXIMUM_SIZE.

integer, parameter, private :: MAXIMUM_SIZE = 100
integer, private :: Current_Size = 0
integer, dimension(MAXIMUM_SIZE), private :: Space

Here Space is the array where the data will be stored. The keyword private in declarations in a module
means that a consumer of the module does not have access to the declared object, except by calling one
of the procedures defined in the module.

Abstract Data Structures

8

1 2 3 4 5

8 7

8 7 4

8 7 4 2

8 7 4 2

8 7 4 2 3

8 7 4 2

8 7 4

8 7 4 5

8 7 4 5 6

8 7 4 5

8 7 4

8 7

8

1

2

3

4

4

5

4

3

4

5

4

3

2

1

8 7 4 2 1 5

Current Size

FIGURE 6.4. Array implementation of stack for Labyrinth search

129

Say it with Fortran

Example 16. The operation Push(Item) increases Current_Size by one and copies the given item to
the data array using Current_Size as the subscript value, unless the stack is full; Pop(Item) copies an
element of the data array to Item, using Current_Size as the subscript value, and then decreases Current_Size
by one, unless the stack is empty. Peek(Item) is the same as Pop except that it does not decrease
Current_Size. The logical function Is_Empty() returns .true. if Current_Size is zero; Is_Full()
returns .true. if Current_Size is equal to MAXIMUM_SIZE.

! Example 16. Array implementation of STACK
module D16_M

implicit none
public :: Push, Pop, Peek
integer, parameter, private :: MAXIMUM_SIZE = 100
integer, save, private :: Current_Size = 0
integer, dimension(MAXIMUM_SIZE), private :: Space

contains

function Push(Item) result(Push_R) ! not a pure function
integer, intent(in) :: Item
logical :: Push_R

! start function Push
Push_R = Current_Size < MAXIMUM_SIZE
if (Push_R) then

Current_Size = Current_Size + 1
Space(Current_Size) = Item

end if
return

end function Push
function Pop(Item) result(Pop_R) ! not a pure function

integer, intent(out) :: Item
logical :: Pop_R

! start function Pop
Pop_R = Peek(Item)
if (Pop_R) then

Current_Size = Current_Size - 1
end if
return

end function Pop
function Peek(Item) result(Peek_R) ! not a pure function

integer, intent(out) :: Item
logical :: Peek_R

! start function Peek
Peek_R = Current_Size > 0
if (Peek_R) then

Item = Space(Current_Size)
else

Item = 0
end if
return

end function Peek
end module D16_M

6.1 STACKS

130

program D16
use D16_M
implicit none
integer :: op
integer :: Item

! start program D16

open (1, file = "intstack.dat", status = "old", action = "read", &
position = "rewind")

do
print *, " Please enter operation: "
print *, " 0 to quit; 1 to push; 2 to pop, 3 to peek."
read (1, *) op
select case (op)
case (0)

print *, " operation 0 means quit."
do while (Pop (Item))

print *, Item, " Left on stack. "
end do
exit

case (1)
print *, " Please enter an integer to push."
read (1, *) Item
if (Push(Item)) then

print *, " Pushed: ", Item
else

print *, " Can't push. Stack is full."
end if

case (2)
if (Pop(Item)) then

print *, " Popped: ", Item
else

print *, " Can't pop. Stack is empty."
end if

case (3)
if (Peek(Item)) then

print *, " Peeked: ", Item
else

print *, " Can't peek. Stack is empty."
end if

case default
print *, op, " is not a valid operation."

end select
end do
stop

end program D16

Abstract Data Structures

1316.1 STACKS

8745

87456

8745

8

87

874

8

87

874

8742

87421

8742

87423

8742

874

Linked List Implementation of Stack

The most convenient linked-list implementation of a stack reverts to the pushdown model with the top
of the stack at the root of the linked list. Because all insertions and deletions take place at the root, a
simple nonrecursive linked list implementation is adequate.

Is_Empty() returns .true. if Root_NP is currently null. In this example, Is_Full() always
returns .false. ; a more robust implementation might employ look-ahead node allocation and return
.true. when the stat variable in the allocate statement indicates an allocation error.

Fig. 6.5 shows the contents of the linked list at each step of a successful search in the labyrinth of Fig.
6.1. Ariadne is in room 8 and the Minotaur is in room 6.

FIGURE 6.5. Linked list implementation of Stack

Say it with Fortran

Example 17. Note that the same main program shown for the array implementation can also be used
with the following linked list implementation; the only change required is in the module name in the
use statement at the beginning of the main program. All stack operations in this module have the same
interfaces as before, although their internal actions are quite different.

A program that inherits the module cannot refer to module variables with the private attribute.
As noted earlier, without access to the source program a consumer cannot even tell whether the module
employs an array implementation or a linked list implementation, except by some trick that might re-
veal the limited capacity of the former.

! Example 17. Linked List implementation of STACK
module D17_M

implicit none
public :: Push, Pop, Peek
type, private :: Node_Type

integer :: Info
type (Node_Type), pointer :: Next_NP

end type Node_Type
type (Node_Type), pointer, private :: Root_NP => null()

contains

132

function Push(Item) result(Push_R) ! not a pure function
integer, intent(in) :: Item
logical :: Push_R
type (Node_Type), pointer :: Temp_NP

! start function Push
Push_R = .true.
allocate(Temp_NP)
Temp_NP % Info = Item
Temp_NP % Next_NP => Root_NP ! Copy Root to new node
Root_NP => Temp_NP
return

end function Push
function Pop(Item) result(Pop_R) ! not a pure function

integer, intent(out) :: Item
logical :: Pop_R
type (Node_Type), pointer :: Temp_NP

! start function Pop
Pop_R = Peek(Item)
if (Pop_R) then

Temp_NP => Root_NP
Root_NP => Root_NP % Next_NP
deallocate(Temp_NP)

end if
return

end function Pop
function Peek(Item) result(Peek_R) ! not a pure function

integer, intent(out) :: Item
logical :: Peek_R

! start function Peek
Peek_R = associated(Root_NP)
if (Peek_R) then

Item = Root_NP % Info
else

Item = 0
end if
return

end function Peek
end module D17_M

A Stack of What?
In the foregoing examples, each data item on the stack is an integer. Few changes are needed to imple-
ment a stack of some other data type — a stack of strings that each contain 12 characters, for example, or
a stack of items of some derived type. The most important change is in the data type declaration for the
data component Info in the derived type definition for Node_Type ; a few changes are needed in other
places in the module and in the main program.

Abstract Data Structures

133

Generic Stack Module

A generic stack module can also constructed, which is capable of manipulating several stacks with differ-
ent predetermined types. Each stack operation is called by the same name as before, which is now its
generic name; separate procedures with different specific names are defined for manipulating stacks of
each different data type; an interface block for each operation relates the generic name to the specific
names for the separate data types. For example, when the application program refers to Push by its
generic name, the data type of the actual argument determines which specific Push operation will be
selected for execution.

Say it with Fortran

Example 18. Some highlights are shown here for a linked list implementation of a generic stack that
accommodates three specific data types; the complete module is distributed electronically. A generic
stack could, of course, be implemented with an array instead of a linked list. A Fortran language manual
or textbook should be consulted for further details about implementing generic procedures in a module.

! Linked Stack implementation of GENERIC STACK
module D18_M

implicit none
public :: Push, Pop, Peek
private :: Push1, Push2, Push3, Pop1, Pop2, Pop3, Peek1, Peek2, Peek3
type, private :: Node_Type1

character (len = 12) :: Info
type (Node_Type1), pointer :: Next_NP

end type Node_Type1
type, private :: Node_Type2

integer :: Info
type (Node_Type2), pointer :: Next_NP

end type Node_Type2
type, public :: Info_Type

integer :: I
character (len = 12) :: S

end type Info_Type
type, private :: Node_Type3

type (Info_Type) :: Info
type (Node_Type3), pointer :: Next_NP

end type Node_Type3
interface Push

module procedure Push1, Push2, Push3
end interface Push

:
type (Node_Type1), pointer, private, save :: Root1 => null()
type (Node_Type2), pointer, private, save :: Root2 => null()
type (Node_Type3), pointer, private, save :: Root3 => null()

contains

function Push1(Item) result(Push1_R) ! not a pure function
character (len = *), intent(in) :: Item

:
end function Push1

end module D18_M

6.1 STACKS

134

program D18
use D18_M
implicit none
character (len = 12) :: Item1
integer :: Item2
type (Info_Type) :: Item3

! start program E18

if (Push("ABCDEFGHIJKL")) print *, " Push: ABCDEFGHIJKL"
if (Push(11111)) print *, " Push: 11111"
if (Push(Info_Type(11, "Hello world."))) print *, " Push: 11 Hello world."

:

Here three stacks are defined with different node types, each having a different Info component data
type. Based on the node type of the actual argument data item in each call to the generic procedures
Push , Pop, or Peek , the module resolves the generic reference and selects one of the specific procedures.

Push and Pop operations with items of different data types can be intermixed; each operation will
automatically select the specific stack appropriate to the data type of the actual argument item. A Pop
operation will return the latest pushed item from the corresponding stack, even though items of other
types may have been pushed on the other stacks in the meantime.

Stack Objects
In the foregoing examples a single stack (or in the generic example a single stack for each supported data
type) is declared in the module. The main program does not specify a particular stack that is to be
operated upon.

