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�Socrates dialectical Procedure: For an over all view what is now necessary is the move-

ment of consciousness from knowledge of particular objects to an understanding of general

concepts.�

Socrates (469-399) BCE

Chapter 2

Equation Solving

This chapter deals with Þnding solutions of algebraic and transcendental

equations of either of the forms

f(x) = 0 or f(x) = g(x) (2.1)

where we want to solve for the unknown x. An algebraic equation is an equation

constructed using the operations of +,−,×,÷, and possibly root taking (radi-
cals). Rational functions and polynomials are examples of algebraic functions.

Transcendental equations in comparison are not algebraic. That is, they contain

non-algebraic functions and possibly their inverses functions. Equations which

contain either trigonometric functions, inverse trigonometric functions, exponen-

tial functions, and logarithmic functions are examples of non-algebraic functions

which are called transcendental functions. Transcendental functions also include

many functions deÞned by the use of inÞnite series or integrals.
Graphical Methods

Confronted with equations having one of the above forms and assuming one

has access to a graphical calculator or computer that can perform graphics, then

one should begin by plotting graphs of the given functions. If the equation to be

solved is of the form f(x) = 0, then we plot a graph of y = f(x) over some range of

x until we Þnd where the curve crosses the x−axis. Points where y = 0 or f(x) = 0
are called the roots of f(x) or the zeros of f(x).

The point (or points) where the given

curve y = f(x) crosses the x−axis is
where y = 0. All such points of inter-

section then represent solutions to the

equation f(x) = 0.
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Example 2-1. (Root of algebraic equation.)

Estimate the solutions of the algebraic equation

f(x) = x3 − 132
32
x2 +

28

32
x+

147

32
= 0.

Solution: We use a computer or calculator and plot a graph of the function

y = f(x) and obtain the Þgure 2-1.

Figure 2-1. Graph of y = f(x) = x3 − 132
32 x

2 + 28
32x+

147
32

One can now estimate the solutions of the given equation by determining where

the curve crosses the x−axis because these are the points where y = 0. Examining
the graph in Þgure 2-1 we can place bounds on our estimates x0, x1, x2 of the

solutions. One such estimate is given by

−1.0 < x0 < −0.8
1.4 < x1 < 1.6

3.4 < x2 < 3.6

To achieve a better estimate for the roots one can plot three versions of the above

graph which have some appropriate scaling in the neighborhood of the roots.

Finding values for x where f(x) = g(x) can also be approached using graphics.

One can plot graphs of the curves y = f(x) and y = g(x) on the same set of axes

and then try to estimate where these curves intersect.
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Example 2-2. (Root of transcendental equation.)

Estimate the solutions of the transcendental equation

x3 − 132
32
x2 +

28

32
x+

147

32
= 5 sinx

Solution: We again employ a computer or calculator and plot graphs of the

functions

y = f(x) = x3 − 132
32
x2 +

28

32
x+

147

32
and y = g(x) = 5 sinx

to obtain the Þgure 2-2.

Figure 2-2. Graph of y = f(x) and y = g(x)

One can estimate the points where the curve y = f(x) intersects the curve y = g(x).

If the curves are plotted to scale on the same set of axes, then one can place

bounds on the estimates of the solution. One such set of bounds is given by

−1.5 < x3 < −1.0
0.5 < x4 < 1.0

3.0 < x5 < 3.5

By plotting these graphs over a Þner scale one can obtain better estimates for

the solutions.
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Bisection Method

The bisection method is also known as the method of interval halving. The

method assumes that you begin with a continuous function y = f(x) and that

you desire to Þnd a root r such that f(r) = 0. The method assumes that if you

plot a graph of y = f(x), then it is possible to select an interval (a, b) such that

at the end points of the interval the values f(a) and f(b) are of opposite sign in

which case f(a)f(b) < 0. Starting with the above assumptions the intermediate

value theorem guarantees that there exists at least one root of the given equation

in the interval (a, b). The bisection method is a way of determining the root r to

some desired degree of accuracy. The assumed starting situation is illustrated

graphically in the Þgure 2-3.

Figure 2-3. Possible starting conditions for the bisection method.

The bisection method generates a sequence of intervals (a1, b1), (a2, b2), . . . , (an, bn)

which get halved each time. Each interval (an, bn) is determined such that the

root r satisÞes an < r < bn. The bisection method begins by selecting a1 = a and

b1 = b with f(a)f(b) < 0. The midpoint m1 of the Þrst interval (a1, b1) is calculated

m1 =
1

2
(a1 + b1) (2.2)

and the curve height f(m1) is calculated. If f(m1) = 0, then r = m1 is the desired

root. If f(m1) "= 0 then one of the following cases will exist.
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Either f(m1)f(b1) < 0 in which case

there is a sign change in the interval

(m1, b1) or f(m1)f(a1) < 0 in which case

there is a sign change in the interval

(a1,m1). The new interval (a2, b2) is de-

termined from one of these conditions.

