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Chapter 11

Boundary Value Problems in One Dimension

While its roots are firmly planted in the finite-dimensional world of matrices and
vectors, the full scope of linear algebra is much broader. Its historical development and,
hence, its structures, concepts, and methods, were strongly influenced by linear analysis —
specifically, the need to solve linear differential equations, linear boundary value problems,
linear integral equations, and the like. The time has come for us to fully transcend our finite
dimensional limitations, and see linear algebra in action in infinite-dimensional function
spaces.

In this chapter, we begin to analyze problems arising in continuum physics. The
equilibrium equation of a one-dimensional continuum — an elastic bar, a bendable beam,
and so on — is formulated as a boundary value problem for a scalar ordinary differential
equation. The framework introduced for discrete mechanical systems in Chapter 6 will
carry over, in its essence, to the infinite-dimensional setting appropriate to such problems.
The underlying Euclidean vector space R

n is replaced by a function space. Vectors become
functions, while matrices turn into linear differential operators. Physical boundary value
problems are based on self-adjoint boundary value problems, founded on a suitable inner
product on the function space. As in the discrete context, the positive definite cases are
stable, and the equilibrium solution can be characterized by a minimization principle based
on a quadratic energy functional.

Finite-dimensional linear algebra not only provides us with important insights into
the underlying mathematical structure, but also motivates basic analytical and numerical
solution schemes. In the function space framework, the general superposition principle
is reformulated in terms of the effect of a combination of impulse forces concentrated
at a single point of the continuum. However, constructing a function that represents a
concentrated impulse turns out to be a highly non-trivial mathematical issue. Ordinary
functions do not suffice, and we are led to develop a new calculus of generalized functions or
distributions, including the remarkable delta function. The response of the system to a unit
impulse force is known as the Green’s function of the boundary value problem, in honor
of the self-taught English mathematician (and miller) George Green. With the Green’s
function in hand, the general solution to the inhomogeneous system can be reconstructed by
superimposing the effects of suitably scaled impulses on the entire domain. Understanding
this construction will become increasingly important as we progress on to partial differential
equations, where direct analytical solution techniques are far harder to come by.We begin
with second order boundary value problems describing the equilibria of stretchable bars.
We continue on to fourth order boundary value problems that govern the equilibrium of
elastic beams, including piecewise cubic spline interpolants that play a key role in modern
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computer graphics and numerical analysis, and to more general second order boundary
value problems of Sturm–Liouville type, which arise in a host of physical applications that
involve partial differential equations.

The simplest boundary value problems can be solved by direct integration. However,
more complicated systems do not admit explicit formulae for their solutions, and one
must rely on numerical approximations. In the final section, we introduce the powerful
finite element method. The key idea is to restrict the infinite-dimensional minimization
principle characterizing the exact solution to a suitably chosen finite-dimensional subspace
of the function space. When properly formulated, the solution to the resulting finite-
dimensional minimization problem approximates the true minimizer. As in Chapter 4, the
finite-dimensional minimizer is found by solving the induced linear algebraic system, using
either direct or iterative methods.

An alternative formulation of the finite element solution, that can be applied even in
situations where there is no minimum principle available, is based on the idea of a weak
solution to the boundary value problem, where one relaxes the classical differentiability
requirements.

11.1. Elastic Bars.

A bar is a mathematical idealization of a one-dimensional linearly elastic continuum
that can be stretched or contracted in the longitudinal direction, but is not allowed to bend
in a transverse direction. (Materials that can bend are called beams, and will be analyzed
in Section 11.4.) We will view the bar as the continuum limit of a one-dimensional chain
of masses and springs, a system that we already analyzed in Section 6.1. Intuitively,
the continuous bar consists of an infinite number of masses connected by infinitely short
springs. The individual masses can be thought of as the “atoms” in the bar, although one
should not try to read too much into the physics behind this interpretation.

We shall derive the basic equilibrium equations for the bar from first principles. Recall
the three basic steps we already used to establish the corresponding equilibrium equations
for a discrete mechanical system such as a mass–spring chain:

(i) First, use geometry to relate the displacement of the masses to the elongation in the
connecting springs.

(ii) Second, use the constitutive assumptions such as Hooke’s Law to relate the strain
to the stress or internal force in the system.

(iii) Finally, impose a force balance between external and internal forces.

The remarkable fact, which will, when suitably formulated, carry over to the continuum,
is that the force balance law is directly related to the geometrical displacement law by a
transpose or, more correctly, adjoint operation.

Consider a bar of length ` hanging from a fixed support, with the bottom end left
free, as illustrated in Figure 11.1. We use 0 ≤ x ≤ ` to refer to the reference or unstressed
configuration of the bar, so x measures the distance along the bar from the fixed end x = 0
to the free end x = `. Note that we are adopting the convention that the positive x axis
points down. Let u(x) denote the displacement of the bar from its reference configuration.
This means that the “atom” that started at position x has moved to position x + u(x).
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Figure 11.1. Bar with One Fixed Support.

With our convention, u(x) > 0 means that the atom has moved down, while if u(x) < 0,
the atom has moved up. In particular,

u(0) = 0 (11.1)

because we are assuming that the top end is fixed and cannot move.

The strain in the bar measures the relative amount of stretching. Two nearby atoms,
at respective positions x and x+∆x, are moved to positions x+u(x) and x+∆x+u(x+∆x).
The original, unstressed length of this small section of bar was ∆x, while in the new
configuration the same section has length

[
x + ∆x + u(x + ∆x)

]
−
[
x + u(x)

]
= ∆x +

[
u(x + ∆x)− u(x)

]
.

Therefore, this segment has been elongated by an amount u(x + ∆x) − u(x). The di-
mensionless strain measures the relative elongation, and so is obtained by dividing by the
reference length: [u(x + ∆x)− u(x) ]/∆x. We now take the continuum limit by letting the
interatomic spacing ∆x→ 0. The result is the strain function

v(x) = lim
∆x→0

u(x + ∆x)− u(x)

∆x
=

du

dx
(11.2)

that measures the local stretch in the bar at position x.

As noted above, we can approximate the bar by a chain of n masses connected by n
springs, letting the bottom mass hang free. The mass–spring chain should also have total
length `, and so the individual springs have reference length

∆x =
`

n
.

The bar is to be viewed as the continuum limit , in which the number of masses n → ∞
and the spring lengths ∆x→ 0. The kth mass starts out at position

xk = k ∆x =
k `

n
,
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and, under forcing, experiences a displacement uk. The relative elongation of the kth

spring† is

vk =
ek

∆x
=

uk+1 − uk

∆x
. (11.3)

In particular, since the fixed end cannot move, the first value u0 = 0 is omitted from the
subsequent equations.

The relation (11.3) between displacement and strain takes the familiar matrix form

v = Au, v =
(
v0, v1, . . . , vn−1

)T
, u = (u1, u2, . . . , un )

T
,

where

A =
1

∆x




1
−1 1

−1 1
−1 1

. . .
. . .

−1 1



−→

d

dx
(11.4)

is the scaled incidence matrix of the mass–spring chain. As indicated by the arrow, the
derivative operator d/dx that relates displacement to strain in the bar equation (11.2)
can be viewed as its continuum limit, as the number of masses n → ∞ and the spring
lengths ∆x → 0. Vice versa, the incidence matrix can be viewed as a discrete, numerical
approximation to the derivative operator. Indeed, if we regard the discrete displacements
and strains as approximations to the sample values of their continuous counterparts, so

uk ≈ u(xk), vk ≈ v(xk),

then (11.3) takes the form

v(xk) =
u(xk+1)− u(xk)

∆x
=

u(xk + ∆x)− u(xk)

∆x
≈

du

dx
(xk).

justifying the identification (11.4). The passage back and forth between the discrete and
the continuous is the foundation of continuum mechanics — solids, fluids, gases, and plas-
mas. Discrete models both motivate and provide numerical approximations to continuum
systems, which, in turn, simplify and give further insight into the discrete domain.

The next part of the mathematical framework is to use the constitutive relations to
relate the strain to the stress, or internal force experienced by the bar. To keep matters
simple, we shall only consider bars that have a linear relation between stress and strain.
For a physical bar, this is a pretty good assumption as long as it is not stretched beyond
its elastic limits. Let w(x) denote the stress on the point of the bar that was at reference
position x. Hooke’s Law implies that

w(x) = c(x) v(x), (11.5)

† We will find it helpful to label the springs from k = 0 to k = n − 1. This will facilitate
comparisons with the bar, which, by convention, starts at position x0 = 0.

9/11/05 408 c© 2005 Peter J. Olver



where c(x) measures the stiffness of the bar at position x. For a homogeneous bar, made
out of a uniform material, c(x) ≡ c is a constant function. The constitutive function c(x)
can be viewed as the continuum limit of the diagonal matrix

C =




c0

c1

. . .

cn−1




of individual spring constants ck appearing in the discrete version

wk = ck vk, or w = C v, (11.6)

that relates stress to strain (internal force to elongation) in the individual springs. Indeed,
(11.6) can be identified as the sampled version, w(xk) = c(xk) v(xk), of the continuum
relation (11.5).

Finally, we need to impose a force balance at each point of the bar. Suppose f(x)
is an external force at position x on the bar, where f(x) > 0 means the force is acting
downwards. Physical examples include mechanical, gravitational, or magnetic forces acting
solely in the vertical direction. In equilibrium†, the bar will deform so as to balance the
external force with its own internal force resulting from stretching. Now, the internal force
per unit length on the section of the bar lying between nearby positions x and x + ∆x
is the relative difference in stress at the two ends, namely [w(x + ∆x)− w(x) ]/∆x. The
force balance law requires that, in the limit,

0 = f(x) + lim
∆x→0

w(x + ∆x)− w(x)

∆x
= f(x) +

dw

dx
,

or

f = −
dw

dx
. (11.7)

This can be viewed as the continuum limit of the mass–spring chain force balance equations

fk =
wk−1 − wk

∆x
, wn = 0, (11.8)

where the final condition ensures the correct formula for the force on the free-hanging
bottom mass. (Remember that the springs are numbered from 0 to n− 1.) This indicates
that we should also impose an analogous boundary condition

w(`) = 0 (11.9)

at the bottom end of the bar, which is hanging freely and so is unable to support any
internal stress. The matrix form of the discrete system (11.8) is

f = AT w,

† The dynamical processes leading to equilibrium will be discussed in Chapter 14.
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where the transposed scaled incidence matrix

AT =
1

∆x




1 −1
1 −1

1 −1
1 −1

. . .
. . .



−→ −

d

dx
(11.10)

should approximate the differential operator − d/dx that appears in the continuum force
balance law (11.7). Thus, we should somehow interpret − d/dx as the “transpose” or
“adjoint” of the differential operator d/dx. This important point will be developed properly
in Section 11.3. But before trying to push the theory any further, we will pause to analyze
the mathematical equations governing some simple configurations.

But first, let us summarize our progress so far. The three basic equilibrium equations
(11.2, 5, 7) are

v(x) =
du

dx
, w(x) = c(x) v(x), f(x) = −

dw

dx
. (11.11)

Substituting the first into the second, and then the resulting formula into the last equation,
leads to the equilibrium equation

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `. (11.12)

Thus, the displacement u(x) of the bar is obtained as the solution to a second order
ordinary differential equation. As such, it will depend on two arbitrary constants, which
will be uniquely determined by the boundary conditions† (11.1, 9) at the two ends:

u(0) = 0, w(`) = c(`)u′(`) = 0. (11.13)

Usually c(`) > 0, in which case it can be omitted from the second boundary condition,
which simply becomes u′(`) = 0. The resulting boundary value problem is to be viewed
as the continuum limit of the linear system

Ku = AT C Au = f (11.14)

modeling a mass-spring chain with one free end, cf. (6.11), in which

A −→
d

dx
, C −→ c(x), AT −→ −

d

dx
, u −→ u(x), f −→ f(x).

And, as we will see, most features of the finite-dimensional linear algebraic system have,
when suitably interpreted, direct counterparts in the continuous boundary value problem.

† We will sometimes use primes, as in u′ = du/dx, to denote derivatives with respect to x.
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Figure 11.2. Displacement and Stress of Bar with One Fixed End.

Example 11.1. Consider the simplest case of a uniform bar of unit length ` = 1
subjected to a uniform force, e.g., gravity. The equilibrium equation (11.12) is

− c
d2u

dx2
= f, (11.15)

where we are assuming that the force f is constant. This elementary second order ordinary
differential equation can be immediately integrated:

u(x) = − 1
2 αx2 + ax + b, where α =

f

c
(11.16)

is the ratio of the force to the stiffness of the bar. The values of the integration constants
a and b are fixed by the boundary conditions (11.13), so

u(0) = b = 0, u′(1) = −α + a = 0.

Therefore, there is a unique solution to the boundary value problem, yielding the displace-
ment

u(x) = α
(
x− 1

2 x2
)
, (11.17)

which is graphed in Figure 11.2 for α = 1. Note the parabolic shape, with zero derivative,
indicating no strain, at the free end. The displacement reaches its maximum, u(1) = 1

2 α,
at the free end of the bar, which is the point which moves downwards the farthest. The
stronger the force or the weaker the bar, the farther the overall displacement.

Remark : This example illustrates the simplest way to solve boundary value problems,
which is adapted from the usual solution technique for initial value problems. First, solve
the differential equation by standard methods (if possible). For a second order equation,
the general solution will involve two arbitrary constants. The values of the constants are
found by substituting the solution formula into the two boundary conditions. Unlike initial
value problems, the existence and/or uniqueness of the solution to a general boundary
value problem is not guaranteed, and you may encounter situations where you are unable
to complete the solution; see, for instance, Example 7.42. A more sophisticated method,
based on the Green’s function, will be presented in the following section.
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As in the discrete situation, this particular mechanical configuration is statically deter-

minate, meaning that we can solve directly for the stress w(x) in terms of the external force
f(x) without having to compute the displacement u(x) first. In this particular example,
we need to solve the first order boundary value problem

−
dw

dx
= f, w(1) = 0,

arising from the force balance law (11.7). Since f is constant,

w(x) = f (1− x), and v(x) =
w(x)

c
= α (1− x).

Note that the boundary condition uniquely determines the integration constant. We can
then find the displacement u(x) by solving another boundary value problem

du

dx
= v(x) = α (1− x), u(0) = 0,

resulting from (11.2), which again leads to (11.17). As before, the appearance of one
boundary condition implies that we can find a unique solution to the differential equation.

Remark : We motivated the boundary value problem for the bar by taking the contin-
uum limit of the mass–spring chain. Let us see to what extent this limiting procedure can
be justified. To compare the solutions, we keep the reference length of the chain fixed at
` = 1. So, if we have n identical masses, each spring has length ∆x = 1/n. The kth mass
will start out at reference position xk = k/n. Using static determinacy, we can solve the
system (11.8), which reads

wk−1 = wk +
f

n
, wn = 0,

directly for the stresses:

wk = f

(
1−

k

n

)
= f (1− xk) , k = 0, . . . , n− 1.

Thus, in this particular case, the continuous bar and the discrete chain have equal stresses
at the sample points: w(xk) = wk. The strains are also in agreement:

vk =
1

c
wk = α

(
1−

k

n

)
= α (1− xk) = v(xk) ,

where α = f/c, as before. We then obtain the displacements by solving

uk+1 = uk +
vk

n
= uk +

α

n

(
1−

k

n

)
.

Since u0 = 0, the solution is

uk =
α

n

k−1∑

i=0

(
1−

i

n

)
= α

(
k

n
−

k(k − 1)

2n2

)
= α

(
xk −

1
2 x2

k

)
+

α xk

2n
= u(xk) +

α xk

2n
.

(11.18)
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Figure 11.3. Displacements of a Bar with Two Fixed Ends.

The sampled displacement u(xk) is not exactly equal to uk, but their difference tends to
zero as the number of masses n→∞. In this way, we have completely justified our limiting
interpretation.

Example 11.2. Consider the same uniform, unit length bar as in the previous
example, again subject to a uniform constant force, but now with two fixed ends. We
impose inhomogeneous boundary conditions

u(0) = 0, u(1) = d,

so the top end is fixed, while the bottom end is displaced an amount d. (Note that d > 0
means the bar is stretched, while d < 0 means it is compressed.) The general solution to
the equilibrium equation (11.15) is, as before, given by (11.16). The values of the arbitrary
constants a, b are determined by plugging into the boundary conditions, so

u(0) = b = 0, u(1) = − 1
2 α + d = 0.

Thus

u(x) = 1
2 α(x− x2) + dx (11.19)

is the unique solution to the boundary value problem, The displacement is a linear su-
perposition of two functions; the first is induced by the external force f , while the second
represents a uniform stretch induced by the boundary condition. In Figure 11.3, the dotted
curves represent the two constituents, and the solid graph is their sum, which is the actual
displacement.

Unlike a bar with a free end, this configuration is statically indeterminate. There is
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no boundary condition on the force balance equation

−
dw

dx
= f,

and so the integration constant a in the stress w(x) = a−f x cannot be determined without
first figuring out the displacement (11.19):

w(x) = c
du

dx
= f

(
1
2 − x

)
+ cd.

