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�Socrates Dialectical Process: The Þrst step is the separation of a subject into its elements.

After this, by deÞning and discovering more about its parts, one better comprehends the entire

subject �

Socrates (469-399) BCE�

Chapter 1

Basic Concepts

Numerical methods have been around for a long time. However, the usage

of numerical methods was limited due to the lengthy hand calculations involved

in their implementation. In our current society the application of numerical

analysis and numerical methods occurs in just about every Þeld of science and

engineering. This is due in part to the rapidly changing digital computer in-

dustry. Digital computers have provided a fast computational device for the

development and implementation of numerical methods which can handle a va-

riety of difficult mathematical problems. To understand how numerical methods

and numerical analysis techniques are developed the reader is required to have

knowledge of certain background material from calculus and linear algebra. We

begin by reviewing some fundamentals which are used extensively in this text.

Derivative of a Function

The derivative of a continuous function y = f(x) is deÞned by the limiting

process

lim
h→0

f(x+ h)− f(x)
h

= f "(x) =
dy

dx
,

if this limit exits. This limiting process can be represented using the alternative

notations

dy

dx
= lim

∆x→0

∆y

∆x
or

dy

dx x=x0

= f "(x0) = lim
x→x0

f(x)− f(x0)
x− x0 .

The notation m = f "(x0) denotes the derivative evaluated at the point x0. This

derivative represents the slope m of the tangent line to the curve y = f(x) which

passes through the point (x0, f(x0)).

� BCE (�Before Common Era�) replaces B.C. (�Before Christ�) usage.
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Fundamental Theorem of Calculus

Let F (x) denote any function such that dF (x)
dx = f(x), where f(x) is a contin-

uous function over the domain a ≤ x ≤ b. Divide the domain (a, b) into n equal

subintervals of length ∆x = b−a
n . This can be done by deÞning a = x0 and b = xn

with xi = x0 + i∆x for i = 0, 1, 2, . . . , n. The resulting numbers

a = x0 < x1 < x2 < · · · < xn−1 < xn = b
are then said to partition the interval (a, b) into n equal subintervals. Let ci
denote a number in the ith subinterval, where xi−1 ≤ ci ≤ xi for i = 1, 2, . . . , n and
form the sum

Sn =

n!
i=1

f(ci)∆x = f(c1)∆x+ f(c2)∆x+ · · ·+ f(cn)∆x

The fundamental theorem of calculus states that

lim
n→∞Sn = lim

n→∞

n!
i=1

f(ci)∆x =

" b

a

f(x) dx = F (x) ]ba = F (b)− F (a)

represents the area under the curve y = f(x), above the x-axis if f(x) > 0, and

between the limits x = a and x = b.

Note that if G(x) =
" x

a

f(t) dt, then dG(x)
dx = f(x).

Taylor Series for Functions of a Single Variable

A function f(x) of a single variable x is said to be analytic in the neighborhood

of a point x = x0 if it can be represented in a convergent power series of the form

f(x) =f(x0) + f
"(x0)(x− x0) + f

""(x0)
2!

(x− x0)2 + · · ·+ f
m(x0)

m!
(x− x0)m + · · ·

f(x) =
∞!
n=0

f (n)(x0)

n!
(x− x0)n

(1.1)

where by deÞnition 0! = 1 and the zero derivative denotes the function itself so

that f (0)(x0) = f(x0). For a Taylor series to exist in the neighborhood of a point x0,

one must assume that the function f(x) has continuous derivatives of all orders

which can be evaluated at the point x0.

Some well known Taylor series expansions are

ex =1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

sinx =x− x
3

3!
+
x5

5!
− x

7

7!
+ · · ·

cosx =1− x
2

2!
+
x4

4!
− x

6

6!
+ · · ·
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If the Taylor series expansion given by equation (1.1) is truncated after the

mth derivative term, then one can write

f(x) = f(x0) + f
"(x0)(x− x0) + f

""(x0)
2!

