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Numerical Analysis – Lecture 11

1 LU factorization of matrices

1.1 Definition and applications

Let A be a real n× n matrix. We say that the n× n matrices L and U are an LU factorization of
A if (1) L is lower triangular (i.e., Li,j = 0, i < j); (2) U is upper triangular, Ui,j = 0, i > j; and
(3) A = LU . Therefore the factorization takes the form  =


@

@
@

×
@

@
@

 .

Application 1 Calculation of a determinant: detA = (det L)(detU) = (
∏n

k=1 Lk,k) · (
∏n

k=1 Uk,k).

Application 2 Testing for nonsingularity: A = LU is nonsingular iff all the diagonal elements of
L and U are nonzero.

Application 3 Solution of linear systems: Let A = LU and suppose we wish to solve Ax = b.
This is the same as L(Ux) = b, which we decompose into Ly = b, Ux = y. Both latter systems
are triangular and can be calculated easily. Thus, L1,1y1 = b1 gives y1, next L2,1y1 + L2,2y2 = b2

yields y2 etc. Having found y, we solve for x by reversing the order: Un,nxn = yn gives xn,
Un−1,n−1xn−1 + Un−1,nxn = yn−1 produces xn−1 and so on. This requires O(n2) computational
operations (usually we only bother to count multiplications/divisions).

Application 4 The inverse of A: It is straightforward to devise a direct way of calculating the
inverse of triangular matrices, subsequently forming A−1 = U−1L−1.

Why not Cramer’s rule? For the uninitiated, a recursive definition of a determinant may seem
to be a good method for its calculation (and perhaps even for the solution of linear systems with
Cramer’s rule). Unfortunately, the number of operations increases like n!. Thus, on a 109 flop/sec.
computer

n = 10 ⇒ 10−4 sec., n = 20 ⇒ 17 min, n = 30 ⇒ 4× 105 years.

1.2 The calculation of LU factorization

We denote the columns of L by l1, l2, . . . , ln and the rows of U by u>1 ,u>2 , . . . ,u>n . Hence

A = LU = [ l1 l2 · · · ln ]


u>1
u>2
...

u>n

 =
n∑

k=1

lku>k . (1.1)

Since the first k− 1 components of lk and uk are all zero, each rank-one matrix lku>k has zeros in
its first k − 1 rows and columns.

Assume that the factorization exists (hence the diagonal elements of L are nonzero) and that A
is nonsingular. Since lku>k stays the same if we replace lk → αlk, uk → α−1uk, where α 6= 0,
we may assume w.l.o.g. that all diagonal elements of L equal one. In other words, the kth row of
lku>k is u>k and its kth column is Uk,k times lk.
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We begin our calculation by extracting l1 and u>1 from A, and then proceed similarly to extract
l2 and u>2 , etc.

First we note that since the leading k − 1 elements of lk and uk are zero for k ≥ 2, it follows
from (1.1) that u>1 is the first row of A and l1 is the first column of A, divided by A1,1 (so that
L1,1 = 1).

Next, having found l1 and u1, we form the matrix A−l1u
>
1 =

∑n
k=2 lku>k . The first row & column

of A are zero and it follows that u>2 is the second row of A− l1u
>
1 , while l2 is its second column,

scaled so that L2,2 = 1.

The LU algorithm: Set A0 := A. For all k = 1, 2, . . . , n set u>k to the kth row of Ak−1 and lk
to the kth column of Ak−1, scaled so that Lk,k = 1. Further, calculate Ak := Ak−1 − lku>k before
incrementing k.

Note that all elements in the first k rows & columns of Ak are zero. Hence, we can use the storage
of the original A to accumulate L and U . The full LU factorization requires O(n3) computational
operations.

1.3 Relation to Gaussian elimination

The equation Ak = Ak−1 − lku>k has the property that the jth row of Ak is the jth row of Ak−1

minus Lj,k times u>k (the kth row of Ak−1). Moreover, the multipliers Lk,k, Lk+1,k, . . . , Ln,k are
chosen so that the outcome of this elementary row operation is that the kth column of Ak is zero.
This construction is analogous to Gaussian elimination for solving Ax = b. An important differ-
ence is that in LU we do not consider the right hand side b until the factorization is complete.
This is useful e.g. when there are many right hand sides, in particular if not all the b’s are known
at the outset: in Gaussian elimination the solution for each new b would require O(n3) compu-
tational operations, whereas with LU factorization O(n3) operations are required for the initial
factorization, but then the solution for each new b only requires O(n2) operations.

1.4 Pivoting

Naive LU factorization fails when, for example, A1,1 = 0. The remedy is to exchange rows of A, a
technique called column pivoting. This is equivalent to picking a suitable equation for eliminating
the first unknown in Gaussian elimination. Specifically, column pivoting means that, having ob-
tained Ak−1, we exchange two rows of Ak−1 so that the element of largest magnitude in the kth
column is in the ‘pivotal position’ (k, k). In other words,

|(Ak−1)k,k| = max{|(Ak−1)j,k| : j = 1, 2, . . . , n}.

Of course, the same exchange is required in the portion of L that has been formed already (i.e.,
the first k − 1 columns). Also, we need to record the permutation of rows to solve for the right
hand side and/or to compute the determinant. (The exchange of rows can be regarded as the
pre-multiplication of the relevant matrix by a permutation matrix.)

Column pivoting copes with zeros at the pivot position, except when the whole kth column of
Ak−1 is zero – in that case it is usual to let lk be the kth unit vector while, as before, choose u>k
as the kth row of Ak). Such a choice preserves the condition that the matrix lku>k has the same
kth row and column as Ak−1. Thus Ak := Ak−1 − lku>k still has zeros in its kth row and column
as required.

An important advantage of column pivoting is that every element of L has magnitude at most
one. This avoids not just division by zero but also tends to reduce the chance of very large
numbers occuring during the factorization, a phenomenon that might lead to ill conditioning and
to accumulation of roundoff error.

In row pivoting one exchanges columns of Ak−1, rather than rows (sic!), whereas total pivoting
corresponds to exchange of both rows and columns, so that the modulus of the pivotal element
(Ak−1)k,k is maximised.
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2 Factorization of structured matrices

2.1 Symmetric matrices

Let A be an n × n symmetric matrix (i.e., Ak,` = A`,k). An analogue of LU factorization takes
advantage of symmetry: we express A in the form of the product LDL>, where L is n × n lower
triangular, with ones on its diagonal, whereas D is a diagonal matrix. Subject to its existence, we
can write this factorization as

A =
[

l1 l2 · · · ln
]


D1,1 0 · · · 0

0 D2,2
. . .

...
...

. . . . . . 0
0 · · · 0 Dn,n




l>1
l>2
...

l>n

 =
n∑

k=1

Dk,klkl>k

where, as before, lk is the kth column of L.
The analogy with the algorithm of Section 1.2 becomes obvious by letting U = DL>, but the
present form lends itself better to exploitation of symmetry. Specifically, to compute this factor-
ization, we let A0 = A and for k = 1, 2, . . . , n let lk be the multiple of the kth column of Ak−1

such that Lk,k = 1. Set Dk,k = (Ak−1)k,k and form Ak = Ak−1 −Dk,klkl>k .

Example Let A = A0 =
[

2 4
4 11

]
. Hence l1 =

[
1
2

]
, D1,1 = 2 and

A1 = A0 −D1,1l1l
>
1 =

[
2 4
4 11

]
− 2

[
1 2
2 4

]
=

[
0 0
0 3

]
.

We deduce that l2 =
[

0
1

]
, D2,2 = 3 and A =

[
1 0
2 1

] [
2 0
0 3

] [
1 2
0 1

]
.

2.2 Symmetric positive definite matrices

Recall that A is positive definite if x>Ax > 0 for all x 6= 0.

Theorem Let A be a real n × n symmetric matrix. It is positive definite if and only if it has an
LDL> factorization in which the diagonal elements of D are all positive.

Proof. Suppose that A = LDL> and let x ∈ Rn \ {0}. Since L is nonsingular, y := L>x 6= 0.
Then x>Ax = y>Dy =

∑n
k=1 Dk,ky2

k > 0, hence A is positive definite.
Conversely, suppose that A is positive definite. We wish to demonstrate that an LDL> factorization
exists. We denote by ek ∈ Rn the kth unit (a.k.a. coordinate) vector. Hence e>1 Ae1 = A1,1 > 0
and l1 & D1,1 are well defined. We now show that (Ak−1)k,k > 0 for k = 1, 2, . . .. The result is
true for k = 1 and we continue by induction (hence may assume that Ak−1 = A−

∑k−1
j=1 Dj,jljl

>
j

has been computed successfully).
We define x ∈ Rn as follows. The bottom n− k components are zero, xk = 1 and x1, x2, . . . , xk−1

are calculated in a reverse order, each xj being chosen so that l>j x = 0 for j = k − 1, k − 2, . . . , 1.
In other words, since 0 = l>j x =

∑n
i=1 Li,jxi =

∑k
i=j Li,jxi, we let xj = −

∑k
i=j+1 Li,jxi, j =

k − 1, k − 2, . . . , 1.
1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are
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Since the first k−1 rows & columns of Ak−1 vanish, our choice implies that (Ak−1)k,k = x>Ak−1x.
Thus, from the definition of Ak−1 and the choice of x,

(Ak−1)k,k = x>Ak−1x = x>

A−
k−1∑
j=1

Dj,jljl
>
j

 x = x>Ax−
k−1∑
j=1

Dj,j(l>j x)2 = x>Ax > 0,

as required. Hence (Ak−1)k,k > 0, k = 1, 2, . . . , n, and the factorization exists. 2

Conclusion It is possible to check if a symmetric matrix is positive definite by trying to form its
LDL> factorization.

Cholesky factorization Define D1/2 as the diagonal matrix whose (k, k) element is D
1/2
k,k , hence

D1/2D1/2 = D. Then, A being positive definite, we can write

A = (LD1/2)(D1/2L>) = (LD1/2)(LD1/2)>.

In other words, letting L̃ := LD1/2, we obtain the Cholesky factorization A = L̃L̃>.

2.3 Sparse matrices

Frequently it is required to solve very large systems Ax = b (n = 105 is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and efficient
solution of Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit
as much as possible of the sparsity of A. The only tool at our disposal at the moment is the
freedom to exchange rows and columns to minimise fill-in. To this end the following theorem is
useful.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all
leading zeros in the rows of A to the left of the diagonal are inherited by L and all the leading
zeros in the columns of A above the diagonal are inherited by U .

