
109

�Try to learn something about everything and everything about something �

Thomas Henry Huxley (1825-1895)

Chapter 4

Interpolation and Approximation

The Weierstrass approximation theorem states that a continuous function

f(x) over a closed interval [a, b] can be approximated by a polynomial Pn(x), of

degree n, such that

|f(x)− Pn(x)| ≤ !, x ∈ [a, b] (4.1)

where ! > 0 is a small quantity and n is sufficiently large. A polynomial repre-

sentation is just one way of approximating a function. Approximation theory is

concerned with Þnding various ways to represent a function over an interval and

is not restricted to polynomial approximation.

The interpolation problem is the construction of a curve y(x) which passes

through a given set of data points (xi, yi), for i = 0, 1, . . . , n where the data points

are such that a = x0 < x1 < x2 < · · ·xn−1 < xn = b. The constructed curve y(x) can
then be used to estimate the values of y at positions x which are between the

end points a and b (interpolation) or to estimate the value of y for x exterior to

the end points (extrapolation).

Various industrial, business and research organizations routinely collect and

analyze data. We shall investigate collected data in the form of two variables

which we label x and y. We assume that the data can be labeled in some con-

venient way and represented in a tabular form. The table 4.1 illustrates one

possible way of labeling and representing the data.

110

x y

x0 y0

x1 y1

x2 y2

x3 y3
...

...

xn−1 yn−1

xn yn

Table 4.1 Tabular listing of (x, y) data values.

Whenever the data in table 4.1 is such that the independent variable x is

evenly spaced, then the difference between any consecutive x-values has a con-

stant value. We denote this constant value by h and write

∆x = xk+1 − xk = h = constant for k = 0, 1, 2, 3,

Given a set of (n + 1) data pairs (xi, yi), i = 0, . . . , n, where the xi values are

equally spaced, we assume these (x, y) data pairs represent selected sample val-

ues (xi, y(xi)) from a continuous function y(x), even though we do not know the

function y(x). We will study how to construct a polynomial Pn(x), which satisÞes

yi = Pn(xi) for i = 0, 1, . . . , n. This is called the interpolating polynomial which

reproduces the function values at the given points xi for i = 0, 1, . . . , n. The sim-

plest polynomial interpolation is the straight line through two data points as

illustrated in the Þgure.

Linear interpolation

111

The construction of a polynomial function Pn(x) which satisÞes yi = Pn(xi) for

i = 0, 1, . . . , n has several purposes. First it can be used as an approximation func-

tion for reproducing the data values (xi, yi) for i = 0, 1, . . . , n. Secondly, polynomial

interpolation is said to occur whenever one uses the approximating polynomial

Pn(x) to estimate the true y-value for a nontabulated x-value, where x0 ≤ x ≤ xn+1.
Polynomial extrapolation is said to occur whenever one uses the approximating

polynomial Pn(x) to estimated the true y-values for x outside the interval [x0, xn+1].

We will use polynomial interpolation in later chapters to develop numerical tech-

niques for differentiation and integration of a function. Polynomial interpolation

will also arise in the development of numerical techniques for solving differential

equations.
Difference Tables

We shall examine differences in the consecutive y-values associated with the

table 4.1 representation of data. DeÞne the Þrst forward differences

∆y1 = y2 − y1, ∆y2 = y3 − y2, · · · ∆yi = yi+1 − yi (4.2)

and deÞne second forward differences as differences of Þrst forward differences.

Second forward differences are written
∆2yi = ∆(∆yi) =∆(yi+1 − yi) = ∆yi+1 −∆yi

=(yi+2 − yi+1)− (yi+1 − yi) = yi+2 − 2yi+1 + yi
(4.3)

for i = 1, 2, 3, An (n+1)-st ordered forward difference is deÞned as the difference

of n-th ordered forward differences. Alternatively, one can deÞne the stepping

operator E deÞned by

Eyi = yi+1, E2yi = yi+2, . . . , Enyi = yi+n (4.4)

then the Þrst and higher ordered forward differences can be written in an operator

form. For example, since

∆yi = yi+1 − yi = Eyi − yi = (E − 1)yi (4.5)

one can write ∆ = E − 1, and so the various forward differences can be expressed
Þrst forward difference ∆yi = (E − 1)yi = yi+1 − yi

second forward difference ∆2yi = (E − 1)2yi = (E2 − 2E + 1)yi = yi+2 − 2yi+1 + yi
third forward difference ∆3yi = (E − 1)3yi = yi+3 − 3yi+2 + 3yi+1 − yi