For some applications, it may be preferable to permit the application program to create more than
one stack and to designate a specific stack at each reference to an operation. Deferring, for the moment,
discussion of generic stacks, we now assume a fixed node type with a data component of type Info_Type .

The main program for an array implementation could include declarations such as
integer, parameter :: MAXIMUM_SIZE1 = 100
integer :: Current_Size1 = 0
integer, dimension(MAXIMUM_SIZE1) :: Space1 = 0

while the main program for a linked list implementation would declare a root pointer such as
type (Node_Type), pointer :: Root_NP1 => Null()

STOP! Whatever happened to information hiding?
This approach clearly violates the principles of data abstraction. Although stack operations are still

combined in a module, the data structure is no longer encapsulated — it is declared in the main program
where it is fully accessible and can be changed in ways that might violate the integrity of the module
procedures.

Abstract Data Structures

32 Versions prior to Fortran 95 nullify the root pointer.

135

Instead, the module should declare a Stack_Type , whose inner details will vary according to the
implementation. For an array implementation:

integer, parameter, private :: M = 100
type, public :: Stack_Type

private
integer, private :: Maximum_Size = M, Current_Size = 0
character (len = 12), pointer, dimension(:) :: Space

end type Stack_Type

and for a linked list implementation:
type, public :: Stack_Type

private
type (Node_Type), pointer :: Root_NP => Null()

end type Stack_Type

 For each different stack, a declaration in the application program creates an object of Stack_Type
according to the derived type definition in the module, whose components are inaccessible because of
the private specification. This declared object can be passed as an actual argument to any of the stack
operations defined in the module. A module procedure Create_Stack , with a dummy argument of
type Stack_Type , allocates the Space array for an array implementation but does essentially nothing
for a linked list implementation.32 Delete_Stack terminates the lifetime of a particular stack and
deallocates any space that was allocated for the stack by Create_Stack .

! Array implementation
subroutine Create_Stack(Arg_S)

type (Stack_Type), intent(in out) :: Arg_S
! start subroutine Create_Stack

allocate(Arg_S % Space(100))
Arg_S % Space = " "
return

end subroutine Create_Stack

! Linked list implementation
subroutine Create_Stack(Arg_S)

type (Stack_Type), intent(in out) :: Arg_S
! start subroutine Create_Stack

return
end subroutine Create_Stack

! MAIN PROGRAM
type (Info_Type) :: Item
type (Stack_Type) :: Stack

:
call Create_Stack(Stack)
Item = Info_Type("ABCDEFGHIJKL")
if (Push(Stack, Item)) print *, Item

:
call Destroy_Stack(Stack)

The consumer will need to be aware of the structure of Info_Type so that items to be pushed onto the
stack can be generated properly.

6.1 STACKS

136

Say it with Fortran

Example 19. The main program contains declarations for objects of two different types: a stack object
of type Stack_Type and a data item of type Info_Type . The create and destroy operations are not
shown here.

! Linked Stack implementation of STACK OBJECT
module D19_M

implicit none
public :: Push, Pop, Peek
type, public :: Info_Type

character (len = 12) :: S
end type Info-Type
type, private :: Node_Type

type (Info-Type) :: Info
type (Node_Type), pointer :: Next_NP

end type Node_Type
type, public :: Stack_Type

private
type (Node_Type), pointer :: Root_NP

end type Stack_Type
contains

function Push(Arg_SP, Item) result(Push_R) ! not a pure function
type (Stack_Type), intent(in out) :: Arg_SP
type (Info_Type), intent(in) :: Item
logical :: Push_R
type (Node_Type), pointer :: Temp_NP

! start function Push
Push_R = .true.
allocate(Temp_NP)
Temp_NP % Info = Item
Temp_NP % Next_NP => Arg_SP % Root_NP ! Copy Root to new node
Arg_SP % Root_NP => Temp_NP
return

end function Push
function Pop(Arg_SP, Item) result(Pop_R) ! not a pure function

type (Stack_Type), intent(in out) :: Arg_SP
type (Info-Type), intent(out) :: Item
logical :: Pop_R
type (Node_Type), pointer :: Temp_NP

! start function Pop
Pop_R = Peek(Arg_SP, Item)
if (Pop_R) then

Temp_NP => Arg_SP % Root_NP
Arg_SP % Root_NP => Arg_SP % Root_NP % Next_NP
deallocate(Temp_NP)

end if
return

end function Pop

Abstract Data Structures

137

function Peek(Arg_SP, Item) result(Peek_R) ! not a pure function
type (Stack_Type), intent(in) :: Arg_SP
logical :: Peek_R
type (Info-Type), intent(out) :: Item

! start function Peek
Peek_R = associated(Arg_SP % Root_NP)
if (Peek_R) then

Item = Arg_SP % Root_NP % Info
else

Item = Info_Type("")
end if
return

end function Peek
end module D19_M

Extension to a generic module for stack objects requires a separate stack type for each stack data
item type, along with a separate set of specific stack procedures for each stack type (as before). The
consumer declares objects of various specific stack types as required and calls stack operation proce-
dures by their generic names such as Create_Stack , Push , and Pop.

6.2 QUEUES
Queue is a French word meaning tail. The word in English is applied to waiting lines, which are sup-
posed to resemble a tail. A familiar queue is the checkout line in a supermarket where customers with
their shopping carts wait to pay for their groceries.

A queue is a list that operates according to a first-in, first-out (FIFO) discipline. Items (such as cus-
tomers) enter the queue at one end and exit at the other end — in contrast to a LIFO stack where items
enter and exit at the same end. The queue operations Enqueue (for entering the queue) and Dequeue
(for leaving the queue) correspond to the stack operations Push and Pop. As in a waiting line, items
leave (Dequeue) at the front of a queue and they enter (Enqueue) at the rear.

Six queue operations are considered here, corresponding to the seven stack operations with the
omission of Peek .
• Create_Queue() allocates space for the queue and marks it as empty.

• Delete_Queue() removes any remaining items from the queue and releases the space that was
allocated for it.

• Enqueue(Item) appends Item to the contents of the queue.

• Dequeue(Item) removes the least recently appended integer from the queue and returns it as the
value of Item .

• Is_Empty() returns .true. if the queue is currently empty.

• Is_Full() returns .true. if the queue is currently full — that is, if the implementation does not
permit any further items to be appended to the queue.
Dequeue operations are not permitted when a queue is empty and Enqueue operations are not

permitted when it is full, but the inverse operations are quite legal. In particular, the queue may become
empty at one or more points during execution of an application, after which Enqueue operations may
again produce a nonempty queue.

6.2 QUEUES

138

Jones Brown

Rear of Queue

Rear Pointer

Root Box

Jones

Rear of Queue

Rear Pointer

Root Box

Rear Pointer

Root Box

Abstract Data Structures

Queue Objects
A queue can be implemented with an array or with a linked list. In either case, the necessary type
definitions, variable declarations, and procedure definitions are encapsulated in a module that is im-
ported to an application by a use statement. Queues in the following examples hold character strings of
length 12; queues for data of other intrinsic or derived types, as well as generic queues and allocated
queues, are of course also possible.

The following program examples present both an array implementation and a linked list implemen-
tation for the same queue abstraction. Thus they show that it is possible to construct a queue module so
that a consumer without access to the source program cannot tell (except by trickery) whether it em-
ploys a linked list or an array.

Linked List Implementation of Queue

A queue may be implemented as a linked list, with one end of the queue at the root and the other end at
the tail. Which end of the queue should be at the root of the linked list?

An operation for repeatedly deleting the tail node from a linked list would be difficult to implement
(without some enhancement such as the bidirectional pointers of a doubly-linked list; see Sec. 5.4), for the
following reason: To avoid searching through the entire list at each deletion, an extra pointer to the tail
node is required. Deleting the current tail node from a linked list moves the tail pointer to the predeces-
sor node, but there is no straightforward way to find the predecessor of the current target of a node
pointer in a singly-linked list. Therefore, the tail of the linked list should correspond to the rear of the
queue where insertions (Enqueue operations) occur; it follows that the root of the linked list should
correspond to the front of the queue where deletions (Dequeue operations) occur.

A bit of complication is still required for the Enqueue operation — that is, for inserting a new node
at the tail of a linked list and updating the queue rear pointer. In the obvious implementation, the target
of the queue rear pointer should always be the current tail node in the linked list, but there is no such
node when the linked list is empty.

FIGURE 6.6. Pointer to Pointer implementation of Enqueue

139

Say it with Fortran

Example 20. The implementation given here employs the Pointer to Pointer strategy mentioned ear-
lier: each node pointer (that is, the Root pointer as well as the Next_NP component in each node) is
replaced by a pointer to this node pointer, implemented in Fortran as a pointer to a BOX structure whose
only component is the node pointer. In this implementation the queue rear is a BOX pointer whose target
is either the BOX component of the tail node in the linked list or (if the linked list is empty) the root BOX,
as shown in Fig. 6.6.

A Dequeue operation deletes the current root node, which is the target of Root % Next_NP . This is
the usual Delete_Node linked list operation except when there is only one item in the queue; in that
case, deleting the root node also deletes the tail node so the Dequeue operation must modify the queue
rear pointer Tail_BP as well as Root.

Create_Queue nullifies the node pointer component of Root and makes Root the target of Tail_BP.