Example 11.3. Finally, consider the case when both ends of the bar are left free.
The boundary value problem

−u′′ = f(x), u′(0) = 0, u′(`) = 0, (11.20)

represents the continuum limit of a mass–spring chain with two free ends and corresponds
to a bar floating in outer space, subject to a nonconstant external force. Based on our
finite-dimensional experience, we expect the solution to manifest an underlying instability
of the physical problem. Solving the differential equation, we find that

u(x) = ax + b−

∫ x

0

(∫ y

0

f(z) dz

)
dy,

where the constants a, b are to be determined by the boundary conditions. Since

u′(x) = a−

∫ x

0

f(z) dz,

the first boundary condition u′(0) = 0 requires a = 0. The second boundary condition
requires

u′(`) =

∫ `

0

f(x) dx = 0, (11.21)

which is not automatically valid! The integral represents the total force per unit length
exerted on the bar. As in the case of a mass-spring chain with two free ends, if there is a
non-zero net force, the bar cannot remain in equilibrium, but will move off in space and
the equilibrium boundary value problem has no solution. On the other hand, if the forcing
satisfies the constraint (11.21), then the resulting solution of the boundary value problem
has the form

u(x) = b−

∫ x

0

(∫ y

0

f(z) dz

)
dy, (11.22)

where the constant b is arbitrary. Thus, when it exists, the solution to the boundary value
problem is not unique. The constant b solves the corresponding homogeneous problem,
and represents a rigid translation of the entire bar by a distance b.

Physically, the free boundary value problem corresponds to an unstable structure:
there is a translational instability in which the bar moves off rigidly in the longitudinal
direction. Only balanced forces of mean zero can maintain equilibrium. Furthermore,
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when it does exist, the equilibrium solution is not unique since there is nothing to tie the
bar down to any particular spatial position.

This dichotomy should remind you of our earlier study of linear algebraic systems.
An inhomogeneous system Ku = f consisting of n equations in n unknowns either admits
a unique solution for all possible right hand sides f , or, when K is singular, either no
solution exists or the solution is not unique. In the latter case, the constraints on the
right hand side are prescribed by the Fredholm alternative (5.78), which requires that f

be orthogonal, with respect to the Euclidean inner product, to all elements of coker K.
In physical equilibrium systems K is symmetric, and so coker K = ker K. Thus, the
Fredholm alternative requires that the forcing be orthogonal to all the unstable modes. In
the function space for the bar, the finite-dimensional dot product is replaced by the L2

inner product

〈 f , g 〉 =

∫ `

0

f(x) g(x) dx.

Since the kernel or solution space to the homogeneous boundary value problem is spanned
by the constant function 1, the Fredholm alternative† requires that the forcing function be

orthogonal to it, 〈 f , 1 〉 =

∫ `

0

f(x) dx = 0. This is precisely the condition (11.21) required

for existence of a (non-unique) equilibrium solution, and so the analogy between the finite
and infinite dimensional categories is complete.

Remark : The boundary value problems that govern the mechanical equilibria of a
simple bar arise in many other physical systems. For example, the equation for the thermal
equilibrium of a bar under an external heat source is modeled by the same boundary value
problem (11.12); in this case, u(x) represents the temperature of the bar, c(x) represents
the diffusivity or thermal conductivity of the material at position x, while f(x) represents
an external heat source. A fixed boundary condition u(`) = a corresponds to an end that
is held at a fixed temperature a, while a free boundary condition u′(`) = 0 represents an
insulated end that does not allow heat energy to enter or leave the bar. Details of the
physical derivation can be found in Section 14.1.

11.2. Generalized Functions and the Green’s Function.

The general superposition principle for inhomogeneous linear systems inspires an al-
ternative, powerful approach to the solution of boundary value problems. This method
relies on the solution to a particular type of inhomogeneity, namely a concentrated unit
impulse. The resulting solutions are collectively known as the Green’s function for the
boundary value problem. Once the Green’s function is known, the response of the sys-
tem to any other external forcing can be constructed through a continuous superposition
of these fundamental solutions. However, rigorously formulating a concentrated impulse
force turns out to be a serious mathematical challenge.

† In fact, historically, Fredholm first made his discovery while studying such infinite-dimen-
sional systems. Only later was it realized that the same underlying ideas are equally valid in
finite-dimensional linear algebraic systems.
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To motivate the construction, let us return briefly to the case of a mass–spring chain.
Given the equilibrium equations

Ku = f , (11.23)

let us decompose the external forcing f = ( f1, f2, . . . , fn )
T
∈ R

n into a linear combination

f = f1 e1 + f2 e2 + · · · + fn en (11.24)

of the standard basis vectors of R
n. Suppose we know how to solve each of the individual

systems
Kui = ei, i = 1, . . . , n. (11.25)

The vector ei represents a unit force or, more precisely, a unit impulse, which is applied
solely to the ith mass in the chain; the solution ui represents the response of the chain.
Since we can decompose any other force vector as a superposition of impulse forces, as in
(11.24), the superposition principle tells us that the solution to the inhomogeneous system
(11.23) is the self-same linear combination of the individual responses, so

u = f1u1 + f2u2 + · · · + fn un. (11.26)

Remark : The alert reader will recognize that u1, . . . ,un are the columns of the inverse
matrix, K−1, and so we are, in fact, reconstructing the solution to the linear system (11.23)
by inverting the coefficient matrix K. Thus, this observation, while noteworthy, does not
lead to an efficient solution technique for discrete systems. In contrast, in the case of
continuous boundary value problems, this approach leads to one of the most valuable
solution paradigms in both practice and theory.

The Delta Function

Our aim is to extend this algebraic technique to boundary value problems. The key
question is how to characterize an impulse force that is concentrated on a single atom† of
the bar. In general, a unit impulse at position x = y will be described by something called
the delta function, and denoted by δy(x). Since the impulse is supposed to be concentrated
solely at x = y, we should have

δy(x) = 0 for x 6= y. (11.27)

Moreover, since it is a unit impulse, we want the total amount of force exerted on the bar
to be equal to one. Since we are dealing with a continuum, the total force is represented
by an integral over the length of the bar, and so we also require that the delta function to
satisfy ∫ `

0

δy(x) dx = 1, provided that 0 < y < `. (11.28)

Alas, there is no bona fide function that enjoys both of the required properties! Indeed,
according to the basic facts of Riemann (or even Lebesgue) integration, two functions

† As before, “atom” is used in a figurative sense.
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which are the same everywhere except at one single point have exactly the same integral,
[45, 141]. Thus, since δy is zero except at one point, its integral should be 0, not 1. The
mathematical conclusion is that the two requirements, (11.27, 28) are inconsistent!

This unfortunate fact stopped mathematicians dead in their tracks. It took the imagi-
nation of a British engineer, with the unlikely name Oliver Heaviside, who was not deterred
by the lack of rigorous justification, to start utilizing delta functions in practical applica-
tions — with remarkable effect. Despite his success, Heaviside was ridiculed by the pure
mathematicians of his day, and eventually succumbed to mental illness. But, some thirty
years later, the great theoretical physicist Paul Dirac resurrected the delta function for
quantum mechanical applications, and this finally made theoreticians sit up and take no-
tice. (Indeed, the term “Dirac delta function” is quite common.) In 1944, the French
mathematician Laurent Schwartz finally established a rigorous theory of distributions that
incorporated such useful, but non-standard objects, [104, 140]. (Thus, to be more ac-
curate, we should really refer to the delta distribution; however, we will retain the more
common, intuitive designation “delta function” throughout.) It is beyond the scope of this
introductory text to develop a fully rigorous theory of distributions. Rather, in the spirit
of Heaviside, we shall concentrate on learning, through practice with computations and
applications, how to tame these wild mathematical beasts.

There are two distinct ways to introduce the delta function. Both are important and
both worth knowing.

Method #1. Limits: The first approach is to regard the delta function δy(x) as a

limit of a sequence of ordinary smooth functions† gn(x). These functions will represent
more and more concentrated unit forces, which, in the limit, converge to the desired unit
impulse concentrated at a single point, x = y. Thus, we require

lim
n→∞

gn(x) = 0, x 6= y, (11.29)

while the total amount of force remains fixed at

∫ `

0

gn(x) dx = 1. (11.30)

On a formal level, the limit “function”

δy(x) = lim
n→∞

gn(x)

will satisfy the key properties (11.27–28).

An explicit example of such a sequence is provided by the rational functions

gn(x) =
n

π
(
1 + n2x2

) . (11.31)

† To keep the notation compact, we suppress the dependence of the functions gn on the point
y where the limiting delta function is concentrated.
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Figure 11.4. Delta Function as Limit.

These functions satisfy

lim
n→∞

gn(x) =

{
0, x 6= 0,

∞, x = 0,
(11.32)

while‡ ∫ ∞

−∞

gn(x) dx =
1

π
tan−1 nx

∣∣∣∣
∞

x=−∞

= 1. (11.33)

Therefore, formally, we identify the limiting function

lim
n→∞

gn(x) = δ(x) = δ0(x),

with the unit impulse delta function concentrated at x = 0. As sketched in Figure 11.4, as n
gets larger and larger, each successive function gn(x) forms a more and more concentrated
spike, while maintaining a unit total area under its graph. The limiting delta function can
be thought of as an infinitely tall spike of zero width, entirely concentrated at the origin.

Remark : There are many other possible choices for the limiting functions gn(x). See
Exercise for another useful example.

Remark : This construction of the delta function highlights the perils of interchanging
limits and integrals without proper justification. In any standard theory of integration,

‡ For the moment, it will be slightly simpler here to consider the entire real line — correspond-
ing to a bar of infinite length. Exercise discusses how to modify the construction for a finite
interval.
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the limit of the functions gn would be indistinguishable from the zero function, so the limit
of their integrals (11.33) would not equal the integral of their limit:

1 = lim
n→∞

∫ ∞

−∞

gn(x) dx 6=

∫ ∞

−∞

lim
n→∞

gn(x) dx = 0.

The delta function is, in a sense, a means of sidestepping this analytic inconvenience. The
full ramifications and theoretical constructions underlying such limits must, however, be
deferred to a rigorous course in real analysis, [45, 141].

Once we have found the basic delta function δ(x) = δ0(x), which is concentrated at
the origin, we can obtain a delta function concentrated at any other position y by a simple
translation:

δy(x) = δ(x− y). (11.34)

Thus, δy(x) can be realized as the limit of the translated functions

ĝn(x) = gn(x− y) =
n

π
(
1 + n2(x− y)2

) . (11.35)

Method #2. Duality : The second approach is a bit more abstract, but much closer
to the proper rigorous formulation of the theory of distributions like the delta function.
The critical observation is that if u(x) is any continuous function, then

∫ `

0

δy(x)u(x) dx = u(y), for 0 < y < `. (11.36)

Indeed, since δy(x) = 0 for x 6= y, the integrand only depends on the value of u at the
point x = y, and so

∫ `

0

δy(x)u(x) dx =

∫ `

0

δy(x)u(y) dx = u(y)

∫ `

0

δy(x) dx = u(y).

Equation (11.36) serves to define a linear functional† Ly: C0[0, ` ] → R that maps a con-

tinuous function u ∈ C0[0, ` ] to its value at the point x = y:

Ly[u ] = u(y) ∈ R.

In the dual approach to generalized functions, the delta function is, in fact, defined as this
particular linear functional. The function u(x) is sometimes referred to as a test function,
since it serves to “test” the form of the linear functional L.

† Linearity, which requires that Ly[cf + dg ] = c Ly[f ] + d Ly[g ] for all functions f, g and all

scalars (constants) c, d ∈ R, is easily established; see also Example 7.7.
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Remark : If the impulse point y lies outside the integration domain, then

∫ `

0

δy(x)u(x) dx = 0, when y < 0 or y > `, (11.37)

because the integrand is identically zero on the entire interval. For technical reasons, we
will not attempt to define the integral (11.37) if the impulse point y = 0 or y = ` lies on
the boundary of the interval of integration.

The interpretation of the linear functional Ly as representing a kind of function δy(x)
is based on the following line of thought. According to Theorem 7.10, every scalar-valued
linear function L:V → R on a finite-dimensional inner product space is given by an inner
product with a fixed element a ∈ V , so

L[u ] = 〈a ,u 〉.

In this sense, linear functions on R
n are the “same” as vectors. (But bear in mind that the

identification does depend upon the choice of inner product.) Similarly, on the infinite-
dimensional function space C0[0, ` ], the L2 inner product

Lg[u ] = 〈 g , u 〉 =

∫ `

0

g(x)u(x) dx (11.38)

taken with a fixed function g ∈ C0[0, ` ] defines a real-valued linear functional Lg: C
0[0, ` ]→

R. However, unlike the finite-dimensional situation, not every real-valued linear functional
has this form! In particular, there is no actual function δy(x) such that the identity

〈 δy , u 〉 =

∫ `

0

δy(x)u(x) dx = u(y) (11.39)

holds for every continuous function u(x). Every (continuous) function defines a linear
functional, but not conversely. Or, stated another way, while the dual space to a finite-
dimensional vector space like R

n can be identified, via an inner product, with the space
itself, this is not the case in infinite-dimensional function space; the dual is an entirely
different creature. This disconcerting fact highlights yet another of the profound differences
between finite- and infinite-dimensional vector spaces!

But the dual interpretation of generalized functions acts as if this were true. Gener-

alized functions are real-valued linear functionals on function space, but viewed as a kind

of function via the inner product . Although the identification is not to be taken literally,
one can, with a little care, manipulate generalized functions as if they were actual func-
tions, but always keeping in mind that a rigorous justification of such computations must
ultimately rely on their true characterization as linear functionals.

The two approaches — limits and duality — are completely compatible. Indeed, with
a little extra work, one can justify the dual formula (11.36) as the limit

u(y) = lim
n→∞

∫ `

0

gn(x)u(x) dx =

∫ `

0

δy(x)u(x) dx (11.40)
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of the inner products of the function u with the approximating concentrated impulse
functions gn(x) satisfying (11.29–30). In this manner, the linear functional L[u ] = u(y)
represented by the delta function is the limit, Ly = lim

n→∞
Ln, of the approximating linear

functionals

Ln[u ] =

∫ `

0

gn(x)u(x) dx.

Thus, the choice of interpretation of the generalized delta function is, on an operational
level, a matter of taste. For the novice, the limit interpretation of the delta function is
perhaps the easier to digest at first. However, the dual, linear functional interpretation
has stronger connections with the rigorous theory and, even in applications, offers some
significant advantages.

Although on the surface, the delta function might look a little bizarre, its utility in
modern applied mathematics and mathematical physics more than justifies including it in
your analytical toolbox. Even though you are probably not yet comfortable with either
definition, you are advised to press on and familiarize yourself with its basic properties, to
be discussed next. With a little care, you usually won’t go far wrong by treating it as if
it were a genuine function. After you gain more practical experience, you can, if desired,
return to contemplate just exactly what kind of object the delta function really is.

Remark : If you are familiar with basic measure theory, [141], there is yet a third
interpretation of the delta function as a point mass or atomic measure. However, the
measure-theoretic approach has definite limitations, and does not cover the full gamut of
generalized functions.

Calculus of Generalized Functions

In order to develop a working relationship with the delta function, we need to under-
stand how it behaves under the basic operations of linear algebra and calculus. First, we
can take linear combinations of delta functions. For example,

f(x) = 2 δ(x) + 3 δ(x− 1)

represents a combination of an impulse of magnitude 2 concentrated at x = 0 and one of
magnitude 3 concentrated at x = 1. Since δy(x) = 0 for any x 6= y, multiplying the delta
function by an ordinary function is the same as multiplying by a constant:

g(x) δy(x) = g(y) δy(x), (11.41)

provided that g(x) is continuous at x = y. For example, x δ(x) ≡ 0 is the same as the
constant zero function.

Warning : It is not permissible to multiply delta functions together, or to use more
complicated algebraic operations. Expressions like δ(x)2, 1/δ(x), eδ(x), etc., are not well
defined in the theory of generalized functions. This makes their application to nonlinear
systems much more problematic .
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Figure 11.5. The Step Function.

The integral of the delta function is known as a step function. More specifically, the
basic formulae (11.36, 37) imply that

∫ x

a

δy(t) dt = σy(x) = σ(x− y) =

{
0, a < x < y,

1, x > y > a.
(11.42)

Figure 11.5 shows the graph of σ(x) = σ0(x). Unlike the delta function, the step function
σy(x) is an ordinary function. It is continuous — indeed constant — except at x = y. The
value of the step function at the discontinuity x = y is left unspecified, although a popular
choice, motivated by Fourier theory, cf. Chapter 12 , is to set σy(y) = 1

2 , the average of its
left and right hand limits.

We note that the integration formula (11.42) is compatible with our characteriza-
tion of the delta function as the limit of highly concentrated forces. If we integrate the
approximating functions (11.31), we obtain

fn(x) =

∫ x

−∞

gn(t) dt =
1

π
tan−1 nx +

1

2
.

Since
lim

y →∞
tan−1 y = 1

2 π, while lim
y →−∞

tan−1 y = − 1
2 π,

these functions converge to the step function:

lim
n→∞

fn(x) = σ(x) =





1, x > 0,
1
2 , x = 0,

0, x < 0.

(11.43)

A graphical illustration of this limiting process appears in Figure 11.6.