...

n-th forward difference ∆nyi = (E − 1)nyi
(4.6)

112

Using the binomial expansion one can verify that

∆nyi = yi+n −
!
n

1

"
yi+n−1 +

!
n

2

"
yi+n−2 −

!
n

3

"
yi+n−3 + · · ·+ (−1)nyi (4.7)

where !
n

m

"
=

n!

m!(n−m)! (4.8)

are the binomial coefficients. One can now append columns of differences to

the given data set with equal x-spacing to form a forward difference table. The

subscript labeling of the points (x, y) in a difference table is arbitrary in that

any point can be labeled (x0, y0) and the other points, as well as corresponding

differences, are then labeled accordingly. The construction of a representative

forward difference table associated with a constant x-value step size is illustrated

in the table 4.2.

In the special case ∆x = h is constant, then the entries in the difference table

can be scaled using the transformation

s =
x− x0
h

(4.9)

to obtain the scaled column of integer values listed in the table 4.2.

Table 4.2 Forward Difference Table

s x y ∆y ∆2y ∆3y ∆4y ∆5y ∆6y

-2 x−2 y−2
∆y−2

-1 x−1 y−1 ∆2y−2
∆y−1 ∆3y−2

0 x0 y0 ∆2y−1 ∆4y−2
∆y0 ∆3y−1 ∆5y−2

1 x1 y1 ∆2y0 ∆4y−1 ∆6y−2
∆y1 ∆3y0 ∆5y−1

2 x2 y2 ∆2y1 ∆4y0 ∆6y−1
∆y2 ∆3y1 ∆5y0

3 x3 y3 ∆2y2 ∆4y1
∆y3 ∆3y2

4 x4 y4 ∆2y3
∆y4

5 x5 y5

113

It is assumed that the data used to form the difference table is a discrete

sampling from a function y = y(x) which is continuous on some interval [a, b].

Therefore, one can apply the Weierstrass approximation theorem to construct

an approximation of the function.

Note that if the data set is constructed from some polynomial, then the

difference table will have the special property that the nth difference column

will be all constants and so all columns of higher order differences will be zero.

Whenever this occurs the data can be represented by a nth degree polynomial.

Observe that

∆(xn) = (x+ h)n − xn = nhxn−1 + lower order terms (4.10)

and for c0 some nonzero constant one would have

∆(c0x
n) = c0nhx

n−1 + lower order terms. (4.11)

Consider the nth degree polynomial

Pn(x) = c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn (4.12)

where c0, c1, . . . , cn are constants. Taking differences of this polynomial produces

∆Pn(x) =c0nhx
n−1 + lower order terms.

∆2Pn(x) =c0n(n− 1)h2xn−2 + lower order terms
...

∆nPn(x) =c0n(n− 1)(n− 2) · · · (3)(2)(1)hn = c0n!hn = constant
∆(n+1)Pn(x) =0

(4.13)

which demonstrates that for n-th degree polynomials, the nth differences are

constant and the (n+ 1)-st differences are zero.

Example 4-1. (Difference table.)

Form a forward difference table associated with the function y = y(x) = x3

and the x-values 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4

Solution: We calculate the y-values and then the Þrst, second, third and fourth

forward differences to obtain the table 4.3.

114

Forward Difference Table

x y ∆y ∆2y ∆3y ∆4y

0.2 0.008
0.056

0.4 0.064 0.096
0.152 0.048

0.6 0.216 0.144 0
0.296 0.048

0.8 0.512 0.192 0
0.488 0.048

1.0 1.000 0.240 0
0.728 0.048

1.2 1.728 0.288
1.016

1.4 2.744

Table 4.3 Table of differences formed from the function y = x3.

Whenever data pairs are collected from some sampling of an experiment

there is usually errors associated with the data and in such cases the (x, y) data

points will not give a forward difference table with a column of all constant

values and so the data will not be a polynomial. However, by the Weierstrass

approximation theorem, one can replace the true function y = y(x) with some

polynomial approximation Pn(x). Let us investigate the construction of various

polynomials from a selected set of data pairs.

Interpolating Polynomials

We wish to construct an approximating polynomial Pn(x) which takes on

the values y0, y1, . . . , yn of y(x) at the points x0, x1, . . . , xn called nodes. If such a

polynomial function can be constructed it is called an interpolation polynomial

or collocation polynomial. The constructed polynomial function which passes

through the given data points can be used to approximate y(x) for any value of x

over the interpolation interval (x0, xn). If one uses the approximation polynomial

to estimate values of y(x) outside the interval (x0, xn), then the process is called ex-

trapolation. The process of extrapolation with polynomials is not recommended

because polynomials Pn(x) tend to oscillate between the values y0, y1, . . . , yn when

n is large and to diverge outside the interpolation interval. Whenever possible,

interpolation is to be preferred over extrapolation when dealing with polynomials

of high order.