! Example 20. Linked List (Pointer to Pointer) implementation of QUEUE OBJECT
module D20_M

implicit none
public :: Create_Queue, Destroy_Queue, Enqueue, Dequeue, &

Is_Empty, Is_Full

type, private :: BOX_Type
type (Node_Type), pointer :: Next_NP => Null()

end type BOX_Type

type, private :: Node_Type
character (len = 12) :: Info
type (BOX_Type) :: BOX

end type Node_Type

type, public :: Queue_Type
private

type (BOX_Type) :: Root
type (BOX_Type), pointer :: Tail_BP => null()
end type Queue_Type

contains

subroutine Create_Queue(Arg_Q)
type (Queue_Type), target, intent(in out) :: Arg_Q

! start subroutine Create_Queue
Arg_Q % Tail_BP => Arg_Q % Root
return

end subroutine Create_Queue

subroutine Destroy_Queue(Arg_Q)
type (Queue_Type), intent(in out) :: Arg_Q
character (len = 12) :: Info

! start subroutine Destroy_Queue
do while (.not. Is_Empty(Arg_Q))

call Dequeue(Arg_Q, Info)
print *, " Left on Queue: ", Info

end do
return

end subroutine Destroy_Queue

6.2 QUEUES

140

subroutine Enqueue(Arg_Q, Item)
type (Queue_Type), intent(in out) :: Arg_Q
character (len = 12), intent(in) :: Item
type (Node_Type), pointer :: Temp_NP

! start subroutine Enqueue
allocate(Temp_NP)
Temp_NP % Info = Item
Arg_Q % Tail_BP % Next_NP => Temp_NP ! Link new node into list.
Arg_Q % Tail_BP => Temp_NP % BOX ! New node becomes new tail.

! nullify(Temp_NP)
return

end subroutine Enqueue

subroutine Dequeue(Arg_Q, Item)
type (Queue_Type), target, intent(in out) :: Arg_Q
character (len = *), intent(out) :: Item
type (Node_Type), pointer :: Temp_NP

! start subroutine Dequeue
if (Is_Empty(Arg_Q)) then

print *, " Attempt to pop from empty stack. "
Item = " "

else
Temp_NP => Arg_Q % Root % Next_NP
Item = Temp_NP % Info
Arg_Q % Root = Temp_NP % BOX
deallocate(Temp_NP)
if (Is_Empty(Arg_Q)) Arg_Q % Tail_BP => Arg_Q % Root

end if
return

end subroutine Dequeue

pure function Is_Empty(Arg_Q) result(X)
type (Queue_Type), intent(in out) :: Arg_Q
logical :: X

! start function Is_Empty
X = (.not. associated (Arg_Q % Root % Next_NP))
return

end function Is_Empty

pure function Is_Full(Arg_Q) result(X)
type (Queue_Type), intent(in out) :: Arg_Q
logical :: X

! start function Is_Full
X = .false.
return

end function Is_Full

end module D20_M

program D20
use D20_M
implicit none
integer :: Op
character (len = 12) :: Item = " "
type(Queue_Type) :: Queue

! start program D20

Abstract Data Structures

141

call Create_Queue (Queue)
do

print *, " Please enter Operation: "
print *, " 0 to quit; 1 to enqueue; 2 to dequeue."
read *, Op
select case (Op)
case (0)

print *, " Operation 0 means quit."
exit

case (1)
if (Is_Full(Queue)) then

print *, " Can't enqueue. Queue is full. "
else

print *, " Please enter an item to enqueue."
read *, Item
call Enqueue(Queue, Item)
print *, " Enqueued: ", Item

end if
case (2)

if (Is_Empty(Queue)) then
print *, " Can't dequeue. Queue is empty. "

else
call Dequeue(Queue, Item)
print *, " Dequeued: ", Item

end if
case default

print *, Op, " is not a valid operation."
end select

end do
call Destroy_Queue(Queue)
stop

end program D20

Array Implementation of Queue

An important queue application in computer systems is input and output buffering, motivated by the
slow execution speed of external data transmission. When an input file is opened, data is transmitted
from the file and is enqueued in an input buffer, to be dequeued during execution of a read statement.
Write statements enqueue data in an output buffer, from which it is written to the file as a separate opera-
tion while program execution proceeds. For maximum efficiency, these buffers are traditionally imple-
mented as one-dimensional arrays.

Although the customers in a supermarket queue move toward the front of the queue each time a
Dequeue operation occurs, queues implemented as arrays avoid the inefficiency that such moves would
entail. Each data item remains in a fixed position during queue operations, while front and rear queue
position marker values change. The rear position is incremented when an item is enqueued; the front
position is incremented when an item is dequeued.

In a typical queue, only a few items are stored at one time, while the total number of items that pass
through the queue during an interval is many times larger. Someone long ago discovered how to main-
tain a queue with an array just big enough to hold the maximum number of concurrently stored items. It
is not necessary to allocate separate space for all the items that pass through the queue — array space is
not needed for items that have not yet been enqueued or for those that have already been dequeued.

 Queues used for input or output are traditionally described as circular buffers, because their array
subscripts are kept within bounds by applying a circular transformation — that is, by reducing the sub-

6.2 QUEUES

142 Abstract Data Structures

h

ba

cba

dcba

dcb

edcb

fedcb

fedc

fed

gfed

hgfed

hgfe

hgf

hg

a

front of queue

rear of queue

script modulo the declared maximum array size — although the front and rear queue positions grow
indefinitely. Declaring the array with bounds (0: Maximum_Size – 1) simplifies this calculation slightly.
The relation Rear == modulo(Front + Current_Size, Maximum_Size) is always true. The
Current_Size of the queue is initially 0 and the Front and the Rear are both initially at position 0.

An Enqueue operation stores a new item at Rear, increments Rear with the circular transformation,
and increments Current_Size. As an example (obviously unrealistically small for an actual application),
if Maximum_Size is 6 the first six items will be enqueued at positions 0, 1, 2, 3, 4, and 5, respectively; the
seventh item reverts to position 0. Similarly, a Dequeue operation retrieves an item from Front, incre-
ments Front with the circular transformation, and decrements Current_Size.

Fig. 6.7 illustrates the following sequence of operations: enqueue a; enqueue b; enqueue c; enqueue
d; dequeue a; enqueue e; enqueue f; dequeue b; dequeue c; enqueue g; enqueue h; dequeue d; dequeue
e; dequeue f; dequeue g; dequeue h.

FIGURE 6.7. Array implementation of Queue

In the following table, these operations are mapped circularly into an array of size 6 with declared
bounds (0: 5) . The values of Front, Rear, and Current_Size after each operation are shown.

Rear (mod 6) Front (mod 6) Current Size Contents

(Start) 0 0 0 _ _ _ _ _ _
Enqueue a 1 0 1 a _ _ _ _ _
Enqueue b 2 0 2 a b _ _ _ _
Enqueue c 3 0 3 a b c _ _ _
Enqueue d 4 0 4 a b c d _ _
Dequeue a 4 1 3 _ b c d _ _
Enqueue e 5 1 4 _ b c d e _
Enqueue f 0 1 5 _ b c d e f
Dequeue b 0 2 4 _ _ c d e f
Dequeue c 0 3 3 _ _ _ d e f
Enqueue g 1 3 4 g _ _ d e f
Enqueue h 2 3 5 g h _ d e f
Dequeue d 2 4 4 g h _ _ e f
Dequeue e 2 5 3 g h _ _ _ f
Dequeue f 2 0 2 g h _ _ _ _
Dequeue g 2 1 1 _ h _ _ _ _
Dequeue h 2 2 0 _ _ _ _ _ _

143

Say it with Fortran

Example 21. The following Fortran program saves the actual Current_Size and the Front position
value, and applies the circular transformation each time Front is incremented. This program does not
store the Rear position but computes it in the Enqueue procedure from Front and Current_Size.

! Example 21. Array implementation of QUEUE OBJECT
module D21_M

implicit none
public :: Create_Queue, Destroy_Queue, Enqueue, Dequeue, &

Is_Empty, Is_Full
integer, parameter, private :: M = 6
type, public :: Queue_Type

private
integer :: Maximum_Size = M, Current_Size = 0, Front = 0
character (len = 12), pointer, dimension(:) :: Space_P
end type :: Queue_Type

contains

subroutine Create_Queue(Arg_Q)
type (Queue_Type), intent(in out) :: Arg_Q

! start subroutine Create_Queue
allocate(Arg_Q % Space_P(0: M - 1))
Arg_Q % Space_P = " "
return

end subroutine Create_Queue

subroutine Destroy_Queue(Arg_Q)
type (Queue_Type), intent(in out) :: Arg_Q
character (len = *) :: Info

! start subroutine Destroy_Queue
do while (.not. Is_Empty(Arg_Q))

call Dequeue(Arg_Q, Info)
print *, " Left on Queue: ", Info

end do
deallocate(Arg_Q % Space_P)
return

end subroutine Destroy_Queue

subroutine Enqueue(Arg_Q, Item)
type (Queue_Type), intent(in out) :: Arg_Q
character (len = *), intent(in) :: Item

! start subroutine Enqueue
if (Is_Full(Arg_Q)) then

print *, " Attempt to enqueue when queue is full. "
else

Arg_Q % Space_P(modulo(Arg_Q % Front + Arg_Q % Current_Size, &
Arg_Q % Maximum_Size)) = Item

Arg_Q % Current_Size = Arg_Q % Current_Size + 1
end if
return

end subroutine Enqueue

6.2 QUEUES

144

subroutine Dequeue(Arg_Q, Item)
type (Queue_Type), intent(in out) :: Arg_Q
character (len = *), intent(out) :: Item