Proof Follows from Question 2 on Examples’ Sheet 1. 2

This theorem suggests that if one requires a factorization of a sparse matrix then one might try to
reorder its rows and columns by a preliminary calculation so that many of the zero elements are
leading zero elements in rows and columns. This will reduce the fill-in.

Example 1 The LU factorisation of
−3 1 1 2 0
1 −3 0 0 1
1 0 2 0 0
2 0 0 3 0
0 1 0 0 3

 =


1 0 0 0 0
− 1

3 1 0 0 0
− 1

3 − 1
8 1 0 0

− 2
3 − 1

4
6
19 1 0

0 − 3
8

1
19

4
81 1



−3 1 1 2 0
0 − 8

3
1
3

2
3 1

0 0 19
8

3
4

1
8

0 0 0 81
19

4
19

0 0 0 0 272
81

 ,

has significant fill-in. However, reordering (symmetrically) rows and columns 1 ↔ 3, 2 ↔ 4 and
4 ↔ 5 yields

2 0 1 0 0
0 3 2 0 0
1 2 −3 0 1
0 0 0 3 1
0 0 1 1 −3

 =


1 0 0 0 0
0 1 0 0 0
1
2

2
3 1 0 0

0 0 0 1 0
0 0 − 6

29
1
3 1




2 0 1 0 0
0 3 2 0 0
0 0 − 29

6 0 1
0 0 0 3 1
0 0 0 0 − 272

87

 .

Example 2 If the nonzeros of A occur only on the diagonal, in one row and in one column, then
the full row and column should be placed at the bottom and on the right of A, respectively.

General treatment of orderings that minimise sparsity can be addressed using graph theory, but
this is well outside the scope of an undergraduate course.
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Band matrices The matrix A is a band matrix if there exists an integer r < n such that Ai,j = 0
for |i− j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a band of
width 2r+1 along the main diagonal. In that case, according to the statement from the end of the
last lecture, A = LU implies that Li,j = Ui,j = 0 ∀ |i − j| > r and sparsity structure is inherited
by the factorization.
In general, the expense of calculating an LU factorization of an n × n dense matrix A is O

(
n3
)

operations and the expense of solving Ax = b, provided that the factorization is known, is O
(
n2
)
.

However, in the case of a banded A, we need just O
(
r2n
)

operations to factorize and O(rn)
operations to solve a linear system. If r � n this represents a very substantial saving!

General sparse matrices are crucial to a wide range of applications, e.g. the solution of partial
differential equations. There exists a wealth of methods for their solution. One approach is efficient
factorization, that minimizes fill in. Yet another is to use iterative methods, our next topic. There
also exists a substantial body of other, highly effective methods, e.g. Fast Fourier Transforms and
multigrid techniques (cf. Part II course in Numerical Analysis), fast multipole techniques and much
more.

3 Iterative methods for linear systems

3.1 Basic iterative schemes

Solution of Ax = b by factorization is frequently very expensive for large n, even if we exploit
sparsity. An alternative is to use iterative methods. Such methods are very efficient and have been
subjected to intensive attention in the last few decades. An example of an iterative scheme is to
write A = B − C, where (1) B & C are n × n matrices; (2) B is nonsingular; (3) the system
Bx = c is easy to solve and (4) the matrix C is somehow ‘small’ in comparison with B. We write
the original system in the form Bx = Cx + b and consider solving it by iteration. Choose an
arbitrary x0 ∈ Rn and define xm+1, m = 0, 1, . . ., by solving

Bxm+1 = Cxm + b. (3.1)

Provided that B is, for example, banded, the solution of (3.1) is cheap (and the LU factorization
of B can be re-used – an example of why the LU formalism is superior to Gaussian elimination).
Often the sequence {xm}∞m=0 converges to the solution of Ax = b.

The Jacobi iteration We write A = AD −AL −AU, where AL is strictly lower triangular, AD is
diagonal and AU is strictly upper triangular. Suppose that no diagonal element of A is zero. The
Jacobi iteration is

ADxm+1 = (AL + AU)xm + b, m = 0, 1, . . . . (3.2)

The Gauss–Seidel iteration In the above notation, it takes the form

(AD −AL)xm+1 = AUxm + b, m = 0, 1, . . . . (3.3)

Note that AL + AD is lower triangular, hence the solution of (3.3) is cheap.
1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are
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3.2 Necessary and sufficient conditions for convergence

Suppose that A is nonsingular and denote by x∗ the solution of Ax = b. Having written A = B−C,
we examine the iterative scheme (3.1). (Note that both (3.2) and (3.3) can be cast in this form.)
Our goal is to identify conditions so that xm → x∗, regardless of the choice of x0 ∈ Rn.

Subtract Bx∗ = Cx∗+b from (3.1). This gives B(xm+1−x∗) = C(xm−x∗), hence Bεm+1 = Cεm,
where εm := xm −x∗ is the error in the mth iterate. Since B is nonsingular (otherwise we cannot
execute (3.1) in the first place), it follows that

εm+1 = Hεm = · · · = Hm+1ε0, m = 0, 1, . . . where H = B−1C is the iteration matrix..
(3.4)

This indicates that the errors tend to zero as m → ∞ (regardless of the choice of x0) provided
that limm→∞Hm = O.

We employ the notation ρ(P ) for the magnitude of the largest (in absolute value) eigenvalue of the
n × n matrix P . The quantity ρ(P ) is called the spectral radius of the matrix P . (Note: Recall
that, even if P is real, its eigenvalues might be complex.)

Theorem limm→∞ xm = x∗ for all x0 ∈ Rn if and only if ρ(H) < 1.
Proof. We commence with the case ρ(H) ≥ 1 and wish to demonstrate that εm need not tend

to 0. Let λ be an eigenvalue of H such that |λ| = ρ(H) and let w be a corresponding eigenvector,
Hw = λw. If w is real, we choose x0 = x∗ + w, hence ε0 = w. It follows at once by induction
that εm = λmw, and this cannot tend to zero since |λ| ≥ 1.

If λ ∈ C\R then w is complex. Moreover, also λ̄ 6= λ is an eigenvalue and w̄ is its eigenvector (the
bar denotes complex conjugation). Note that w and w̄ are linearly independent (otherwise they
would have corresponded to the same eigenvalue). We denote the Euclidean length of p ∈ Cn by

‖p‖ =

(
n∑

k=1

|pk|2
)1/2

.

Note that ‖p‖ is a continuous function of the components of p. Hence, ‖zw + z̄w̄‖ is a continuous
function of the complex variable z. It is a consequence of the linear independence of w and w̄ and
of the theorem that a continuous function attains its minimum in a closed interval that

inf
−π≤θ≤π

∥∥eiθw + e−iθw̄
∥∥ = min

−π≤θ≤π

∥∥eiθw + e−iθw̄
∥∥ = ν,

say, is positive. (ν = 0 would have implied eiθ∗w + e−iθ∗w̄ = 0 for some θ∗.) By homogeneity, it
is true for every z ∈ C that

‖zw + z̄w̄‖ ≥ ν|z|. (3.5)

We let x0 = x∗ + w + w̄, hence ε0 = w + w̄. (Note that everything in sight is real: this was
precisely the purpose of our construction!) We have by induction on (3.1) that

εm = λmw + λ̄mw̄, m = 0, 1, . . . .

Setting z = λm, (3.5) implies that ‖εm‖ ≥ ν|λm| ≥ ν. Hence the sequence {εm}∞m=0 is bounded
away from zero and εm 6→ 0. This completes the proof of the ‘only if’ part of the theorem.

2
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Recap of Theorem limm→∞ xm = x∗ for all x0 ∈ Rn if and only if ρ(H) < 1.

. . . proof. We consider next the case of ρ(H) < 1. Assume for simplicity that H possesses
n linearly independent eigenvectors w1,w2, . . . ,wn, say. Hence Hwj = λjwj , |λj | < 1, j =
1, 2, . . . , n. Linear independence means that every ε ∈ Rn can be expressed as a linear combination
of the eigenvectors. Therefore, given x0 ∈ Rn, there exist α1, α2, . . . , αn ∈ C such that ε0 =
x0 − x∗ =

∑n
j=1 αjwj . Thus,

ε1 = Hε0 =
n∑

j=1

αjλjwj and, by induction, εm =
n∑

j=1

αjλ
m
j wj

for all m = 0, 1, . . .. Since ρ(H) < 1, it follows that limm→∞ εm = 0, as required. 2

The ‘missing’ case Suppose that ρ(H) < 1 but that H does not have n linearly independent

eigenvalues. This occurs, for example, for the matrix H =
[

a b
0 a

]
, where b 6= 0 and |a| < 1. The

eigenvalues of H are both a, but it is an easy exercise to verify that all eigenvectors are necessarily

multiples of e1. Moreover, Hm =
[

am mam−1b
0 am

]
(prove!), therefore |a| < 1 implies Hm → O.

4 QR factorization of matrices

4.1 Scalar products, norms and orthogonality

We first revise a few definitions. Rn is the linear space of all real n-tuples.

• For all u,v ∈ Rn we define the scalar product

〈u,v〉 = 〈v,u〉 =
n∑

j=1

ujvj = u>v = v>u .

• If u,v,w ∈ Rn and α, β ∈ R then 〈αu + βw,v〉 = α〈u,v〉+ β〈w,v〉.

• The norm (a.k.a. the Euclidean length) of u ∈ Rn is ‖u‖ =
(∑n

j=1 u2
j

)1/2

= 〈u,u〉1/2 ≥ 0.

• For u ∈ Rn, ‖u‖ = 0 iff u = 0.

• We say that u ∈ Rn and v ∈ Rn are orthogonal to each other if 〈u,v〉 = 0.

• The vectors q1, q2, . . . , qm ∈ Rn are orthonormal if

〈qk, q`〉 =
{

1, k = `,
0, k 6= `,

k, ` = 1, 2, . . . ,m.

• An n × n real matrix Q is orthogonal if all its columns are orthonormal. Since (Q>Q)k,` =
〈qk, q`〉, this implies that Q>Q = I (I is the unit matrix ). Hence Q−1 = Q> and QQ> =
QQ−1 = I. We conclude that the rows of an orthogonal matrix are also orthonormal, and
that Q> is an orthogonal matrix. Further, 1 = det I = det(QQ>) = det Qdet Q> = (det Q)2,
and thus we deduce that detQ = ±1, and that an orthogonal matrix is nonsingular.