(x− x0)2 + · · ·+ f
m(x0)

m!
(x− x0)m + Error (1.2)

where the error term is given by

Error =
f (m+1)(ξ)

(m+ 1)!
(x− x0)m+1, x0 < ξ < x. (1.3)

Taylor series expansions of the form

f(x0 + h) =f(x0) + f
"(x0)h+ f ""(x0)

h2

2!
+ · · ·+ f (m)(x0)h

m

m!
+ f (m+1)(ξ1)

hm+1

(m+ 1)!

f(x0 − h) =f(x0)− f "(x0)h+ f ""(x0)h
2

2!
+ · · ·+ (−1)mf (m)(x0)h

m

m!
+ (−1)m+1f (m+1)(ξ2) hm+1

(m+ 1)!

are used extensively in later chapters.

A continuous function f(x) is said to have a root of multiplicity m if

f(x0) = f
"(x0) = f ""(x0) = · · · = f (m−1)(x0) = 0 but f (m)(x0) #= 0 (1.4)

That is, a root of multiplicity m is such that the function and its Þrst (m − 1)
derivatives are zero at x = x0. If m = 1, then the root is called a simple root. For

example, if, f(x0) = 0, and f "(x0) #= 0, then x0 is a simple root. In contrast,

the conditions f(x0) = 0, f "(x0) = 0, and f ""(x0) #= 0, imply x0 is a root of

multiplicity 2. Note that a function f(x) which has a root x0 of multiplicity m

has the Taylor series expansion about x0 of the form

f(x0 + h) = f
(m)(x0)

hm

m!
f (m+1)(x0)

hm+1

(m+ 1)!
+ · · ·

since the function and its Þrst (m− 1) derivatives are zero at x = x0.
The Landau Symbol O

The Landau symbol O, sometimes referred to as �big Oh�, is used to compare
the behavior of one function f(h) with another function g(h) as h→ 0. One writes

f(h) = O(g(h)) if |f(h)| ≤ C|g(h)|, C is a positive constant,

for all h sufficiently small such that lim
h→0

|f(h)|
|g(h)| ≤ C <∞. For example, consider the

Taylor series expansion for sinx. One can write

sinx = x− x
3

3!
+O(x5)
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since

lim
x→0

sinx− x− x3

3!

x5
=
1

5!
= Constant

The Landau symbol O is used in perturbational methods and numerical methods
and is sometimes referred to as an order relation. It will be used throughout this

text in the truncation of inÞnite series to denote the order of the error terms.

For example, the Taylor series expansion for f(x0 + h) when truncated after the

second term can be expressed

f(x0 + h) = f(x0) + f
"(x0)h+O(h2)

to indicate that the error term is proportional to h2. One can write

Error ≤ C|h|2 for any constant C satisfying
f ""(ξ)
2!

≤ C.
The notation O(hn) is used to denote the error being small and behaving like
Chn, as h gets small, where C is a constant. The statement Error = O(hn) is
read �the error is of order hn� and means limh→0(Error) = Chn for some positive

constant C.

Taylor Series for Functions of Two Variables

A Taylor series expansion of a function of two variables f(x, y) in the neigh-

borhood of a point (x0, y0) can be written in the form

f(x, y) =f(x0, y0) +
∂f

∂x
(x− x0) + ∂f

∂y
(y − y0)

+
1

2!

#
∂ 2f

∂x2
(x− x0)2 + 2 ∂

2f

∂x∂y
(x− x0)(y − y0) + ∂

2f

∂y2
(y − y0)2

$
+ · · ·

(1.5)

where all partial derivatives are to be evaluated at the point (x0, y0). The above

Taylor series expansion can also be written in an operator notation. DeÞne the

partial derivative operators

Dxf =
∂f

∂x
, Dyf =

∂f

∂y
, D2

x =
∂ 2f

∂x2
, DxDy =

∂ 2f

∂x∂y
, D2

yf =
∂ 2f

∂y2
, etc.