! start subroutine Dequeue
if (Is_Empty(Arg_Q)) then

print *, " Attempt to dequeue when queue is empty. "
Item = " "

else
Item = Arg_Q % Space_P(Arg_Q % Front)
Arg_Q % Front = modulo (Arg_Q % Front + 1, Arg_Q % Maximum_Size)
Arg_Q % Current_Size = Arg_Q % Current_Size - 1

end if
return

end subroutine Dequeue

pure function Is_Empty(Arg_Q) result(X)
type (Queue_Type), intent(in out) :: Arg_Q
logical :: X

! start function Is_Empty
X = (Arg_Q % Current_Size <= 0)
return

end function Is_Empty

pure function Is_Full(Arg_Q) result(X)
type (Queue_Type), intent(in out) :: Arg_Q
logical :: X

! start function Is_Full
X = (Arg_Q % Current_Size >= Arg_Q % Maximum_Size)
return

end function Is_Full

end module D21_M

Special Considerations for High Efficiency

For maximum efficiency, traditional input and output buffer queues avoid the modulo function which,
according to mathematics, requires a divide operation. Instead, a simple circular transformation is com-
bined with each increment step; for example:

Rear = Rear + 1
if (Rear == MAXIMUM_SIZE) Rear = 0

Only the Front and Rear positions are actually needed for Enqueue and Dequeue operations; however,
the two positions are equal both when the queue is full and when it is empty. Some common highly
optimized implementations still manage to avoid calculating Current_Size at each operation, by making
the maximum queue size smaller by one than the array size. A Dequeue request is refused if Front and
Rear are equal; an Enqueue request is refused if the circularly transformed Rear + 1 is equal to Front.
(The circular transformation is based on array size and not on maximum queue size.)

Abstract Data Structures

145

Chapter 7 Trees

A tree may be defined recursively as a node with zero or more descendants, each of which is a tree. A tree
with no descendants is a leaf. A node has at most one ancestor; a node that has no ancestor is a root. A tree
has exactly one root. A tree has the further property that there is exactly one path from the root to each
node. Because of the natural representation of a tree as a recursive structure, tree operations are most
easily implemented with recursive procedures.

We have noted that arrays are relatively inflexible: the size cannot be changed after data is stored,
and inserting a new element in the middle requires moving all elements to the right of the insertion
point. Trees, like linked lists, do not have these disadvantages, since they are constructed with pointers
whose target nodes can be allocated dynamically. A tree can provide logarithmic access time to an arbi-
trary node, as compared to the linear time requirement for a linked list.

The operation of deleting a particular node from a tree is often rather complicated, however. Some
suggestions are given below. Weiss suggests, “... If the number of deletions is expected to be small, then
a popular strategy is lazy deletion. . .”33 This means that the node is not actually deleted, but is left in the
tree and marked as “inactive”; the tree is then occasionally reconstructed, deleting all inactive nodes at
once.

7.1 BINARY SEARCH TREES
A binary tree is one in which each node has at most two descendants, called the left subtree and the right
subtree. Either subtree, or both, may be absent. A binary search tree is a binary tree with a form that makes
it especially suitable for storing and retrieving data. (It is a binary tree and it is a search tree; the name is
unrelated to binary search.) Each node of a binary search tree has a search key, and presumably also some
data or a pointer to data, at each node. For simplicity, it will be assumed unless stated otherwise that the
keys at all nodes in the tree are distinct.

A binary search tree also has an order property at each node: the key at a given node is greater than
any key in the left subtree and is smaller than any key in the right subtree.

A typical binary search tree implementation has a declared pointer whose target is the root node;
initially this pointer is null. As each data item is read, a node is allocated, with null pointers to the left
and right subtrees, and the key (and other information) in the new node is generated from data just read.

The first node (the root node) becomes the target of the root pointer. More generally, a search begins
by comparing the new key with the key at the root; the search continues with the left subtree if the new
key is smaller, or with the right subtree if the new key is larger. The search terminates when the indicated
subtree is absent; i.e., the pointer to it is null. The newly allocated node is then inserted as the new target
of the null pointer. It is important to note that an unsuccessful search always terminates at a leaf — i.e, at
a null pointer.

33 Data Structures and Algorithm Analysis, 104

146

subroutine Look_Up(Search_Key)
:

call R_Look_Up(Root_NP, Search_Key)
:

contains
recursive subroutine R_Look_Up(Arg_NP)

:
if (associated(Arg_NP)) then

if (Search_Key < Arg_NP % Key) then
R_Look_Up(Arg_NP % Left, Search_Key)

else if (Search_Key > Arg_NP % Key) then
R_Look_Up(Arg_NP % Right, Search_Key)

else
call Insert_Target(Arg_NP)

end if
:

Note that the tree search is implemented recursively. Recursion is natural for tree structures, and it
is not inordinately wasteful because the depth of recursion depends only upon the distance of the cur-
rent node from the root, which is expected to be much smaller than the total number of nodes in the tree
(but see Section 7.2).

The tree print operation is also implemented recursively. When the following subroutine is called
with the root pointer as its actual argument, the left subtree will be printed, then the current node, and
finally the right subtree. Thus the entire tree will be printed in key order:

recursive subroutine R_Print_Tree(Arg_NP)
type(Node_Type), pointer :: Arg_NP

! start subroutine R_Print_Tree
if (associated(Arg_NP)) then

call R_Print_Tree(Arg_NP % Left_NP)
print *, Arg_NP % Info % Data, Arg_NP % Info % Key
call R_Print_Tree(Arg_NP % Right_NP)

end if
return
end subroutine R_Print_Tree

 A search without insertion is possible, of course. One application is to locate the largest or smallest
key in a tree by searching with an “infinitely large” or “infinitely small” search key. A search for the
largest key, for example, aways goes to the right until a node with a null right pointer is encountered; the
key at this node is the maximum.

Deleting a node is not difficult unless the both subtrees are present. If both are absent, the node is
deleted by deallocating a pointer in the predecessor node. If one subtree is present, the pointer in the
predecessor node is changed so that its target is the subtree.

Weiss describes the more difficult process of deleting a node with two subtrees:34 The strategy is to
replace the key of this node with the smallest key in its right subtree, which is easily found by the
method just described, and recursively delete that node. (Remember that in any tree the node with the
smallest key has an empty right subtree.)

Say it with Fortran

Example 22. The following module implements Look_Up and Print_Tree operations for a binary
search tree.

Trees

34 Data Structures and Algorithm Analysis, 103

147

! Example 22. Binary Search Tree
module D22_M

implicit none
public :: Look_Up, Print_Tree
integer, parameter, private :: KEY_LEN = 16
type, public :: Info_Type

character(len = KEY_LEN) :: Key
integer, dimension(2) :: Data = (/ 0, 0 /)

end type Info_Type
type, private :: Node_Type

type(Info_Type) :: Info
type (Node_Type), pointer :: Left_NP
type (Node_Type), pointer :: Right_NP

end type Node_Type
type (Node_Type), pointer, private :: Root_NP = null()

contains

subroutine Look_Up(Item)
! start subroutine Look_Up

call R_Look_Up(Root_NP)
return

contains
recursive subroutine R_Look_Up(Arg_NP)

type (Node_Type), pointer :: Arg_NP
! start subroutine R_Look_Up

if (associated(Arg_NP)) then
if (Item % Key < Arg_NP % Info % Key) then

call R_Look_Up Arg_NP % Left_NP) ! Search the left subtree
else if (Item % Key > Arg_NP % Info % Key) then

call R_Look_Up(Arg_NP % Right_NP) ! Search the right subtree
else

Modify the target node if a matching key is found.

call Modify_Target(Arg_NP)
end if

else
call Insert_Target(Arg_NP, Item)

end if
return

end subroutine R_Look_Up

subroutine Insert_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Insert_Target

Insertion always occurs at a leaf, so there is no need to move pointers as with a linked list.

allocate(Arg_NP)
Arg_NP % Info = Item
return

end subroutine Insert_Target

7.1 BINARY SEARCH TREES

148

subroutine Modify_Target(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine Modify_Target
Arg_NP % Info % Data(2) = Arg_NP % Info % Data(2) + 1
return

end subroutine Modify_Target

end subroutine Look_Up

subroutine Print_Tree()
! start subroutine Print_Tree

call R_Print_Tree(Root_NP)
return

end subroutine Print_Tree

recursive subroutine R_Print_Tree(Arg_NP)
type(Node_Type), pointer :: Arg_NP
character (len = 20) :: Line

! start subroutine R_Print_Tree
if (associated(Arg_NP)) then

call R_Print_Tree(Arg_NP % Left_NP)
print *, Arg_NP % Info
call R_Print_Tree(Arg_NP % Right_NP)

end if
return
end subroutine R_Print_Tree

end module D22_M

program D22
use D22_M
implicit none
type (Info_Type) :: Item
integer :: EoF

! start program D22

Item % Data(2) = 1
Item % Data(1) = 0
open (1, file = "dxf.txt", status = "old", action = "read", &

position = "rewind")
do

Item % Data(1) = Item % Data(1) + 1
read (1, *, iostat = EoF) Item % Key
if (EoF < 0) exit
call Look_Up(Item)

end do
call Print_Tree()
stop

end program D22

Trees

149

The Balance Problem
The depth of a node in a tree is its distance from the root node — i.e., the number of steps required to
move from the root to the given node along a search path. The height of a tree (or subtree) is the maxi-
mum depth of any of its nodes.