The integral of the discontinuous step function (11.42) is the continuous ramp function

∫ x

a

σy(z) dz = ρy(x) = ρ(x− y) =

{
0, a < x < y,

x− y, x > y > a,
(11.44)

which is graphed in Figure 11.7. Note that ρ(x − y) has a corner at x = y, and so is not

differentiable there; indeed, its derivative
dρ

dx
= σ has a jump discontinuity, and its second
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Figure 11.6. Step Function as Limit.
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Figure 11.7. First and Second Order Ramp Functions.

derivative
d2ρ

dx2
= δ is no longer an ordinary function. We can continue to integrate; the

nth integral of the delta function is the nth order ramp function

ρn(x− y) =





(x− y)n

n!
, x > y,

0, x < y.
(11.45)

What about differentiation? Motivated by the Fundamental Theorem of Calculus,
we shall use formula (11.42) to identify the derivative of the step function with the delta
function

dσ

dx
= δ . (11.46)

This fact is highly significant. In basic calculus, one is not allowed to differentiate a
discontinuous function. Here, we discover that the derivative can be defined, not as an
ordinary function, but rather as a generalized delta function.

This basic identity is a particular instance of a general rule for differentiating functions
with discontinuities. We use

f(y−) = lim
x→ y−

f(x), f(y+) = lim
x→ y+

f(x), (11.47)

to denote, respectively, the left and right sided limits of a function at a point y. The
function f(x) is continuous at the point y if and only if its one-sided limits exist and are
equal to its value: f(y) = f(y−) = f(y+). If the one-sided limits are the same, but not
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equal to f(y), then the function is said to have a removable discontinuity , since redefining
f(y) = f(y−) = f(y+) serves to make f continuous at the point in question. An example
is the function f(x) that is equal to 0 for all x 6= 0, but has† f(0) = 1. Removing the
discontinuity by setting f(0) = 0 makes f(x) ≡ 0 equal to a continuous constant function.
Since removable discontinuities play no role in our theory or applications, they will always
be removed without penalty.

Warning : Although δ(0+) = 0 = δ(0−), we will emphatically not call 0 a removable
discontinuity of the delta function. Only standard functions have removable discontinuities.

Finally, if both the left and right limits exist, but are not equal, then f is said to have
a jump discontinuity at the point y. The magnitude of the jump is the difference

β = f(y+)− f(y−) = lim
x→ y+

f(x) − lim
x→ y−

f(x) (11.48)

between the right and left limits. The magnitude of the jump is positive if the function
jumps up, when moving from left to right, and negative if it jumps down. For example,
the step function σ(x) has a unit, i.e., magnitude 1, jump discontinuity at the origin:

σ(0+)− σ(0−) = 1− 0 = 1,

and is continuous everywhere else. Note the value of the function at the point, namely
f(y), which may not even be defined, plays no role in the specification of the jump.

In general, the derivative of a function with jump discontinuities is a generalized
function that includes delta functions concentrated at each discontinuity. More explicitly,
suppose that f(x) is differentiable, in the usual calculus sense, everywhere except at the
point y where it has a jump discontinuity of magnitude β. We can re-express the function
in the convenient form

f(x) = g(x) + β σ(x− y), (11.49)

where g(x) is continuous everywhere, with a removable discontinuity at x = y, and differ-
entiable except possibly at the jump. Differentiating (11.49), we find that

f ′(x) = g′(x) + β δ(x− y), (11.50)

has a delta spike of magnitude β at the discontinuity. Thus, the derivatives of f and g
coincide everywhere except at the discontinuity.

Example 11.4. Consider the function

f(x) =

{
−x, x < 1,
1
5 x2, x > 1,

(11.51)

† This function is not a version of the delta function. It is an ordinary function, and its integral
is 0, not 1.
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Figure 11.8. The Derivative of a Discontinuous Function.

which we graph in Figure 11.8. We note that f has a single jump discontinuity of magnitude
6
5 at x = 1. This means that

f(x) = g(x) + 6
5 σ(x− 1), where g(x) =

{
−x, x < 1,
1
5 x2 − 6

5 , x > 1,

is continuous everywhere, since its right and left hand limits at the original discontinuity
are equal: g(1+) = g(1−) = −1. Therefore,

f ′(x) = g′(x) + 6
5 δ(x− 1), where g′(x) =

{
−1, x < 1,
2
5 x, x > 1,

while g′(1), and hence f ′(1), is not defined. In Figure 11.8, the delta spike in the derivative
of f is symbolized by a vertical line — although this pictorial device fails to indicate its
magnitude of 6

5 .

Since g′(x) can be found by directly differentiating the formula for f(x), once we
determine the magnitude and location of the jump discontinuities of f(x), we can compute
its derivative directly without introducing to the auxiliary function g(x).

Example 11.5. As a second, more streamlined example, consider the function

f(x) =





−x, x < 0,

x2 − 1, 0 < x < 1,

2e−x, x > 1,

which is plotted in Figure 11.9. This function has jump discontinuities of magnitude −1
at x = 0, and of magnitude 2/e at x = 1. Therefore, in light of the preceding remark,

f ′(x) = − δ(x) +
2

e
δ(x− 1) +





−1, x < 0,

2x, 0 < x < 1,

−2e−x, x > 1,

where the final terms are obtained by directly differentiating f(x).
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Figure 11.9. The Derivative of a Discontinuous Function.

Example 11.6. The derivative of the absolute value function

a(x) = |x | =

{
x, x > 0,

−x, x < 0,

is the sign function

s(x) = a′(x) =

{
+1, x > 0,

−1, x < 0.
(11.52)

Note that there is no delta function in a′(x) because a(x) is continuous everywhere. Since
s(x) has a jump of magnitude 2 at the origin and is otherwise constant, its derivative
s′(x) = a′′(x) = 2δ(x) is twice the delta function.

We are even allowed to differentiate the delta function. Its first derivative

δ ′
y(x) = δ ′(x− y)

can be interpreted in two ways. First, we may view δ ′(x) as the limit of the derivatives of
the approximating functions (11.31):

dδ

dx
= lim

n→∞

dgn

dx
= lim

n→∞

−2n3 x

π(1 + n2 x2)2
. (11.53)

The graphs of these rational functions take the form of more and more concentrated spiked
“doublets”, as illustrated in Figure 11.10. To determine the effect of the derivative on a
test function u(x), we compute the limiting integral

〈 δ ′ , u 〉 =

∫ ∞

−∞

δ ′(x)u(x) dx = lim
n→∞

∫ ∞

−∞

g′n(x)u(x) dx

= − lim
n→∞

∫ ∞

−∞

gn(x)u′(x) dx = −

∫ ∞

−∞

δ(x)u′(x) dx = −u′(0).

(11.54)
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Figure 11.10. Derivative of Delta Function as Limit of Doublets.

In the middle step, we used an integration by parts, noting that the boundary terms at
±∞ vanish, provided that u(x) is continuously differentiable and bounded as |x | → ∞.
Pay attention to the minus sign in the final answer.

In the dual interpretation, the generalized function δ ′
y(x) corresponds to the linear

functional

L′
y[u ] = −u′(y) = 〈 δ ′

y , u 〉 =

∫ `

0

δ ′
y(x)u(x) dx, where 0 < y < `, (11.55)

that maps a continuously differentiable function u(x) to minus its derivative at the point
y. We note that (11.55) is compatible with a formal integration by parts

∫ `

0

δ ′(x− y)u(x) dx = δ(x− y)u(x)

∣∣∣∣
`

x=0

−

∫ `

0

δ(x− y)u′(x) dx = −u′(y).

The boundary terms at x = 0 and x = ` automatically vanish since δ(x− y) = 0 for x 6= y.

Warning : The functions g̃n(x) = gn(x) + g′n(x) satisfy lim
n→∞

g̃n(x) = 0 for all x 6= y,

while

∫ ∞

−∞

g̃n(x) dx = 1. However, lim
n→∞

g̃n = lim
n→∞

gn + lim
n→∞

g′n = δ + δ ′. Thus, our

original conditions (11.29–30) are not in fact sufficient to characterize whether a sequence
of functions has the delta function as a limit. To be absolutely sure, one must, in fact,
verify the more comprehensive limiting formula (11.40).

The Green’s Function

To further cement our new-found friendship, we now put the delta function to work
to solve inhomogeneous boundary value problems. Consider a bar of length ` subject to a
unit impulse force δy(x) = δ(x − y) concentrated at position 0 < y < `. The underlying
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Figure 11.11. Green’s function for a Bar with Fixed Ends.

differential equation (11.12) takes the special form

−
d

dx

(
c(x)

du

dx

)
= δ(x− y), 0 < x < `, (11.56)

which we supplement with homogeneous boundary conditions that lead to a unique solu-
tion. The solution is known as the Green’s function for the boundary value problem, and
will be denoted by Gy(x) = G(x, y).

Example 11.7. Let us look at the simple case of a homogeneous bar, of unit length
` = 1, with constant stiffness c, and fixed at both ends. The boundary value problem for
the Green’s function G(x, y) takes the form

−cu′′ = δ(x− y), u(0) = 0 = u(1), (11.57)

where 0 < y < 1 indicates the point at which we apply the impulse force. The solution to
the differential equation is obtained by direct integration. First, by (11.42),

u′(x) = −
σ(x− y)

c
+ a,

where a is a constant of integration. A second integration leads to

u(x) = −
ρ(x− y)

c
+ a x + b, (11.58)

where ρ is the ramp function (11.44). The integration constants a, b are fixed by the
boundary conditions; since 0 < y < 1, we have

u(0) = b = 0, u(1) = −
1− y

c
+ a + b = 0, and so a =

1− y

c
.

Therefore, the Green’s function for the problem is

G(x, y) = − ρ(x− y) + (1− y)x =

{
x(1− y)/c, x ≤ y,

y(1− x)/c, x ≥ y,
(11.59)

Figure 11.11 sketches a graph of G(x, y) when c = 1. Note that, for each fixed y, it
is a continuous and piecewise affine function of x — meaning that its graph consists of
connected straight line segments, with a corner where the unit impulse force is being
applied.
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Once we have determined the Green’s function, we are able to solve the general inho-
mogeneous boundary value problem

−u′′ = f(x), u(0) = 0 = u(1), (11.60)

The solution formula is a consequence of linear superposition. We first express the forcing
function f(x) as a linear combination of impulses concentrated at points along the bar.
Since there is a continuum of possible positions 0 ≤ y ≤ 1 at which impulse forces may be
applied, we will use an integral to sum them up, thereby writing the external force as

f(x) =

∫ 1

0

f(y) δ(x− y) dy. (11.61)

In the continuous context, sums are replaced by integrals, and we will interpret (11.61)
as the (continuous) superposition of an infinite collection of impulses f(y) δ(x − y), of
magnitude f(y) and concentrated at position y.

The superposition principle states that, for linear systems, linear combinations of
inhomogeneities produce linear combinations of solutions. Again, we adapt this principle
to the continuum by replacing the sums by integrals. Thus, we claim that the solution to
the boundary value problem is the self-same linear superposition

u(x) =

∫ 1

0

f(y)G(x, y) dy (11.62)

of the Green’s function solutions to the individual unit impulse problems.

For the particular boundary value problem (11.60), we use the explicit formula (11.59)
for the Green’s function. Breaking the integral (11.62) into two parts, for y < x and y > x,
we arrive at the explicit solution formula

u(x) =
1

c

∫ x

0

(1− x)yf(y) dy +
1

c

∫ 1

x

x(1− y)f(y) dy. (11.63)

For example, under a constant unit force f , (11.63) reduces to

u(x) =
f

c

∫ x

0

(1− x)y dy +
f

c

∫ 1

x

x(1− y) dy =
f

2c
(1−x)x2+

f

2c
x(1−x)2 =

f

2c
(x−x2),

in agreement with our earlier solution (11.19) in the special case d = 0. Although this rel-
atively simple problem was perhaps easier to solve directly, the Green’s function approach
helps crystallize our understanding, and provides a unified framework that covers the full
range of linear boundary value problems arising in applications, including those governed
by partial differential equations, [104, 152, 170].

Let us, finally, convince ourselves that the superposition formula (11.63) does indeed
give the correct answer. First,

du

dx
= (1− x)xf(x) +

∫ x

0

[−yf(y) ] dy − x(1− x)f(x) +

∫ 1

x

(1− y)f(y) dy

= −

∫ 1

0

yf(y) dy +

∫ 1

x

f(y) dy.
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Differentiating again, we conclude that
d2u

dx2
= −f(x), as claimed.

Remark : In computing the derivatives of u, we made use of the calculus formula

d

dx

∫ β(x)

α(x)

F (x, y) dy = F (x, β(x))
dβ

dx
− F (x, α(x))

dα

dx
+

∫ β(x)

α(x)

∂F

∂x
(x, y) dy (11.64)

for the derivative of an integral with variable limits, which is a straightforward consequence
of the Fundamental Theorem of Calculus and the chain rule, [9, 151]. As with all limiting
processes, one must always be careful when interchanging the order of differentiation and
integration.

We note the following fundamental properties, that serve to uniquely characterize the
Green’s function. First, since the delta forcing vanishes except at the point x = y, the
Green’s function satisfies the homogeneous differential equation†

∂2G

∂x2
(x, y) = 0 for all x 6= y. (11.65)

Secondly, by construction, it must satisfy the boundary conditions,

G(0, y) = 0 = G(1, y).

Thirdly, for each fixed y, G(x, y) is a continuous function of x, but its derivative ∂G/∂x has
a jump discontinuity of magnitude −1/c at the impulse point x = y. The second derivative
∂2G/∂x2 has a delta function discontinuity there, and thereby solves the original impulse
boundary value problem (11.57).

Finally, we cannot help but notice that the Green’s function is a symmetric function of
its two arguments: G(x, y) = G(y, x). Symmetry has the interesting physical consequence
that the displacement of the bar at position x due to an impulse force concentrated at
position y is exactly the same as the displacement of the bar at y due to an impulse of
the same magnitude being applied at x. This turns out to be a rather general, although
perhaps unanticipated phenomenon. (For the finite-dimensional counterpart for mass-
spring chains, circuits, and structures see Exercises , and .) Symmetry is a consequence
of the underlying symmetry or “self-adjointness” of the boundary value problem, to be
developed properly in the following section.

Remark : The Green’s function G(x, y) should be be viewed as the continuum limit
of the inverse of the stiffness matrix, G = K−1, appearing in the discrete equilibrium
equations Ku = f . Indeed, the entries Gij of the inverse matrix are approximations to
the sampled values G(xi, xj). In particular, symmetry of the Green’s function, whereby
G(xi, xj) = G(xj , xi), corresponds to symmetry, Gij = Gji, of the inverse of the symmetric
stiffness matrix. In Exercise , you are asked to study this limiting procedure in some detail.

† Since G(x, y) is a function of two variables, we switch to partial derivative notation to indicate
its derivatives.
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Figure 11.12. Green’s Function for Bar with One Fixed and One Free End.

Let us summarize the fundamental properties that serve to characterize the Green’s
function, in a form that applies to general second order boundary value problems.

Basic Properties of the Green’s Function

(i) Solves the homogeneous differential equation:

−
∂

∂x

(
c(x)

∂

∂x
G(x, y)

)
= 0, for all x 6= y. (11.66)

(ii) Satisfies the homogeneous boundary conditions.

(iii) Is a continuous function of its arguments.

(iv) As a function of x, its derivative
∂G

∂x
has a jump discontinuity of magnitude −

1

c(y)
at x = y.

(v) Is a symmetric function of its arguments:

G(x, y) = G(y, x). (11.67)

(vi) Generates a superposition principle for the solution under general forcing functions:

u(x) =

∫ `

0

G(x, y) f(y) dy. (11.68)

.

Example 11.8. Consider a uniform bar of length ` = 1 with one fixed and one
free end, subject to an external force. The displacement u(x) satisfies the boundary value
problem

−cu′′ = f(x), u(0) = 0, u′(1) = 0, (11.69)

where c is the elastic constant of the bar. To determine the Green’s function, we appeal
to its characterizing properties, although one could equally well use direct integration as
in the preceding Example 11.7.
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First, since, as a function of x, it must satisfy the homogeneous differential equation
−c u′′ = 0 for all x 6= y, the Green’s function must be of the form

G(x, y) =

{
px + q, x ≤ y,

rx + s, x ≥ y,

for certain constants p, q, r, s. Second, the boundary conditions require

q = G(0, y) = 0, r =
∂G

∂x
(1, y) = 0.

Continuity of the Green’s function at x = y imposes the further constraint

py = G(y−, y) = G(y+, y) = s.

Finally, the derivative ∂G/∂x must have a jump discontinuity of magnitude −1/c at x = y,
and so

−
1

c
=

∂G

∂x
(y+, y)−

∂G

∂x
(y−, y) = 0− p, and so p = s =

1

c
.

We conclude that the Green’s function for this problem is

G(x, y) =

{
x/c, x ≤ y,

y/c, x ≥ y,
(11.70)

which, for c = 1, is graphed in Figure 11.12. Note that G(x, y) = G(y, x) is indeed sym-
metric, which helps check the correctness of our computation. Finally, the superposition
principle (11.68) implies that the solution to the boundary value problem (11.69) can be
written as a single integral, namely

u(x) =

∫ 1

0

G(x, y)f(y) dy =
1

c

∫ x

0

yf(y) dy +
1

c

∫ 1

x

xf(y) dy. (11.71)

The reader may wish to verify this directly, as we did in the previous example.

