
411

�There is no result in nature without a cause; understand the cause and you will have no

need for the experiment.�

Leonardo da Vinci (1452-1519)

Chapter 10

Monte Carlo Methods

In very broad terms one can say that a computer simulation is the process of

designing a model of a real or abstract system and then conducting numerical ex-

periments using the computer to obtain a statistical understanding of the system

behavior. That is, sampling experiments are performed upon the model. This

requires that certain variables in the model be assign random values associated

with certain probability distributions. This sampling from various probability

distributions requires the use of random numbers to create a stochastic simu-

lation of the system behavior. This stochastic simulation of system behavior is

called a Monte Carlo simulation. Monte Carlo simulations are used to construct

theories for observed behavior of complicated systems, predict future behavior

of a system, and study effects on Þnal results based upon input and parameter

changes within a system. The stochastic simulation is a way of experimenting

with a system to Þnd ways to improve or better understand the system behavior.

Monte Carlo methods use the computer together with the generation of ran-

dom numbers and mathematical models to generate statistical results that can

be used to simulate and experiment with the behavior of various business, engi-

neering and scientiÞc systems. Some examples of application areas where Monte

Carlo modeling and testing have been used are: the simulation and study of spe-

ciÞc business management practices, modeling economic conditions, war games,

wind tunnel testing of aircraft, operations research, information processing, ad-

vertising, complex queuing situations, analysis of mass production techniques,

analysis of complex system behavior, analysis of traffic ßow, the study of shield-

ing effects due to radiation, the modeling of atomic and subatomic processes,

and the study of nuclear reactor behavior. These are just a few of the numerous

applications of Monte Carlo techniques.

Monte Carlo simulations usually employ the application of random num-

bers which are uniformly distributed over the interval [0, 1]. These uniformly

distributed random numbers are used for the generation of stochastic variables

412

from various probability distributions. These stochastic variables can then be

used to approximate the behavior of important system variables. In this way

one can generate sampling experiments associated with the modeling of system

behavior. The statistician can then apply statistical techniques to analyze the

data collected on system performance and behavior over a period of time. The

generation of a system variable behavior from a speciÞed probability distribu-

tion involves the use of uniformly distributed random numbers over the interval

[0, 1]. The quantity of these random numbers generated during a Monte Carlo

simulation can range anywhere from hundreds to hundreds of thousands. Con-

sequently, the computer time necessary to run a Monte Carlo simulation can

take anywhere from minutes to months depending upon the both the computer

system and the application being simulated. The Monte Carlo simulation pro-

duces various numerical data associated with both the system performance and

the variables affecting the system behavior. These system variables which model

the system behavior are referred to as model parameters. The study of the sen-

sitivity of model parameters and their affect on system performance is a large

application area of Monte Carlo simulations. These type of studies involve a

great deal of computer time and can be costly. We begin this introduction to

Monte Carlo techniques with a discussion of random number generators.

Uniformly distributed random numbers

Examine the built in functions associated with the computer language you

use most often. Most computer languages have some form of random number

generator which can be used to generate uniformly distributed random numbers

between 0 and 1. The majority of these random number generators use mod-

ulo arithmetic to generate numbers which appear to be uniformly distributed.

Consequently, the random number generators are called pseudorandom number

generators because they are not truly random. They only simulate the behavior

of a uniformly distributed random number on the interval [0, 1]. The basic equa-

tions used in generating these pseudorandom numbers usually have one of the

forms

Xi+1 ≡ AXi (modM) A multiplicative congruential generator

or Xi+1 ≡ AXi +C (modM) A mixed congruential generator

where A,C and M are nonnegative integers. The sequence of numbers {Xi}, for
i = 0, 1, 2, . . . , generated by a congruential generator, needs a starting value X0.

The initial value X0 is called the seed of the random number generator. The

413

quantity Xi+1 represents one of the integers from the set {0, 1, 2, . . . ,M − 1}. In
general A ≡ B (modM) is read A is congruent to B modulo M , where the quantity
A is calculated from the relation A = B −K ∗M, where K = [B/M] denotes the

largest positive integer resulting from the truncation of B/M to form an inte-

ger. The quantity A represents the remainder when B is divided by M. By using

modulo arithmetic, the numbers of the sequence {Xi} eventually start to repeat
themselves and so only a Þnite number of distinct integers are generated by the

above methods. The number of integers generated by the congruential gener-

ator before repetition starts to occur is called the period of the pseudorandom

number generator.