(i) If f(m1)f(b1) < 0, then we select

a2 = m1 and b2 = b1.

(ii) If f(m1)f(a1) < 0, then we select

a2 = a1 and b2 = m1.

Whichever case holds, the root r will

lie within the new interval (a2, b2) which

is one-half the size of the previous in-

terval. The Þgure 2-4 illustrates some

possible scenarios that could result in

applying the bisection method to Þnd

a root of an equation. Figure 2-4. Analysis of bisection.

The above process is then repeated as many times as desired to generate new

intervals (an, bn) for n = 3, 4, 5, . . . . The bisection method places bounds upon the

distance between the nth midpoint mn and the desired root r. One can deÞne

the error of approximation after the nth bisection as

Error = |r −mn|. (2.3)

This produces the following bounds.

After Þrst bisection |r −m1| < b− a
2
, since r ∈ (a1, b1)

After second bisection |r −m2| < b− a
22

, since r ∈ (a2, b2)
...

After nth bisection |r −mn| < b− a
2n

, n ≥ 1, since r ∈ (an, bn).

These errors are obtained from the bounds upon the distance between the mid-

point mn and the desired root r. We Þnd the error term associated with the nth
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step of the iteration procedure for the bisection method will always be less than

the initial interval b− a divided by 2n. If we want the error to be less than some
small amount !, then we can require that n be selected such that

Error = |r −mn| < b− a
2n

< !. (2.4)

The bisection method generates a sequence of midpoint values {m1,m2, . . . ,mn, . . .}
used to approximate the true root r. The number of interval halving operations

to be performed for a given function f(x) depends upon how accurate you want

your solution. The following is a list of some stopping conditions associated with

the bisection method.

Stopping Conditions for Bisection Method

(i) If one requires that equation (2.4) be satisÞed, then n can be selected as

the least integer which satisÞes

n >
ln |b− a|− ln !

ln 2
(2.5)

(ii) Given a error ! one could continue until |mn − mn−1| < !. This requires

that the two consecutive midpoints be within ! of one another.

(iii) One can require that the relative error or percentage error be less than

some small amount !. This requires that

|mn −mn−1|
|mn| < ! or

|mn −mn−1|
|mn| × 100 < !

(iv) The height of the curve y = f(x) is near zero. This requires |f(mn)| < !

where ! is some stopping criteria.

(v) One can arbitrarily select a maximum number of iterations Nmax and

stop the interval halving whenever n > Nmax. One usually selects Nmax
based upon an analysis of equation (2.4).

(vi) The inequality |r − mn| ≤ |bn − an| < ! can be used to deÞne a stopping

condition for the error.

Example 2-3. (Bisection method.)

Find the value of x which satisÞes f(x) = xex − 2 = 0.
Solution: We sketch the given function and select a1 = 0 and b1 = 1 with f(a1) = −2
and f(b1) = 0.718. This type of a problem can be easily entered into a spread sheet

program which can do the repetitive calculations quickly. Many free spread sheet
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programs are available from the internet for those interested. The bisection

method produces the following table of values where the error after the nth

bisection is less than E = b−a
2n .

Bisection method to solve f(x) = xex − 2 = 0 with | r −mn |< E = b−a
2n

n an f(an) bn mn =
1
2 (an + bn) f(mn) E

1 0 -2 1 0.5 -1.1756 0.5

2 0.5 -1.17564 1 0.75 -0.4122 0.25

3 0.75 -0.41225 1 0.875 0.0990 0.125

4 0.75 -0.41225 0.875 0.8125 -0.1690 0.0625

5 0.8125 -0.16900 0.875 0.84375 -0.0382 0.03125

6 0.84375 -0.03822 0.875 0.859375 0.0296 0.015625

7 0.84375 -0.03822 0.859375 0.8515625 -0.0045 0.0078125

8 0.8515625 -0.00453 0.859375 0.85546875 0.0125 0.00390625

9 0.8515625 -0.00453 0.85546875 0.853515625 0.0040 0.001953125

10 0.8515625 -0.00453 0.853515625 0.852539063 -0.0003 0.000976563

11 0.852539063 -0.00029 0.853515625 0.853027344 0.0018 0.000488281

12 0.852539063 -0.00029 0.853027344 0.852783203 0.0008 0.000244141

13 0.852539063 -0.00029 0.852783203 0.852661133 0.0002 0.000122070

Continuing one can achieve the more accurate approximation r = 0.852605502.