11.3. Adjoints and Minimum Principles.

One of the profound messages of this text is that the linear algebraic structures that
were initially† designed for finite-dimensional problems all have direct counterparts in the
infinite-dimensional function spaces. To further develop this theme, let us now discuss how
the boundary value problems for continuous elastic bars fit into our general equilibrium
framework of positive (semi-)definite linear systems. As we will see, the associated energy
minimization principle not only leads to a new mathematical characterization of the equi-
librium solution, it also, through the finite element method, underlies the most important
class of numerical approximation algorithms for such boundary value problems.

† Sometimes, the order is reversed, and, at least historically, basic linear algebra concepts make
their first appearance in function space. Examples include the Cauchy–Schwarz inequality, the
Fredholm alternative, and the Fourier transform.
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Adjoints of Differential Operators

In discrete systems, a key step was the recognition that the matrix appearing in the
force balance law is the transpose of the incidence matrix relating displacements and elon-
gations. In the continuum limit, the discrete incidence matrix has turned into a differential
operator. But how do you take the “transpose” of a differential operator? The abstract
answer to this quandary can be found in Section 7.5. The transpose of a matrix is a par-
ticular instance of the general notion of the adjoint of a linear function, which relies on the
specification of inner products on its domain and target spaces. In the case of the matrix
transpose, the adjoint is taken with respect to the standard dot product on Euclidean
space. Thus, the correct interpretation of the “transpose” of a differential operator is as
the adjoint linear operator with respect to suitable inner products on function space.

For bars and similar one-dimensional media, the role of the incidence matrix is played
by the derivative v = D[u ] = du/dx, which defines a linear operator D:U → V from the
vector space of possible displacements u(x), denoted by U , to the vector space of possible
strains v(x), denoted by V . In order to compute its adjoint, we need to impose inner
products on both the displacement space U and the strain space V . The simplest is to
adopt the same standard L2 inner product

〈u , ũ 〉 =

∫ `

0

u(x) ũ(x) dx, 〈〈 v , ṽ 〉〉 =

∫ `

0

v(x) ṽ(x) dx, (11.72)

on both vector spaces. These are the continuum analogs of the Euclidean dot product,
and, as we shall see, will be appropriate when dealing with homogeneous bars. According
to the defining equation (7.72), the adjoint D∗ of the derivative operator must satisfy the
inner product identity

〈〈D[u ] , v 〉〉 = 〈u ,D∗[v ] 〉 for all u ∈ U, v ∈ V. (11.73)

First, we compute the left hand side:

〈〈D[u ] , v 〉〉 =

〈〈
du

dx
; v

〉〉
=

∫ `

0

du

dx
v dx. (11.74)

On the other hand, the right hand side should equal

〈u ,D∗[v ] 〉 =

∫ `

0

uD∗[v ] dx. (11.75)

Now, in the latter integral, we see u multiplying the result of applying the linear operator
D∗ to v. To identify this integrand with that in the previous integral (11.74), we need to
somehow remove the derivative from u. The secret is integration by parts, which allows
us to rewrite the first integral in the form

∫ `

0

du

dx
v dx =

[
u(`) v(`)− u(0) v(0)

]
−

∫ `

0

u
dv

dx
dx. (11.76)

9/11/05 433 c© 2005 Peter J. Olver



Ignoring the two boundary terms for a moment, the remaining integral has the form of an
inner product

−

∫ `

0

u
dv

dx
dx =

∫ `

0

u

[
−

dv

dx

]
dx =

〈
u , −

dv

dx

〉
= 〈u ,−D[v ] 〉. (11.77)

Equating (11.74) and (11.77), we deduce that

〈〈D[u ] , v 〉〉 =

〈〈
du

dx
; v

〉〉
=

〈
u , −

dv

dx

〉
= 〈u ,−D[v ] 〉.

Thus, to satisfy the adjoint equation (11.73), we must have

〈u ,D∗[v ] 〉 = 〈u ,−D[v ] 〉 for all u ∈ U, v ∈ V,

and so (
d

dx

)∗
= D∗ = −D = −

d

dx
. (11.78)

The final equation confirms our earlier identification of the derivative operator D as the
continuum limit of the incidence matrix A, and its negative −D = D∗ as the limit of the
transposed (or adjoint) incidence matrix AT = A∗.

However, the preceding argument is valid only if the boundary terms in the integration
by parts formula (11.76) vanish:

u(`) v(`)− u(0) v(0) = 0, (11.79)

which necessitates imposing suitable boundary conditions on the functions u and v. For
example, in the case of a bar with both ends fixed, the boundary conditions

u(0) = 0, u(`) = 0, (11.80)

will ensure that (11.79) holds, and therefore validate (11.78). The homogeneous boundary
conditions serve to define the vector space

U =
{

u(x) ∈ C2[0, ` ]
∣∣ u(0) = u(`) = 0

}

of allowable displacements, consisting of all twice continuously differentiable functions that
vanish at the ends of the bar.

The fixed boundary conditions (11.80) are not the only possibilities that ensure the
vanishing of the boundary terms (11.79). An evident alternative is to require that the
strain vanish at both endpoints, v(0) = v(`) = 0. In this case, the strain space

V =
{

v(x) ∈ C1[0, ` ]
∣∣ v(0) = v(`) = 0

}

consists of all functions that vanish at the endpoints. Since the derivative D:U → V
must map a displacement u(x) to an allowable strain v(x), the vector space of possible
displacements takes the form

U =
{

u(x) ∈ C2[0, ` ]
∣∣ u′(0) = u′(`) = 0

}
.
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Thus, this case corresponds to the free boundary conditions of Example 11.3. Again,
restricting D:U → V to these particular vector spaces ensures that the boundary terms
(11.79) vanish, and so (11.78) holds in this situation too.

Let us list the most important combinations of boundary conditions that imply the
vanishing of the boundary terms (11.79), and so ensure the validity of the adjoint equation
(11.78).

Self-Adjoint Boundary Conditions for a Bar

(a) Both ends fixed: u(0) = u(`) = 0.

(b) One free and one fixed end: u(0) = u′(`) = 0 or u′(0) = u(`) = 0.

(c) Both ends free: u′(0) = u′(`) = 0.

(d) Periodic bar or ring: u(0) = u(`), u′(0) = u′(`).

In all cases, the boundary conditions impose restrictions on the displacement space U and,
in cases (b–d) when identifying v(x) = u′(x), the strain space V also.

In mathematics, a fixed boundary condition, u(a) = 0, is commonly referred to as
a Dirichlet boundary condition, to honor the nineteenth century French analyst Lejeune
Dirichlet. A free boundary condition, u′(a) = 0, is known as a Neumann boundary con-

dition, after his German contemporary Carl Gottfried Neumann. The Dirichlet boundary

value problem (a) has both ends fixed, while the Neumann boundary value problem (c) has
both ends free. The intermediate case (b) is known as a mixed boundary value problem.
The periodic boundary conditions (d) represent a bar that has its ends joined together to
form a circular† elastic ring, and represents the continuum limit of the periodic mass–spring
chain discussed in Exercise .

Summarizing, for a homogeneous bar with unit stiffness c(x) ≡ 1, the displacement,
strain, and external force are related by the adjoint formulae

v = D[u ] = u′, f = D∗[v ] = −v′,

provided that we impose a suitable pair of homogeneous boundary conditions. The equi-
librium equation has the self-adjoint form

K[u ] = f, where K = D∗ ◦D = −D2. (11.81)

We note that
K∗ = (D∗ ◦D)∗ = D∗ ◦ (D∗)∗ = D∗ ◦D = K, (11.82)

which proves self-adjointness of the differential operator. In gory detail,

〈K[u ] , ũ 〉 =

∫ `

0

[
−u′′(x) ũ(x)

]
dx =

∫ `

0

[
−u(x) ũ ′′(x)

]
dx = 〈u ,K[ ũ ] 〉 (11.83)

for all displacements u, ũ ∈ U . A direct verification of this formula relies on two inte-
gration by parts, employing the selected boundary conditions to eliminate the boundary
contributions.

† The circle is sufficiently large so that we can safely ignore any curvature effects.
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To deal with nonuniform materials, we must modify the inner products. Let us retain
the ordinary L2 inner product

〈u , ũ 〉 =

∫ `

0

u(x) ũ(x) dx, u, ũ ∈ U, (11.84)

on the vector space of possible displacements, but adopt a weighted inner product

〈〈 v , ṽ 〉〉 =

∫ `

0

v(x) ṽ(x) c(x) dx, v, ṽ ∈ V, (11.85)

on the space of strain functions. The weight function c(x) > 0 coincides with the stiffness
of the bar; its positivity, which is required for (11.85) to define a bona fide inner product,
is in accordance with the underlying physical assumptions.

Let us recompute the adjoint of the derivative operator D:U → V , this time with
respect to the inner products (11.84–85). Now we need to compare

〈〈D[u ] , v 〉〉 =

∫ `

0

du

dx
v(x) c(x) dx, with 〈u ,D∗[v ] 〉 =

∫ `

0

u(x)D∗[v ] dx.

Integrating the first expression by parts, we find

∫ `

0

du

dx
cv dx =

[
u(`)c(`)v(`)− u(0)c(0)v(0)

]
−

∫ `

0

u
d(cv)

dx
dx =

∫ `

0

u

[
−

d(cv)

dx

]
dx,

(11.86)
provided that we choose our boundary conditions so that

u(`)c(`)v(`)− u(0)c(0)v(0) = 0. (11.87)

As you can check, this follows from any of the listed boundary conditions: Dirichlet,
Neumann, or mixed, as well as the periodic case, assuming c(0) = c(`). Therefore, in such
situations, the weighted adjoint of the derivative operator is

D∗[v ] = −
d(cv)

dx
= −c

dv

dx
− c′ v. (11.88)

The self-adjoint combination K = D∗ ◦D is

K[u ] = −
d

dx

(
c(x)

du

dx

)
, (11.89)

and hence we have formulated the original equation (11.12) for a nonuniform bar in the
same abstract self-adjoint form.

As an application, let us show how the self-adjoint formulation leads directly to the
symmetry of the Green’s function G(x, y). As a function of x, the Green’s function satisfies

K[G(x, y) ] = δ(x− y).
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Thus, by the definition of the delta function and the self-adjointness identity (11.83),

G(z, y) =

∫ `

0

G(x, y) δ(x− z) dx = 〈G(x, y) , δ(x− z) 〉 = 〈G(x, y) ,K[G(x, z) ] 〉 (11.90)

= 〈K[G(x, y) ] , G(x, z) 〉 = 〈 δ(x− y) , G(x, z) 〉 =

∫ `

0

G(x, z) δ(x− y) dx = G(y, z),

for any 0 < y, z < `, which validates† the symmetry equation (11.67).

Positivity and Minimum Principles

We are now able to characterize the solution to a stable self-adjoint boundary value
problem by a quadratic minimization principle. Again, the development shadows the
finite-dimensional case presented in Chapter 6. So the first step is to understand how a
differential operator defining a boundary value problem can be positive definite.

According to the abstract Definition 7.59, a linear operator K:U → U on an inner
product space U is positive definite, provided that it is

(a) self-adjoint, so K∗ = K, and

(b) satisfies the positivity criterion 〈K[u ] , u 〉 > 0 for all 0 6= u ∈ U .

Self-adjointness of the product operator K = D∗ ◦D was established in (11.82). Further-
more, Theorem 7.62 tells us that K is positive definite if and only if ker D = {0}. Indeed,
by the definition of the adjoint,

〈K[u ] , u 〉 = 〈D∗[D[u ] ] , u 〉 = 〈〈D[u ] , D[u ] 〉〉 = ‖D[u ] ‖2 ≥ 0, (11.91)

so K = D∗ ◦D is automatically positive semi-definite. Moreover, 〈K[u ] , u 〉 = 0 if and
only if D[u ] = 0, i.e., u ∈ ker K. Thus ker D = {0} is both necessary and sufficient for the
positivity criterion to hold.

Now, in the absence of constraints, the kernel of the derivative operator D is not

trivial. Indeed, D[u ] = u′ = 0 if and only if u(x) ≡ c is constant, and hence ker D is
the one-dimensional subspace of C1[0, ` ] consisting of all constant functions. However, we
are viewing D as a linear operator on the vector space U of allowable displacements, and
so the elements of ker D ⊂ U must also be allowable, meaning that they must satisfy the
boundary conditions. Thus, positivity reduces, in the present situation, to the question
of whether or not there are any nontrivial constant functions that satisfy the prescribed
homogeneous boundary conditions.

Clearly, the only constant function that satisfies a homogeneous Dirichlet boundary
condition is the zero function. Therefore, when restricted to the Dirichlet displacement
space U = {u(0) = u(`) = 0}, the derivative operator has trivial kernel, ker D = {0},
so K = D∗ ◦D defines a positive definite linear operator on U . A similar argument
applies to the mixed boundary value problem, which is also positive definite. On the other
hand, any constant function satisfies the homogeneous Neumann boundary conditions,
and so ker D ⊂ Ũ = {u′(0) = u′(`) = 0} is a one-dimensional subspace. Therefore,

† Symmetry at the endpoints follows from continuity.

9/11/05 437 c© 2005 Peter J. Olver



the Neumann boundary value problem is only positive semi-definite. A similar argument
shows that the periodic problem is also positive semi-definite. Observe that, just as in the
finite-dimensional version, the positive definite cases are stable, and the boundary value
problem admits a unique equilibrium solution under arbitrary external forcing, whereas the
semi-definite cases are unstable, and have either no solution or infinitely many equilibrium
solutions, depending on the nature of the external forcing.

In the positive definite, stable cases, we can characterize the equilibrium solution as
the unique function u ∈ U that minimizes the quadratic functional

P[u ] = 1
2 ‖D[u ] ‖2 − 〈u , f 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx. (11.92)

A proof of this general fact appears following Theorem 7.61. Pay attention: the norm in
(11.92) refers to the strain space V , and so is associated with the weighted inner product
(11.85), whereas the inner product term refers to the displacement space U , which has
been given the L2 inner product. Physically, the first term measures the internal energy
due to the stress in the bar, while the second term is the potential energy induced by the
external forcing. Thus, as always, the equilibrium solution seeks to minimize the total
energy in the system.

Example 11.9. Consider the homogeneous Dirichlet boundary value problem

−u′′ = f(x), u(0) = 0, u(`) = 0. (11.93)

for a uniform bar with two fixed ends. This is a stable case, and so the underlying
differential operator K = D∗ ◦D = −D2, when acting on the space of displacements
satisfying the boundary conditions, is positive definite. Explicitly, positive definiteness
requires

〈K[u ] , u 〉 =

∫ `

0

[−u′′(x)u(x) ] dx =

∫ `

0

[u′(x) ]2 dx > 0 (11.94)

for all nonzero u(x) 6≡ 0 with u(0) = u(`) = 0. Notice how we used an integration by parts,
invoking the boundary conditions to eliminate the boundary contributions, to expose the
positivity of the integral. The corresponding energy functional is

P[u ] = 1
2‖u

′ ‖2 − 〈u , f 〉 =

∫ `

0

[
1
2 u′(x)2 − f(x)u(x)

]
dx.

Its minimum value, taken over all possible displacement functions that satisfy the boundary
conditions, occurs precisely when u = u? is the solution to the boundary value problem.

A direct verification of the latter fact may be instructive. As in our derivation of the
adjoint operator, it relies on an integration by parts. Since −u′′

? = f ,

P[u ] =

∫ `

0

[
1
2 (u′)2 + u′′

? u
]
dx = u′

?(`)u(`)− u′
?(0)u(0) +

∫ `

0

[
1
2 (u′)2 − u′

? u′
]
dx

=

∫ `

0

1
2 (u′ − u′

?)
2 dx −

∫ `

0

1
2 (u′

?)
2 dx, (11.95)
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where the boundary terms vanish owing to the boundary conditions on u? and u. In the
final expression for P[u ], the first integral is always ≥ 0, and is actually equal to 0 if and
only if u′(x) = u′

?(x) for all 0 ≤ x ≤ `. On the other hand, the second integral does not
depend upon u at all. Thus, for P[u ] to achieve a minimum, u(x) = u?(x) + c for some
constant c. But the boundary conditions force c = 0, and hence the energy functional will
assume its minimum value if and only if u = u?.

Inhomogeneous Boundary Conditions

So far, we have restricted our attention to homogeneous boundary value problems.
Inhomogeneous boundary conditions are a little trickier, since the spaces of allowable
displacements and allowable strains are no longer vector spaces, and so the abstract theory,
as developed in Chapter 7, is not directly applicable.

One way to circumvent this difficulty is to slightly modify the displacement function so
as to satisfy homogeneous boundary conditions. Consider, for example, the inhomogeneous
Dirichlet boundary value problem

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), u(0) = α, u(`) = β. (11.96)

We shall choose a function h(x) that satisfies the boundary conditions:

h(0) = α, h(`) = β.