Using the mixed congruential generator, with a given seed X0, one can write

X1 = AX0 + C −MK1 K1 is some appropriate constant.

X2 = AX1 + C −MK2 K2 is some appropriate constant.

Substituting for X1 and simplifying gives

X2 = A
2X0 +C(1 +A)−M(K2 +AK1)

X3 = AX2 +C −MK3 K3 is some appropriate constant.

Substituting for X2 and simplifying gives

X3 = A
3X0 +C(1 +A+A

2)−M(K3 +K2A+K1A
2)

... Continuing in this manner one can show

Xn = A
nX0 +C(1 +A+A

2 + · · ·+An−1)−MK
where K = Kn + Kn−1A + · · · + K1A

n−1 =
!n

i=1KiA
n−i is some new constant.

Knowledge of the geometric series enables us to simplify the above result to

the form Xn = AnX0 +
C(An − 1)
A− 1 modM. Now if for some value of n we have

X0 = A
nX0 +

C(An − 1)
A− 1 modM, then one can write

(An − 1)
"
X0 +

C

A− 1
#
≡ 0 modM (10.1)

The minimum value of n which satisÞes the equation (10.1) is the period of

the pseudorandom number generator. The special case where C = 0 is easier to

understand. In this special case one can employ the Fermat theorem that if M

is prime and A is not a multiple of M , then AM ≡ 1 modM. Then as a special

case of the equation (10.1) n =M = P is the period of the pseudorandom number

generator.

The equation (10.1) has been extensively analyzed using number theory and

one conclusion is that the quantity M can be selected as a power of 2. The

414

power to which 2 is raised is based upon the number of bits b associated with

a computer word size. The largest integer that can be stored using b-bits is

2b− 1. Selecting M = 2b enables the largest possible period to be obtained for the

computer system being used. Alternatively, M can be selected as a large prime

number compatible with the computer word size. Once M is selected the value of

Amust satisfy 0 < A < M . The sequence of values {Xi} are then determined by the
values M , A, X0 and C and so the sequence generated will have a period P ≤M.
That is, P ≤ M distinct values will be generated before the sequence starts to

repeat itself. For each index i, the uniformly distributed pseudorandom numbers

Ri are calculated from the relation Ri = Xi/M and satisfy 0 < Ri < 1. Optimally,

one should select the quantities M , A, X0, and C to maximize the period of the

sequence and reduce the degree of correlation between the numbers generated.

However, this is not always achieved.

There are many Fortran language packages created and sold under different

brand names. Some Fortran languages treat the random number generator as a

subroutine and in others the random number generator is treated as an intrinsic

function. In the Fortran examples that follow it is assumed that there exists a

subroutine RANDOM(RN) which generates a uniform random number RN be-

tween 0 and 1. It is also assumed there is a Fortran subroutine SEED(INTEGER)

for setting the seed value for the pseudo random number generator. These sub-

routines can then be used to create other subroutines which return random

variates satisfying various conditions. Some examples are illustrated.

SUBROUTINE RAN1(IX,N)

C Generate random integer IX

C Satisfying 0 .LE. IX .LE. N

CALL RANDOM(RN)

IX=INT(RN*(N+1))

RETURN

END

SUBROUTINE RAN2(NMIN,NMAX, N)

C Generate random integer N

C satisfying NMIN .LE. N .LE. NMAX

CALL RANDOM(RN)

N=NMIN +INT((NMAX+1-NMIN)*RN)

RETURN

END

Chi-square χ2 goodness of Þt

The chi-square goodness of Þt test is used to compare actual frequencies

from sampled data with frequencies from theoretical distributions. The chi-

square statistic is calculated from the relation

χ2 =
n$
k=1

(fok − fek)2
fek

(10.2)

415

where fok is the observed frequency of the kth class or interval, fek is the expected

frequency of the kth class or interval due to theoretical considerations, and n is

the number of classes or intervals. Let the theoretical distribution function be

denoted by F (x). From this theoretical probability distribution one can calculate

the probability pk that a random variable X takes on a value in the kth interval.

One Þnds fek = npk as the number of theoretical expected values in the kth class

or interval. In using the chi-square goodness of Þt test, one is testing the null

hypothesis H0 that there is no signiÞcant difference between the frequencies of

the sampled data and that expected from theoretical considerations. Ideally, if

χ2 = 0 then the observed frequencies and theoretical frequencies agree exactly.