For a binary search tree created at random, there should be about two nodes with depth one, four
with depth two, etc.; the expected search time for an arbitrary key is O(lg N). However, most trees
encountered in actual applications are far from random. As an extreme case, suppose that a binary
search tree is created from data already in (increasing) order. Each data item will be inserted into the
right subtree of the previously created node; all left subtrees will be empty. In this case, the binary search
tree becomes a linked list with extra unused left pointers. In practice, most data sets posses some struc-
ture, which almost always causes the corresponding binary search tree to be somewhat unbalanced —
i.e., to have some nodes whose left and right subtrees differ considerably in height.

We next consider two different ways to keep a tree from becoming badly unbalanced. Section 7.4
describes a different approach based on an augmented linked list instead of a tree.

7.2 AVL TREES
An AVL tree is a binary search tree that is continually adjusted to keep it almost balanced.35 The heights
of the left and right subtrees at each node are not permitted to differ by more than one. Each node now
contains an integer that records the height of the (sub)tree for which that node is the root. Whenever a
node is inserted, a test is made to determine whether the tree is still almost balanced.

We begin by creating a simple tool to avoid repeated testing for empty subtrees: a separate function
that returns the height of the subtree for which the argument node is the root. This function returns –1
for a null argument node.

pure function Height(Arg_NP) result (Height_R)
type (Node_Type), pointer :: Arg_NP
integer :: Height_R

! start function Height
if (associated(Arg_NP)) then

Height_R = Arg_NP % Node_Height
else

Height_R = -1
end if
return

end function Height

Rotating a Subtree
A recursive call to R_Look_Up will have resulted in an insertion at some lower level of the tree (except
in case of a match), and may have caused the tree to become unbalanced.

Assuming that the tree was almost balanced before the latest insertion, either it is still almost bal-
anced (i.e., the maximum height difference is still 0 or 1) or the height difference just above the insertion
point has increased from 1 to 2.

7.2 AVL TREES

35 G.M. Adelson-Velskii and E.M. Landis, “An Algorithm for the Organization of Information,” Soviet Math.
Doklady 3 (1962), 1259-1263. An extensive discussion with detailed examples may be found in Weiss, Data
Structures and Algorithms, 107–119. The description here follows Weiss.

150

In the following diagram (Fig. 7.1), triangles represent subtrees. The short triangles all represent
trees of equal height, and the tall triangle represents a tree whose height is greater by 1. Suppose that a
new node has just been inserted into one of the subtrees of node E, creating a height difference of 2 at S.

J

N

E

E

J

S

W S

N W

FIGURE 7.1. Left rotation at S to correct unbalanced AVL tree

A “left rotation” is applied to correct this imbalance, as follows:
• Node J is copied to a temporary node.

• The right subtree of J replaces J as the left subtree of the unbalanced node S.

• Node S is moved to the right subtree of J in the temporary node.

• Finally, the temporary node replaces S.

Temp_NP => Arg_NP % Left_NP
Arg_NP % Left_NP => Temp_NP % Right_NP
Temp_NP % Right_NP => Arg_NP
Arg_NP => Temp_NP

A left rotation corrects imbalance caused by insertion into the right subtree of the right subtree. An
entirely analogous right rotation corrects imbalance caused by insertion into the left subtree of the left
subtree. A slightly more complicated case occurs when the fault occurs at the right subtree of the left
subtree, or vice versa.

When a node, such as S in Figure 7.2, is found to be unbalanced to the left, a test made to determine
whether or not current item was inserted in the left or right subtree of the left subtree. In the mixed case,
shown here, a right rotation is applied to the left subtree at J, followed by a left rotation at S. The same
operations are performed in the two cases shown, where the insertion has occurred either at L or at P.

Trees

The balance condition is checked immediately after return from the recursive call at each level up to
the root. However, no further unbalance can occur above the level at which balance has been restored.

call R_Look_Up(Arg_NP % Left_NP)
if (Height(Arg_NP % Left_NP) == Height(Arg_NP % Right_NP) + 2) then

if (Item % Key > Arg_NP % Left_NP % Info % Key) &
call Rotate_Right(Arg_NP % Left_NP)

call Rotate_Left(Arg_NP)
end if

:

151

FIGURE 7.2. Right rotation at subtree J followed by left rotation at S (two cases)

Say it with Fortran

Example 23

! Example 23. AVL (Adelson-Velskii & Landis) Tree
module D23_M

implicit none
public :: Print_Tree, Look_Up, Initialize
type, public :: Info_Type

character(len = 15) :: Key = " "
integer, dimension(2) :: Data = (/ 0, 1 /)

end type Info_Type
type, private :: Node_Type

type(Info_Type) :: Info
type (Node_Type), pointer :: Left_NP = null(), Right_NP = null()
integer :: Node_Height = 0

end type Node_Type
type (Node_Type), pointer, private :: Root_NP = null()

contains

subroutine Look_Up(Item)
type (Info_Type), intent(in) :: Item

! start subroutine Look_Up
call R_Look_Up(Root_NP)
return

contains

J

E

L

N

P

W

S

J

E L

N

P

S

W

J

E L

N

P

S

W

J

E

L

N

P

W

S

J

E L

N

P

S

W

J

E L

N

P

S

W

7.2 AVL TREES

152

recursive subroutine R_Look_Up(Arg_NP)
type (Node_Type), pointer :: Arg_NP

! start subroutine R_Look_Up
if (associated(Arg_NP)) then

if (Item % Key < Arg_NP % Info % Key) then
call R_Look_Up(Arg_NP % Left_NP)

Check whether the tree is still in balance.

if (Height(Arg_NP % Left_NP) &
== Height(Arg_NP % Right_NP) + 2) then

if (Item % Key > Arg_NP % Left_NP % Info % Key) &
call Rotate_Right(Arg_NP % Left_NP)

call Rotate_Left(Arg_NP)
else

Arg_NP % Node_Height = 1 + max(Height(Arg_NP % Left_NP), &
Height(Arg_NP % Right_NP))

end if
else if (Item % Key > Arg_NP % Info % Key) then

Same as the previous case, except that Right and Left are interchanged.

:
else ! Item % Key == Arg_NP % Info % Key

call Modify_Target(Arg_NP)
end if

else
call Insert_Target(Arg_NP)

end if
return

contains

subroutine Rotate_Left(Arg_NP)
type (Node_Type), pointer :: Arg_NP
type (Node_Type), pointer :: Temp_NP

! start subroutine Rotate_Left
Temp_NP => Arg_NP % Left_NP
Arg_NP % Left_NP => Temp_NP % Right_NP
Temp_NP % Right_NP => Arg_NP
Arg_NP % Node_Height = 1 + &

max(Height(Arg_NP % Left_NP), Height(Arg_NP % Right_NP))
Temp_NP % Node_Height = 1 + &

max(Height(Temp_NP % Left_NP), Arg_NP % Node_Height)
Arg_NP => Temp_NP
return

end subroutine Rotate_Left

subroutine Rotate_Right(Arg_NP)
:

end subroutine Rotate_Right

pure function Height(Arg_NP) result (Height_R)
:

end function Height

Subroutines Modify_Target , Insert_Target , and Print_Tree go here

end subroutine Look_Up

end module D23_M

Trees

153

7.3 B-TREES
A B-tree is a more general search tree that is not necessarily binary. Each node has room for M pointers
and M – 1 keys, where M is an integer called the order of the B-tree. A B-tree of order 2 is a (rather
inefficient) binary search tree; however, the most important application is for maintaining a large data
bases on an external device. The search requires only about logM N external access operations, so for this
application large values of M (typically, 256) are common.

Each node in the B-tree is a data structure that includes an integer, an array of structures to hold the
keys and other data, and an array of pointers to nodes at the next lower level. (Since Fortran does not
permit arrays of pointers, this component of the node is implemented as an array structures of type BOX,
each holding a pointer.

7.3 B-TREES

each in node 3
N_Keys

Figure 7.3. In a B-tree of order 5, each node has room for 5 pointers and 4 keys

 The integer N_Keys gives the number of elements of the array that are currently occupied by data.
Fig. 7.3 shows a node of a B-tree of order 5, with three keys currently active.

A search begins by examining all of the keys at the root node. A binary search, in the ordered array
of data keys at the current node, locates two adjacent keys between which the search key value lies
(unless a match occurs, in which case the search terminates immediately and the data item is modified
as required). There is a downward pointer corresponding to each possible binary search result, includ-
ing 0 (for the case in which the search key is less than the smallest data key) and N_Keys (for the case in
which the search key is larger than the largest data key). The search continues recursively with the
indicated downward pointer unless this pointer is null, in which case a new data item is inserted into the
current node.

call Binary_Search(Arg_NP % Info(1: Arg_NP % N_Keys) % Key, &
Carrier % Info % Key, Loc)

if (Loc(2) == Loc(1)) then ! Search key matches a key at current node
call Modify_Target(Arg_NP, Loc(1))

else if (associated(Arg_NP % BOX(Loc(1)) % Next_NP)) then
call R_Look_Up(Arg_NP % BOX(Loc(1)) % Next_NP) ! Recursive call

else
call Insert_Target(Arg_NP, Loc(1))

end if

A complication occurs if insertion is required at a node with no room to store another data item. If
this overflow occurs, the node is split into two nodes; one of these replaces the current node and the other
(here called Carrier) is propagated upward for insertion at the next higher level of the B-tree. This may
cause the next higher level to overflow as well; if overflow propagates all the way to the root, the root
itself is split — this is the only operation that increases the height of the tree.