Note that we are not requiring h to satisfy the differential equation, and so one, but by no
means the only, possible choice is the linear interpolating polynomial

h(x) = α +
β − α

`
x. (11.97)

Since u and h have the same boundary values, their difference

ũ(x) = u(x)− h(x) (11.98)

satisfies the homogeneous Dirichlet boundary conditions

ũ(0) = ũ(`) = 0. (11.99)

Moreover, by linearity, ũ satisfies the modified equation

K[ ũ ] = K[u− h ] = K[u ]−K[h ] = f −K[h ] ≡ f̃ ,

or, explicitly,

−
d

dx

(
c(x)

d ũ

dx

)
= f̃(x), where f̃(x) = f(x) +

d

dx

(
c(x)

dh

dx

)
. (11.100)

For the particular choice (11.97),

f̃(x) = f(x) +
β − α

`
c′(x).
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Thus, we have managed to convert the original inhomogeneous problem for u into a ho-
mogeneous boundary value problem for ũ. Once we have solved the latter, the solution to
the original is simply reconstructed from the formula

u(x) = ũ(x) + h(x). (11.101)

We know that the homogeneous Dirichlet boundary value problem (11.99–100) is
positive definite, and so we can characterize its solution by a minimum principle, namely
as the minimizer of the quadratic energy functional

P[ ũ ] = 1
2‖ ũ

′ ‖2 − 〈 ũ , f̃ 〉 =

∫ `

0

[
1
2 c(x) ũ ′(x)2 − f̃(x) ũ(x)

]
dx. (11.102)

Let us rewrite the minimization principle in terms of the original displacement function
u(x). Replacing ũ and f̃ by their formulae (11.98, 100) yields

P[ ũ ] = 1
2‖u

′ − h′ ‖2 − 〈u− h , f −K[h ] 〉

=
[

1
2‖u

′ ‖2 − 〈u , f 〉
]
−
[
〈〈u′ , h′ 〉〉 − 〈u ,K[h ] 〉

]
+
[

1
2‖h

′ ‖2 + 〈h , f −K[h ] 〉
]

= P[u ]−
[
〈〈u′ , h′ 〉〉 − 〈u ,K[h ] 〉

]
+ C0. (11.103)

In the middle expression, the last pair of terms depend only on the initial choice of h(x),
and not on u(x); thus, once h has been selected, they can be regarded as a fixed constant,
here denoted by C0. The first pair of terms reproduces the quadratic energy functional
(11.92) for the actual displacement u(x). The middle terms can be explicitly evaluated:

〈〈u′ , h′ 〉〉 − 〈u ,K[h ] 〉 =

∫ `

0

[
c(x)h′(x)u′(x) +

(
c(x)h′(x)

)′
u(x)

]
dx

=

∫ `

0

d

dx

[
c(x)h′(x)u(x)

]
dx = c(`)h′(`)u(`)− c(0)h′(0)u(0).

(11.104)

In particular, if u(x) satisfies the inhomogeneous Dirichlet boundary conditions u(0) = α,
u(`) = β, then

〈〈u′ , h′ 〉〉 − 〈u ,K[h ] 〉 = c(`)h′(`)β − c(0)h′(0)α = C1

also depends only on the interpolating function h and not on u. Therefore,

P[ ũ ] = P[u ]− C1 + C0

differ by a constant. We conclude that, if the function ũ minimizes P[ ũ ], then u = ũ + h
necessarily minimizes P[u ]. In this manner, we have characterized the solution to the
inhomogeneous Dirichlet boundary value problem by the same minimization principle.

Theorem 11.10. The solution u?(x) to the Dirichlet boundary value problem

−
d

dx

(
c(x)

du

dx

)
= f(x), u(0) = α, u(`) = β,

is the unique C2 function that satisfies the indicated boundary conditions and minimizes

the energy functional P[u ] =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx.
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Figure 11.13. Bending of a Beam.

Warning : The inhomogeneous mixed boundary value problem is trickier, since the
extra terms (11.104) will depend upon the value of u(x). The details are worked out in
Exercise .

11.4. Beams and Splines.

Unlike a bar, which can only stretch longitudinally, a beam is allowed to bend. To
keep the geometry simple, we treat the case in which the beam is restricted to the xy
plane, as sketched in Figure 11.13. Let 0 ≤ x ≤ ` represent the reference position along
a horizontal beam of length `. To further simplify the physics, we shall ignore stretching,
and assume that the “atoms” in the beam can only move in the transverse direction, with
y = u(x) representing the vertical displacement of the “atom” that starts out at position
x.

The strain in a beam depends on how much it is bent. Mathematically, bending is
equal to the curvature† of the graph of the displacement function u(x), and is computed
by the usual calculus formula

κ =
u′′

(
1 + (u′)2

)3/2
. (11.105)

Thus, for beams, the strain is a nonlinear function of displacement. Since we are still only
willing to deal with linear systems, we shall suppress the nonlinearity by assuming that
the beam is not bent too far; more specifically, we assume that the derivative u′(x)¿ 1 is
small and so the tangent line is nearly horizontal. Under this assumption, the curvature
function (11.105) is replaced by its linear approximation

κ ≈ u′′. (11.106)

From now on, we will identify v = D2[u ] = u′′ as the strain in a bending beam. The
second derivative operator L = D2 that maps displacement u to strain v = L[u ] thereby
describes the beam’s intrinsic (linearized) geometry.

The next step is to formulate a constitutive relation between stress and strain. Phys-
ically, the stress w(x) represents the bending moment of the beam, defined as the product

† By definition, [9, 151], the curvature of a curve at a point is equal to the reciprocal, κ = 1/r
of the radius of the osculating circle; see Exercise for details.
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of internal force and angular deflection. Our small bending assumption implies an elastic
Hooke’s law relation

w(x) = c(x) v(x) = c(x)
d2u

dx2
, (11.107)

where the proportionality factor c(x) > 0 measures the stiffness of the beam at the point
x. In particular, a uniform beam has constant stiffness, c(x) ≡ c.

Finally, the differential equation governing the equilibrium configuration of the beam
will follow from a balance of the internal and external forces. To compute the internal
force, we appeal to our general equilibrium framework, which tells us to apply the adjoint
of the incidence operator L = D2 to the strain, leading to the force balance law

L∗[v ] = L∗ ◦L[u ] = f. (11.108)

Let us compute the adjoint. We use the ordinary L2 inner product on the space of
displacements u(x), and adopt a weighted inner product, based on the stiffness function
c(x), between strain functions:

〈u , ũ 〉 =

∫ b

a

u(x) ũ(x) dx, 〈〈 v , ṽ 〉〉 =

∫ b

a

v(x) ṽ(x) c(x) dx. (11.109)

According to the general adjoint equation (7.72), we need to equate

∫ `

0

L[u ] v c dx = 〈〈L[u ] , v 〉〉 = 〈u , L∗[v ] 〉 =

∫ `

0

uL∗[v ] dx. (11.110)

As before, the computation relies on (in this case two) integrations by parts:

〈〈L[u ] , v 〉〉 =

∫ `

0

d2u

dx2
c v dx =

[
du

dx
c v

] ∣∣∣∣
`

x=0

−

∫ `

0

du

dx

d(c v)

dx
dx

=

[
du

dx
c v − u

d(c v)

dx

] ∣∣∣∣
`

x=0

+

∫ `

0

u
d2(c v)

dx2
dx

.

Comparing with (11.110), we conclude that L∗[v ] = D2(c v) provided the boundary terms
vanish:

[
du

dx
c v − u

d(c v)

dx

] ∣∣∣∣
`

x=0

=

[
du

dx
w − u

dw

dx

] ∣∣∣∣
`

x=0

(11.111)

=
[
u′(`)w(`)− u(`)w′(`)

]
−
[
u′(0)w(0)− u(0)w′(0)

]
= 0.

Thus, under suitable boundary conditions, the force balance equations are

L∗[v ] =
d2(c v)

dx2
= f(x). (11.112)

A justification of (11.112) based on physical principles can be found in [164]. Combining
(11.107, 112), we conclude that the equilibrium configuration of the beam is characterized
as a solution to the fourth order ordinary differential equation

d2

dx2

(
c(x)

d2u

dx2

)
= f(x). (11.113)
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Figure 11.14. Boundary Conditions for a Beam.

As such, the general solution will depend upon 4 arbitrary constants, and so we need to
impose a total of four boundary conditions — two at each end — in order to uniquely
specify the equilibrium displacement. The (homogeneous) boundary conditions should be
chosen so as to make the boundary terms in our integration by parts computation vanish,
cf. (11.111). There are a variety of ways in which this can be arranged, and the most
important possibilities are the following:

Self-Adjoint Boundary Conditions for a Beam

(a) Simply supported end: u(0) = w(0) = 0,

(b) Fixed (clamped) end: u(0) = u′(0) = 0,

(c) Free end: w(0) = w′(0) = 0,

(d) Sliding end: u′(0) = w′(0) = 0.

In these conditions, w(x) = c(x) v(x) = c(x)u′′(x) is the stress resulting from the displace-
ment u(x).

A second pair of boundary conditions must be imposed at the other end x = `. You
can mix or match these conditions in any combination — for example, a pair of simply
supported ends, or one free end and one fixed end, and so on. Inhomogeneous boundary
conditions are also allowed and used to model applied displacements or applied forces at
the ends. Yet another option is to consider a bendable circular ring, which is subject to
periodic boundary conditions

u(0) = u(`), u′(0) = u′(`), w(0) = w(`), w′(0) = w′(`),

indicating that the ends of the beam have been welded together.

Let us concentrate our efforts on the uniform beam, of unit length ` = 1, choosing
units so that its stiffness c(x) ≡ 1. In the absence of external forcing, the differential
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Figure 11.15. Hermite Cubic Spline.

equation (11.113) reduces to the elementary fourth order ordinary differential equation

d4u

dx4
= 0. (11.114)

The general solution is an arbitrary cubic polynomial,

u = a x3 + b x2 + c x + d. (11.115)

Let us use this formula to solve a couple of representative boundary value problems.

First, suppose we clamp both ends of the beam, imposing the boundary conditions

u(0) = 0, u′(0) = β, u(1) = 0, u′(1) = 0, (11.116)

so that the left end is tilted by a (small) angle tan−1 β. We substitute the solution for-
mula (11.115) into the boundary conditions (11.116) and solve for

a = β, b = −2β, c = β, d = 0.

The resulting solution

u(x) = β (x3 − 2x2 + x) = β x(1− x)2 (11.117)

is known as a Hermite cubic spline† and is graphed in Figure 11.15.

As a second example, suppose that we raise the left hand end of the beam without
tilting, which corresponds to the boundary conditions

u(0) = α, u′(0) = 0, u(1) = 0, u′(1) = 0. (11.118)

† We first met Charles Hermite in Section 3.6, and the term “spline” will be explained shortly.
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Substituting (11.115) and solving for a, b, c, d, we find that the solution is

u(x) = α (1− x)2 (2x + 1). (11.119)

Observe that if we simultaneously raise and tilt the left end, so u(0) = α, u′(0) = β, then
we can simply use superposition to write the solution as the sum of (11.117) and (11.119):

u(x) = α (1− x)2 (2x + 1) + β x(1− x)2.

To analyze a forced beam, we can adapt the Green’s function approach. As we know,
the Green’s function will depend on the choice of (homogeneous) boundary conditions. Let
us treat the case when the beam has two fixed ends, and so

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0. (11.120)

To construct the Green’s function, we must solve the forced differential equation

d4u

dx4
= δ(x− y) (11.121)

corresponding to a concentrated unit impulse applied at position y along the beam. Inte-
grating (11.121) four times, using (11.45) with n = 4, we produce the general solution

u(x) = a x3 + b x2 + c x + d +

{
1
6 (x− y)3, x > y,

0, x < y,

to the differential equation (11.121). The boundary conditions (11.120) require

u(0) = d = 0, u(1) = a + b + 1
6 (1− y)3 = 0,

u′(0) = c = 0, u′(1) = 3a + 2b + 1
2 (1− y)2 = 0,

and hence

a = 1
3 (1− y)3 − 1

2 (1− y)2, b = − 1
2 (1− y)3 + 1

2 (1− y)2.

Therefore, the Green’s function is

G(x, y) =

{
1
6 x2 (1− y)2 (3y − x− 2xy), x < y,
1
6 y2 (1− x)2 (3x− y − 2xy), x > y.

(11.122)

Observe that, as with the second order bar system, the Green’s function is symmetric,
G(x, y) = G(y, x), which is a manifestation of the self-adjointness of the underlying bound-
ary value problem, cf. (11.90). Symmetry implies that the deflection of the beam at position
x due to a concentrated impulse force applied at position y is the same as the deflection
at y due to an impulse force of the same magnitude applied at x.

As a function of x, the Green’s function G(x, y) satisfies the homogeneous differential
equation (11.114) for all x 6= y. Its first and second derivatives ∂G/∂x, ∂2G/∂x2 are
continuous, while ∂3G/∂x3 has a unit jump discontinuity at x = y, which then produces
the required delta function impulse in ∂4G/∂x4. The Green’s function (11.122) is graphed
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Figure 11.16. Green’s Function for a Beam with Two Fixed Ends.

in Figure 11.16, and appears to be quite smooth. Evidently, the human eye cannot easily
discern discontinuities in third order derivatives!

The solution to the forced boundary value problem

d4u

dx4
= f(x), u(0) = u′(0) = u(1) = u′(1) = 0, (11.123)

for a beam with fixed ends is then obtained by invoking the superposition principle. We
view the forcing function as a linear superposition

f(x) =

∫ `

0

f(y) δ(x− y) dx

of impulse delta forces. The solution is the self-same linear superposition of Green’s func-
tion responses:

u(x) =

∫ 1

0

G(x, y)f(y) dy (11.124)

=
1

6

∫ x

0

y2 (1− x)2 (3x− y − 2xy) f(y) dy +
1

6

∫ 1

x

x2 (1− y)2 (3y − x− 2xy) f(y) dy.

For example, under a constant unit downwards force f(x) ≡ 1, e.g., gravity, the deflection
of the beam is given by

u(x) = 1
24 x4 − 1

12 x3 + 1
24 x2 = 1

24 x2 (1− x)2,

and graphed in Figure 11.17. Although we could, of course, obtain u(x) by integrating the
original differential equation (11.123) directly, writing the solution formula (11.124) as a
single integral has evident advantages.

Since the beam operator K = L∗ ◦L assumes the standard self-adjoint, positive semi-
definite form, the boundary value problem will be positive definite and hence stable if
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Figure 11.17. Deflection of a Uniform Beam under Gravity.

and only if ker L = ker D2 = {0} when restricted to the space of allowable displacement
functions. Since the second derivative D2 annihilates all linear polynomials

u(x) = α + β x,

positive definiteness requires that no non-zero linear polynomials satisfy all four homo-
geneous boundary conditions. For example, any beam with one fixed end is stable since
u(x) ≡ 0 is the only linear polynomial that satisfies u(0) = u′(0) = 0. On the other hand,
a beam with two free ends is unstable since every linear polynomial displacement has zero
stress w(x) = u′′(x) ≡ 0, and so satisfies the boundary conditions w(0) = w′(0) = w(`) =
w′(`) = 0. Similarly, a beam with a simply supported plus a free end is not positive definite
since u(x) = β x satisfies the four boundary conditions u(0) = u′(0) = 0, w(`) = w′(`) = 0.
In the stable cases, the equilibrium solution can be characterized as the unique minimizer
of the quadratic energy functional†

P[u ] = 1
2 ‖L[u ] ‖2 − 〈u , f 〉 =

∫ b

a

[
1
2 c(x)u′′(x)2 − f(x)u(x)

]
dx (11.125)

among all C4 functions satisfying the homogeneous boundary conditions. Inhomogeneous
boundary conditions require some extra analysis, since the required integration by parts
may introduce additional boundary contributions.

Splines

In pre–CAD (computer aided design) draftsmanship, a spline was a long, thin, flexible
strip of wood that was used to draw a smooth curve through prescribed points. The points
were marked by small pegs, and the spline rested on the pegs. The mathematical theory
of splines was first developed in the 1940’s by the Romanian mathematician Isaac Schoen-
berg as an attractive alternative to polynomial interpolation and approximation. Splines
have since become ubiquitous in numerical analysis, in geometric modeling, in design and
manufacturing, in computer graphics and animation, and in many other applications.

† Keep in mind that the norm on the strain functions v = L[u ] = u′′ is based on the weighted
inner product 〈〈 v , ev 〉〉 in (11.109).
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We suppose that the spline coincides with the graph of a function y = u(x). The
pegs are fixed at the prescribed data points (x0, y0), . . . , (xn, yn), and this requires u(x) to
satisfy the interpolation conditions

u(xj) = yj , j = 0, . . . , n. (11.126)

The mesh points x0 < x1 < x2 < · · · < xn are distinct and labeled in increasing order.
The spline is modeled as an elastic beam, and so satisfies the homogeneous beam equation
(11.114). Therefore,

u(x) = aj + bj (x− xj) + cj (x− xj)
2 + dj (x− xj)

3,
xj ≤ x ≤ xj+1,

j = 0, . . . , n− 1,
(11.127)

is a piecewise cubic function — meaning that, between successive mesh points, it is a cubic
polynomial, but not necessarily the same cubic on each subinterval. The fact that we write
the formula (11.127) in terms of x− xj is merely for computational convenience.

Our problem is to determine the coefficients

aj , bj , cj , dj , j = 0, . . . , n− 1.