and write the Taylor series expansion given by equation (1.5) in the special case

where x = x0+h and y = y0+k. One can then write equation (1.5) in the operator

form

f(x0 + h, y0 + k) =f(x0, y0) +

∞!
n=1

1

n!
(hDx + kDy)

nf(x, y)

f(x0 + h, y0 + k) =f(x0, y0) + (hDx + kDy)f +
1

2!
(hDx + kDy)

2f

+
1

3!
(hDx + kDy)

3f +
1

4!
(hDx + kDy)

4f + · · ·

(1.6)



5

where all partial derivatives are to be evaluated at the point (x0, y0). Note that the

operator terms (hDx+kDy)mf can be evaluated by using the binomial expansion.

Example 2-1. (Taylor series.) If f(x, y) and all of its partial derivatives through

the nth order are deÞned and continuous over the rectangular region R deÞned

by R = { a ≤ x ≤ b, c ≤ y ≤ d} and the Taylor series is truncated after the nth
derivative terms, then the error term can be calculated from knowledge of Taylor

series expansions of a single variable. That is, one can replace x by x0 + t(x− x0)
and y by y0 + t(y − t0) in f(x, y) to obtain a function of the single variable t. One
can deÞne

φ(t) = f(x0 + t(x− x0), y0 + t(y − t0))
so that with (x, y) and (x0, y0) Þxed, the function φ(t) is a function of a single

variable t. Expanding φ(t) about t = 0 gives

φ(t) = φ(0) + φ"(0)t+ φ""(0)
t2

2!
+ · · ·+ φ(n)(0) t

n

n!
+ Error

where

Error = φ(n+1)(t∗)
tn+1

(n+ 1)!
, 0 < t∗ < t.

Note that at t = 1 we have φ(1) = f(x, y) and when t = 0 we have φ(0) = f(x0, y0) so

that one can write

φ(1) = f(x, y) = φ(0) + φ"(0) +
φ""(0)
2!

+ · · ·+ φ
(n)(0)

n!
+Error

where for x− x0 = h and y − y0 = k we have
φ(0) =f(x0, y0)

φ"(0) =
%
∂f

∂x
(x− x0) + ∂f

∂y
(y − y0)

&
= (hDx + kDy)f

φ""(0) =
%
∂ 2f

∂x2
(x− x0)2 + 2 ∂

2f

∂x∂y
(x− x0)(y − y0) + ∂

2f

∂y2
(y − y0)2

&
= (hDx + kDy)

2f

...

φ(n)(0) =(hDx + kDy)
nf

where all partial derivatives are to be evaluated at the point (x0, y0). The error

term is given by

Error
t=1

=
φ(n+1)(t∗)
(n+ 1)!

= (hDx + kDy)
n+1f

x=ξ,y=η

for 0 < t∗ < 1,

where ξ = x0 + t∗h, η = y0 + t∗k represent some point within the region R.
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Mean Value Theorem

The mean value theorem states that if f(x) is a continuous function on the

closed interval [a, b], then there exists a point ξ, satisfying a < ξ < b, such that

the slope ms of the secant line through the points (a, f(a)) and (b, f(b)) equals the

slope of the curve f(x) at x = ξ. This can be written and illustrated as follows.

ms =
f(b)− f(a)
b− a = f "(ξ), a < ξ < b. (1.7)

Mean Value Theorem for Integrals

The mean value theorem for integrals states the if f(x) is a continuous func-

tion and integrable over an interval [a, b], then there exists a value ξ satisfying

a < ξ < b such that the average value of the function times the length of the

interval from a to b must equal the area under the curve f(x) between a and b.

