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�One must learn by doing the thing; though you think you know it, you have no certainty

until you try.�

Sophocles (495-406)BCE

Chapter 9

Partial Differential Equations

A linear second order partial differential equation having a dependent vari-

able u and two independent variables x, y, can be deÞned in terms of the linear

partial differential operator L(u) given by

L(u) = A(x, y)
∂ 2u

∂x 2
+ 2B(x, y)

∂ 2u

∂x∂y
+C(x, y)

∂ 2u

∂y 2
+D(x, y)

∂u

∂x
+E(x, y)

∂u

∂y
+ F (x, y)u

where A,B,C,D,E,F are coefficients which are real valued functions of the vari-

ables x and y. These coefficients are assumed to possess second derivatives which

are continuous over a region R where the solution is desired. Linear second order

partial differential equations of the form L(u) = 0, x, y ∈ R are called homo-

geneous equations and linear second order partial differential equations of the

form L(u) = G(x, y), x, y ∈ R are called nonhomogeneous equations. Partial

differential equation of the form

A(x, y)
∂ 2u

∂x 2
+ 2B

∂ 2u

∂x∂y
+ C

∂ 2u

∂y 2
= F (x, y, u,

∂u

∂x
,
∂u

∂y
) x, y ∈ R

are called second order quasilinear partial differential equations. Note in the

above deÞnitions it is sometimes desirable, because of the physical problem being

considered, to replace one of the variables x or y by the time variable t.

Some examples of linear second order partial differential equations are the

Laplace equation

L(u) =
∂ 2u

∂x 2
+
∂ 2u

∂y 2
= 0 u = u(x, y) x, y ∈ R, (9.1)

the one-dimensional heat equation

L(u) =
∂u

∂t
− κ∂

2u

∂x 2
= G(x, t) u = u(x, t), t > 0, 0 ≤ x ≤ L (9.2)

where κ is a constant, and the one-dimensional wave equation

L(u) =
∂ 2u

∂t 2
− c2 ∂

2u

∂x 2
= G(x, t) u = u(x, t), t > 0, 0 ≤ x ≤ L (9.3)

where c is a constant.



364

Canonical Forms

Associated with both quasilinear and linear second order partial differential

equations are canonical forms. These are special forms that the general form

assumes under certain variable changes. The canonical forms are classiÞed by

the discriminant ∆ = B2−AC formed from the A,B,C coefficients which multiply
the highest ordered derivatives in the second order linear or quasilinear partial

differential equation. In the partial differential equations that we shall consider,

the discriminant is assumed to have a constant sign for all x, y in a region R of

interest. The partial differential equation is called parabolic if B2 − AC = 0 for

all x, y ∈ R, it is called hyperbolic if B2 − AC > 0 for all x, y ∈ R and it is called
elliptic if B2 − AC < 0 for all x, y ∈ R. For example, the Laplace equation (9.1)
has discriminant ∆ = −1 < 0 and is one of the canonical forms associated with

elliptic partial differential equations. The heat equation (9.2) with discriminant

∆ = 0 is one of the canonical forms associated with parabolic equations and the

wave equation (9.3) with discriminant ∆ = c2 > 0 is one of the canonical forms

associated with hyperbolic equations.

Boundary and Initial Conditions

Boundary conditions associated with a linear second order partial differential

equation

L(u) = G(x, y) for x, y ∈ R

can be written in the operator form

B(u) = f(x, y) for x, y ∈ ∂R,

where ∂R denotes the boundary of the region R and f(x, y) is a given function

of x and y. If the boundary operator B(u) = u the boundary condition repre-

sents the dependent variable being speciÞed on the boundary. These type of

boundary conditions are called Dirichlet conditions. If the boundary operator

B(u) = ∂u
∂n = gradu · �n denotes a normal derivative, then the boundary condition

is that the normal derivative at each point of the boundary is being speciÞed.

These type of boundary conditions are called Neumann conditions. Neumann

conditions require the boundary to be such that one can calculate the normal

derivative ∂u
∂n at each point of the boundary of the given region R. This requires

that the unit exterior normal vector �n be known at each point of the boundary.