Since there are n subintervals, there are a total of 4n coefficients, and so we require 4n
equations to uniquely prescribe them. First, we need the spline to satisfy the interpolation
conditions (11.126). Since it is defined by a different formula on each side of the mesh
point, this results in a total of 2n conditions:

u(x+
j ) = aj = yj ,

u(x−
j+1) = aj + bj hj + cj h2

j + dj h3
j = yj+1,

j = 0, . . . , n− 1, (11.128)

where we abbreviate the length of the jth subinterval by

hj = xj+1 − xj .

The next step is to require that the spline be as smooth as possible. The interpola-
tion conditions (11.128) guarantee that u(x) is continuous. The condition u(x) ∈ C1 be
continuously differentiable requires that u′(x) be continuous at the interior mesh points
x1, . . . , xn−1, which imposes the n− 1 additional conditions

bj + 2cj hj + 3dj h2
j = u′(x−

j+1) = u′(x+
j+1) = bj+1, j = 0, . . . , n− 2. (11.129)

To make u ∈ C2, we impose n− 1 further conditions

2cj + 6dj hj = u′′(x−
j+1) = u′′(x+

j+1) = 2cj+1, j = 0, . . . , n− 2, (11.130)

to ensure that u′′ is continuous at the mesh points. We have now imposed a total of 4n−2
conditions, namely (11.128–130), on the 4n coefficients. The two missing constraints will
come from boundary conditions at the two endpoints, namely x0 and xn. There are three
common types:

(i) Natural boundary conditions: u′′(x0) = u′′(xn) = 0, whereby

c0 = 0, cn−1 + 3dn−1 hn−1 = 0. (11.131)
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Physically, this models a simply supported spline that rests freely on the first and last
pegs.

(ii) Clamped boundary conditions: u′(x0) = α, u′(xn) = β, where α, β, which could
be 0, are fixed by the user. This requires

b0 = α, bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1 = β. (11.132)

This corresponds to clamping the spline at prescribed angles at each end.

(iii) Periodic boundary conditions: u′(x0) = u′(xn), u′′(x0) = u′′(xn), so that

b0 = bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1, c0 = cn−1 + 3dn−1 hn−1. (11.133)

If we also require that the end interpolation values agree,

u(x0) = y0 = yn = u(xn), (11.134)

then the resulting spline will be a periodic C2 function, so u(x+p) = u(x) with p = xn−x0

for all x. The periodic case is used to draw smooth closed curves; see below.

Theorem 11.11. Suppose we are given mesh points a = x0 < x1 < · · · < xn = b,
and corresponding data values y0, y1, . . . , yn, along with one of the three kinds of boundary

conditions (11.131), (11.132), or (11.133). Then there exists a unique piecewise cubic

spline function u(x) ∈ C2[a, b ] that interpolates the data, u(x0) = y0, . . . , u(xn) = yn, and

satisfies the boundary conditions.

Proof : We first discuss the natural case. The clamped case is left as an exercise for
the reader, while the slightly harder periodic case will be treated at the end of the section.
The first set of equations in (11.128) says that

aj = yj , j = 0, . . . , n− 1. (11.135)

Next, (11.130–131) imply that

dj =
cj+1 − cj

3hj

. (11.136)

This equation also holds for j = n− 1, provided that we make the convention that†

cn = 0.

We now substitute (11.135–136) into the second set of equations in (11.128), and then
solve the resulting equation for

bj =
yj+1 − yj

hj

−
(2cj + cj+1)hj

3
. (11.137)

† This is merely for convenience; there is no cn used in the formula for the spline.
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Substituting this result and (11.136) back into (11.129), and simplifying, we find

hj cj + 2(hj + hj+1)cj+1 + hj+1 cj+2 = 3

[
yj+2 − yj+1

hj+1

−
yj+1 − yj

hj

]
= zj+1, (11.138)

where we introduce zj+1 as a shorthand for the quantity on the right hand side.

In the case of natural boundary conditions, we have

c0 = 0, cn = 0,

and so (11.138) constitutes a tridiagonal linear system

A c = z, (11.139)

for the unknown coefficients c =
(
c1, c2, . . . , cn−1

)T
, with coefficient matrix

A =




2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)




(11.140)

and right hand side z =
(
z1, z2, . . . , zn−1

)T
. Once (11.140) has been solved, we will then

use (11.135–137) to reconstruct the other spline coefficients aj , bj , dj .

The key observation is that the coefficient matrix A is strictly diagonally dominant ,
cf. Definition 10.36, because all the hj > 0, and so

2(hj−1 + hj) > hj−1 + hj .

Theorem 10.37 implies that A is nonsingular, and hence the tridiagonal linear system has
a unique solution c. This suffices to prove the theorem in the case of natural boundary
conditions. Q.E.D.

To actually solve the linear system (11.139), we can apply our tridiagonal solution
algorithm (1.63). Let us specialize to the most important case, when the mesh points are
equally spaced in the interval [a, b ], so that

xj = a + j h, where h = hj =
b− a

n
, j = 0, . . . , n− 1.

In this case, the coefficient matrix A = hB is equal to h times the tridiagonal matrix

B =




4 1
1 4 1

1 4 1
1 4 1

1 4 1
. . .

. . .
. . .
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Figure 11.18. A Cubic Spline.

that first appeared in Example 1.37. Its LU factorization takes on an especially simple
form, since most of the entries of L and U are essentially the same decimal numbers. This
makes the implementation of the Forward and Back Substitution procedures almost trivial.

Figure 11.18 shows a particular example — a natural spline passing through the data
points (0, 0), (1, 2), (2,−1), (3, 1), (4, 0). As with the Green’s function for the beam, the
human eye is unable to discern the discontinuities in its third derivatives, and so the graph
appears completely smooth, even though it is, in fact, only C2.

In the periodic case, we set

an+k = an, bn+k = bn, cn+k = cn, dn+k = dn, zn+k = zn.

With this convention, the basic equations (11.135–138) are the same. In this case, the
coefficient matrix for the linear system

A c = z, with c =
(
c0, c1, . . . , cn−1

)T
, z =

(
z0, z1, . . . , zn−1

)T
,

is of circulant tridiagonal form:

A =




2(hn−1 + h0) h0 hn−1

h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−1 hn−2 2(hn−2 + hn−1)




.

(11.141)
Again A is strictly diagonally dominant, and so there is a unique solution c, from which one
reconstructs the spline, proving Theorem 11.11 in the periodic case. The LU factorization
of tridiagonal circulant matrices was discussed in Exercise .

One immediate application of splines is curve fitting in computer aided design and
graphics. The basic problem is to draw a smooth parametrized curve u(t) = (u(t), v(t) )

T
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Figure 11.19. Three Sample Spline Letters.

that passes through a set of prescribed data points xk = (xk, yk )
T

in the plane. We have
the freedom to choose the parameter value t = tk when the curve passes through the kth

point; the simplest and most common choice is to set tk = k. We then construct the
functions x = u(t) and y = v(t) as cubic splines interpolating the x and y coordinates of
the data points, so u(tk) = xk, v(tk) = yk. For smooth closed curves, we require that both
splines be periodic; for curves with ends, either natural or clamped boundary conditions
are used.

Most computer graphics packages include one or more implementations of parametri-
zed spline curves. The same idea also underlies modern font design for laser printing and
typography (including the fonts used in this book). The great advantage of spline fonts
over their bitmapped counterparts is that they can be readily scaled. Some sample let-
ter shapes parametrized by periodic splines passing through the indicated data points are
plotted in Figure 11.19. Better fits can be easily obtained by increasing the number of data
points. Various extensions of the basic spline algorithms to space curves and surfaces are
an essential component of modern computer graphics, design, and animation, [57, 146].

11.5. Sturm–Liouville Boundary Value Problems.

The systems that govern the equilibrium configurations of bars are particular instances
of a very general class of second order boundary value problems that was first systemat-
ically investigated by the nineteenth century French mathematicians Jacques Sturm and
Joseph Liouville. Sturm–Liouville boundary value problems appear in a very wide range
of applications, particularly in the analysis of partial differential equations by the method
of separation of variables. A partial list of applications includes

(a) heat conduction in non-uniform bars;

(b) vibrations of non-uniform bars and strings;

(c) quantum mechanics — the one-dimensional Schrödinger equation;

(d) scattering theory — Hill’s equation;

(e) oscillations of circular membranes (vibrations of drums) — Bessel’s equation;

(f ) oscillations of a sphere — Legendre’s equation;

(g) thermodynamics of cylindrical and spherical bodies.

In this section, we will show how the class of Sturm–Liouville boundary value problems
fits into our general equilibrium framework. However, the most interesting cases will be
deferred until needed in our analysis of partial differential equations in Chapters 17 and 18.
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Figure 11.20. Green’s Function for the Constant Coefficient
Sturm–Liouville Problem.

The general Sturm–Liouville boundary value problem is based on a second order ordi-
nary differential equation of the form

−
d

dx

(
p(x)

du

dx

)
+ q(x)u = −p(x)

d2u

dx2
− p′(x)

du

dx
+ q(x)u = f(x), (11.142)

which is supplemented by Dirichlet, Neumann, mixed, or periodic boundary conditions. To
be specific, let us concentrate on the case of homogeneous Dirichlet boundary conditions

u(a) = 0, u(b) = 0. (11.143)

To avoid singular points of the differential equation (although we will later discover
that most cases of interest in physics have one or more singular points) , we assume
that p(x) > 0 for all a ≤ x ≤ b. To ensure positive definiteness of the Sturm–Liouville
differential operator, we also assume q(x) ≥ 0. These assumptions suffice to guarantee
existence and uniqueness of the solution to the boundary value problem. A proof of the
following theorem can be found in [105].

Theorem 11.12. Let p(x) > 0 and q(x) ≥ 0 for a ≤ x ≤ b. Then the Sturm–

Liouville boundary value problem (11.142–143) admits a unique solution.

Most Sturm–Liouville problems cannot be solved in terms of elementary functions.
Indeed, most of the important special functions appearing in mathematical physics, in-
cluding Bessel functions, Legendre functions, hypergeometric functions, and so on, first
arise as solutions to particular Sturm–Liouville equations, [129].

Example 11.13. Consider the constant coefficient Sturm–Liouville boundary value
problem

−u′′ + ω2 u = f(x), u(0) = u(1) = 0. (11.144)

The functions p(x) ≡ 1 and q(x) ≡ ω2 > 0 are both constant. We will solve this problem
by constructing the Green’s function. Thus, we first consider the effect of a delta function
inhomogeneity

−u′′ + ω2 u = δ(x− y), u(0) = u(1) = 0. (11.145)
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Rather than try to integrate this differential equation directly, let us appeal to the defining
properties of the Green’s function. The general solution to the homogeneous equation is a
linear combination of the two basic exponentials eωx and e−ωx, or better, the hyperbolic
functions

cosh ωx =
eωx + e−ωx

2
, sinhωx =

eωx − e−ωx

2
. (11.146)

The solutions satisfying the first boundary condition are multiples of sinhωx, while those
satisfying the second boundary condition are multiples of sinh ω (1 − x). Therefore, the
solution to (11.145) has the form

G(x, y) =

{
a sinhωx, x < y,

b sinhω (1− x), x > y.
(11.147)

Continuity of G(x, y) at x = y requires

a sinhωy = b sinhω (1− y). (11.148)

At x = y, the derivative ∂G/∂x must have a jump discontinuity of magnitude −1 in order
that the second derivative term in (11.145) match the delta function. Since

∂G

∂x
(x, y) =

{
aω coshωx, x < y,

−b ω coshω (1− x), x > y,

the jump condition requires

aω cosh ωy − 1 = −b ω cosh ω (1− y). (11.149)

If we multiply (11.148) by ω cosh ω (1− y) and (11.149) by sinh ω (1− y) and then add the
results together, we find

sinhω (1− y) = aω
[
sinhωy cosh ω (1− y) + cosh ωy sinhω (1− y)

]
= aω sinhω,

where we used the addition formula for the hyperbolic sine:

sinh(α + β) = sinhα cosh β + cosh α sinhβ. (11.150)

Therefore,

a =
sinhω (1− y)

ω sinhω
, b =

sinhωy

ω sinhω
,

and the Green’s function is

G(x, y) =





sinhωx sinhω (1− y)

ω sinhω
, x < y,

sinhω (1− x) sinhωy

ω sinhω
, x > y.

(11.151)

Note that G(x, y) = G(y, x) is symmetric, in accordance with the self-adjoint nature of the
boundary value problem. A graph appears in Figure 11.20; note that the corner, indicating
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a discontinuity in the first derivative, appears at the point x = y where the impulse force
is applied.

The general solution to the inhomogeneous boundary value problem (11.144) is given
by the basic superposition formula (11.62), which becomes

u(x) =

∫ 1

0

G(x, y)f(y) dx

=

∫ x

0

sinhω (1− x) sinh ωy

ω sinhω
f(y) dy +

∫ 1

x

sinhωx sinhω (1− y)

ω sinhω
f(y) dy.

For example, under a constant unit force f(x) ≡ 1, the solution is

u(x) =

∫ x

0

sinhω (1− x) sinh ωy

ω sinhω
dy +

∫ 1

x

sinhωx sinhω (1− y)

ω sinhω
dy

=
sinhω (1− x)

(
cosh ωx− 1

)

ω2 sinh ω
+

sinhωx
(
coshω (1− x)− 1

)

ω2 sinhω

=
1

ω2
−

sinh ωx + sinh ω (1− x)

ω2 sinhω
.

(11.152)

For comparative purposes, the reader may wish to rederive this particular solution by a
direct calculation, without appealing to the Green’s function.

To place a Sturm–Liouville boundary value problem in our self-adjoint framework, we
proceed as follows. (Exercise serves to motivate the construction.) Consider the linear
operator

L[u ] =

(
u′

u

)

that maps u(x) to the vector-valued function whose components are the function and its
first derivative. For the homogeneous Dirichlet boundary conditions (11.143), the domain
of L will be the vector space

U =
{

u(x) ∈ C2[a, b ]
∣∣ u(a) = u(b) = 0

}

consisting of all twice continuously differentiable functions that vanish at the endpoints.
The target space of L:U → V consists of continuously differentiable vector-valued functions
v(x) = ( v1(x), v2(x) )

T
; we denote this vector space as V = C1([a, b ], R2).

To proceed, we must compute the adjoint of L:U → V . To recover the Sturm–Liouville
problem, we use the standard L2 inner product (11.84) on U , but adopt a weighted inner
product

〈〈v ,w 〉〉 =

∫ b

a

[
p(x)v1(x)w1(x) + q(x)v2(x)w2(x)

]
dx, v =

(
v1

v2

)
, w =

(
w1

w2

)
,

(11.153)
on V . The positivity assumptions on the weight functions p, q ensure that this is a bona

fide inner product. According to the defining equation (7.72), the adjoint L∗:V → U is
required to satisfy

〈〈L[u ] ,v 〉〉 = 〈u , L∗[v ] 〉.
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As usual, the adjoint computation relies on integration by parts. Here, we only need to
manipulate the first summand:

〈〈L[u ] ,v 〉〉 =

∫ b

a

[
p u′ v1 + quv2

]
dx

= p(b)u(b)v1(b)− p(a)u(a)v1(a) +

∫ b

a

u [−(pv1)
′ + q v2 ] dx.

The Dirichlet conditions (11.143) ensure that the boundary terms vanish, and therefore,

〈〈L[u ] ,v 〉〉 =

∫ b

a

u [−(pv1)
′ + q v2 ] dx = 〈u , L∗[v ] 〉.

We conclude that the adjoint operator is given by

L∗[v ] = −
d(pv1)

dx
+ q v2.

The canonical self-adjoint combination

K[u ] = L∗ ◦L[u ] = L∗
(

u′

u

)
= −

d

dx

(
p

du

dx

)
+ qu (11.154)

reproduces the Sturm–Liouville differential operator. Moreover, since ker L = {0} is trivial
(why?), the boundary value problem is positive definite. Theorem 7.62 implies that the
solution can be characterized as the unique minimizer of the quadratic functional

P[u ] = 1
2‖L[u ] ‖2 − 〈u , f 〉 =

∫ b

a

[
1
2 p(x)u′(x)2 + 1

2 q(x)u(x)2 − f(x)u(x)
]
dx (11.155)

among all C2 functions satisfying the prescribed boundary conditions. For example, the
solution to the constant coefficient Sturm–Liouville problem (11.144) can be characterized
as minimizing the quadratic functional

P[u ] =

∫ 1

0

[
1
2 u′2 + 1

2 ω2 u2 − f u
]
dx

among all C2 functions satisfying u(0) = u(1) = 0.

11.6. Finite Elements.

The characterization of the solution to a positive definite boundary value problem via a
minimization principle inspires a very powerful and widely used numerical solution scheme,
known as the finite element method . In this final section, we give a brief introduction
to the finite element method in the context of one-dimensional boundary value problems
involving ordinary differential equations. Extensions to boundary value problems in higher
dimensions governed by partial differential equations will appear in Section 15.5.