This can be written and illustrated as follows.

f(ξ)(b− a) =
" b

a

f(x) dx, a < ξ < b (1.8)

The extended mean value theorem for integrals states that if f(x) and g(x)

are continuous functions on the closed interval [a, b] and g(x) does not change sign

throughout the interval, then there exits a point ξ such that" b

a

f(x)g(x) dx = f(ξ)

" b

a

g(x) dx, a < ξ < b. (1.9)

Other forms of this mean value theorem are for the conditions f(x) is positive

and monotonic over the interval (a,b) and g(x) is integrable, then one can say

there exists at least one value for ξ such that" b

a

f(x)g(x) dx = f(a)

" ξ

a

g(x) dx, a ≤ ξ ≤ b.
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Extreme Value Theorem

The extreme value theorem states that if f(x) is a continuous function over

the closed interval [a, b], then there will exist points ξ and η such that f(ξ) is a

maximum value of f(x) over the interval and f(η) is a minimum value of f(x) over

the interval. One can then write

minimum = f(η) ≤ f(x) ≤ f(ξ) = maximum, for x ∈ [a, b].

Rolle�s Theorem

The Rolle�s theorem assumes that f(x) is

continuous and differentiable on the closed

interval [a, b]. One form of Rolle�s theorem

states that if f(a) = 0 and f(b) = 0, then

there must exist at least one point ξ in the

interval such that f "(ξ) = 0, a < ξ < b.

Intermediate Value Theorem

The intermediate value theorem states

that if f(x) is continuous on the closed

interval [a, b] and there exists a value f0
such that f(a) < f0 < f(b), then there

exists at least one value ξ such that

f(ξ) = f0. In the accompanying Þgure

note that for the f0 selected there ex-

ists more than one value for ξ such

that f(ξ) = f0.

Number Representation

A base 10 (decimal) number system represents a number N in terms of

various powers of 10 in a series having the form

N = · · ·+ αn(10)n + αn−1(10)n−1 + · · ·+ α3(10)3 + α2(10)2 + α1(10)1 + α0(10)0

+ β1(10)
−1 + β2(10)−2 + β3(10)−3 + · · ·

(1.10)

where . . . ,αn,αn−1, . . . ,α3,α2,α1,α0,β1, β2, β3, . . . are coefficients representing one of

the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Leading zeros and trailing zeros are not written.
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For example, the number N=8326.432 in the base ten number system is really a

shorthand representation for the number

N = 8(10)3 + 3(10)2 + 2(10)1 + 6(10)0 + 4(10)−1 + 3(10)−2 + 2(10)−3.

A base 16 (hexadecimal) number system represents a number N in terms of

various powers of 16 in a series having the form

N = · · ·+ αn(16)n + αn−1(16)n−1 + · · ·+ α3(16)3 + α2(16)2 + α1(16)1 + α0(16)0

+ β1(16)
−1 + β2(16)−2 + β3(16)−3 + · · ·

(1.11)

where . . . ,αn,αn−1, . . . ,α3,α2,α1,α0,β1, β2, β3, . . . are coefficients representing one of

the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E,F}. (When the base is larger than 10 it
is customary to use the letters A−Z to represent the needed digits.) Numbers in
the base b number system are represented using a subscript b. Some examples

of base 10 numbers represented in the base 16 number system are listed for

reference.

10 =A16

11 =B16

12 =C16

13 =D16

14 =E16

15 =F16

16 =1016

20 =1416

30 =1E16

40 =2816

50 =3216

60 =3C16

70 =4616

80 =5016

90 =5A16

100 =6416

A base 8 (octal) number system represents a number N in terms of various

powers of 8 in a series having the form

N = · · ·+ αn(8)n + αn−1(8)n−1 + · · ·+ α3(8)3 + α2(8)2 + α1(8)1 + α0(8)0

+ β1(8)
−1 + β2(8)−2 + β3(8)−3 + · · ·

(1.12)

where . . . ,αn,αn−1, . . . ,α3,α2,α1,α0,β1, β2, β3, . . . are coefficients representing one of

the digits {0, 1, 2, 3, 4, 5, 6, 7}.
A base 2 (binary) number system represents a number N in terms of various

powers of 2 in a series having the form

N = · · ·+ αn(2)n + αn−1(2)n−1 + · · ·+ α3(2)3 + α2(2)2 + α1(2)1 + α0(2)0

+ β1(2)
−1 + β2(2)−2 + β3(2)−3 + · · ·

(1.13)

where . . . ,αn,αn−1, . . . ,α3,α2,α1,α0,β1, β2, β3, . . . are coefficients representing one of

the digits {0, 1}.
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Note that a base b number system requires b-digits to be used as coefficients

in representing the numbers. For example, the Babylonians of long ago used a

base 60 number system which requires 60 symbols to be used as digits. Some

conventions from this system that have survived the many centuries is the fact

that we have 60 seconds in a minute, 60 minutes in a hour, and 360 degrees in

a circle.