The insertion procedure is thus rather intricate. The present implementation simplifies it a bit by by
providing extra space in each node, so that insertion can be accomplished before the test for oveflow:
each node has room for M keys instead of M – 1, and for M + 1 pointers instead of M. It would be possible
to avoid this extra space by testing for overflow before insertion, copying a full node to a slightly larger
temporary storage space, performing the insertion, spliting the temporary node, and finally copying the
temporary node back to its original position. However, a simple B-tree algorithm already wastes a fair
amount of space, which can be reduced only by more sophisticated procedures.

154

Upward propagation of overflow gives a nice illustration of recursion. At the upper level, a search
has located the position of the search key among the data keys in the node. A recursive call with the
corresponding downward key has resulted in insertion at some lower level. In case the recursive call
returns to the upper level with an indication of overflow propagation, the earlier search result will have
been retained in the local environment and will still be available for inserting the data item that has
propagated upward to this level.

Say it with Fortran

Example 24.

! Example 24. B Tree
module D24_M

implicit none
public :: Look_Up, Print_Tree
integer, private, parameter :: M = 4
integer, parameter, public :: KEY_LEN = 16
type, public :: Info_Type

character(len = KEY_LEN) :: Key = " "
integer, dimension(2) :: Data = (/ 0, 1 /)

end type Info_Type
type, private :: BOX_Type

type (Node_Type), pointer :: Next_NP = null()
end type BOX_Type
type, private :: Node_Type

integer :: N_Keys = 0
type(Info_Type), dimension(M) :: Info
type(BOX_Type), dimension(0: M) :: BOX ! Array of pointers

end type Node_Type
type, private :: Van_Type

type (Info_Type) :: Info
type (Node_Type), pointer :: Next_NP = null()

end type Van_Type
type (Node_Type), pointer, private :: Root_NP

contains

subroutine Look_Up(Arg_Info) ! Start from Root
type (Info_Type), intent(in) :: Arg_Info
type (Node_Type), pointer :: Temp_NP
type (Van_Type) :: Carrier

! start subroutine Look_Up
Carrier % Info = Arg_Info
call R_Look_Up(Root_NP)
if (associated(Carrier % Next_NP)) then

Split has propagated all the way up to the root. Make a new Root node.

Temp_NP % BOX(0) % Next_NP => Root_NP
Root_NP => Temp_NP
nullify(Temp_NP)
call Insert(Root_NP, 0)

end if
return

contains

Trees

155

recursive subroutine R_Look_Up(Arg_NP)
type (Node_Type), pointer :: Arg_NP
integer, dimension(2) :: Loc

! start subroutine R_Look_Up

Locate the search key among the keys at the current node.

Loc = Binary_Search(Arg_NP % Info(1: Arg_NP % N_Keys) % Key, &
Carrier % Info % Key)

if (Loc(2) == Loc(1)) then
call Modify_Target(Arg_NP, Loc(1))

else if (associated(Arg_NP % BOX(Loc(1)) % Next_NP)) then
call R_Look_Up(Arg_NP % BOX(Loc(1)) % Next_NP)

If Carrier % Next_P is not null on return from the recursive call, a split at the lower level has overflowed and
propagated up to the current level. During the recursive call, Loc(2) has retained the value that was previously
set for the current instance.

if (associated(Carrier % Next_NP)) &
call Insert_Target(Arg_NP, Loc(1))

else

 A null pointer signals the base of recursion: Insert a new node with the new key into the current leaf.

call Insert_Target(Arg_NP, Loc(1))
end if
return

end subroutine R_Look_Up

subroutine Modify_Target(Arg_NP, Loc_1)
:

end subroutine Modify_Target

subroutine Insert_Target(Arg_NP, Loc_1)

Insert a new item in the middle of a node.

type (Node_Type), pointer :: Arg_NP
integer, intent(in) :: Loc_1
integer :: Loop, A_Keys, C_Keys

! start subroutine Insert_Target

Insert, ignoring overflow until later: There is one extra space in the node for temporary use. Move up Info from
{Loc_1 + 1: N_Keys } to {Loc_1 + 2: N_Keys + 1}; insert at Loc_1 + 1

Arg_NP % Info(Loc_1 + 2: Arg_NP % N_Keys + 1) = &
Arg_NP % Info(Loc_1 + 1: Arg_NP % N_Keys)

Arg_NP % Info(Loc_1 + 1) = Carrier % Info

Move up pointers from {Loc_1 + 1: N_Keys } to {Loc_1 + 2: N_Keys + 1}; insert at Loc_1 + 1

do Loop = Arg_NP % N_Keys, Loc_1 + 1, -1
Arg_NP % BOX(Loop + 1) % Next_NP => Arg_NP % BOX(Loop) % Next_NP

end do
Arg_NP % BOX(Loc_1 + 1) % Next_NP => Carrier % Next_NP
Arg_NP % N_Keys = Arg_NP % N_Keys + 1
nullify(Carrier % Next_NP)

Insertion is complete. Now check for oveflow.; if there is overflow, split the current node. Otherwise, Carrier %
Next_NP remains null as a signal to the next higher level that there is no pending upward propagation.

7.3 B-TREES

156

if (Arg_NP % N_Keys >= M) then
allocate(Carrier % Next_NP)
A_Keys = (M - 1) / 2
C_Keys = M - A_Keys - 1

The first A_Keys items remain in the current node, the item at A_Keys + 1 moves to Carrier for upward
propagation, and the remaining C_Keys items are copied to the new successor of Carrier .

Carrier % Info = Arg_NP % Info(A_Keys + 1)
Carrier % Next_NP % Info(1: C_Keys) = Arg_NP % Info(A_Keys + 2: M)
do Loop = 0, C_Keys

Carrier % Next_NP % BOX(Loop) % Next_NP => &
Arg_NP % BOX(Loop + A_Keys + 1) % Next_NP

end do
Arg_NP % N_Keys = A_Keys
Carrier % Next_NP % N_Keys = C_Keys

end if
return

end subroutine Insert_Target

pure function Binary_Search(Array, Key) result(Location)
:

end function Binary_Search

end subroutine Look_Up

subroutine Print_Tree()
integer :: Total

! start subroutine Print_Tree
call R_Print_Tree(Root_NP)
return

end subroutine Print_Tree

recursive subroutine R_Print_Tree(Arg_NP)
type(Node_Type), pointer :: Arg_NP
integer :: Loop

! start subroutine R_Print_Tree
if (associated(Arg_NP)) then

do Loop = 0, Arg_NP % N_Keys
call R_Print_Tree(Arg_NP % BOX(Loop) % Next_NP)
if (Loop < Arg_NP % N_Keys) print *, Arg_NP % Info(Loop + 1)

end do
end if
return

end subroutine R_Print_Tree

end module D24_M

Trees

157

7.4 SKIP LISTS
Can an ordered linked list be organized in some special way to make binary searching possible? With an
extra pointer to the middle of the linked list, a single key comparison would cut the linear search time in
half. Additional pointers to the midpoints of each of the halves would further reduce linear search time.

A skip list extends this idea, reducing search time from O(n) to O(lg n).36 In a growing list, the mid-
point and the other subdivision points change continually; instead of maintaining fixed subdivisions, a
skip list inserts random subdivision points that approximate the comparison points of the binary search
algorithm for arrays.

The maximum number of pointers at each node (the order of the skip list) should be an overestimate
of the base-2 logarithm of the number of nodes that will be in the list. If the order is too small, the
efficiency of the algorithm will suffer somewhat; if the order is too large, the storage space for extra
pointers at each node will be wasted, but no extra search time is required. However, as shown later,
Fortran permits postponed space allocation, which eliminates wasted space and makes it unnecessary
to specify a fixed order in advance.

Each pointer at a node is designated by a pointer level between 1 and the order of the skip list. The
node level is the number of pointers at a node; i.e., the maximum pointer level for the node. The order of
the skip list is the largest node level in the skip list. For each node to be inserted, a random node level is
generated. Approximately one-half of the nodes have level 1, with one pointer at level 1; one-fourth of
the nodes have level 2, with pointers at levels 1 and 2; one-eighth of the nodes have level 3, with pointers
at levels 1, 2, and 3; etc. Integers with this distribution can be generated as –lg R, where R is obtained
from a uniform distribution on the real interval (0.0, 1.0). Optimum performance requires a good ran-
dom distribution.

do
call random_number(R)
L = ceiling(- LG_OF_E * log(R))

end do

For example, in the following sequence of 16 random numbers, eight are between 0.5 and 1.0, at
level 1; four are between 0.25 and 0.5, at level 2; three are between 0.125 and 0.25, at level 3; and one is
between 0.0625 and 0.125, at level 4:

R L R L
0.131546 3 0.613989 1
0.887143 1 0.318195 2
0.214255 3 0.902918 1
0.991417 1 0.350382 2
0.751726 1 0.865537 1
0.266004 2 0.088034 4
0.725909 1 0.583162 1
0.358161 2 0.200850 3

When a node is inserted at level L, its Ith pointer (for I = 1 to L) is adjusted to point to the next node
whose level is I or greater.

Let us suppose that the following sixteen items are to be inserted: for; a; large; ordered; array; binary;
search; is; much; more; efficient; than; the; linear; just; described. With the random level sequence of the
previous example, the skip list appears as shown in Fig. 7.4 after insertion of the first fifteen of these
items.