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are
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Proposition If P,Q are orthogonal then so is PQ.
Proof. Since P>P = Q>Q = I, we have (PQ)>(PQ) = (Q>P>)(PQ) = Q>(P>P )Q = Q>Q =

I, hence PQ is orthogonal. 2

Proposition Let q1, q2, . . . , qm ∈ Rn be orthonormal. Then m ≤ n.
Proof. We argue by contradiction. Suppose that m ≥ n +1 and let Q be the orthogonal matrix

whose columns are q1, q2, . . . , qn. Since Q is nonsingular and qm 6= 0, there exists a nonzero
solution to the linear system Qa = qm, hence qm =

∑n
j=1 ajqj . But

0 = 〈q`, qm〉 =

〈
q`,

n∑
j=1

ajqj

〉
=

n∑
j=1

aj〈q`, qj〉 = a`, ` = 1, 2, . . . , n,

hence a = 0, a contradiction. We deduce that m ≤ n. 2

Lemma Let q1, q2, . . . , qm ∈ Rn be orthonormal and m ≤ n − 1. Then there exists qm+1 ∈ Rn

such that q1, q2, . . . , qm+1 are orthonormal.
Proof. We construct qm+1. Let Q be the n×m matrix whose columns are q1, . . . , qm. Since

n∑
k=1

m∑
j=1

Q2
k,j =

m∑
j=1

‖qj‖2 = m < n,

it follows that ∃ ` ∈ {1, 2, . . . , n} such that
∑m

j=1 Q2
`,j < 1. We let w = e`−

∑m
j=1〈qj , e`〉qj . Then

for i = 1, 2, . . . ,m

〈qi,w〉 = 〈qi, e`〉 −
m∑

j=1

〈qj , e`〉〈qi, qj〉 = 0,

i.e. by design w is orthogonal to q1, . . . , qm. Further, since Q`,j = 〈qj , e`〉, we have

‖w‖2 = 〈w,w〉 = 〈e`, e`〉−2
m∑

j=1

〈qj , e`〉〈e`, qj〉+
m∑

j=1

〈qj , e`〉
m∑

k=1

〈qk, e`〉〈qj , qk〉 = 1−
m∑

j=1

Q2
`,j > 0.

Thus we define qm+1 = w/‖w‖. 2

4.2 The QR factorization

The QR factorization of an m×n matrix A has the form A = QR, where Q is an m×m orthogonal
matrix and R is an m× n upper triangular matrix (i.e., Ri,j = 0 for i > j). We will demonstrate
in the sequel that every matrix has a (non-unique) QR factorization.

An application Let m = n and A be nonsingular. We can solve Ax = b by calculating the QR
factorization of A and solving first Qy = b (hence y = Q>b) and then Rx = y (a triangular
system!).

Interpretation of the QR factorization Let m ≥ n and denote the columns of A and Q by
a1,a2, . . . ,an and q1, q2, . . . , qm respectively. Since

[ a1 a2 · · · an ] = [ q1 q2 · · · qm ]



R1,1 R1,2 · · · R1,n

0 R2,2

...
...

. . . . . .
0 Rn,n

...
...

0 · · · · · · 0


,

we have ak =
∑k

j=1 Rj,kqj , k = 1, 2, . . . , n. In other words, Q has the property that each kth
column of A can be expressed as a linear combination of the first k columns of Q.

2
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4.3 The Gram–Schmidt algorithm

Given a nonzero m×n matrix A with the columns a1,a2, . . . ,an ∈ Rm, we construct Q & R where
Q is orthogonal, R upper-triangular and A = QR: in other words,

∑̀
k=1

Rk,`q` = ak, k = 1, 2, . . . , n, where A = [ a1 a2 · · · an ]. (4.1)

Assuming a1 6= 0, we derive q1 and R1,1 from the equation (4.1) for k = 1. Since ‖q1‖ = 1, we let
q1 = a1/‖a1‖, R1,1 = ‖a1‖.
Next we form the vector b = a2 − 〈q1,a2〉q1. It is orthogonal to q1, since

〈q1,a2 − 〈q1,a2〉q1〉 = 〈q1,a2〉 − 〈q1,a2〉〈q1, q1〉 = 0.

If b 6= 0, we set q2 = b/‖b‖, hence q1 and q2 are orthonormal. Moreover,

〈q1,a2〉q1 + ‖b‖q2 = 〈q1,a2〉q1 + b = a2,

hence, to obey (4.1) for k = 2, we let R1,2 = 〈q1,a2〉, R2,2 = ‖b‖.

The Gram–Schmidt algorithm The above idea can be extended to all columns of A.
Step 1 Set k := 0, j := 0 (k is the number of columns of Q that have been already formed and j
is the number of columns of A that have been already considered, clearly k ≤ j);
Step 2 Increase j by 1. If k = 0 then set b := aj , otherwise (i.e., when k ≥ 1) set Ri,j := 〈qi,aj〉,
i = 1, 2, . . . , k, and b := aj −

∑k
i=1〈qi,aj〉qi. [Note: b is orthogonal to q1, q2, . . . , qk.]

Step 3 If b 6= 0 increase k by 1. Subsequently, set qk := b/‖b‖, Rk,j := ‖b‖ and Ri,j := 0 for
i ≥ k + 1. [Note: Hence, each column of Q has unit length, as required, aj =

∑k
i=1 Ri,jqj and R

is upper triangular, because k ≤ j.]
Step 4 Terminate if j = n, otherwise go to Step 2.

Previous lecture ⇒ Since the columns of Q are orthonormal, there are at most m of them, i.e. the
final value of k can’t exceed m. If it is less then m then a previous lemma demonstrates that we
can add columns so that Q becomes m×m and orthogonal.

The disadvantage of Gram–Schmidt is its ill-conditioning . Since we are using finite arithmetic, even
small imprecisions in the calculation of inner products rapidly lead to effective loss of orthogonality.
Thus, errors accumulate fast and even for moderate values of m it is no longer true that the
computed off-diagonal elements of Q>Q are very small in magnitude.

On the other hand, orthogonality conditions are preserved well when one generates a new orthog-
onal matrix by computing the product of two given orthogonal matrices. Therefore algorithms
that express Q as a product of simple orthogonal matrices are highly useful. This suggests an
alternative way forward.

4.4 Orthogonal transformations

Given real, m×n matrix A0 = A, we seek a sequence Ω1,Ω2, . . . ,Ωk of m×m orthogonal matrices
such that the matrix Ai := ΩiAi−1 has more zero elements below the main diagonal than Ai−1 for
i = 1, 2, . . . , k and so that the manner of insertion of such zeros is such that Ak is upper triangular.
We then let R = Ak, therefore

ΩkΩk−1 · · ·Ω2Ω1A = R
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and Q = (ΩkΩk−1 · · ·Ω1)−1 = (ΩkΩk−1 · · ·Ω1)> = Ω>1 Ω>2 · · ·Ω>k . Hence A = QR, where Q is
orthogonal and R upper triangular.

4.5 Givens rotations

We say that an m × m orthogonal matrix Ωj is a Givens rotation if it coincides with the unit
matrix, except for four elements. Specifically, we use the notation Ω[p,q], where 1 ≤ p < q ≤ m for
a matrix such that

Ω[p,q]
p,p = Ω[p,q]

q,q = cos θ, Ω[p,q]
p,q = sin θ, Ω[p,q]

q,p = − sin θ

for some θ ∈ [−π, π]. The remaining elements of Ω[p,q] are those of a unit matrix. For example,

m = 4 =⇒ Ω[1,2] =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 , Ω[2,4] =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 .

Geometrically, such matrices correspond to the underlying coordinate system being rigidly rotated
along a two-dimensional plane (in mechanics this is called an Euler rotation). It is trivial to confirm
that they are orthogonal.

Theorem Let A be an m × n matrix. Then, for every 1 ≤ p < q ≤ m, i ∈ {p, q} and 1 ≤ j ≤ n,
there exists θ ∈ [−π, π] such that (Ω[p,q]A)i,j = 0. Moreover, all the rows of Ω[p,q]A, except for the
pth and the qth, are the same as the corresponding rows of A, whereas the pth and the qth rows
are linear combinations of the ‘old’ pth and qth rows.

Proof. Let i = q. If Ap,j = Aq,j = 0 then any θ will do, otherwise we let

cos θ := Ap,j/
√

A2
p,j + A2

q,j , sin θ := Aq,j/
√

A2
p,j + A2

q,j .

Hence

(Ω[p,q]A)q,k = −(sin θ)Ap,k + (cos θ)Aq,k, k = 1, 2, . . . , n ⇒ (Ω[p,q])q,j = 0.

Likewise, when i = p we let cos θ := Aq,j/
√

A2
p,j + A2

q,j , sin θ := −Ap,j/
√

A2
p,j + A2

q,j .

The last two statements of the theorem are an immediate consequence of the structure of Ω[p,q].
2

An example: Suppose that A is 3 × 3. We can force zeros underneath the main diagonal as
follows.

1 First pick Ω[1,2] so that (Ω[1,2]A)2,1 = 0 ⇒ Ω[1,2]A =

 × × ×
0 × ×
× × ×

.

2 Next pick Ω[1,3] so that (Ω[1,3]Ω[1,2]A)3,1 = 0. Note that multiplication by Ω[1,3] doesn’t alter

the second row, hence (Ω[1,3]Ω[1,2]A)2,1 remains zero ⇒ Ω[1,3]Ω[1,2]A =

 × × ×
0 × ×
0 × ×

.

3 Finally, pick Ω[2,3] so that (Ω[2,3]Ω[1,3]Ω[1,2]A)3,2 = 0. Since both second and third row of
Ω[1,3]Ω[1,2]A have a leading zero, their linear combination preserves these zeros, hence also

(Ω[2,3]Ω[1,3]Ω[1,2]A)2,1 = (Ω[2,3]Ω[1,3]Ω[1,2]A)3,1 = 0.

It follows that Ω[2,3]Ω[1,3]Ω[1,2]A is upper triangular. Therefore

R = Ω[2,3]Ω[1,3]Ω[1,2]A =

 × × ×
0 × ×
0 0 ×

 , Q = (Ω[2,3]Ω[1,3]Ω[1,2])>.

2
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The Givens algorithm Given m× n matrix A, let `i be the number of leading zeros in the ith
row of A, i = 1, 2, . . . ,m.
Step 1 Stop if the (integer) sequence {`1, `2, . . . , `m} increases monotonically, the increase being
strictly monotone for `i ≤ n.
Step 2 Pick any two integers 1 ≤ p < q ≤ m such that either `p > `q or `p = `q < n.
Step 3 Replace A by Ω[p,q]A, using the Givens rotation that annihilates the (q, `q + 1) element.
Update the values of `p and `q and go to Step 1.

The final matrix A is upper triangular and also has the property that the number of leading zeros
in each row increases strictly monotonically until all the rows of A are zero – a matrix of this form
is said to be in standard form. This end result, as we recall, is the required matrix R.