Some other names associated with number systems are the following. A

base 3 number system is called a ternary system, a base 4 system is called a

quaternary system, a base 5 system is called a quinary system, a base 6 number

system is called a senary system, a base 7 number system is called a septenary

system, a base 9 number system is called a nonary system, a base 11 number

system is called a undenary number system, and a base 12 number system is

called a duodenary number system.
Number Conversion

To convert a number N from a decimal base to base b it is necessary to

calculate the coefficients αn,αn−1, . . . ,α1,α0, β1, β2, . . . in the base b number system,

where N = αnb
n+αn−1bn−1+ · · ·+α2b2+α1b1+α0b0+β1b−1+ β2b−2+ · · · . The integer

part of N is denoted I[N ] and can be expressed in the factored form

I[N ] = α0 + b(α1 + b(α2 + b(α3 + · · ·+ bαn) · · ·))

from which one can observe that if the integer part of N is divided by b, then α0 is

the remainder and the quotient is Q1 = α1+b(α2+b(α3+· · · bαn) · · ·)). If Q1 is divided
by b, then the remainder is α1 and the new quotient is Q2 = α2+b(α3+ · · ·αnb) · · ·)).
Continuing this process and saving the remainders α0,α1, . . . ,αn the coefficients

for the integer part of N can be determined. The fractional part of N is denoted

F [N ] and can be expressed in the form

F [N ] = β1b
−1 + β2b−2 + β3b−3 + · · ·

from which one can observe that if F [N ] is multiplied by b, then there results

bF [N ] = β1 + β2b
−1 + β3b−2 + · · ·

so that β1 is the integer part of bF [N ] and the term β2b
−1+β3b−2+· · · represents the

fractional part of bF [N ]. Hence if one continues to multiply the resulting fractional

parts by b, then one can calculate the coefficients β1, β2,β3, . . . associated with the

fractional part of the base b representation of N.
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Example 2-2. (Number conversion.)

Convert the number N = 123.640625 to a base 2 representation.

Solution: We start with the integer part of N and write I[N ] = 123 =

n!
i=0

αi(2)
i.

Now divide 123 by 2 and save the remainder R. Continue to divide the resulting

quotients and save the remainders as the remainders give us the coefficients

α0,α1, . . . ,αn in the base 2 representation. One can construct the following table

to Þnd the coefficients

N I[N/2] =Q R

123 I[123/2]=61 1 = α0

61 I[61/2]=30 1 = α1

30 I[30/2]=15 0 = α2

15 I[15/2]=7 1 = α3

7 I[7/2]=3 1 = α4

3 I[3/2]=1 1 = α5

1 I[1/2]=0 1 = α6

The integer part of N can now be represented I[N ] = 123 = 11110112 The

fractional part of N is written in the form F [N ] = 0.640625 =

∞!
i=1

βi(2)
−i. Now

continue to multiply the fractional part by 2 and save the integer part each time.

These integer parts represent the coefficients β1, β2, . . . . One can construct the

following table for determining the coefficients

N 2N F[2N] I[2N]
0.640625 1.28125 0.28125 1 = β1
0.28125 0.5625 0.5625 0 = β2
0.5625 1.125 0.125 1 = β3
0.125 0.25 0.25 0 = β4
0.25 0.50 0.50 0 = β5
0.50 1.00 0.00 1 = β6

The fractional part of N can be represented F [N ] = 0.640625 = 0.1010012 and the

original number N has the base 2 representation N = 123.640625 = 1111011.1010012.