There can be problems in using the bisection method. In addition to the

bisection method being slow, there can be the problem that the initial interval

(a, b) is selected too large. If this condition occurs, then there exists the possibility

that more than one root exists within the initial interval. Observe that if the

starting interval contains more than one root, then the bisection method will

Þnd only one of the roots. The good thing about the bisection method is that it

always works when the setup conditions are satisÞed.

Linear Interpolation

The method of linear interpolation is often referred to as the method of false

position or the Latin equivalent �regula falsi�. It is a method that is sometimes

used in the attempt to speed up the bisection method. The method of linear

interpolation is illustrated in the Þgure 2-5.
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Given two points (an, f(an)) and (bn, f(bn)),

where f(an)f(bn) < 0, then one can con-

struct a straight line through these points.

The point-slope formula can be used to

Þnd the equation of the line in Þgure 2-5.

One obtains the equation

y − f(bn) =
!
f(bn)− f(an)
bn − an

"
(x− bn) (2.6)

This line crosses the x−axis at the point
(xn, 0) where

xn = bn −
!

f(bn)

f(bn)− f(an)
"
(bn − an).

We use the point xn in place of the mid-

point mn of the bisection method. That

is, each iteration begins with end points

(an, f(an)) and (bn, f(bn)) where f(an) and

f(bn) are of opposite sign. These points

produce a straight line which determines a

point xn by linear interpolation.

A new interval (an+1, bn+1) is deter-

mined by the same procedure used in the

bisection method. We calculate f(xn) and

test the sign of f(xn)f(an) in order to de-

termine the new interval (an+1, bn+1) which

contains the desired root r. The method

of linear interpolation sometimes has the

problem of a slow one-sided approach to

the root as illustrated in the Þgure 2-6.

Figure 2-5.

Linear interpolation.

Figure 2-6.

Slow one-sided approach.
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Iterative Methods

One can write equations of the form f(x) = 0 in the alternative form x = g(x) and

then one can deÞne an iterative sequence

xn+1 = g(xn) for n = 0, 1, 2, 3, . . . (2.7)

which can be interpreted as mapping a point xn to a new point xn+1. One starts

with an initial guess x0 to the solution of x = g(x) and calculates x1 = g(x0). The

iterative method continues with repeated substitutions into the g(x) function to

obtain the values
x2 =g(x1)

x3 =g(x2)

...

xn =g(xn−1)

xn+1 =g(xn)

If the sequence of values {xn}∞n=1 converges to r, then

lim
n→∞xn+1 = r = lim

n→∞ g(xn) = g(r)

and r is called a Þxed point of the mapping. Convergence of the iterative pro-

cesses is based upon the concept of a contraction mapping. In general, a mapping

xn+1 = g(xn) is called a contraction mapping if the following conditions are satis-

Þed.

1. The function g(x) maps all point in a set Sn into a subset Sn+1 of Sn so that

one can write Sn+1 ⊂ Sn.
2. For xn, yn ∈ Sn, with xn+1 = g(xn) and yn+1 = g(yn) both members of the set

Sn+1, the distance between yn+1 and xn+1 must be less than the distance

between yn and xn. This can be expressed

| yn+1 − xn+1 |≤ K | yn − xn |

where K is some constant satisfying 0 ≤ K < 1.

That is, the distance between any two points xn and yn belonging to a set

Sn is always greater than the distance between the image points xn+1 and yn+1
belong to the image subset Sn+1. The representation of a contraction mapping
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is illustrated in the Þgure 2-7 which gives an image showing points from one set

being mapped to a smaller set. This is the idea behind a contraction mapping.

Each mapping gives a smaller and smaller image set which eventually contracts

to a limit point r where r = g(r). This idea can be applied to more general types

of mappings.

Figure 2-7. Contraction mapping.

In one-dimension, assume that the iterative sequence

xn+1 = g(xn) (2.8)

converges to a limit r such that

r = g(r). (2.9)

Subtract the equation (2.9) from the equation (2.8) and write

xn+1 − r = g(xn)− g(r) =
#
g(xn)− g(r)
xn − r

$
(xn − r). (2.10)

The mean value theorem can now be employed to express the bracketed term in

equation (2.10) in terms of a derivative so that#
g(xn)− g(r)
xn − r

$
= g$(ξn) for xn < ξn < r. (2.11)