The cost There are less than mn rotations and each rotation replaces two rows by their linear
combinations, hence the total cost is O

(
mn2

)
.

If we wish to obtain explicitly an orthogonal Q s.t. A = QR then we commence by letting Ω be the
m×m unit matrix and, each time A is premultiplied by Ω[p,q], we also premultiply Ω by the same
rotation. Hence the final Ω is the product of all the rotations, in correct order, and we let Q = Ω>.
The extra cost is O

(
m2n

)
. However, in most applications we don’t need Q but, instead, just the

action of Q> on a given vector (recall: solution of linear systems!). This can be accomplished by
multiplying the vector by successive rotations, the cost being O(mn).

4.6 Householder transformations

Let u ∈ Rm \ {0}. The m×m matrix

I − 2
uu>

‖u‖2

is called a Householder transformation (or a Householder reflection). Each such matrix is sym-
metric and orthogonal, since(

I − 2
uu>

‖u‖2

)> (
I − 2

uu>

‖u‖2

)
=

(
I − 2

uu>

‖u‖2

)2

= I − 4
uu>

‖u‖2
+ 4

u(u>u)u>

‖u‖4
= I.

Householder transformations offer an alternative to Given rotations in the calculation of a QR
factorization.

Deriving the first column of R Our goal is to multiply an m × n matrix A by a sequence of
Householder transformations so that each product induces zeros under the diagonal in an entire
successive column. To start with, we seek a reflection that transforms the first nonzero column of
A to a multiple of e1.
Let a ∈ Rm be the first nonzero column of A. We wish to choose u ∈ Rm s.t. the bottom m − 1
entries of (

I − 2
uu>

‖u‖2

)
a = a− 2

u>a

‖u‖2
u
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vanish and, in addition, we normalise u so that 2u>a = ‖u‖2 (recall that a 6= 0). Therefore
ui = ai, i = 2, . . . ,m and the normalisation implies that

2u1a1 + 2
m∑

i=2

a2
i = u2

1 +
m∑

i=2

a2
i ⇒ u2

1 − 2u1a1 + a2
1 −

m∑
i=1

a2
i = 0 ⇒ u1 = a1 ± ‖a‖.

It is usual to let the sign be the same as the sign of a1, since ‖u‖ � 1 might lead to a division by
a tiny number, hence to numerical difficulties.

For large m we do not execute explicit matrix multiplication. Instead, to calculate(
I − 2

uu>

‖u‖2

)
A = A− 2

u(u>A)
‖u‖2

,

we first evaluate w> := u>A, subsequently forming A− 2
‖u‖2 uw>.

Subsequent columns of R Suppose that a is the first column of A that isn’t compatible with
standard form (previous columns have been, presumably, already dealt with by Householder trans-
formations) and that the standard form requires to bring the k + 1, . . . ,m components to zero.
Hence, nonzero elements in previous columns must be confined to the first k− 1 rows and we want
them to be unamended by the reflection. Thus, we let the first k− 1 components of u be zero and
choose uk = ak ±

(∑m
i=k a2

i

)1/2 and ui = ai, i = k + 1, . . . ,m.

The Householder method We process columns of A in sequence, in each stage premultiplying
a current A by the requisite Householder transformation. The end result is an upper triangular
matrix R in its standard form.

Example

A =


2 4 7
0 3 −1
0 0 2
0 0 1
0 0 −2

 ⇒ u =


0
0
5
1

−2

 ⇒
(

I − 2
uu>

‖u‖2

)
A =


2 4 7
0 3 −1
0 0 −3
0 0 0
0 0 0

 .

Calculation of Q If the matrix Q is required in an explicit form, set Ω = I initially and, for each
successive reflection, replace Ω by(

I − 2
uu>

‖u‖2

)
Ω = Ω− 2

‖u‖2
u(u>Ω).

As in the case of Givens rotations, by the end of the computation, Q = Ω>. However, if we require
just the vector c = Q>b, say, rather than the matrix Q, then we set initially c = b and in each
stage replace c by (

I − 2
uu>

‖u‖2

)
c = c− 2

u>c

‖u‖2
u.

Deciding between Givens and Householder transformations If A is dense, it is in general
more convenient to use Householder reflections. Givens rotations come into their own, however,
when A has many leading zeros in its rows. In an extreme case, if an n × n matrix A consists of
zeros underneath the first subdiagonal, they can be ‘rotated away’ in just n− 1 Givens rotations,
at the cost of O

(
n2

)
operations!
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5 Linear least squares

5.1 Statement of the problem

Suppose that an m × n matrix A and a vector b ∈ Rm are given. The equation Ax = b, where
x ∈ Rn is unknown, has in general no solution (if m > n) or an infinity of solutions (if m < n).
Problems of this form occur frequently when we collect m observations (which, typically, are prone
to measurement error) and wish to exploit them to form an n-variable linear model, where n � m.
(In statistics, this is known as linear regression.) Bearing in mind the likely presence of errors in
A and b, we seek x ∈ Rn that minimises the Euclidean length ‖Ax− b‖. This is the least squares
problem.

Theorem x ∈ Rn is a solution of the least squares problem iff A>(Ax− b) = 0.
Proof. If x is a solution then it minimises

f(x) := ‖Ax− b‖2 = 〈Ax− b, Ax− b〉 = x>A>Ax− 2x>A>b + b>b.

Hence ∇f(x) = 0. But 1
2∇f(x) = A>Ax−A>b, hence A>(Ax− b) = 0.

Conversely, suppose that A>(Ax− b) = 0 and let u ∈ Rn. Hence, letting y = u− x,

‖Au− b‖2 = 〈Ax + Ay − b, Ax + Ay − b〉 = 〈Ax− b, Ax− b〉+ 2y>A>(Ax− b)
+ 〈Ay, Ay〉 = ‖Ax− b‖2 + ‖Ay‖2 ≥ ‖Ax− b‖2

and x is indeed optimal. 2

Corollary Optimality of x ⇔ the vector Ax− b is orthogonal to all columns of A.

5.2 Normal equations

One way of finding optimal x is by solving the n × n linear system A>Ax = A>b – the method
of normal equations. This approach is popular in many applications. However, there are three
disadvantages. Firstly, A>A might be singular, secondly sparse A might be replaced by a dense
A>A and, finally, forming A>A might lead to loss of accuracy. Thus, suppose that our computer
works in the IEEE arithmetic standard (≈ 15 significant digits) and let

A =
[

108 −108

1 1

]
=⇒ A>A =

[
1016 + 1 −1016 + 1

−1016 + 1 1016 + 1

]
≈ 1016

[
1 −1

−1 1

]
.

Given b = [0, 2]> the solution of Ax = b is [1, 1]>, as can be easily found by Gaussian elimination.
However, our computer ‘believes’ that A>A is singular!

5.3 QR and least squares

Lemma Let A be any m× n matrix and let b ∈ Rm. The vector x ∈ Rn minimises ‖Ax− b‖ iff
it minimises ‖ΩAx− Ωb‖ for an arbitrary m×m orthogonal matrix Ω.

Proof. Given an arbitrary vector v ∈ Rm, we have

‖Ωv‖2 = v>Ω>Ωv = v>v = ‖v‖2.
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In particular, ‖ΩAx− Ωb‖ = ‖Ax− b‖. 2

An irrelevant, yet important remark The property that orthogonal matrices leave the Eu-
clidean distance intact is called isometry and it has many important ramifications throughout
mathematics and mathematical physics.

Method of solution Suppose that A = QR, a QR factorization with R in a standard form.
Because of the lemma, letting Ω := Q>,

‖Ax− b‖ = ‖Q>(Ax− b)‖ = ‖Rx−Q>b‖,

therefore we seek x ∈ Rn that minimises ‖Rx−Q>b‖.
In general (m > n) many rows of R consist of zeros. Suppose for simplicity that rank R = rankA =
n. Then the bottom m − n rows of R are zero. Therefore we find x by solving the (nonsingular)
linear system given by the first n equations of Rx = Q>b. Similar (although more complicated)
algorithm applies when rankR ≤ n− 1. Note, recalling our former remark, that we don’t require
Q explicitly, just to evaluate Q>b.

6 Polynomial interpolation

6.1 The interpolation problem

Given n + 1 distinct real points x0, x1, . . . , xn and real numbers f0, f1, . . . , fn, we seek a function
p : R → R such that p(xi) = fi, i = 0, 1, . . . , n. Such a function is called an interpolant.
We denote by Pn[x] the set of all real polynomials of degree at most n and observe that each
p ∈ Pn[x] is uniquely defined by its n + 1 coefficients. In other words, we have n + 1 degrees
of freedom, while interpolation at x0, x1, . . . , xn constitutes n + 1 conditions. This, intuitively,
justifies seeking an interpolant from Pn[x].

6.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a poly-
nomial interpolant, this can be accomplished more easily by using the explicit Lagrange formula.
We claim that

p(x) =
n∑

k=0

fk

n∏
`=0
` 6=k

x− x`

xk − x`
, x ∈ R.

Note that p ∈ Pn[x], as required. We wish to show that it interpolates the data. Define

Lk(x) :=
n∏

`=0
` 6=k

x− x`

xk − x`
, j = 0, 1, . . . , n

(Lagrange cardinal polynomials). It is trivial to verify that Lj(xj) = 1 and Lj(xk) = 0 for k 6= j,
hence

p(xj) =
n∑

k=0

fkLk(xj) = fj , j = 0, 1, . . . , n,

and p is an interpolant,

Uniqueness Suppose that both p ∈ Pn[x] and q ∈ Pn[x] interpolate to the same n + 1 data.
Then the nth degree polynomial p− q vanishes at n + 1 distinct points. But the only nth-degree
polynomial with ≥ n + 1 zeros is the zero polynomial. Therefore p − q ≡ 0 and the interpolating
polynomial is unique.

2
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6.3 The error of polynomial interpolation

Let [a, b] be a closed interval of R. We denote by C[a, b] the space of all continuous functions from
[a, b] to R and let Cs[a, b], where s is a positive integer, stand for the linear space of all functions
in C[a, b] that possess s continuous derivatives.

Theorem Given f ∈ Cn+1[a, b], let p ∈ Pn[x] interpolate the values f(xi), i = 0, 1, . . . , n, where
x0, . . . , xn ∈ [a, b] are pairwise distinct. Then for every x ∈ [a, b] there exists ξ ∈ [a, b] such that

f(x)− p(x) =
1

(n + 1)!
f (n+1)(ξ)

n∏
i=0

(x− xi). (6.1)

Proof. The formula (6.1) is true when x = xj for j ∈ {0, 1, . . . , n}, since both sides of the
equation vanish. Let x ∈ [a, b] be any other point and define

φ(t) := [f(t)− p(t)]
n∏

i=0

(x− xi)− [f(x)− p(x)]
n∏

i=0

(t− xi), t ∈ [a, b].