For χ2 > 0 there is a discrepancy between the observed and theoretical frequencies

and one must resort to tables of χ2 critical values, associated with a signiÞcance

level and degrees of freedom, to determine if one should accept or reject the

null hypothesis. If the computed value of χ2 is greater than the tabular critical

value at some signiÞcance level found in tables, then one must reject the null

hypothesis.

As an example, apply the chi-square goodness of Þt test to the random num-

ber generator associated with your computer programming language. Write

a computer program to generate 1000 random numbers between 0 and 1.

You can then divided the interval 0 to 1 into 10 classes using the intervals

(0, .1), (.1, .2), · · · , (.9, 1.0) and then sort the 1000 random numbers to determine the
number in each class. These values are the observed frequencies determined by

the experiment. If the pseudorandom number generator is truly uniform, then

the theoretical frequency associated with each class would have a value of 100.

Note that when using the chi-square goodness of Þt test one should always use

actual counts for the frequencies. Do not use relative frequencies or percentages.

Also the theoretical frequencies associated with each class or interval should

number greater than 5. If this is not the case then adjacent intervals or nearest

neighbor intervals must be combined into a new class or interval with frequency

greater than or equal to 5. The degrees of freedom ν associated a chi-square

test is given by ν = n − 1 −m where n is the number of classes or intervals and

m is the number of parameters in the theoretical distribution being tested. For

the chi-square goodness of Þt test associated with our random number generator

test, the value of the degrees of freedom is ν = 10− 1− 0 = 9. One would then Þnd
a chi-square table of critical values, such as the one on page 497, and look up

416

the critical value associated with a (1 − α) signiÞcance level by selecting an ap-
propriate column and then select a row of the table which represents the degrees

of freedom. The tabulated value found is then compared with the calculated

χ2-value to determine if the random number generator differs signiÞcantly from

the theoretical values expected.

Example 10-1. (Chi-square test.)

A pseudorandom number generator associated with a certain Fortran com-

puter language was used to generate 1000 random numbers X. The frequencies

associated with 10 equal spaced intervals over the range (0,1) where calculated

and are given in the accompanying table.

Use a chi-square test to compare the resulting frequencies with theoretical

values associated with a uniform distribution of random numbers.

The chi-square statistic is found to be

χ2 =
10$
k=1

(fok − 100)2
100

= 14.90

This number is compared with the tabular

value of 23.5893 from the χ20.995 column and

ν = 9 row of the chi-square table of critical

values found on page 497. Since the χ2-

value 14.90 is less than the critical value of

23.5893 we can accept the numbers gener-

ated by the Fortran computer code as rep-

resenting a uniform random number gen-

erator.

X range Frequency Symbol

X ≤ 0.1 106 fo1

0.1 < X ≤ 0.2 110 fo2

0.2 < X ≤ 0.3 79 fo3

0.3 < X ≤ 0.4 99 fo4

0.4 < X ≤ 0.5 88 fo5

0.5 < X ≤ 0.6 98 fo6

0.6 < X ≤ 0.7 125 fo7

0.7 < X ≤ 0.8 107 fo8

0.8 < X ≤ 0.9 97 fo9

0.9 < X ≤ 1.0 91 fo10

Discrete and continuous distributions

In constructing Monte Carlo simulations it is important that one know how

to generate random variables X which come from a speciÞed probability distri-

bution. Let X denote a random variable with cumulative probability distribu-

tion function F (x) and let RN , denote a uniformly distributed random number

0 ≤ RN ≤ 1. If RN = F (X), then the inverse function gives X = F−1(RN). The

situation is illustrated in the Þgure 11-1.

The computer generation of a random variable X associated with a discrete or

continuous distribution can be illustrated graphically. Calculate the distribution

417

function F (x) associated with a discrete or continuous probability function or

relative frequency function f(x). Then generate a uniform random number RN ,

0 ≤ RN ≤ 1 and plot this number on the F (x) axis and then move horizontally

until you hit the distribution function curve. Then drop down to obtain the

random variable X. This is the inverse function method of generating a random

variable X associated with a given distribution.

Figure 11-1.

Discrete and continuous distributions associated with random variable X.

The following is a list of some of the more popular discrete and continuous

probability distributions that can be used to help model various Monte Carlo

simulations.
Discrete Distributions

Discrete uniform distribution

f(x) =

%
1

N2+1−N1
, x = N1, N1 + 1, . . . , N2

0 otherwise

N1, N2 integers with N2 > N1.

418

Poisson distribution

f(x) =

&
e−λλx/x! x = 0, 1, 2, . . .