If the boundary operator is a linear combination of the Dirichlet and Neumann
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boundary conditions, then the boundary operator has the form B(u) = α ∂u∂n + βu,

where α and β are constants. These type of boundary conditions are said to be

of the Robin type. The partial differential equation together with a Dirichlet

boundary condition is sometimes referred to as a boundary value problem of

the Þrst kind. A partial differential equation with a Neumann boundary condi-

tion is sometimes referred to as a boundary value problem of the second kind. A

boundary value problem of the third kind is a partial differential equation with a

Robin type boundary condition. A partial differential equation with a boundary

condition of the form

B(u) =

!
u, for x, y ∈ ∂R1
∂u
∂n , for x, y ∈ ∂R2

∂R1 ∩ ∂R2 = φ ∂R1 ∪ ∂R2 = ∂R

is called a mixed boundary value problem. If time t is one of the independent

variables in a partial differential equation, then a given condition to be satisÞed

at the time t = 0 is referred to as an initial condition. A partial differential

equation subject to both boundary and initial conditions is called a boundary-

initial value problem.

The Heat Equation

The modeling of the one-dimensional heat

ßow in a thin rod of length L is accomplished as

follows. Denote by u = u(x, t) the temperature

in the rod at position x and time t having units

of [◦C]. Assume the cross sectional area A of the

rod is constant and consider an element of volume

dτ = A∆x located between the positions x and

x+∆x in the rod as illustrated.
We assume the rod is of a homogeneous material and the surface of the rod

is insulated so that heat ßows only in the x-direction. Conservation of energy re-

quires that the rate of change of heat energy associated with the volume element

must equal the rate of heat energy ßowing across the ends of the volume ele-

ment plus any heat energy produced inside the element of volume. The physical

properties of the rod are represented by the quantities:

c, the speciÞc heat of the material with units [cal/g ◦C]

', the density of the material with units [g/cm3]

k, the thermal conductivity of the material with units [cal/cm2 sec ◦C/cm]

A, cross sectional area with units [cm2]
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The rate of change of heat stored in the volume element is given by

Hs =
∂

∂t

" x+∆x

x

c'Au(x, t) dx =

" x+∆x

x

c'A
∂u(x, t)

∂t
dx.

Here e = c'u represents the thermal energy density of the volume element with

units of [cal/cm3]. The heat loss from the left and right ends of the volume

element is found using the Fourier�s law of heat ßow which states that the heat

ßow normal to a surface is proportional to the gradient of the temperature. This

heat loss can be represented

H" = kA

#
∂u(x+∆x, t)

∂x
− ∂u(x, t)

∂x

$
,

where k is the thermal conductivity of the material. Let H(x, t) denote the

heat generated within the volume element with units of [cal/cm3], then the heat

generated by a source within the volume element can be represented

Hg = A

" x+∆x

x

H(x, t) dx.

The conservation of energy requires that Hs = H" +Hg or" x+∆x

x

c'A
∂u(x, t)

∂t
dx = kA

#
∂u(x+∆x, t)

∂x
− ∂u(x, t)

∂x

$
+A

" x+∆x

x

H(x, t) dx. (9.4)

The mean value theorem for integrals" x+∆x

x

f(x) dx = f(x+ θ∆x)∆x, 0 < θ < 1

enables one to express the equation (9.4) in the form

kA

#
∂u(x+∆x, t)

∂x
− ∂u(x, t)

∂x

$
+AH(x+ θ1∆x, t)∆x = c'A

∂u(x+ θ2∆x, t)

∂t
∆x. (9.5)

Now divide by ∆x and take the limit as ∆x→ 0 to obtain the heat equation

k
∂ 2u

∂x 2
+H(x, t) = c'

∂u

∂t
, u = u(x, t), 0 < x < L (9.6)

or
∂u

∂t
= κ

∂ 2u

∂x 2
+Q(x, t), where Q =

H

c'
, (9.7)
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and κ =
k

c'
is known as the coefficient of thermal diffusivity with units of cm2/sec.

The following table gives approximate values for the speciÞc heats, density, ther-

mal conductivity and thermal diffusivity of selected materials at 100 ◦C.