115

One can construct an nth degree polynomial y = Pn(x) which passes through

(n + 1) data points (xi, yi) for i = 0, 1, 2, . . . , n and hence it can be called an in-

terpolating polynomial. The polynomial constructed will be unique. To show

uniqueness we employ the fundamental theorem of algebra which states that a

polynomial of degree n has exactly n-roots. Now if we assume there are two dif-

ferent polynomials of degree n, say y = Pn(x) and y = Pn(x) which have the same
values at (n+1) data values (xi, yi) for i = 0, 1, 2, . . . , n, then the difference function

D(x) = Pn(x)− Pn(x) is at most a polynomial of degree n which has (n + 1) zeros.
This can only occur if D(x) is identically zero for all x values. Consequently,

Pn(x) = Pn(x) and so the polynomials must be identically the same.
Note that polynomials can be represented in different ways. For example, the

second degree polynomial P2(x) = x2 that passes through the points (0, 0), (1, 1) and

(2, 4) is unique, however, its representation is not unique and so the polynomial

P2(x) = x
2 can be represented in different ways. Four possible representations are

P2(x) =x(x− 2) + 2x
P2(x) =(x− 1)2 − 2(x− 1) + 1

P2(x) =
1

2
+
1

2
(2x2 − 1)

P2(x) =x+ x(x− 1)

We now develop methods for construction of nth degree polynomials which col-

locate with the (n+ 1) data points (x0, y0), . . . , (xn, yn).
Equally Spaced Data

Assume the x-values are equally spaced such that xi = x0+ih for i = 0, 1, 2, . . . , n,

then the difference between any consecutive x-values is a constant and one can

write xm − xm−1 = h, for m = 1, 2, . . . , n. A polynomial representation of the form

Pn(x) = c0+c1(x−x0)+c2(x−x0)(x−x1)+c3(x−x0)(x−x1)(x−x2)+ · · ·+cn(x−x0)(x−x1) · · · (x−xn−1)

where the coefficients c0, c1, . . . , cn are constants, and selected to make the poly-

nomial produce the given data values, is required to satisfy the conditions

Pn(x0) =c0 = y0

Pn(x1) =c0 + c1h = y1

Pn(x2) =c0 + c1(2h) + c2(2h
2) = y2

Pn(x3) =c0 + c1(3h) + c26h
2 + c36h

3 = y3

...

Pn(xn) =c0 + c1(nh) + c2(n)(n− 1)h2 + · · ·+ n!cnhn = yn.

116

Solving for the coefficients we Þnd

c0 =y0

c1 =
∆y0
h

=
y1 − y0
h

c2 =
∆2y0
2h2

=
y2 − 2y1 + y0

2h2

c3 =
∆3y0
3!h3

=
y3 − 3y2 + 3y1 − y0

3!h3

...

cn =
∆ny0
n!hn

(4.14)

This produces the polynomial approximation

Pn(x) =y0 +
∆y0
h
(x− x0) + ∆

2y0
2!h2

(x− x0)(x− x1) + ∆
3y0
3!h3

(x− x0)(x− x1)(x− x2) + · · ·

+
∆ny0
n!hn

(x− x0)(x− x1)(x− x2) · · · (x− xn−1)
(4.15)

which is called Newton�s forward interpolation formula. Sometimes referred to

as the Newton-Gregory forward interpolating polynomial. In terms of the scaled

variable s =
x− x0
h

, which has an integer value corresponding to each xi data

value, the equation (4.15) has the form

Pn(x) =y0 + s∆y0 +
s(s− 1)
2!

∆2y0 +
s(s− 1)(s− 2)

3!
∆3y0 + · · ·

+
s(s− 1)(s− 2) · · · (s− n+ 1)

n!
∆ny0

(4.16)

which can also be represented in the form

Pn(x) = y0 +

!
s

1

"
∆y0 +

!
s

2

"
∆2y0 +

!
s

3

"
∆3y0 + · · ·+

!
s

n

"
∆ny0 (4.17)

where the binomial coefficients
#
s
i

$
multiplies the ith difference of y0 from the

difference table 4.2. The binomial coefficients
#
s
i

$
represents the number of com-

bination of s elements taken i at a time.