7.4 SKIP LISTS

36 Skip lists are described by W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communications
of the ACM 33 (1990), 668-676. Skip lists, as well as some alternatives, are explained by M.A. Weiss in Data
Structures and Algorithm Analysis, second edition, Benjamin/Cummings, 1995.

158

R
oo

t_
B

A
 (

B
ox

 a
rr

ay
)

a

ar
ra

y

bi
na

ry

ef
fic

ie
nt

fo
r

is ju
st

la
rg

e

lin
ea

r

m
or

e

m
uc

h

or
de

re
d

se
ar

ch

th
an th
e

S
ea

rc
h

P
at

h

N
ew

 N
od

e

1
2

3
4

1
2

3
4

FIGURE 7.4. Skip list before insertion of “described”

 The sequence of nodes at a given level is, in effect, an ordinary linked list that begins with the root
pointer at the given level and terminates with a null pointer. At level 1, the list consists of the entire
sequence of nodes. The level 2 sequence consists of the nodes with keys binary, for, is, large, linear, more,
and than. At level 3, the keys are for, large, and linear. There is only one node at level 4, with the key
linear.

The highest node level that actually occurs in the skip list at any time is recorded as Max_Level. The
root consists of an array of pointers; for each level from 1 through Max_Level, the root pointer points to
the first node at that level — i.e., to a at level 1, to binary at level 2, to for at level 3, and to linear at level
4. Another array, called the search path, is used during a search to store a pointer for each level. Fortran
syntax does not actually permit arrays of pointers; a variable with both pointer and dimension attributes
is a pointer to an array. However, an array with elements of BOX_Type (a derived type with a single
component that is a pointer) is suitable.

Searching in a skip list starts from the root pointer at the maximum level, and continues at the same
level until the current pointer at this level is null or its target node has a key larger than the search key.
The search does not terminate at this point; instead, the current status is recorded (by making the current
pointer — i.e, its BOX— the target of the Path array element at this level) and the search continues with
the current pointer, but at the next lower level. When the search at the lowest level terminates, the search
process is complete.

Let us trace the search with the sixteenth key, described, as the search key.
The search starts at the current maximum level 4, The linked list at this level is Root_BA(4) →

linear → null. Starting with the level 4 pointer in the root as the current pointer, the search key is com-
pared with linear. This key is too large, so the level 4 root pointer (BOX) is made the target of the Path
array element at level 4.

The linked list at level 3 is Root_BA(3) → for → large → linear → null. The level 4 search did not
move away from the root, so the level 3 search continues from the level 3 root pointer. The first compari-
son is with for, which is again too large, so the level 3 root pointer (BOX) is made the target of the level 3
Path element.

Trees

159

As before, the level 2 search continues from the level 2 root pointer; the linked list at this level is
Root_BA(2) → binary → for → is → large → linear → more → than → null. The key binary is smaller
than the search key but for is larger, so level 2 ends. The pointer (BOX) in the node whose key is binary is
made the target of the Path element at level 2.

The final search starts with the pointer at level 1 in the node whose key is binary. Its target at this
level is efficient, which is larger, so level 1 terminates and the current pointer (i.e., the BOX in node
binary) is made the target of the level 1 Path element. The path is shown at the lower left in Fig. 7.4. The
path pointer targets at levels 4 and 3 are BOXes in the root array; the path pointer targets at levels 2 and
1 are BOXes in the node with key “binary”.

The new node, described, is to be inserted after the current node position at level 1. A level for the
node is generated — this time, 3, so described is inserted with level 3, following the node binary.

After insertion of described, the skip list appears as shown in Fig. 7.5.

a

ar
ra

y

bi
na

ry

ef
fic

ie
nt

fo
r

is ju
st

la
rg

e

lin
ea

r

m
or

e

m
uc

h

or
de

re
d

se
ar

ch

th
an th
e

de
sc

rib
ed

N
ew

 N
od

e
at

 L
ev

el
 3

1
2

3
4

R
oo

t_
B

A
 (

B
ox

 a
rr

ay
)

FIGURE 7.5. Skip list after insertion of “described”

Insertion of a new node requires the following steps:
1. Generate the Level for the new node.

2. Allocate a new node with a full set of pointers.37

3. At each level up to the new node level, insert the new node:

New_NP % BOX_Array(Level) = Path(Level) % BP ! Copy target
Path(Level) % BP % Next_NP => New_NP ! Copy pointer

An interesting feature of this implementation is allocation of a new root whenever the maximum
level increases. Initially, the maximum level is zero and the Root and Path arrays are not allocated. At the
first call to Look_Up , the outer search loop is skipped and Insert_Target is called. This procedure
generates a level for the new node to be inserted, which will be nonzero and is therefore certain to be
larger than the current maximum level (initially zero). This increase in the maximum level triggers a call
to the procedure New_Root , which allocates Root and Path arrays with enough space for the new maxi-
mum level.

7.4 SKIP LISTS

37 The expected number of pointers is N at level 1, N/2 at level 2, N/4 at level 3, etc.; thus, only about two
pointers per node are actually required.

160

subroutine New_Root(New_NP, L)
type (Node_Type), pointer :: New_NP
integer, intent(in) :: L
type (BOX_Type), dimension(:), pointer :: Temp_BAP ! To BOX array
integer :: Level

! start subroutine New_Root

L is the new maximum level. Allocate Temp_BAP which will become the new root. Copy the old items and pointers
from Root_BAP to Temp_BAP ; link the new root at higher levels to the node just inserted, which is the first node
that has been created with these higher levels.

allocate(Temp_BAP(L))
do Level = 1, Max_Level

Temp_BAP(Level) = Root_BAP(Level) ! Target of Temp_BAP(Level)
end do
do Level = Max_Level + 1, L

Temp_BAP(Level) % Next_NP => New_NP
end do

Clean up: deallocate old root and path, set new root pointer, increase maximum level, and reallocate Path with
room for the new maximum level.

if (Max_Level > 0) then
deallocate(Root_BAP)
deallocate(Path)

end if
Root_BAP => Temp_BAP
Max_Level = L
allocate(Path(Max_Level))
return

end subroutine New_Root

Say it with Fortran

Example 25. A Fortran program for skip lists closely resembles a linked list program that employs the
pointer to pointer technique. However the target type for Root_BAP and for the traveling pointer is now
an array of BOX_Type (with the pointer in each BOX initially nullified); also, each node now consists of
an Info component and an array of BOX_Type. The traveling pointer is initialized with a copy of Root_BAP,
and can advance to the BOX array component of a successor node.

The Path, as described earlier, is an array of pointers to nodes, but the actual Fortran program is
based on a slightly different description. First, node pointers do not have to be stored: what is needed for
insertion at each level is a pointer to a BOX— namely, to the element of the BOX array that is the current
target of the traveling pointer. Second, as just noted, Fortran does not support arrays of pointers, so the
Path is an array of structures, each containing a BOX pointer.

! Example 25. Skip list
module D25_M

implicit none
public :: Look_Up, Print_List
integer, parameter, private :: S_LEN = 20
type, public :: Info_Type ! Also used in main program

character (len = S_LEN) :: Key
integer, dimension(3) :: Data = (/ 0, 1, 999 /)

end type Info_Type

Trees

161

type, private :: BOX_Type
type (Node_Type), pointer :: Next_NP => null()

end type BOX_Type
type, private :: Node_Type

type (Info_Type) :: Info
type (BOX_Type), dimension(:), pointer :: BOX_Array

end type Node_Type
type, private :: Path_Type

type (BOX_Type), pointer :: BP
end type Path_Type

Root_BAP (BOX array pointer) and Path (array of BOX type) are allocated when Max_Level increases. A zero
value for Max_Level signals that Root_BAP has not been initialized.

type (BOX_Type), dimension(:), pointer, private :: Root_BAP, Trav_BAP
type (Path_Type), dimension(:), allocatable, private :: Path
integer, private, save :: Max_Level = 0

contains
subroutine Look_Up(Item)

type (Info_Type), intent(in) :: Item
integer :: Level

! start subroutine Look_Up
Trav_BAP => Root_BAP ! Copy Root_BAP to Trav_BAP
do Level = Max_Level, 1, -1

do
if (associated(Trav_BAP(Level) % Next_NP)) then

if (Item % Key == Trav_BAP(Level) % Next_NP % Info % Key) then
call Modify_Target(Trav_BAP(Level) % Next_NP)
return

else if (Item % Key &
 > Trav_BAP(Level) % Next_NP % Info % Key) then
Trav_BAP => Trav_BAP(Level) % Next_NP % BOX_Array
cycle ! Keep looking at the same level

end if
end if
exit ! This level found null or "<"; go to next level

end do
Path(Level) % BP => Trav_BAP(Level) ! Copy pointer

end do
call Insert_Target() ! All levels found null or "<"
return

contains

subroutine Insert_Target()
type (Node_Type), pointer :: New_NP
integer :: Level, L

! start subroutine Insert_Target

Generate the level for the new node that will be inserted. Allocate the node and allocate its BOX array with pointer
for each level. Copy data into the new node.

call Get_Level(L)
allocate(New_NP)
allocate(New_NP % BOX_Array(L))
New_NP % Info = Item
New_NP % Info % Data(3) = L

7.4 SKIP LISTS

162

Use Path to link the new node into the skip list at each level. If the level of the new node exceeds Max_Level ,
a new Root_BAP will be generated and the higher levels will be linked to it.

do Level = 1, min(L, Max_Level)
New_NP % BOX_Array(Level) = Path(Level) % BP
Path(Level) % BP % Next_NP => New_NP

end do
if (L > Max_Level) call New_Root(New_NP, L)
return

end subroutine Insert_Target

subroutine Get_Level(L)
:

end subroutine Get_Level

subroutine Modify_Target(Arg_NP)
:

end subroutine Modify_Target

subroutine New_Root(New_NP, L)
:

end subroutine New_Root

end subroutine Look_Up

subroutine Print_List()
! start subroutine Print_List

Trav_BAP => Root_BAP
do while (associated(Trav_BAP(1) % Next_NP))

print *, Trav_BAP(1) % Next_NP % Info
Trav_BAP => Trav_BAP(1) % Next_NP % BOX_Array ! Advance to next node

end do
return

end subroutine Print_List

end module D25_M

7.5 COMPARISON OF ALGORITHMS
A sequence of 1,024 character strings, with 27 duplicates and 997 different strings, was generated ran-
domly (see the electronically distributed file dxf.txt). These were then inserted into an array, a linked
list, a simple binary search tree, an AVL tree, B trees of order 2, 4, and 32, and a skip list. Comparisons
and other relevant operations were counted during the tests.