[Note: The variable in φ is t, whereas x is a fixed parameter.] Note that φ(xj) = 0, j = 0, 1, . . . , n,
and φ(x) = 0. Hence, φ has at least n + 2 distinct zeros in [a, b]. Moreover, φ ∈ Cn+1[a, b].
We now apply the Rolle theorem: if the function g ∈ C1[a, b] vanishes at two distinct points in
[a, b] then its derivative vanishes at an intermediate point. We deduce that φ′ vanishes at (at least)
n + 1 distinct points in [a, b]. Next, applying Rolle to φ′, we conclude that φ′′ vanishes at n points
in [a, b]. In general, we prove by induction that φ(s) vanishes at n + 2 − s distinct points of [a, b]
for s = 0, 1, . . . , n + 1. Letting s = n + 1, we have φ(n+1)(ξ) = 0 for some ξ ∈ [a, b]. Hence

0 = φ(n+1)(ξ) = [f (n+1)(ξ)− p(n+1)(ξ)]
n∏

i=0

(x− xi)− [f(x)− p(x)]
dn+1

dtn+1

n∏
i=0

(ξ − xi).

Since p(n+1) ≡ 0 and dn+1
∏n

i=0(t− xi)/dtn+1 ≡ (n + 1)!, we obtain (6.1). 2

Runge’s example We interpolate f(x) = 1/(1 + x2), x ∈ [−5, 5], at the equally-spaced points
xj = −5 + 10 j

n , j = 0, 1, . . . , n. Some of the errors are displayed below

x f(x)− p(x)
∏n

i=0(x− xi)
0.75 3.2× 10−3 −2.5× 106

1.75 7.7× 10−3 −6.6× 106

2.75 3.6× 10−2 −4.1× 107

3.75 5.1× 10−1 −7.6× 108

4.75 4.0× 10+2 −7.3× 1010

Table: Errors for n = 20

Figure: Errors for n = 15

The growth in the error is explained by the product term in (6.1) (the rightmost column of the
table). Adding more interpolation points makes the largest error even worse. A remedy to this
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state of affairs is to cluster points toward the end of the range. A considerably smaller error is
attained for xj = 5 cos (n−j)π

n , j = 0, 1, . . . , n (so-called Chebyshev points). It is possible to prove
that this choice of points minimizes the magnitude of maxx∈[−5,5] |

∏n
i=0(x− xi)|.

6.4 Divided differences: a definition

Given pairwise-distinct points x0, x1, . . . , xn ∈ [a, b], we let p ∈ Pn[x] interpolate f ∈ C[a, b] there.
The coefficient of xn in p is called the divided difference and denoted by f [x0, x1, . . . , xn]. We say
that this divided difference is of degree n.
We can derive f [x0, . . . , xn] from the Lagrange formula,

f [x0, x1, . . . , xn] =
n∑

k=0

f(xk)
n∏

`=0
` 6=k

1
xk − x`

. (6.2)

Theorem Let [ā, b̄] be the shortest interval that contains x0, x1, . . . , xn and let f ∈ Cn[ā, b̄]. Then
there exists ξ ∈ [ā, b̄] such that

f [x0, x1, . . . , xn] = 1
n!f

(n)(ξ). (6.3)

Proof. Let p be the interpolating polynomial. The error function f−p has at least n+1 zeros in
[ā, b̄] and, applying Rolle’s theorem n times, it follows that f (n) − p(n) vanishes at some ξ ∈ [ā, b̄].
But p(x) = 1

n!p
(n)(ζ)xn + lower order terms (for any ζ ∈ R), therefore, letting ζ = ξ,

f [x0, x1, . . . , xn] = 1
n!p

(n)(ξ) = 1
n!f

(n)(ξ)

and we deduce (6.3). 2

Application It is a consequence of the theorem that divided differences can be used to approximate
derivatives.

6.5 Recurrence relations for divided differences

Our next topic is a useful way to calculate divided differences (and, ultimately, to derive yet
another means to construct an interpolating polynomial). We commence with the remark that
f [xi] is the coefficient of x0 in the polynomial of degree 0 (i.e., a constant) that interpolates f(xi),
hence f [xi] = f(xi).

Theorem Suppose that x0, x1, . . . , xk+1 are pairwise distinct, where k ≥ 0. Then

f [x0, x1, . . . , xk+1] =
f [x1, x2, . . . , xk+1]− f [x0, x1, . . . , xk]

xk+1 − x0
. (6.4)

Proof. Let p, q ∈ Pk[x] be the polynomials that interpolate f at

{x0, x1, . . . , xk} and {x1, x2, . . . , xk+1}

respectively and define

r(x) :=
(x− x0)q(x) + (xk+1 − x)p(x)

xk+1 − x0
∈ Pk+1[x].

We readily verify that r(xi) = f(xi), i = 0, 1, . . . , k +1. Hence r is the (k +1)-degree interpolating
polynomial and f [x0, . . . , xk+1] is the coefficient of xk+1 therein. The recurrence (6.4) follows from
the definition of divided differences. 2
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6.6 The Newton interpolation formula

Recalling that f [xi] = f(xi), the recursive formula allows for fast evaluation of the divided difference
table, in the following manner:

f [x0] → f [x0, x1] → f [x0, x1, x2] → f [x0, x1, x2, x3] → · · ·
↗ ↗ ↗

f [x1] → f [x1, x2] → f [x1, x2, x3] → · · ·
...

f [xn]

This can be done in O
(
n2

)
operations and the outcome are the numbers {f [x0, x1, . . . , xl]}k

l=0.
We now provide an alternative representation of the interpolating polynomial. Again, f(xi), i =
0, 1, . . . , k, are given and we seek p ∈ Pk[x] such that p(xi) = f(xi), i = 0, . . . , k.

Theorem Suppose that x0, x1, . . . , xk are pairwise distinct. The polynomial

pk(x) := f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, . . . , xk]
k−1∏
i=0

(x− xi) ∈ Pk[x]

obeys pk(xi) = f(xi), i = 0, 1, . . . , k.
Proof. By induction on k. The statement is obvious for k = 0 and we suppose that it is

true for k. We now prove that pk+1(x) − pk(x) = f [x0, x1, . . . , xk+1]
∏k

i=0(x − xi). Clearly,
pk+1−pk ∈ Pk+1[x] and the coefficient of xk+1 therein is, by definition, f [x0, . . . , xk+1]. Moreover,
pk+1(xi) − pk(xi) = 0, i = 0, 1, . . . , k, hence it is a multiple of

∏k
i=0(x − xi), and this proves the

asserted form of pk+1 − pk. The explicit form of pk+1 follows by adding pk+1 − pk to pk. 2

We have derived the Newton interpolation formula, which requires only the top row of the divided
difference table. It has several advantages over Lagrange’s. In particular, its evaluation at a given
point x (provided that divided differences are known) requires just O(k) operations, as long as we
do it by the Horner scheme

pk(x) = {{{f [x0, . . . , xk](x− xk−1) + f [x0, . . . , xk−1]} × (x− xk−2) + f [x0, . . . , xk−2]}
× (x− x3) + · · ·}+ f [x0].

On the other hand, the Lagrange formula is often better when we wish to manipulate the interpo-
lation polynomial as part of a larger mathematical expression. We’ll see an example in the section
on Gaussian quadrature.

7 Orthogonal polynomials

7.1 Orthogonality in general linear spaces

We have already seen the scalar product 〈x,y〉 =
∑n

i=1 xiyi, acting on x,y ∈ Rn. Likewise, given
arbitrary weights w1, w2, . . . , wn > 0, we may define 〈x,y〉 =

∑n
i=1 wixiyi. In general, a scalar (or
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inner) product is any function V×V → R, where V is a vector space over the reals, subject to the
following three axioms:
Symmetry: 〈x,y〉 = 〈y,x〉 ∀x,y ∈ V;
Nonnegativity: 〈x,x〉 ≥ 0 ∀x ∈ V and 〈x,x〉 = 0 iff x = 0; and
Linearity: 〈ax + by,z〉 = a〈x,z〉+ b〈y,z〉 ∀x,y,z ∈ V, a, b ∈ R.
Given a scalar product, we may define orthogonality: x,y ∈ V are orthogonal if 〈x,y〉 = 0.
Let V = C[a, b], w ∈ V be a fixed positive function and define 〈f, g〉 :=

∫ b

a
w(x)f(x)g(x) dx for all

f, g ∈ V. It is easy to verify all three axioms of the scalar product.

7.2 Orthogonal polynomials – definition, existence, uniqueness

Given a scalar product in V = Pn[x], we say that pn ∈ Pn[x] is the nth orthogonal polynomial
if 〈pn, p〉 = 0 for all p ∈ Pn−1[x]. [Note: different inner products lead to different orthogonal
polynomials.] A polynomial in Pn[x] is monic if the coefficient of xn therein equals one.

Theorem For every n ≥ 0 there exists a unique monic orthogonal polynomial of degree n. More-
over, any p ∈ Pn[x] can be expanded as a linear combination of p0, p1, . . . , pn,

Proof. We let p0(x) ≡ 1 and prove the theorem by induction on n. Thus, suppose that
p0, p1, . . . , pn have been already derived consistently with both assertions of the theorem and let
q(x) := xn+1 ∈ Pn+1[x]. Motivated by the Gram–Schmidt algorithm, we choose

pn+1(x) = q(x)−
n∑

k=0

〈q, pk〉
〈pk, pk〉

pk(x), x ∈ R. (7.1)

Clearly, pn+1 ∈ Pn+1[x] and it is monic (since all the terms in the sum are of degree ≤ n).
Let m ∈ {0, 1, . . . , n}. It follows from (7.1) and the induction hypothesis that

〈pn+1, pm〉 = 〈q, pm〉 −
n∑

k=0

〈q, pk〉
〈pk, pk〉

〈pk, pm〉 = 〈q, pm〉 −
〈q, pm〉
〈pm, pm〉

〈pm, pm〉 = 0.