Coefficient Fe Al Cu Ni Zn Ag Au

c=heat capacity [cal/g ◦C] 0.117 0.230 0.101 0.120 0.097 0.058 0.032

ρ= density [g/cm3] 7.83 2.70 8.89 8.60 7.10 10.6 19.3

k=thermal conductivity [cal/sec cm2 ◦C/cm] 0.107 0.490 0.908 0.138 0.262 0.089 0.703

κ=Thermal diffusivity [cm2/sec] 1.168 0.789 1.011 0.134 0.381 0.145 1.138

A special case of equation (9.6) is when H = 0. One then obtains

k
∂ 2u

∂x 2
= c'

∂u

∂t
(9.8)

where u = u(x, t) and k, c, ' are constants. This is known as the heat or diffusion

equation. This type of partial differential equation arises in the study of diffusion

type processes. It is classiÞed as a parabolic equation.

An initial condition associated with the modeling of heat ßow in a rod is

written as u(x, 0) = f(x) where f(x) is a prescribed initial temperature distribution

over the rod. Dirichlet boundary conditions for the rod would be to specify the

temperature at the ends of the rod and are written u(0, t) = T0 and u(L, t) = T1,

where T0 and T1 are speciÞed temperatures. (Recall the lateral surface of the

rod is assumed to be insulated.) Boundary conditions of the Neumann type

are written −∂u(0,t)
∂x = g0(t) and

∂u(L,t)
∂x = g1(t) where g0(t) and g1(t) are speciÞed

functions of time t representing the heat ßow across the boundary. If g0(t) = 0,

the boundary condition is said to be insulated so that no heat ßows across the

boundary. Robin type boundary conditions for the rod are expressed

−α∂u(0, t)
∂x

+ βu(0, t) = g0(t) and α
∂u(L, t)

∂x
+ βu(L, t) = g1(t)

where again g0(t) and g1(t) are given functions of time t. These type of boundary

conditions represent cooling or evaporation at the boundary.

Example 9-1. (Boundary-initial value problem)

As an example of a boundary-initial value problem consider the heat equation

without heat sources which models the temperature distribution in a long thin
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rod of length L which is insulated along its length so that there is no heat loss.

We must solve the partial differential equation (PDE)

∂u

∂t
− κ∂

2u

∂x 2
= 0, u = u(x, t), t > 0, 0 < x < L, K constant

subject to both boundary and initial conditions.

A Dirichlet boundary-initial value problem for the heat equation has the

form

PDE:

BC:

IC:

∂u

∂t
− κ∂

2u

∂x 2
= 0, t > 0, 0 < x < L

u(0, t) = T0, u(L, t) = TL

u(x, 0) = f(x)

Here the boundary conditions (BC) are the temperatures T0 and TL being speci-

Þed at the ends of the rod for all values of the time t. The initial condition (IC) is

that the initial temperature distribution f(x) through the rod is being speciÞed

at time t = 0.

A Neumann boundary-initial value problem for the heat equation has the

form

PDE:

BC:

IC:

∂u

∂t
− κ∂

2u

∂x 2
= 0, t > 0, 0 < x < L

− ∂u(0, t)
∂x

= φ0,
∂u(L, t)

∂x
= φL

u(x, 0) = f(x)

Here the unit normal vectors to the ends of the rod are �n = �i at x = L and �n = −�i
at x = 0 and consequently the normal derivative at the end point boundaries are

∂u

∂n x=0

= gradu · �n
x=0

= −∂u
∂x x=0

and
∂u

∂n x=L

= gradu · �n
x=L

=
∂u

∂x x=L

These terms represent the temperature gradient across the boundaries. Some-

times these are referred to as heat ßow across the boundary since the heat ßow

is proportional to the gradient of the temperature. If u represents temperature

[◦C], x represents distance [cm], then ∂u
∂n has units of [

◦C/cm]. Note that the con-

dition ∂u
∂n = 0 denotes an insulated boundary. The Neumann boundary-initial

value problem speciÞes the temperature gradients φ0,φL across the boundaries

as well as specifying the initial temperature distribution within the rod.
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A Robin boundary-initial value problem for the heat equation has the form

PDE:

BC:

IC:

∂u

∂t
− κ∂

2u

∂x 2
= 0, t > 0, 0 < x < L

− ∂u(0, t)
∂x

+ hu(0, t) = ψ0,
∂u(L, t)

∂x
+ hu(L, t) = ψL

u(x, 0) = f(x)

The boundary conditions represent the heat loss from the boundaries with h a

heat loss coefficient which is a constant and dependent upon the rod material.