An array (with binary search) required 9,765 comparisons and 245,314 moves.
A linked list required 261,245 comparisons.
A simple binary search tree required 12,363 comparisons and reached level 20. Considerably worse

performance might be expected with nonrandom input data.
An AVL tree required 9,858 comparisons and 668 rotations; the maximum level was 11.
A B tree of order 2 (level 30) required 38,285 comparisons and 5,066 moves; order 4 (level 7) required

14,613 comparisons and 2,807 moves; order 32 (level 3) required 11,165 comparisons and 12,327 moves.
A skip list required 14,825 comparisons; the final maximum level was 9. (This test employed the

“good” random number generator in the electronic version of the skip list module. One intrinsic
random_number subroutine required more than 19,000 comparisons.)

Trees

163

Conclusions:

For maintaining an expanding list in internal storage, the two best choices, among the alternatives de-
scribed in this book, are an AVL tree and a skip list. The AVL tree requires fewer comparisons, but
rotations are rather expensive. The skip list is more complicated, but would probably be more efficient
over all.

7.5 COMPARISON OF ALGORITHMS

164

POSSIBLE ANSWER to Exercise 5, Section 1.2 (page 35):

! Binary search in ordered array (with recursion).
pure function Search (Array, Key) result (Location)

real, intent(in), dimension(:) :: Array
real, intent(in) :: Key
integer :: Location(2)

! start function Search
Location = Recursive_Binary_Search(0, size(Array) + 1)
return

contains
pure recursive function Recursive_Binary_Search(L_1, L_2) &

result(L_R)
integer, intent(in) :: L_1, L_2
integer, dimension(2) :: L_R
integer :: Middle

! start function Recursive_Binary_Search
if (L_2 - L_1 <= 1) then

L_R = (/ L_1, L_2 /) ! Array constructor
else

Middle = (L_1 + L_2) / 2
if (Key > Array(Middle)) then

L_R = Recursive_Binary_Search(Middle, L_2)
else if (Key < Array(Middle)) then

L_R = Recursive_Binary_Search(L_1, Middle)
else

L_R = Middle ! Whole array assignment
end if

end if
return

end function Recursive_Binary_Search
end function Search

165

Index

abstraction 121, 126–27, 134, 137
activation record 79, 91, 109–10, 125
algorithm 61, 64, 81–82, 89–90, 94–99, 119–21,

145–46, 149, 154, 157
allocate 29–41, 57–59, 92–105, 111, 114, 130–31,

134–35, 139–42, 147, 156, 159–61
array 1–35, 41, 119–20

see also input and output, ordered array,
rank, section, shape, storage sequence,
subscript, whole array

array constructor 10
array of pointers 41
array of structures 3, 47–49
array section 2, 13–14, 22–34, 40, 55, 61–65
association status of pointer 36–38
assumed length 14, 46, 56
assumed shape 5, 20–48, 56, 63
asymptotic analysis 90, 97–99
automatic storage 20–36

see also activation record
auxiliary variable 11, 47–49, 54, 66
AVL tree 149–51, 162–63
balanced tree 120, 149–52, 157

see also AVL tree, B-tree, skip list
binary insertion 60–63, 76, 95–100
binary search 15–19, 34–35, 60–61, 75, 96, 119–20,

145, 154–57, 162–64
binary search tree 145–49, 153, 162
binary tree 64, 145
BOX (structure containing a pointer) 57–58, 108,

112–118, 137–39, 153–62
Brainerd 103
B-tree 153
bubble sorting 43
character length 14

see also assumed length
circular buffer 141–44
circular linked list 118
complexity 99–100

see also algorithm; asymptotic analysis
constructor, array 10
Crout 24–33
cuttoff (in quicksort) 90–93

dangling pointer 39
data abstraction 126

see also abstraction
deallocate 38–39
deferred shape array 46
dequeue 136–44
dereferencing of pointer 38
derived type 48, 59, 103, 126, 132–34, 158
DO construct 63, 83

see also loop
doubly linked list 118
dummy argument 3, 46–47, 56, 63, 109, 125, 134
elimination, Gauss 20–24
encapsulation 126

see also abstraction
enqueue 136–44
factorization, Crout 24–34
Fibonacci 80–82, 101
function result 19, 105, 125
garbage 39
Gauss 20–24
go to 82–83, 161
graph 121, 126
Hanoi puzzle 80
heap storage 37–41, 59
heapsort 43, 64–66, 74–76, 96–100
information hiding 126–27, 134

see also abstraction
initial value of pointer 36–41
inheritance 15, 125
input and output of array 9

see also array
insertion sort 43, 52–66, 73, 76, 80, 90–100,

104–08, 113–14, 118–20, 145–50, 153–60
see also binary insertion

intent 46
intrinsic function 7, 50, 95
iteration 13–15, 18–19, 22–36, 45, 55, 73–74, 77–82,

93–95, 106, 112
iterative refinement 28–34
key for sorting or searching 12, 15–19, 35–36, 42–

44, 47–51, 57–58, 64–65, 86–88, 96, 106–09,
119–20, 145–49, 153–59

Index

166

Knuth 19, 43, 50, 64, 90
L’Hospital’s rule 97
labyrinth 121–24, 127, 130
linear algebraic equations, systems of 20–34
linear search 17
linked list 61, 80, 102–13, 116–20, 127, 130–34,

137–38, 145–49, 157–60
local variable 49, 79, 91, 125
logarithm 27, 99, 157
loop 12–19, 35, 44–51, 54–58, 61–63, 81, 90, 93–95,

99, 106, 155–56, 159
Maron and Lopez 21
mathematical induction 93, 101
matrix 4
Mauchly 60
median-of-3 pivot in quicksort 86–93
module 46–49, 56, 91, 102, 110–12, 115–19,

126–48, 151–56, 160–62
modulo intrinsic function 141–44
Moret and Shapiro 90–93
null pointer 36–41
object 3, 63, 102, 126–27, 134–35, 138, 142
operation count 11–14, 18–19, 43, 46, 54, 61–62,

73, 75–76, 92–93, 96–97, 99
optimization 80, 86, 95, 144
ordered array 15–19, 96, 119–20
ordered list 108
overflow in B-tree 153–55
pivot in quicksort 86–93, 99
pointer 5, 12, 57–59, 64, 102–20, 131–39, 142,

146–61
postfix 124
Press 21
queue 136–44
quicksort 43, 74, 77–79, 86–100
random number 15, 43, 46, 52–55, 60–62, 66,

73–76, 89–99, 119, 149, 157, 162
rank of array or array section 2, 5, 8–11
recursion 35, 77–87, 90–93, 97, 108–12, 115–17,

125–26, 145–56, 164
reverse 55, 61, 76–80, 90, 117, 125–26
robust 95
root of list or tree 64–66, 69, 73, 102–120, 130–31,

134–39, 145–62
rotation in AVL tree 150
running time 11
save attribute 39
scalar 17–19, 57, 91, 127
section of array 7–11

see also array
Sedgewick 62, 97
selection sort 43–46, 49–51, 55, 69, 96–97, 100
shape of an array 3–8
Shell sort 43, 62–66, 76, 96–97, 100–01

skip list 120, 157–63
sort 42

see also binary insertion, heapsort, insertion
sort, quicksort, shell sort, sort_3

sort_3 43, 75, 89, 92–93
space economy 95
stability of sorting algorithms 51, 55, 61–62
stack 91, 97, 121–36, 139
static storage 36–38
Stirling’s forumula 100
storage management 39
storage sequence of array elements 9–10

see also array
structures 3–5, 44, 47–48, 51, 57–59, 79, 102,

121–23, 126, 145–46, 149, 143, 157, 160
subscript 2, 9–11

see also array, vector subscript
subtree 66, 145–49
swap 12, 43–50, 65, 69, 63–75, 87–88, 92–95
tail recursion 82
target 36–41
threaded list 118
Thomas and Finney 97
towers of Hanoi 80
tree 61, 64, 73, 79, 120, 145–56, 162–63
undefined association status 36
vector subscript 9–11

see also array
Weiss 145–46, 149, 157
whole array 5–7

see also array
wrapper 91, 110
Zahn 15

Index