The underlying idea is strikingly simple. We are trying to find the solution to a bound-
ary value problem by minimizing a quadratic functional P[u ] on an infinite-dimensional
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vector space U . The solution u? ∈ U to this minimization problem is found by solving a
differential equation subject to specified boundary conditions. However, as we learned in
Chapter 4, minimizing the functional on a finite-dimensional subspace W ⊂ U is a prob-
lem in linear algebra, and, moreover, one that we already know how to solve! Of course,
restricting the functional P[u ] to the subspace W will not, barring luck, lead to the exact
minimizer. Nevertheless, if we choose W to be a sufficiently “large” subspace, the result-
ing minimizer w? ∈ W may very well provide a reasonable approximation to the actual
solution u? ∈ U . A rigorous justification of this process, under appropriate hypotheses,
requires a full analysis of the finite element method, and we refer the interested reader to
[157, 180]. Here we shall concentrate on trying to understand how to apply the method
in practice.

To be a bit more explicit, consider the minimization principle

P[u ] = 1
2 ‖L[u ] ‖

2
− 〈 f , u 〉 (11.156)

for the linear system

K[u ] = f, where K = L∗ ◦L,

representing our boundary value problem. The norm in (11.156) is typically based on some
form of weighted inner product 〈〈 v , ṽ 〉〉 on the space of strains v = L[u ] ∈ V , while the
inner product term 〈 f , u 〉 is typically (although not necessarily) unweighted on the space
of displacements u ∈ U . The linear operator takes the self-adjoint form K = L∗ ◦L, and
must be positive definite — which requires ker L = {0}. Without the positivity assumption,
the boundary value problem has either no solutions, or infinitely many; in either event,
the basic finite element method will not apply.

Rather than try to minimize P[u ] on the entire function space U , we now seek to
minimize it on a suitably chosen finite-dimensional subspace W ⊂ U . We begin by selecting
a basis† ϕ1, . . . , ϕn of the subspace W . The general element of W is a (uniquely determined)
linear combination

ϕ(x) = c1 ϕ1(x) + · · · + cn ϕn(x) (11.157)

of the basis functions. Our goal, then, is to determine the coefficients c1, . . . , cn such that
ϕ(x) minimizes P[ϕ ] among all such functions. Substituting (11.157) into (11.156) and
expanding we find

P[ϕ ] =
1

2

n∑

i,j =1

mij ci cj −

n∑

i=1

bi ci = 1
2 cT M c− cT b, (11.158)

where

(a) c = ( c1, c2, . . . , cn )
T

is the vector of unknown coefficients in (11.157),

(b) M = (mij) is the symmetric n× n matrix with entries

mij = 〈〈L[ϕi ] , L[ϕj ] 〉〉, i, j = 1, . . . , n, (11.159)

† In this case, an orthonormal basis is not of any particular help.
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(c) b = ( b1, b2, . . . , bn )
T

is the vector with entries

bi = 〈 f , ϕi 〉, i = 1, . . . , n. (11.160)

Observe that, once we specify the basis functions ϕi, the coefficients mij and bi are all
known quantities. Therefore, we have reduced our original problem to a finite-dimensional
problem of minimizing the quadratic function (11.158) over all possible vectors c ∈ R

n.
The coefficient matrix M is, in fact, positive definite, since, by the preceding computation,

cT M c =
n∑

i,j =1

mij ci cj = ‖L[c1 ϕ1(x) + · · · + cn ϕn ] ‖2 = ‖L[ϕ ] ‖
2

> 0 (11.161)

as long as L[ϕ ] 6= 0. Moreover, our positivity assumption implies that L[ϕ ] = 0 if and only
if ϕ ≡ 0, and hence (11.161) is indeed positive for all c 6= 0. We can now invoke the original
finite-dimensional minimization Theorem 4.1 to conclude that the unique minimizer to
(11.158) is obtained by solving the associated linear system

M c = b. (11.162)

Solving (11.162) relies on some form of Gaussian Elimination, or, alternatively, an iterative
linear system solver, e.g., Gauss–Seidel or SOR.

This constitutes the basic abstract setting for the finite element method. The main
issue, then, is how to effectively choose the finite-dimensional subspace W . Two candidates
that might spring to mind are the space P (n) of polynomials of degree ≤ n, or the space
T (n) of trigonometric polynomials of degree ≤ n, the focus of Chapter 12. However, for a
variety of reasons, neither is well suited to the finite element method. One criterion is that
the functions in W must satisfy the relevant boundary conditions — otherwise W would
not be a subspace of U . More importantly, in order to obtain sufficient accuracy, the linear
algebraic system (11.162) will typically be rather large, and so the coefficient matrix M
should be as sparse as possible, i.e., have lots of zero entries. Otherwise, computing the
solution will be too time-consuming to be of much practical value. Such considerations
prove to be of absolutely crucial importance when applying the method to solve boundary
value problems for partial differential equations in higher dimensions.

The really innovative contribution of the finite element method is to first (paradox-
ically) enlarge the space U of allowable functions upon which to minimize the quadratic
functional P[u ]. The governing differential equation requires its solutions to have a cer-
tain degree of smoothness, whereas the associated minimization principle typically requires
only half as many derivatives. Thus, for second order boundary value problems, including
bars, (11.92), and general Sturm–Liouville problems, (11.155), P[u ] only involves first or-
der derivatives. It can be rigorously shown that the functional has the same minimizing
solution, even if one allows (reasonable) functions that fail to have enough derivatives to
satisfy the differential equation. Thus, one can try minimizing over subspaces contain-
ing fairly “rough” functions. Again, the justification of this method requires some deeper
analysis, which lies beyond the scope of this introductory treatment.

For second order boundary value problems, a popular and effective choice of the finite-
dimensional subspace is to use continuous, piecewise affine functions. Recall that a function
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Figure 11.21. A Continuous Piecewise Affine Function.

is affine, f(x) = ax + b, if and only if its graph is a straight line. The function is piecewise

affine if its graph consists of a finite number of straight line segments; a typical example is
plotted in Figure 11.21. Continuity requires that the individual line segments be connected
together end to end.

Given a boundary value problem on a bounded interval [a, b ], let us fix a finite col-
lection of mesh points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The formulas simplify if one uses equally spaced mesh points, but this is not necessary for
the method to apply. Let W denote the vector space consisting of all continuous, piece-
wise affine functions, with corners at the nodes, that satisfy the homogeneous boundary
conditions. To be specific, let us treat the case of Dirichlet (fixed) boundary conditions

ϕ(a) = ϕ(b) = 0. (11.163)

Thus, on each subinterval

ϕ(x) = cj + bj(x− xj), for xj ≤ x ≤ xj+1, j = 0, . . . , n− 1.

Continuity of ϕ(x) requires

cj = ϕ(x+
j ) = ϕ(x−

j ) = cj−1 + bj−1 hj−1, j = 1, . . . , n− 1, (11.164)

where hj−1 = xj−xj−1 denotes the length of the jth subinterval. The boundary conditions
(11.163) require

ϕ(a) = c0 = 0, ϕ(b) = cn−1 + hn−1 bn−1 = 0. (11.165)

The function ϕ(x) involves a total of 2n unspecified coefficients c0, . . . , cn−1, b0, . . . , bn−1.
The continuity conditions (11.164) and the second boundary condition (11.165) uniquely
determine the bj . The first boundary condition specifies c0, while the remaining n − 1
coefficients c1 = ϕ(x1), . . . , cn−1 = ϕ(xn−1) are arbitrary. We conclude that the finite
element subspace W has dimension n− 1, which is the number of interior mesh points.

Remark : Every function ϕ(x) in our subspace has piecewise constant first derivative
w′(x). However, the jump discontinuities in ϕ′(x) imply that its second derivative ϕ′′(x)
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Figure 11.22. A Hat Function.

has a delta function impulse at each mesh point, and is therefore far from being a solution to
the differential equation. Nevertheless, the finite element minimizer ϕ?(x) will, in practice,
provide a reasonable approximation to the actual solution u?(x).

The most convenient basis for W consists of the hat functions, which are continuous,
piecewise affine functions that interpolate the same basis data as the Lagrange polynomials
(4.47), namely

ϕj(xk) =

{
1, j = k,

0, j 6= k,
for j = 1, . . . , n− 1, k = 0, . . . , n.

The graph of a typical hat function appears in Figure 11.22. The explicit formula is easily
established:

ϕj(x) =





x− xj−1

xj − xj−1

, xj−1 ≤ x ≤ xj ,

xj+1 − x

xj+1 − xj

, xj ≤ x ≤ xj+1,

0, x ≤ xj−1 or x ≥ xj+1,

j = 1, . . . , n− 1. (11.166)

An advantage of using these basis elements is that the resulting coefficient matrix (11.159)
turns out to be tridiagonal. Therefore, the tridiagonal Gaussian Elimination algorithm in
(1.63) will rapidly produce the solution to the linear system (11.162). Since the accuracy of
the finite element solution increases with the number of mesh points, this solution scheme
allows us to easily compute very accurate numerical approximations.

Example 11.14. Consider the equilibrium equations

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `,

for a non-uniform bar subject to homogeneous Dirichlet boundary conditions. In order to
formulate a finite element approximation scheme, we begin with the minimization principle
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(11.92) based on the quadratic functional

P[u ] = 1
2 ‖u

′ ‖2 − 〈 f , u 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx.

We divide the interval [0, ` ] into n equal subintervals, each of length h = `/n. The resulting
uniform mesh has

xj = j h =
j `

n
, j = 0, . . . , n.

The corresponding finite element basis hat functions are explicitly given by

ϕj(x) =





(x− xj−1)/h, xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n− 1. (11.167)

The associated linear system (11.162) has coefficient matrix entries

mij = 〈〈ϕ′
i , ϕ′

j 〉〉 =

∫ `

0

ϕ′
i(x)ϕ′

j(x)c(x) dx, i, j = 1, . . . , n− 1.

Since the function ϕi(x) vanishes except on the interval xi−1 < x < xi+1, while ϕj(x)
vanishes outside xj−1 < x < xj+1, the integral will vanish unless i = j or i = j ± 1.
Moreover,

ϕ′
j(x) =





1/h, xj−1 ≤ x ≤ xj ,

−1/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n− 1.

Therefore, the coefficient matrix has the tridiagonal form

M =
1

h2




s0 + s1 −s1

−s1 s1 + s2 −s2

−s2 s2 + s3 −s3

. . .
. . .

. . .

−sn−3 sn−3 + sn−2 −sn−2

−sn−2 sn−2 + sn−1




, (11.168)

where

sj =

∫ xj+1

xj

c(x) dx (11.169)

is the total stiffness of the jth subinterval. For example, in the homogeneous case c(x) ≡ 1,
the coefficient matrix (11.168) reduces to the very special form

M =
1

h




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




. (11.170)
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Figure 11.23. Finite Element Solution to (11.174).

The corresponding right hand side has entries

bj = 〈 f , ϕj 〉 =

∫ `

0

f(x)ϕj(x) dx

=
1

h

[∫ xj

xj−1

(x− xj−1)f(x) dx +

∫ xj+1

xj

(xj+1 − x)f(x) dx

]
.

(11.171)

In this manner, we have assembled the basic ingredients for determining the finite element
approximation to the solution.

In practice, we do not have to explicitly evaluate the integrals (11.169, 171), but may
replace them by a suitably close numerical approximation. When h¿ 1 is small, then the
integrals are taken over small intervals, and we can use the trapezoid rule†, [30, 151], to
approximate them:

sj ≈
h

2

[
c(xj) + c(xj+1)

]
, bj ≈ h f(xj). (11.172)

Remark : The jth entry of the resulting finite element system M c = b is, upon dividing
by h, given by

−
cj+1 − 2cj + cj−1

h2
= −

u(xj+1)− 2u(xj) + u(xj−1)

h2
= −f(xj). (11.173)

The left hand side coincides with the standard finite difference approximation to minus the
second derivative −u′′(xj) at the mesh point xj . (Details concerning finite differences can
be found in Section 14.6.) As a result, for this particular differential equation, the finite
element and finite difference numerical solution methods happen to coincide.

† One might be tempted use more accurate numerical integration procedures, but the im-
provement in accuracy of the final answer is not very significant, particularly if the step size h is
small.
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Example 11.15. Consider the boundary value problem

−
d

dx
(x + 1)

du

dx
= 1, u(0) = 0, u(1) = 0. (11.174)

The explicit solution is easily found by direct integration:

u(x) = −x +
log(x + 1)

log 2
. (11.175)

It minimizes the associated quadratic functional

P[u ] =

∫ `

0

[
1
2 (x + 1)u′(x)2 − u(x)

]
dx (11.176)

over all possible functions u ∈ C1 that satisfy the given boundary conditions. The fi-
nite element system (11.162) has coefficient matrix given by (11.168) and right hand side
(11.171), where

sj =

∫ xj+1

xj

(1 + x) dx = h (1 + xj) + 1
2 h2 = h + h2

(
j +

1

2

)
, bj =

∫ xj+1

xj

1 dx = h.

The resulting solution is plotted in Figure 11.23. The first three graphs contain, respec-
tively, 5, 10, 20 points in the mesh, so that h = .2, .1, .05, while the last plots the exact
solution (11.175). Even when computed on rather coarse meshes, the finite element ap-
proximation is quite respectable.

Example 11.16. Consider the Sturm–Liouville boundary value problem

−u′′ + (x + 1)u = xex, u(0) = 0, u(1) = 0. (11.177)

The solution minimizes the quadratic functional (11.155), which in this particular case is

P[u ] =

∫ 1

0

[
1
2 u′(x)2 + 1

2 (x + 1)u(x)2 − ex u(x)
]
dx, (11.178)

over all functions u(x) that satisfy the boundary conditions. We lay out a uniform mesh
of step size h = 1/n. The corresponding finite element basis hat functions as in (11.167).
The matrix entries are given by†

mij =

∫ 1

0

[
ϕ′

i(x)ϕ′
j(x) + (x + 1)ϕi(x)ϕj(x)

]
dx ≈





2

h
+

2h

3
(xi + 1), i = j,

−
1

h
+

h

6
(xi + 1), | i− j | = 1,

0, otherwise,

† The integration is made easier by noting that the integrand is zero except on a small subin-
terval. Since the function x + 1 (but not ϕi or ϕj) does not vary significantly on this subinterval,

it can be approximated by its value 1 + xi at a mesh point. A similar simplification is used in the
ensuing integral for bi.
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Figure 11.24. Finite Element Solution to (11.177).

while

bi = 〈xex , ϕi 〉 =

∫ 1

0

xex ϕi(x) dx ≈ xi e
xi h.

The resulting solution is plotted in Figure 11.24. As in the previous figure, the first three
graphs contain, respectively, 5, 10, 20 points in the mesh, while the last plots the exact
solution, which can be expressed in terms of Airy functions, cf. [129].

So far, we have only treated homogeneous boundary conditions. An inhomogeneous
boundary value problem does not immediately fit into our framework since the set of
functions satisfying the boundary conditions does not form a vector space. As discussed
at the end of Section 11.3, one way to get around this problem is to replace u(x) by
ũ(x) = u(x) − h(x), where h(x) is any convenient function that satisfies the boundary
conditions. For example, for the inhomogeneous Dirichlet conditions

u(a) = α, u(b) = β,

we can subtract off the affine function

h(x) =
(β − α)x + αb− β a

b− a
.

Another option is to choose an appropriate combination of elements at the endpoints:

h(x) = αϕ0(x) + βϕn(x).

Linearity implies that the difference ũ(x) = u(x)− h(x) satisfies the amended differential
equation

K[ ũ ] = f̃ , where f̃ = f −K[h ],

now supplemented by homogeneous boundary conditions. The modified boundary value
problem can then be solved by the standard finite element method. Further details are
left as a project for the motivated student.
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Finally, one can employ other functions beyond the piecewise affine hat functions
(11.166) to span finite element subspace. Another popular choice, which is essential for
higher order boundary value problems such as beams, is to use splines. Thus, once we
have chosen our mesh points, we can let ϕj(x) be the basis B–splines discussed in Exercise
. Since ϕj(x) = 0 for x ≤ xj−2 or x ≥ xj+2, the resulting coefficient matrix (11.159)

is pentadiagonal , which means mij = 0 whenever | i− j | > 2. Pentadiagonal matrices
are not quite as pleasant as their tridiagonal cousins, but are still rather sparse. Positive
definiteness of M implies that an iterative solution technique, e.g., SOR, can effectively
and rapidly solve the linear system, and thereby produce the finite element spline approx-
imation to the boundary value problem.

Weak Solutions

There is an alternative way of introducing the finite element solution method, which
also applies when there is no convenient minimization principle available, based on an
important analytical extension of the usual notion of what constitutes a solution to a
differential equation. One reformulates the differential equation as an integral equation.
The resulting “weak solutions”, which include non-classical solutions with singularities
and discontinuities, are particularly appropriate in the study of discontinuous and non-
smooth physical phenomena, such as shock waves, cracks and dislocations in elastic media,
singularities in liquid crystals, and so on; see [171] and Section 22.1 for details. The
weak solution approach has the advantage that it applies even to equations that do not
possess an associated minimization principle. However, the convergence of the induced
finite element scheme is harder to justify, and, indeed, not always valid.

The starting point is a trivial observation: the only element of an inner product space
which is orthogonal to every other element is zero. More precisely:

Lemma 11.17. If V is an inner product space, then 〈w ,v 〉 = 0 for all v ∈ V if and

only if w = 0.

Proof : Choose v = w. The orthogonality condition implies 0 = 〈w ,w 〉 = ‖w ‖2,
and so w = 0. Q.E.D.