In terms of diffusion processes the boundary conditions represent evaporation

processes ψ0,ψL speciÞed at the ends x = 0 and x = L.

The wave equation

An example of a hyperbolic equation is the homogeneous partial differential

equation
∂ 2u

∂t 2
− c2 ∂

2u

∂x 2
= 0 (9.9)

where u = u(x, t) and c is a constant. This is the wave equation of mathematical

physics. It arises in the modeling of longitudinal and transverse wave motion.

Some application areas where it arises are in the study of vibrating strings,

electric and magnetic waves, and sound waves.

A mathematical model of a vibrating string is con-

structed by using Newton�s laws and summing

the forces acting on an element of string. Con-

sider a section of string between x and x +∆x as

illustrated. Denote by u = u(x, t) the string dis-

placement [cm], at time t [sec], and introduce the

additional symbols: ' [g/cm] to denote the lineal

string density, T (x) [dynes] the tension in the string at position x, ω [dynes/cm]

an external force per unit length acting on the string. Further assume there

exists a damping force proportional to the velocity ∂u
∂t of the string. This force

is represented β ∂u∂t∆x where β [dynes-sec/cm
2] denotes a linear velocity damping

force per unit length. Assume there is equilibrium of forces in the horizontal

direction. This requires

T (x+∆x) cos θ2 = T (x) cos θ1 = T0 = a constant.



370

In the vertical direction we sum forces and apply Newton�s second law to obtain

'∆x
∂ 2u(x+ ∆x

2 , t)

∂t 2
=T (x+∆x) sin θ2 − T (x) sin θ1 + ω∆x− β∆x

∂u(x+ ∆x
2 , t)

∂t

=T0(tan θ2 − tan θ1) + ω∆x− β∆x
∂u(x+ ∆x

2 , t)

∂t

(9.10)

Note that tan θ1 =
∂u(x, t)

∂x
and tan θ2 =

∂u(x+∆x, t)

∂x
so that when equation (9.10)

is divided by ∆x and one takes the limit as ∆x approaches zero, there results the

equation of motion of the vibrating string

'
∂ 2u

∂t 2
=
∂

∂x

%
T0
∂u

∂x

&
+ ω − β∂u

∂t

In the special case β = 0, ω = 0 and T0 is constant, this reduces to the one-

dimensional wave equation

∂ 2u

∂t 2
− c2 ∂

2u

∂x 2
= 0 0 < x < L, t > 0 (9.11)

where c2 = T0/'. is a constant. Here c has the units of velocity and denotes the

wave speed. The wave equation (9.11) can be subjected to Dirichlet, Neumann

or Robin type boundary conditions. Dirichlet conditions occur whenever one

speciÞes the string displacements at the ends at x = 0 and x = L. Neumann

conditions occur whenever the derivatives are speciÞed at the ends of the string

and Robin conditions occur when some linear combination of displacement and

slope is speciÞed at the string ends.
Elliptic equation

The elliptic partial differential equations that occur most frequently are

the Laplace equation

∂ 2u

∂x 2
+
∂ 2u

∂y 2
= 0 or ∇2u = 0, u = u(x, y), x, y ∈ R,

the Poisson equation

∂ 2u

∂x 2
+
∂ 2u

∂y 2
= g(x, y) or ∇2u = g(x, y) u = u(x, y), x, y ∈ R,

(which is the nonhomogeneous form of Laplace�s equation) and

the Helmholtz equation

∂ 2u

∂x 2
+
∂ 2u

∂y 2
+f(x, y)u = g(x, y) or ∇2u+f(x, y)u = g(x, y) u = u(x, y), x, y ∈ R.