Hence, pn+1 is orthogonal to p0, . . . , pn. Consequently, according to the second inductive assertion,
it is orthogonal to all p ∈ Pn[x].
To prove uniqueness, we suppose the existence of two monic orthogonal polynomials pn+1, p̃n+1 ∈
Pn+1[x]. Let p := pn+1 − p̃n+1 ∈ Pn[x], hence 〈pn+1, p〉 = 〈p̃n+1, p〉 = 0, and this implies

0 = 〈pn+1, p〉 − 〈p̃n+1, p〉 = 〈pn+1 − p̃n+1, p〉 = 〈p, p〉,

and we deduce p ≡ 0.
Finally, in order to prove that each p ∈ Pn+1[x] is a linear combination of p0, . . . , pn+1, we note
that we can always write it in the form p = cpn+1 + q, where c is the coefficient of xn+1 in p and
where q ∈ Pn[x]. According to the induction hypothesis, q can be expanded as a linear combination
of p0, p1, . . . , pn, hence our assertion is true. 2

Well-known examples of orthogonal polynomials include

Name Notation Interval Weight function
Legendre Pn [−1, 1] w(x) ≡ 1
Chebyshev Tn [−1, 1] w(x) = (1− x2)−1/2

Laguerre Ln [0,∞) w(x) = e−x

Hermite Hn (−∞,∞) w(x) = e−x2

2
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7.3 The three-term recurrence relation

How to construct orthogonal polynomials? (7.1) might help, but it suffers from the same problem
as the Gram–Schmidt algorithm in Euclidean spaces: loss of accuracy due to imprecisions in the
calculation of scalar products. A considerably better procedure follows from our next theorem.

Theorem Monic orthogonal polynomials are given by the formula

p−1(x) ≡ 0, p0(x) ≡ 1,
pn+1(x) = (x− αn)pn(x)− βnpn−1(x), n = 0, 1, . . . , (7.2)

where

αn :=
〈pn, xpn〉
〈pn, pn〉

, βn =
〈pn, pn〉

〈pn−1, pn−1〉
> 0.

Proof. Pick n ≥ 0 and let

ψ(x) := pn+1(x)− (x− αn)pn(x) + βnpn−1(x).

Since pn and pn+1 are monic, it follows that ψ ∈ Pn[x]. Moreover, because of orthogonality of
pn−1, pn, pn+1,

〈ψ, p`〉 = 〈pn+1, p`〉 − 〈pn, (x− αn)p`〉+ βn〈pn−1, p`〉 = 0, ` = 0, 1, . . . , n− 2.

Because of monicity, xpn−1 = pn + q, where q ∈ Pn−1[x]. Thus, from the definition of αn, βn,

〈ψ, pn−1〉 = −〈pn, xpn−1〉+ βn〈pn−1, pn−1〉 = −〈pn, pn〉+ βn〈pn−1, pn−1〉 = 0,
〈ψ, pn〉 = −〈xpn, pn〉+ αn〈pn, pn〉 = 0.

Every p ∈ Pn[x] that obeys 〈p, p`〉 = 0, ` = 0, 1, . . . , n, must necessarily be the zero polynomial.
For suppose that it is not so and let xs be the highest coefficient of x in p. Then 〈p, ps〉 6= 0, which
is impossible. We deduce that ψ ≡ 0, hence (7.2) is true. 2

Example Chebyshev polynomials We choose the scalar product

〈f, g〉 :=
∫ 1

−1

f(x)g(x)
dx√

1− x2
, f, g ∈ C[−1, 1]

and define Tn ∈ Pn[x] by the relation Tn(cos θ) = cos(nθ). Hence T0(x) ≡ 1, T1(x) = x, T2(x) =
2x2 − 1 etc. Changing the integration variable,

〈Tn, Tm〉 =
∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=

∫ π

0

cosnθ cosmθ dθ

= 1
2

∫ π

0

[cos(n+m)θ + cos(n−m)θ] dθ = 0

whenever n 6= m. The recurrence relation for Chebyshev polynomials is particularly simple,

Tn+1(x) = 2xTn(x)− Tn−1(x),

as can be verified at once from the identity

cos[(n+ 1)θ] + cos[(n− 1)θ] = 2 cos(θ) cos(nθ).

Note that the Tns aren’t monic, hence the inconsistency with (7.2). To obtain monic polynomials
take Tn(x)/2n−1, n ≥ 1.
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7.4 Least-squares polynomial fitting

Given f ∈ C[a, b] and a scalar product 〈g, h〉 =
∫ b

a
w(x)g(x)h(x) dx, we wish to pick p ∈ Pn[x] so

as to minimise 〈f−p, f−p〉. Again, we stipulate that w(x) > 0 for x ∈ (a, b). Intuitively speaking,
p approximates f and is an alternative to an interpolating polynomial. (The situation is similar
to the one that we have already encountered in numerical linear algebra, least-squares’ fitting vs
solving linear equations.)
Let p0, p1, . . . , pn be orthogonal polynomials w.r.t. the underlying inner product, p` ∈ P`[x]. They
form a basis of Pn[n], therefore for every p ∈ Pn there exist c0, c1, . . . , cn ∈ R such that p =∑n

k=0 ckpk. Because of orthogonality,

〈f − p, f − p〉 =

〈
f −

n∑
k=0

ckpk, f −
n∑

k=0

ckpk

〉
= 〈f, f〉 − 2

n∑
k=0

ck〈pk, f〉+
n∑

k=0

c2k〈pk, pk〉.

To derive optimal c0, c1, . . . , cn we seek to minimise the last expression. (Note that it is a quadratic
function in the cis.) Since

1
2

∂

∂ck
〈f − p, f − p〉 = −〈pk, f〉+ ck〈pk, pk〉, k = 0, 1, . . . , n,

setting the gradient to zero yields

p(x) =
n∑

k=0

〈pk, f〉
〈pk, pk〉

pk(x). (7.3)

Note that

〈f − p, f − p〉 = 〈f, f〉 −
n∑

k=0

{2ck〈pk, f〉 − c2k〈pk, pk〉} = 〈f, f〉 −
n∑

k=0

〈pk, f〉2

〈pk, pk〉
. (7.4)

This identity can be rewritten as 〈f − p, f − p〉 + 〈p, p〉 = 〈f, f〉, reminiscent of the Pythagoras
theorem.

How to choose n? Note that ck = 〈pk, f〉/〈pk, pk〉 is independent of n. Thus, we can continue
to add terms to (7.3) until 〈f − p, f − p〉 is below specified tolerance ε. Because of (7.4), we need
to pick n so that 〈f, f〉 − ε <

∑n
k=0〈pk, f〉2/〈pk, pk〉.

Theorem (The Parseval identity) Let [a, b] be finite. Then

∞∑
k=0

〈pk, f〉2

〈pk, pk〉
= 〈f, f〉. (7.5)

Incomplete proof. Let

σn :=
n∑

k=0

〈pk, f〉2

〈pk, pk〉
, n = 0, 1, . . . ,

hence 〈f−p, f−p〉 = 〈f, f〉−σn ≥ 0. The sequence {σ}∞n=0 increases monotonically and σn ≤ 〈f, f〉
implies that limn→∞ σn exists. According to the Weierstrass theorem, any function in C[a, b] can
be approximated arbitrarily close by a polynomial, hence limn→∞〈f − p, f − p〉 = 0 and we deduce
that σn

n→∞−→ 〈f, f〉 and (7.5) is true. 2
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7.5 Least-squares fitting to discrete function values

Suppose that m ≥ n + 1. We are given m function values f(x1), f(x2), . . . , f(xm), where the xks
are pairwise distinct, and seek p ∈ Pn[x] that minimises 〈f − p, f − p〉, where

〈g, h〉 :=
m∑

k=1

g(xk)h(xk). (7.6)

One alternative is to express p as
∑n

`=0 c`x
` and find optimal c0, . . . , cn as a solution of a linear

least squares problem similarly to Section 5, using QR factorization. An alternative is to construct
orthogonal polynomials w.r.t. the scalar product (7.6). The theory is identical to that of subsections
7.1–4, except that we have enough data to evaluate only p0, p1, . . . , pm−1. However, we need just
p0, p1, . . . , pn and n ≤ m− 1, and we have enough information to implement the algorithm. Thus
1. Employ the three-term recurrence (7.2) to calculate p0, p1, . . . , pn (of course, using the scalar
product (7.6));

2. Form p(x) =
n∑

k=0

〈pk, f〉
〈pk, pk〉

pk(x).

Since the work for each k is bounded by a constant multiple of m, the complete cost is O(mn), as
compared with O

(
n2m

)
if QR is used.

7.6 Gaussian quadrature

We are again in C[a, b] and a scalar product is defined as in subsection 7.1, namely 〈f, g〉 =∫ b

a
w(x)f(x)g(x) dx, where w(x) > 0 for x ∈ (a, b). Our goal is to approximate integrals by finite

sums, ∫ b

a

w(x)f(x) dx ≈
ν∑

k=1

bkf(ck), f ∈ C[a, b].

The above is known as a quadrature formula. Here ν is given, whereas the points b1, . . . , bν (the
weights) and c1, . . . , cν (the nodes) are independent of the choice of f .
A reasonable approach to achieving high accuracy is to require that the approximant is exact for
all f ∈ Pm[x], where m is as large as possible – this results in Gaussian quadrature and we will
demonstrate that m = 2ν − 1 can be attained.
Firstly, we claim that m = 2ν is impossible. To prove this, choose arbitrary nodes c1, . . . , cν and
note that p(x) :=

∏ν
k=1(x− ck)2 lives in P2ν [x]. But

∫ b

a
w(x)p(x) dx > 0, while

∑ν
k=1 bkp(ck) = 0

for any choice of weights b1, . . . , bν . Hence the integral and the quadrature do not match.
Let p0, p1, p2, . . . denote, as before, the monic polynomials which are orthogonal w.r.t. the under-
lying scalar product.

Theorem Given n ≥ 1, all the zeros of pn are real, distinct and lie in the interval (a, b).
Proof. Recall that p0 ≡ 1. Thus, by orthogonality,∫ b

a

w(x)pn(x) dx =
∫ b

a

w(x)p0(x)pn(x) dx = 〈p0, pn〉 = 0
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and we deduce that pn changes sign at least once in (a, b).
Denote by m ≥ 1 the number of the sign changes of pn in (a, b) and assume that m ≤ n − 1.
Denoting the points where a sign change occurs by ξ1, ξ2, . . . , ξm, we let q(x) :=

∏m
j=1(x − ξj).

Since q ∈ Pm[x], m ≤ n − 1, it follows that 〈q, pn〉 = 0. On the other hand, it follows from our
construction that q(x)pn(x) does not change sign throughout [a, b] and vanishes at a finite number
of points, hence

|〈q, pn〉| =

∣∣∣∣∣
∫ b

a

w(x)q(x)pn(x) dx

∣∣∣∣∣ =
∫ b

a

w(x)|q(x)pn(x)|dx > 0,

a contradiction. It follows that m = n and the proof is complete. 2

We commence our construction of Gaussian quadrature by choosing pairwise-distinct nodes
c1, c2, . . . , cν ∈ [a, b] and define the interpolatory weights

bk :=
∫ b

a

w(x)
ν∏

j=1
j 6=k

x− cj

ck − cj
dx, k = 1, 2, . . . , ν.