The lozenge diagram1 illustrated in the Þgure 4-1 is often constructed as

an aid to the representation of various polynomial interpolation formulas. One

moves across the lozenge diagram from left to right in a sequence of straight

1 Lozenge refers to the diamond shaped pattern created by diagonal lines.

117

line paths. The lozenge diagram has certain rules for its use and within the

lozenge diagram there are scale factors or coefficients used for construction of a

collocation polynomial which is associated with a set of (x, y) data points. The

polynomials are constructed as a series of terms and are produced as follows.

1. Move from left to right across the lozenge diagram starting with a value or

modiÞed value from the y-column.

2. One moves in a straight line path to the next column of the lozenge dia-

gram. This straight line path can be either diagonally upward, horizontal or

diagonally downward.

3. The straight line path points to a difference expression or binomial factor in

the next column of the lozenge diagram. The quantity pointed to must be

multiplied by a scale factor from the lozenge diagram to produce the next

term in the series representing the interpolating polynomial. The scale fac-

tors are dependent upon the type of path selected. The following expressions

are used as scale factors needed for the representation of the next term in

the interpolation polynomial construction
(a) Use the coefficient below the path

if you move diagonally upward

(b) Use the average of the coefficients

above and below a horizontal path

(c) Use the coefficient above the path

if you move diagonally downward

For example, if we start at y0, then y0 is a zeroth order polynomial approxi-

mation and represents the Þrst term in the polynomial approximation which is

given by P0(x) = y0. If we move horizontally from y0 in a straight line to the right,

we hit the term
#
s
1

$
which must be multiplied by the scale factor 1

2 (∆y−1 +∆y0)

to produce the Þrst order approximation

P1(x) = y0 +
1

2
(∆y−1 +∆y0)

!
s

1

"
, s =

x− x0
h

(4.18)

Continue moving horizontally to the right we hit the next term ∆2y−1 in the

lozenge diagram. This term must be multiplied by the scale factor 1
2

%#
s+1
2

$
+
#
s
2

$&

118

and so we produce the second order polynomial approximation

P2(x) = y0 +
1

2
(∆y−1 +∆y0)

!
s

1

"
+
1

2
∆2y−1

'!
s+ 1

2

"
+

!
s

2

"(
, s =

x− x0
h

(4.19)

Note that P1(x) and P2(x) depend upon the value of the ordinates y−1, y0 and y1
centered about the point y0. By continuing our horizontal path to the right one

can construct additional terms to add to the series and so produce higher order

approximating polynomials. Observe that by moving further into the lozenge

diagram one constructs higher degree interpolating polynomials which include

the inßuence of additional ordinates surrounding the central point y0.

The lozenge diagram in Þgure 4-1 can be used to produce the following series

in terms of the scaled variable s =
x− x0
h

.

Newton�s forward formula (path A-A)

Pn(x) =y0 +

!
s

1

"
∆y0 +

!
s

2

"
∆2y0 +

!
s

3

"
∆3y0 +

!
s

4

"
∆4y0 + · · ·+

!
s

n

"
∆ny0

Pn(x) =y0 +
n)
i=1

!
s

i

"
∆iy0

(4.20)

Newton�s backward formula (path B-B)

Pn(x) =y0 +

!
s

1

"
∆y−1 +

!
s+ 1

2

"
∆2y−2 + · · ·+

!
s+ n− 1

n

"
∆ny−n

Pn(x) =y0 +
n)
i=1

!
s+ i− 1

i

"
∆iy−i

(4.21)

Gauss backward formula (path C-C)

Pn(x) =y0 +

!
s

1

"
∆y−1 +

!
s+ 1

2

"
∆2y−1 +

!
s+ 1

3

"
∆3y−2 +

!
s+ 2

4

"
∆4y−2 + · · ·

P2n(x) =y0 +
n)
i=1

'!
s+ i− 1
2i− 1

"
∆2i−1y−i +

!
s+ i

2i

"
∆2iy−i

((4.22)

Gauss forward formula (path D-D)

Pn(x) =y0 +

!
s

1

"
∆y0 +

!
s

2

"
∆2y−1 +

!
s+ 1

3

"
∆3y−1 +

!
s+ 1

4

"
∆4y−2 + · · ·

P2n(x) =y0 +
n)
i=1

'!
s+ i− 1
2i− 1

"
∆2i−1y1−i +

!
s+ i− 1
2i

"
∆2iy−i

((4.23)