0 otherwise
λ > 0.

Binomial distribution

f(x) =

&'N
x

(
px(1− p)N−x, x = 0, 1, 2, . . . ,N

0 otherwise

0 < p < 1 and N a positive integer.

Geometric distribution

f(x) =

&
p(1− p)x−1, x = 1, 2, . . .

0 otherwise
0 < p < 1.

Hypergeometric distribution

f(x) =

'
M
x

('
N−M
J−x

('
N
J

(for x = 0, 1, 2, . . . , J,

N,M, J are integers.

Continuous Distributions

Uniform distribution

f(x) =

& 1
b−a , a < x < b

0 elsewhere
Normal distribution

f(x) =
1

σ
√
2π
exp

)
−1
2

*
x− µ
σ

+2,
−∞ < x <∞

Exponential distribution

f(x) = λ e−λx x > 0 and λ > 0.

Beta distribution

f(x) =

%
Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 0 < x < 1

0 elsewhere
α > 0, β > 0.

Gamma distribution

f(x) =

%
1

Γ(α)βαx
α−1e−x/β x > 0

0 elsewhere
, α > 0, β > 0.

Weibull distribution

f(x) =

&
αβxβ−1e−αx

β

x > 0

0 elsewhere
α > 0, β > 0.

419

Log-Normal distribution

f(x) =

%
1

β
√
2π

1
xe
−(ln x−α)2/2β2 x > 0

0 elsewhere
β > 0.

Chi-square distribution

f(x) =

%
1

2ν/2σνΓ(ν/2)
x(ν/2)−1e−(x/2σ

2) x > 0

0 x < 0

where ν represents the degrees of freedom.

Student�s t-distribution

f(x) =
1√
nπ

Γ[(n+ 1)/2]

Γ[n/2]

*
1 +

x2

n

+−(n+1)/2
with n = 1, 2, 3, . . . degrees of freedom.

F-distribution

f(x) =

%
Γ[(m+n)/2]
Γ(m/2)Γ(n/2)(m/n)

m/2 x(m/2)−1
[1+(m/n)x](m+n)/2 x > 0

0 x < 0

with parameters m = 1, 2, . . . and n = 1, 2, . . .

In the discussions that follow we develop programs to generate random vari-

ates from only a few select probability distributions. The more complicated

random variate generators are left for more advanced simulation courses. In

this introduction to Monte Carlo simulations we consider only discrete empirical

distributions, binomial distributions, Poisson distributions, normal distributions

and exponential distributions as these distributions are easy to work with and are

representative of how one employs various discrete and continuous probability

distributions for modeling purposes.

Selected discrete distributions

Recall that associated with a discrete sample is the function

f(x) =

&
fj x = xj j = 1, 2, 3, . . .

0 otherwise

∞$
k=1

fj = 1 (10.3)

where fj are relative frequencies associated with the sample. The function f(x)

given by equation (10.3) is also referred to as the probability distribution function

of the sample. To calculate the probability P (a < X ≤ b) one would calculate

P (a < X ≤ b) =
$

a<xj≤b
f(xj) (10.4)

420

The function F (x) representing the cumulative relative frequency function is given

by

F (x) = P (X ≤ x) =
$
xj≤x

f(xj) with P (X > x) = 1− F (x) (10.5)

and is called the distribution function associated with the sample. Note that the

above deÞnition implies

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (10.6)

The mean µ associated with a discrete distribution is deÞned

µ =
$
j

xjf(xj)

The variance σ2 associated with a discrete distribution is deÞned

σ2 =
$
j

(xj − µ)2f(xj).

The positive square root of the variance gives the standard deviation σ. For X

a random variable and g(X) any continuous function, then the mathematical

expectation of g(X) is deÞned for discrete distributions as

E(g(X)) =
$
j

g(xj)f(xj) (X discrete).

Empirical distributions associated with a sample are generated by collecting

data and calculating the frequency, relative frequency and cumulative relative

frequency associated with the data.

The Binomial probability distribution, which is sometimes referred to as a

Bernoulli distribution, is given by

f(x) =

&'n
x

(
px(1− p)n−x for x = 0, 1, 2, . . . , n

0 otherwise

and contains the two parameters p and n. The parameter p is a probability

satisfying 0 ≤ p ≤ 1 and the parameter n = 1, 2, 3, This probability distribution
is used in application areas where one of two possible outcomes can result. For

example, the number x of successes in n independent repeated events in which the

probability of success p for each event is governed by the binomial distribution.