Theorem The quadrature formula with the above choice is exact for all f ∈ Pν−1[x]. Moreover,
if c1, c2, . . . , cν are the zeros of pν then it is exact for all f ∈ P2ν−1[x].

Proof. Every f ∈ Pν−1[x] is its own interpolating polynomial, hence by Lagrange’s formula

f(x) =
ν∑

k=0

f(ck)
ν∏

j=1
j 6=k

x− cj

ck − cj
. (7.7)

The quadrature is exact for all f ∈ Pν−1[x] if
∫ b

a
w(x)f(x) dx =

∑ν
k=1 bkf(ck), and this, in tandem

with the interpolating-polynomial representation, yields the stipulated form of b1, . . . , bν .
Let c1, . . . , cν be the zeros of pν . Given any f ∈ P2ν−1[x], we can represent it uniquely as f = qpν+r,
where q, r ∈ Pν−1[x]. Thus, by orthogonality,∫ b

a

w(x)f(x) dx =
∫ b

a

w(x)[q(x)pν(x) + r(x)] dx = 〈q, pν〉+
∫ b

a

w(x)r(x) dx

=
∫ b

a

w(x)r(x) dx.

On the other hand, the choice of quadrature knots gives
ν∑

k=1

bkf(ck) =
ν∑

k=1

bk[q(ck)pν(ck) + r(ck)] =
ν∑

k=1

bkr(ck).

Hence the integral and its approximant coincide, because r ∈ Pν−1[x] and the quadrature is exact
for all polynomials in Pν−1[x]. 2

Example Let [a, b] = [−1, 1], w(x) ≡ 1. Then the underlying orthogonal polynomials are the
Legendre polynomials: P0 ≡ 1, P1(x) = x, P2(x) = 3

2x2 − 1
2 , P3(x) = 5

2x3 − 3
2x, P4(x) =

35
8 x4 − 15

4 x2 + 3
8 (it is customary to use this, non-monic, normalisation). The nodes of Gaussian

quadrature are
n = 1: c1 = 0;
n = 2: c1 = −

√
3

3 , c2 =
√

3
3 ;

n = 3: c1 = −
√

15
5 , c2 = 0, c3 =

√
15
5 ;

n = 4: c1 = −
√

3
7 + 2

35

√
30, c2 = −

√
3
7 −

2
35

√
30, c3 =

√
3
7 −

2
35

√
30, c4 =

√
3
7 + 2

35

√
30.
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8 The Peano kernel theorem

8.1 The theorem

Our point of departure is the Taylor formula with an integral remainder term,

f(x) = f(a)+(x−a)f ′(a)+
(x− a)2

2!
f ′′(a)+· · ·+(x− a)k

k!
f (k)(a)+

1
k!

∫ x

a

(x−θ)kf (k+1)(θ) dθ, (8.1)

which can be verified by integration by parts for functions f ∈ Ck+1[a, b], a < b. Suppose that we
are given an approximant (e.g. to a function, a derivative at a given point, an integral etc.) which
is exact for all f ∈ Pk[x]. The Taylor formula produces an expression for the error that depends
on f (k+1). This is the basis for the Peano kernel theorem.

Formally, let L(f) be an error of an approximant. Thus, L maps Ck+1[a, b], say, to R. We assume
that it is linear , i.e. L(αf +βg) = αL(f)+βL(g) ∀α, β ∈ R, and that L(f) = 0 for all f ∈ Pk[x]. In
general, a linear mapping from a function space (e.g. Ck+1[a, b]) to R is called a linear functional.
The formula (8.1) implies

L(f) =
1
k!

L

{∫ x

a

(x− θ)kf (k+1)(θ) dθ

}
, a ≤ x ≤ b.

To make the range of integration independent of x, we introduce the notation

(x− θ)k
+ :=

{
(x− θ)k, x ≥ θ,
0, x ≤ θ,

whence L(f) =
1
k!

L

{∫ b

a

(x− θ)k
+f (k+1)(θ) dθ

}
.

Let K(θ) := L[(x − θ)k
+] for x ∈ [a, b]. [Note: K is independent of f .] The function K is called

the Peano kernel of L. Suppose that it is allowed to exchange the order of action of
∫

and L. Because of the linearity of L, we then have

L(f) =
1
k!

∫ b

a

K(θ)f (k+1)(θ) dθ. (8.2)

The Peano kernel theorem Let L be a linear functional such that L(f) = 0 for all f ∈ Pk[x].
Provided that f ∈ Ck+1[a, b] and the above exchange of L with the integration sign is valid, the
formula (8.2) is true. 2

8.2 An example and few useful formulae

We approximate a derivative by a linear combination of function values:

f ′(0) ≈ −3
2
f(0) + 2f(1)− 1

2
f(2).

Therefore, L(f) := f ′(0) − [− 3
2f(0) + 2f(1) − 1

2f(2)] and it is easy to check that L(f) = 0 for
f ∈ P2[x]. (Verify by trying f(x) = 1, x, x2 and using linearity of L.) Thus, for f ∈ C3[0, 2] we
have

L(f) = 1
2

∫ 2

0

K(θ)f ′′′(θ) dθ.
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To evaluate the Peano kernel K, we fix θ. Letting g(x) := (x− θ)2+, we have

K(θ) = L(g) = g′(0)−
[
− 3

2g(0) + 2g(1)− 1
2g(2)

]
= 2(0− θ)+ −

[
− 3

2 (0− θ)2+ + 2(1− θ)2+ − 1
2 (2− θ)2+

]
=


−2θ + 3

2θ2 + (2θ − 3
2θ2) ≡ 0, θ ≤ 0,

−2(1− θ)2 + 1
2 (2− θ)2 = 2θ − 3

2θ2, 0 ≤ θ ≤ 1,
1
2 (2− θ)2, 1 ≤ θ ≤ 2,
0, θ ≥ 2.

[Note: It is obvious that K(θ) = 0 for θ 6∈ [0, 2], since then L acts on a quadratic polynomial.] This
gives the form of the Peano kernel for our example.

Back to the general case. . . Typically, forming L involves differentiation, integration and linear
combination of function values. Since

d
dx

(x− θ)k
+ = k(x− θ)k−1

+ ,

∫ x

0

(t− θ)k
+ dt =

1
k + 1

[(x− θ)k+1
+ − (a− θ)k+1

+ ],

the exchange of L with integration is justified in these cases. Similarly for differentiation and,
trivially, for linear combinations.

Theorem Suppose that K doesn’t change sign in (a, b) and that f ∈ Ck+1[a, b]. Then

L(f) =
1
k!

[∫ b

a

K(θ) dθ

]
f (k+1)(ξ) for some ξ ∈ (a, b).

Proof. Let K ≥ 0. Then

L(f) ≥ 1
k!

∫ b

a

K(θ) min
x∈[a,b]

f (k+1)(x) dθ =
1
k!

(∫ b

a

K(θ) dθ

)
min

x∈[a,b]
f (k+1)(x).

Likewise L(f) ≤ 1
k!

[∫ b

a
K(θ) dθ

]
maxx∈[a,b] f

(k+1)(x), consequently

min
x∈[a,b]

f (k+1)(x) ≤ L[f ]
1
k!

∫ b

a
K(θ) dθ

≤ max
x∈[a,b]

f (k+1)(x)

and the required result follows from the mean value theorem. Similar analysis is true in the case
K ≤ 0. 2

Function norms: We can measure the ‘size’ of function g in various manners. Particular impor-

tance is afforded to the 1-norm ‖g‖1 =
∫ b

a
|f(x)|dx, the 2-norm ‖g‖2 =

{∫ b

a
[g(x)]2 dx

}1/2

and the
∞-norm ‖g‖∞ = maxx∈[a,b] |g(x)|.

Back to our example We have K ≥ 0 and
∫ 2

0
K(θ) dθ = 2

3 . Consequently L(f) = 1
2! ×

2
3f ′′′(ξ) =

1
3f ′′′(ξ) for some ξ ∈ (0, 2). We deduce in particular that |L(f)| ≤ 1

3‖f
′′′‖∞.

Likewise we can easily deduce from
∣∣∣∫ b

a
f(x)g(x) dx

∣∣∣ ≤ ‖g‖∞‖f‖1 that

|L(f)| ≤ 1
k!
‖K‖1‖f (k+1)‖∞ and |L(f)| ≤ 1

k!
‖K‖∞‖f (k+1)‖1.

This is valid also when K changes sign. Moreover, the Cauchy–Schwarz inequality∣∣∣∣∣
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤ ‖f‖2‖g‖2

implies the inequality

|L(f)| ≤ 1
k!
‖K‖2‖f (k+1)‖2.

All these provide a very powerful means to bound the size of the error in our approximation proce-
dures and verify how well ‘polynomial assumptions’ translate to arbitrary functions in Ck+1[a, b].
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Mathematical Tripos Part IB: Easter 2006

Numerical Analysis – Exercise Sheet 1

1. Calculate all LU factorizations of the matrix

A =


10 6 −2 1
10 10 −5 0
−2 2 −2 1

1 3 −2 3

 ,

where all diagonal elements of L are one. By using one of these factorizations, find all solutions
of the equation Ax = b where b> = [−2, 0, 2, 1].

2. By using column pivoting if necessary to exchange rows of A, an LU factorization of a real n×n
matrix A is calculated, where L has ones on its diagonal, and where the moduli of the off-diagonal
elements of L do not exceed one. Let α be the largest of the moduli of the elements of A. Prove
by induction on i that elements of U satisfy the condition |uij | ≤ 2i−1α. Then construct 2× 2 and
3× 3 nonzero matrices A that yield |u22| = 2α and |u33| = 4α respectively.

3. Let A be a real n×n matrix that has the factorization A = LU , where L is lower triangular with
ones on its diagonal and U is upper triangular. Prove that, for every integer k ∈ {1, 2, . . . , n}, the
first k rows of U span the same space as the first k rows of A. Prove also that the first k columns
of A are in the k-dimensional subspace that is spanned by the first k columns of L. Hence deduce
that no LU factorization of the given form exists if we have rank Hk < rank Bk, where Hk is the
leading k × k submatrix of A and where Bk is the n × k matrix whose columns are the first k
columns of A.

4. Calculate the Cholesky factorization of the matrix
1 1
1 2 1

1 3 1
1 4 1

1 5 1
1 λ

 .

Deduce from the factorization the value of λ that makes the matrix singular. Also find this value
of λ by seeking the vector in the null-space of the matrix whose first component is one.