These equations occur in a variety of applied disciplines.
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Examine the two-dimensional heat equation
∂u

∂t
= κ

%
∂ 2u

∂x 2
+
∂ 2u

∂y 2

&
u = u(x, y, t) x, y ∈ R

under steady state conditions where ∂u
∂t = 0. If u does not change with time,

then u = u(x, y) and so the steady state heat equation is described by the Laplace

equation subject to boundary conditions of the Dirichlet, Neumann or Robin

type. Additional areas where the Laplace, Poisson and Helmholtz equation occur

are potential theory, the study of torsion in cylindrical bars, and in the study of

harmonic functions.
Numerical solution of the Laplace equation

Consider the boundary value problem to solve either

the Laplace equation

∇2u = ∂ 2u

∂x 2
+
∂ 2u

∂y 2
= 0, x, y ∈ R

or the Poisson equation

∇2u = ∂ 2u

∂x 2
+
∂ 2u

∂y 2
= h(x, y) x, y ∈ R

where R is a simply-connected region� of the x, y plane. We begin by seek-

ing solutions u which are subject to Dirichlet boundary conditions of the form

u |x,y∈ ∂R= g(x, y), where ∂R denotes the boundary of the region R and g(x, y) is

a given function of x and y to be evaluated at points on the boundary. The

general technique for obtaining the numerical solution of the above equations is

as follows. The region R is divided up into some form of a grid, mesh or lattice

structure involving a discrete set of points or nodes (xi, yj) for i = 0, 1, 2, . . . , n

and j = 0, 1, 2, . . . ,m. The partial derivatives are then approximated by various

differences in terms of the functional values ui,j = u(xi, yj) at the grid or node

points. These difference approximations for the derivatives are then substituted

into the partial differential equation. In this way the partial differential equation

is reduced to a discretized form. This discretized form of the partial differential

equation represents a difference equation which is to be applied over each of the

nodal points of the grid structure. This produces a system of linear equations

with unknowns ui,j = u(xi, yj) that must be solved for. Any of the previous nu-

merical methods for solving linear systems can be applied to solve the resulting

� A simply-connected region is such that any simple closed curve within the region can be continuously

shrunk to a point without leaving the region.
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system of equations. Having obtained the solution values ui,j, these discrete val-

ues can be used to approximate the true solution u = u(x, y) of the given partial

differential equation. If values of u = u(x, y) are desired at nonlattice points, then

one must use interpolation to obtain the approximated values.

Sometimes it is assumed that the addition of more lattice or mesh points, to

produce a Þner grid structure, will give an improved approximation to the true

solution. However, this is not necessarily a true statement. As the grid structure

gets Þner and Þner there are produce many more nodal points to solve for and

the resulting system of equations can become quite large. This requires more

computation to calculate the solution and consequently there is the increased risk

of round off error build up. Somewhere between a coarse and Þne grid structure

lies the optimal grid structure which minimizes both approximation error and

round off error in computing the solution.

In general, given a partial differential equation, where the solution is desired

over a region R which is rectangular in shape, one can divide the region into a

rectangular grid by deÞning a ∆x and ∆y spacing given by

h = ∆x =
b− a
n
, k = ∆y =

d− c
m

.

One can then write xi = x0 + ih and yj = y0 + jk for i = 1, 2, . . . , n and j = 1, 2, . . . ,m

where x0 = a, y0 = c.We use the notation ui,j = u(xi, yj) to denote the value of u at

the point (xi, yj) and then develop approximations to the various partial deriva-

tives ∂u
∂x ,

∂u
∂y ,

∂ 2u
∂x 2 ,

∂ 2u
∂x∂y and

∂ 2u
∂y 2 and higher derivatives, occurring in the partial

differential equation. We evaluate the given partial differential equation at the

point (xi, yj) and then substitute the partial derivative approximations to obtain

a difference equation. The various partial derivative approximations involve the

step sizes h and k and combinations of the grid points in the neighborhood of

(xi, yj). These derivative approximations can be developed by manipulation of the

various Taylor series expansion of a function of two variables about the point

(xi, yj). It is left as an exercise to derive these various derivative approximations.

A variety of these derivative approximations can be found in the exercises at the

end of this chapter.

For the Laplace equation we begin with a 5-point formula to approximate

the derivatives ∂ 2u
∂x 2 and

∂ 2u
∂u 2 and leave more complicated approximations for the

exercises.