5. Let A be an n×n nonsingular band matrix that satisfies the condition aij = 0 if |i−j| > r, where
r is small, and let Gaussian elimination with column pivoting be used to solve Ax = b. Identify all
the coefficients of the intermediate equations that can become nonzero. Hence deduce that the
total number of additions and multiplications of the complete calculation can be bounded by a
constant multiple of nr2.

6. The iteration xk+1 = Hxk + b is applied for k = 0, 1, . . ., where H is the real 2× 2 matrix

H =
[

α γ
0 β

]
,

with γ large and |α| < 1, |β| < 1. Calculate the elements of Hk and show that they tend to
zero as k → ∞. Further, establish the equation xk − x∗ = Hk(x0 − x∗), where x∗ is defined by
x∗ = Hx∗ + b. Thus deduce that the sequence (xk)∞k=0 converges to x∗.
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7. For some choice of x0 the iterative method 1 1 1
0 1 1
0 0 1

xk+1 +

 0 0 0
ξ 0 0
η ζ 0

xk = b

is applied for k = 0, 1, . . ., in order to solve the linear system 1 1 1
ξ 1 1
η ζ 1

x = b,

where ξ, η and ζ are constants. Find all values of the constants such that the sequence (xk)∞k=0

converges for every x0 and b. Give an example of nonconvergence when ξ = η = ζ = −1. Is the
solution always found in at most two iterations when ξ = ζ = 0?

8. Let a1, a2 and a3 denote the columns of the matrix

A =

 6 6 1
3 6 1
2 1 1

 .

Apply the Gram–Schmidt procedure to A, which generates orthonormal vectors q1, q2 and q3.
Note that this calculation provides real numbers rjk such that ak =

∑k
j=1 rjkqj , k = 1, 2, 3. Hence

express A as the product A = QR, where Q and R are orthogonal and upper-triangular matrices
respectively.

9. Calculate the QR factorization of the matrix of Exercise 8 by using three Givens rotations.
Explain why the initial rotation can be any one of the three types Ω(1,2), Ω(1,3) and Ω(2,3). Prove
that the final factorization is independent of this initial choice in exact arithmetic, provided that
we satisfy the condition that in each row of R the leading nonzero element is positive.

10. Let A be an n×n matrix, and for i = 1, 2, . . . , n let k(i) be the number of zero elements in the i-
th row of A that come before all nonzero elements in this row and before the diagonal element aii.
Show that the QR factorization of A can be calculated by using at most 1

2n(n− 1)−
∑

k(i) Givens
rotations. Hence show that, if A is an upper triangular matrix except that there are nonzero
elements in its first column, i.e. aij = 0 when 2 ≤ j < i ≤ n, then its QR factorization can be
calculated by using only 2n − 3 Givens rotations. [Hint: Your should find the order of the first
(n− 2) rotations that brings your matrix to the form considered above.]

11. Calculate the QR factorization of the matrix of Exercise 8 by using two Householder reflec-
tions. Show that, if this technique is used to generate the QR factorization of a general n × n
matrix A, then the computation can be organised so that the total number of additions and mul-
tiplications is bounded above by a constant multiple of n3.

12. Let

A =


3 4 7 −2
5 4 9 3
1 −1 0 3
1 −1 0 0

 , b =


11
29
16
10

 .

Calculate the QR factorization of A by using Householder reflections. In this case A is singular
and you should choose Q so that the last row of R is zero. Hence identify all the least squares
solutions of the inconsistent system Ax = b, where we require x to minimize ‖Ax − b‖2. Verify
that all the solutions give the same vector of residuals Ax − b, and that this vector is orthogonal
to the columns of A. There is no need to calculate the elements of Q explicitly.
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Numerical Analysis – Exercise Sheet 21

13. Suppose that the function values f(0), f(1), f(2) and f(3) are given and that
we wish to estimate

f(6), f ′(0) and
∫ 3

0
f(x) dx.

One method is to let p be the cubic polynomial that interpolates these function
values, and then to employ the approximants

p(6), p′(0) and
∫ 3

0
p(x) dx

respectively. Deduce from the Lagrange formula for p that each approximant is a
linear combination of the four data with constant coefficients. Calculate the numer-
ical values of these constants. Verify your work by showing that the approximants
are exact when f is an arbitrary cubic polynomial.

14. Let f be a function in C4[0, 1] and let p be a cubic polynomial that interpolates
f(0), f ′(0), f(1) and f ′(1). Deduce from the Rolle theorem that for every x ∈ [0, 1]
there exists ξ ∈ [0, 1] such that the equation

f(x)− p(x) = 1
24

x2(x− 1)2f (4)(ξ)

is satisfied.

15. Let a, b and c be distinct real numbers (not necessarily in ascending order), and
let f(a), f(b), f ′(a), f ′(b) and f ′(c) be given. Because there are five data, one might
try to approximate f by a polynomial of degree at most four that interpolates the
data. Prove by a general argument that this interpolation problem has a solution
and the solution is unique if and only if there is no nonzero polynomial p ∈ P4[x]
that satisfies p(a) = p(b) = p′(a) = p′(b) = p′(c) = 0. Hence, given a and b, show
that there exists a unique value of c 6= a, b such that there is no unique solution.

16. Let f : R → R be a given function and let p be the polynomial of degree at
most n that interpolates f at the pairwise distinct points x0, x1, . . . , xn. Further, let
x be any real number that is not an interpolation point. Deduce the identity

f(x)− p(x) = f [x0, x1, . . . , xn, x]
n∏

j=0

(x− xj)

from the definition of the divided difference f [x0, x1, . . . , xn, x].

1Corrections and suggestions to these notes should be emailed to
A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL
http://www.damtp.cam.ac.uk/user/na/PartIB/.
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17. Simulating a computer that works to only four decimal places, form the table
of divided differences of the values f(0) = 0, f(0.1) = 0.0998, f(0.4) = 0.3894 and
f(0.7) = 0.6442 of sin x. Hence identify the polynomial that is given by Newton’s
interpolation method. Due to rounding errors, this polynomial should differ from
the one that would be given by exact arithmetic. Take the view, however, that the
computed values of f [0.0, 0.1], f [0.0, 0.1, 0.4] and f [0.0, 0.1, 0.4, 0.7] and the function
value f(0) are correct. Then, by working backwards through the difference table,
identify the values of f(0), f(0.1), f(0.4) and f(0.7) that would give these divided
differences in exact arithmetic.

18. Set f(x) = 2x− 1, x ∈ [0, 1]. We require a function of form

p(x) =
n∑

k=0

ak cos(kπx), 0 ≤ x ≤ 1,

that satisfies the condition ∫ 1

0
[f(x)− p(x)]2 dx < 10−4.

Explain why it is sufficient if the value of a2
0 + 1

2

∑n
k=1 a2

k exceeds 1
3
−10−4, where the

coefficients {ak}n
k=0 are calculated to minimize this integral. Hence find the smallest

acceptable value of n.

19. The polynomials {pn}n∈Z+ are defined by the three-term recurrence formula

p0(x) ≡ 1,

p1(x) = 2x,

pn+1(x) = 2xpn(x)− pn−1(x), n = 1, 2, . . . .

Prove that they are orthogonal with respect to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)

√
1− x2 dx

and evaluate 〈pn, pn〉 for n ∈ Z+. [Hint: Prove that pn(x) = sin(n+1)θ/ sin θ, where
x = cos θ.]

20. Calculate the coefficients b1, b2, c1 and c2 so that the approximant∫ 1

0
f(x) dx ≈ b1f(c1) + b2f(c2)

is exact when f is a cubic polynomial. You may exploit the fact that c1 and c2

are the zeros of a quadratic polynomial that is orthogonal to all linear polynomials.
Verify your calculation by testing the formula when f(x) = 1, x, x2 and x3.
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21. The functions p0, p1, p2, . . . are generated by the Rodrigues formula

pn(x) = ex dn

dxn
(xne−x), 0 ≤ x < ∞.

Show that these functions are polynomials and prove by integration by parts that
for every p ∈ Pn−1[x] we have the orthogonality condition 〈pn, p〉 = 0 with respect
to the scalar product

〈f, g〉 :=
∫ ∞

0
e−xf(x)g(x) dx.

Derive the coefficients of p3, p4 and p5 from the Rodrigues formula. Verify that these
coefficients are compatible with a three term recurrence relation of the form

p5(x) = (γx− α)p4(x)− βp3(x), x ∈ R,

where α, β and γ are constants.

22. Let p(1
2
) = 1

2
(f(0) + f(1)), where f is a function in C2[0, 1]. Find the least

constants c0, c1 and c2 such that the error bounds

|f(1
2
)− p(1

2
)| ≤ ck‖f (k)‖∞ , k = 0, 1, 2,

are valid. [Note: The cases k = 0 and k = 1 are easy if one works from first
principles, and the Peano kernel theorem is suitable when k = 2. Also try the Peano
kernel theorem when k = 1.]

23. Express the divided difference f [0, 1, 2, 4] in the form

f [0, 1, 2, 4] =
∫ 4

0
K(θ)f ′′′(θ) dθ,

assuming that f ′′′ exists and is continuous. Sketch the kernel function K(θ) for
0 ≤ θ ≤ 4. By integrating K(θ) analytically and using the mean value theorem
prove that

f [0, 1, 2, 4] = 1
6
f ′′′(ξ)

for some point ξ ∈ [0, 4]. Note that another proof of this result was given in the
lecture on divided differences.

24. Let f be a function in C4[0, 1] and let ξ be any fixed point in [0, 1]. Calculate
the coefficients α, β, γ and δ such that the approximant

f ′′′(ξ) ≈ αf(0) + βf(1) + γf ′(0) + δf ′(1)

is exact for all cubic polynomials. Prove that the inequality

|f ′′′(ξ)− αf(0)− βf(1)− γf ′(0)− δf ′(1)| ≤
{

1
2
− ξ + 2ξ3 − ξ4

}
‖f (4)‖∞

3



is satisfied. Show that this inequality holds as an equation if we allow f to be the
function

f(x) =

 −(x− ξ)4, 0 ≤ x ≤ ξ,

(x− ξ)4, ξ ≤ x ≤ 1.

25. [Not easy!] Given f and g in C[a, b], let h := fg. Prove by induction that
the divided differences of h satisfy the equation

h[x0, x1, . . . , xn] =
n∑

j=0

f [x0, x1, . . . , xj]g[xj, xj+1, . . . , xn].

By expressing the differences in terms of derivatives and by letting the points
x0, x1, . . . , xn become coincident, deduce the Leibniz formula for the nth derivative
of a product of two functions.
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