Note that the result is equally valid in both finite- and infinite-dimensional vector
spaces. Suppose we are trying to solve a linear† system

K[u ] = f , (11.179)

where K:U → V is a linear operator between inner product spaces. Using the lemma, this
can be reformulated as requiring

〈〈K[u ] ,v 〉〉 = 〈〈 f ,v 〉〉 for all v ∈ V.

According to the definition (7.72), one can replace K by its adjoint K∗:W → V , and
require

〈u ,K∗[v ] 〉 = 〈〈 f ,v 〉〉 for all v ∈ V. (11.180)

† The method also straightforwardly extends to nonlinear systems.

9/11/05 465 c© 2005 Peter J. Olver



The latter is called the weak formulation of our original equation. The general philosophy
is that one can check whether u is a weak solution to the system by evaluating it on various
test elements v using the weak form (11.180) of the system.

In the finite-dimensional situation, when K is merely multiplication by some matrix,
the weak formulation is an unnecessary complication, and not of use. However, in the
infinite-dimensional situation, when K is a differential operator, then the original boundary
value problem K[u ] = f requires that u be sufficiently differentiable, whereas the weak
version

〈u ,K∗[ϕ ] 〉 = 〈〈 f , ϕ 〉〉 for all ϕ

requires only that the test function ϕ(x) be smooth. As a result, weak solutions are not
restricted to be smooth functions possessing the required number of derivatives.

Example 11.18. Consider the homogeneous Dirichlet boundary value problem

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `, u(0) = u(`) = 0,

for a nonuniform bar. Its weak version is obtained by integration by parts. We initially
restrict to test functions which vanish at the boundary ϕ(0) = ϕ(`) = 0. This requirement
will eliminate any boundary terms in the integration by parts computation

〈K[u ] , ϕ 〉 =

∫ `

0

[
−

d

dx

(
c(x)

du

dx

)
ϕ(x)

]
dx = −

∫ `

0

c(x)
du

dx

dϕ

dx
dx

=

∫ `

0

f(x)ϕ(x) dx = 〈 f , ϕ 〉.

(11.181)

This “semi-weak” formulation is known in mechanics as the principle of virtual work , [152].
For example, the Green’s function of the boundary value problem does not qualify as a
classical solution since it is not twice continuously differentiable, but can be formulated as
a weak solution satisfying the virtual work equation with right hand side defined by the
delta forcing function.

A second integration by parts produces the weak form (11.180) of the differential
equation:

〈u ,K[ϕ ] 〉 = −

∫ `

0

u(x)
d

dx

(
c(x)

dϕ

dx

)
dx =

∫ `

0

f(x)ϕ(x) dx = 〈 f , ϕ 〉. (11.182)

Now, even discontinuous functions u(x) are allowed as weak solutions. The goal is to
find u(x) such that this condition holds for all smooth test functions ϕ(x). For example,
any function u(x) which satisfies the differential equation except at points of discontinuity
qualifies as a weak solution.

In a finite element or Galerkin approximation to the weak solution, one restricts atten-
tion to a finite-dimensional subspace W spanned by functions ϕ1, . . . , ϕn−1, and requires
that the approximate solution

ϕ(x) = c1 ϕ1(x) + · · · + cn−1 ϕn−1(x) (11.183)
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satisfy the orthogonality condition (11.180) only for elements ϕ ∈ W of the subspace. As
usual, this only needs to be checked on the basis elements. Substituting (11.183) into the
semi-weak form of the system, (11.181), produces a linear system of equations of the form

〈w ,K[ϕi ] 〉 =

n∑

i=1

mij cj = bi = 〈 f , ϕi 〉, i = 1, . . . , n. (11.184)

The reader will recognize this as exactly the same finite element linear system (11.162)
derived through the minimization approach. Therefore, for a self-adjoint boundary value
problem, the weak formulation and the minimization principle, when restricted to the
finite-dimensional subspace W , lead to exactly the same equations for the finite element
approximation to the solution.

In non-self-adjoint scenarios, the weak formulation is still applicable even though there
is no underlying minimization principle. On the other hand, there is no guarantee that
either the original boundary value problem or its finite element approximation have a
solution. Indeed, it is entirely possible that the boundary value problem has a solution,
but the finite element matrix system does not. Even more worrying are cases in which
the finite element system has a solution, but there is, in fact, no actual solution to the
boundary value problem! In such cases, one is usually tipped off by the non-convergence
of the approximations as the mesh size goes to zero. Nevertheless, in many situations, the
weak solution approach leads to a perfectly acceptable numerical approximation to the
true solution to the system. Further analytical details and applications of weak solutions
can be found in [69, 171].
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Chapter 12

Fourier Series

Just before 1800, the French mathematician/physicist/engineer Jean Baptiste Joseph
Fourier made an astonishing discovery. As a result of his investigations into the partial dif-
ferential equations modeling vibration and heat propagation in bodies, Fourier was led to
claim that “every” function could be represented by an infinite series of elementary trigono-
metric functions — sines and cosines. As an example, consider the sound produced by a
musical instrument, e.g., piano, violin, trumpet, oboe, or drum. Decomposing the signal
into its trigonometric constituents reveals the fundamental frequencies (tones, overtones,
etc.) that are combined to produce its distinctive timbre. The Fourier decomposition lies
at the heart of modern electronic music; a synthesizer combines pure sine and cosine tones
to reproduce the diverse sounds of instruments, both natural and artificial, according to
Fourier’s general prescription.

Fourier’s claim was so remarkable and unexpected that most of the leading mathe-
maticians of the time did not believe him. Nevertheless, it was not long before scientists
came to appreciate the power and far-ranging applicability of Fourier’s method, thereby
opening up vast new realms of physics, engineering, and elsewhere, to mathematical anal-
ysis. Indeed, Fourier’s discovery easily ranks in the “top ten” mathematical advances of
all time, a list that would include Newton’s invention of the calculus, and Gauss and Rie-
mann’s establishment of differential geometry that, 70 years later, became the foundation
of Einstein’s general relativity. Fourier analysis is an essential component of much of mod-
ern applied (and pure) mathematics. It forms an exceptionally powerful analytical tool for
solving a broad range of partial differential equations. Applications in pure mathematics,
physics and engineering are almost too numerous to catalogue — typing in “Fourier” in
the subject index of a modern science library will dramatically demonstrate just how ubiq-
uitous these methods are. Fourier analysis lies at the heart of signal processing, including
audio, speech, images, videos, seismic data, radio transmissions, and so on. Many modern
technological advances, including television, music CD’s and DVD’s, video movies, com-
puter graphics, image processing, and fingerprint analysis and storage, are, in one way or
another, founded upon the many ramifications of Fourier’s discovery. In your career as a
mathematician, scientist or engineer, you will find that Fourier theory, like calculus and
linear algebra, is one of the most basic and essential tools in your mathematical arsenal.
Mastery of the subject is unavoidable.

Furthermore, a remarkably large fraction of modern pure mathematics is the result of
subsequent attempts to place Fourier series on a firm mathematical foundation. Thus, all
of the student’s “favorite” analytical tools, including the definition of a function, the ε–δ
definition of limit and continuity, convergence properties in function space, including uni-
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form convergence, weak convergence, etc., the modern theory of integration and measure,
generalized functions such as the delta function, and many others, all owe a profound debt
to the prolonged struggle to establish a rigorous framework for Fourier analysis. Even more
remarkably, modern set theory, and, as a result, mathematical logic and foundations, can
be traced directly back to Cantor’s attempts to understand the sets upon which Fourier
series converge!

As we will appreciate, Fourier series are, in fact, a very natural outgrowth of the
basic linear algebra constructions that we have already developed for analyzing discrete
dynamical processes. The Fourier representation of a function is a continuous counter-
part of the eigenvector expansions used to solve linear systems of ordinary differential
equations. The fundamental partial differential equations governing heat propagation and
vibrations in continuous media can be viewed as the function space counterparts of such
discrete systems. In the continuous realm, solutions are expressed as linear combinations
of simple “separable” solutions constructed from the eigenvalues and eigenfunctions of an
associated self-adjoint boundary value problem. The efficacy of Fourier analysis rests on
the orthogonality properties of the trigonometric functions, which is a direct consequence
of their status as eigenfunctions. So, Fourier series can be rightly viewed as a function
space version of the finite-dimensional spectral theory of symmetric matrices and orthog-
onal eigenvector bases. The main complication is that we must now deal with infinite
series rather than finite sums, and so convergence issues that do not appear in the finite-
dimensional situation become of paramount importance.

Once we have established the proper theoretical background, the trigonometric Fourier
series will no longer be a special, isolated phenomenon, but, rather, in its natural context as
the simplest representative of a broad class of orthogonal eigenfunction expansions based
on self-adjoint boundary value problems. Modern and classical extensions of the Fourier
method, including Fourier integrals, discrete Fourier series, wavelets, Bessel functions,
spherical harmonics, as well as the entire apparatus of modern quantum mechanics, all rest
on the same basic theoretical foundation, and so gaining familiarity with the general theory
and abstract eigenfunction framework will be essential. Many of the most important cases
used in modern physical and engineering applications will appear in the ensuing chapters.

We begin our development of Fourier methods with a section that will explain why
Fourier series naturally appear when we move from discrete systems of ordinary differen-
tial equations to the partial differential equations that govern the dynamics of continuous
media. The reader uninterested in motivations can safely omit this section as the same
material reappears in Chapter 14 when we completely analyze the dynamical partial differ-
ential equations that lead to Fourier methods. Beginning in Section 12.2, we shall review,
omitting proofs, the most basic computational techniques in Fourier series, for both ordi-
nary and generalized functions. In the final section, we include an abbreviated introduction
to the analytical background required to develop a rigorous foundation for Fourier series
methods.

12.1. Dynamical Equations of Continuous Media.

The purpose of this section is to discover why Fourier series arise naturally when
we move from discrete systems of ordinary differential equations to the partial differential
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equations that govern the dynamics of continuous mechanical systems. In our reconstrucd-
tion of Fourier’s thought processes, let us start by reviewing what we have learned.

In Chapter 6, we characterized the equilibrium equations of discrete mechanical and
electrical systems as a linear algebraic system

Ku = f (12.1)

with symmetric, positive (semi-)definite coefficient matrix K. There are two principal
types of dynamical systems associated with such equilibrium equations. Free vibrations
are governed by Newton’s Law, which leads to a second order system of ordinary differential
equations (9.59), of the form

d2u

dt2
= −Ku. (12.2)

On the other hand, the gradient flow equations (9.21), namely

du

dt
= −Ku, (12.3)

are designed to decrease the quadratic energy function q(u) = 1
2 uT Ku as rapidly as

possible. In each case, the solution to the system was made by imposing a particular ansatz

or inspired guess† for the basic solutions. In the case of a gradient flow, the solutions are
of exponential form e−λt v, while for vibrations they are of trigonometric form cos(ωt)v
or sin(ωt)v with ω2 = λ. In either case, substituting the relevant solution ansatz reduces
the dynamical system to the algebraic eigenvalue problem

Kv = λv (12.4)

for the matrix K. Each eigenvalue and eigenvector creates a particular solution or natural
mode, and the general solution to the dynamical system can be expressed as a linear super-
position of these fundamental modes. The remarkable fact is that the same mathematical
framework, suitably reinterpreted, carries over directly to the continuous realm!

In Chapter 11, we developed the equilibrium equations governing one-dimensional
continuous media — bars, beams, etc. The solution is now a function u(x) representing,
say, displacement of the bar, while the positive (semi-)definite matrix is replaced by a
certin positive (semi-)definite linear operator K[u ]. Formally, then, under an external
forcing function f(x), the equilibrium system can be written the abstract form

K[u ] = f. (12.5)

By analogy with (12.1, 3), the corresponding gradient flow system will thus be of the form‡

∂u

∂t
= −K[u ]. (12.6)

† See the footnote in Example 7.32 for an explanation of this term.

‡ Since u(t, x) now depends upon time as well as position, we switch from ordinary to partial
derivative notation.
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Such partial differential equations model diffusion processes in which a quadratic energy
functional is decreasing as rapidly as possible. A good physical example is the flow of
heat in a body; the heat disperses throughout the body so as to decrease the thermal
energy as quickly as it can, tending (in the absence of external heat sources) to thermal
equilibrium. Other physical processes modeled by (12.6) include diffusion of chemicals
(solvents, pollutants, etc.), and of populations (animals, bacteria, people, etc.).

The simplest and most instructive example is a uniform periodic (or circular) bar of
length 2π. As we saw in Chapter 11, the equilibrium equation for the temperature u(x)
takes the form

K[u ] = −u′′ = f, u(−π) = u(π), u′(−π) = u′(π), (12.7)

associated with the positive semi-definite differential operator

K = D∗ ◦D = (−D)D = −D2 (12.8)

acting on the space of 2π periodic functions. The corresponding gradient flow (12.6) is the
partial differential equation

∂u

∂t
=

∂2u

∂x2
, u(t,−π) = u(t, π),

∂u

∂x
(t,−π) =

∂u

∂x
(t, π), (12.9)

known as the heat equation since it models (among other diffusion processes) heat flow.
The solution u(t, x) represents the temperature at position x and time t, and turns out to
be uniquely prescribed by the initial distribution:

u(0, x) = f(x), −π ≤ x ≤ π. (12.10)

Heat naturally flows from hot to cold, and so the fact that it can be described by a gradient
flow should not be surprising; a derivation of (12.9) from physical principles will appear in
Chapter 14. Solving the periodic heat equation was the seminal problem that led Fourier
to develop the profound theory that now bears his name.

As in the discrete version, the elemental solutions to a diffusion equation (12.6) are
found by introducing an exponential ansatz:

u(t, x) = e−λt v(x), (12.11)

in which we replace the eigenvector v by a function v(x). These are often referred to as
separable solutions to indicate that they are the product of a function of t alone times
a function of x alone. We substitute the solution formula (12.11) into the dynamical
equations (12.6). We compute

∂u

∂t
=

∂

∂t

[
e−λt v(x)

]
= −λ e−λt v(x), while −K[u ] = −K

[
e−λt v(x)

]
= −e−λt K[v ],

since the exponential factor is a function of t, while K only involves differentiation with
respect to x. Equating these two expressions and canceling the common exponential factor,
we conclude that v(x) must solve a boundary value problem of the form

K[v ] = λ v. (12.12)
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We interpret λ as the eigenvalue and v(x) as the corresponding eigenfunction for the
operator K subject to the relevant boundary conditions. Each eigenvalue and eigenfunction
pair will produce a solution (12.11) to the partial differential equation, and the general
solution can be built up through linear superposition.

For example, substitution of the exponential ansatz (12.11) into the periodic heat
equation (12.9) leads to the eigenvalue problem

v′′ + λv = 0, v(−π) = v(π), v′(−π) = v′(π). (12.13)

for the eigenfunction v(x). Now, it is not hard to show that if λ < 0 or λ is complex, then
the only periodic solution to (12.13) is the trivial solution v(x) ≡ 0. Thus, all eigenvalues
must be real and non-negative: λ ≥ 0. This is not an accident — as we will discuss in
detail in Section 14.7, it is a direct consequence of the positive semi-definiteness of the
underlying differential operator (12.8). When λ = 0, periodicity singles out the nonzero
constants v(x) ≡ c 6= 0 as the associated eigenfunctions. If λ = ω2 > 0, then the general
solution to the differential equation (12.13) is a linear combination

v(x) = a cos ωx + b sinωx

of the basis solutions. A nonzero function of this form will satisfy the 2π periodic boundary
conditions if and only if ω = k is an integer. Therefore, the eigenvalues

λ = k2, 0 ≤ k ∈ N,

are the squares of positive integers. Each positive eigenvalue λ = k2 > 0 admits two
linearly independent eigenfunctions, namely sin kx and cos kx, while the zero eigenvalue
λ = 0 has only one, the constant function 1. We conclude that the basic trigonometric
functions

1, cosx, sin x, cos 2x, sin 2x, cos 3x, . . . (12.14)

form a complete system of independent eigenfunctions for the periodic boundary value
problem (12.13).

By construction, each eigenfunction gives rise to a particular solution (12.11) to the
periodic heat equation (12.9). We have therefore discovered an infinite collection of inde-
pendent solutions:

uk(x) = e−k2 t cos kx, ũk(x) = e−k2 t sin kx, k = 0, 1, 2, 3, . . . .

Linear superposition tells us that finite linear combinations of solutions are also solutions.
However, these will not suffice to describe the general solution to the problem, and so we
are led to propose an infinite series†

u(t, x) =
a0

2
+

∞∑

k=1

[
ak e−k2 t cos kx + bk e−k2 t sin kx

]
(12.15)

† For technical reasons, one takes the basic null eigenfunction to be 1
2 instead of 1. The

explanation will be revealed in the following section.
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to represent the general solution to the periodic heat equation. As in the discrete ver-
sion, the coefficients ak, bk are found by substituting the solution formula into the initial
condition (12.10), whence

u(0, x) =
a0

2
+

∞∑

k=1

[
ak cos kx + bk sin kx

]
= f(x). (12.16)

The result is the Fourier series representation of the initial temperature distribution. Once
we have prescribed the Fourier coefficients ak, bk, (12.15) provides an explicit formula for
the solution to the periodic initial-boundary value problem for the heat equation.

However, since we are dealing with infinite series, the preceding is purely a formal
construction, and requires some serious mathematical analysis to place it on a firm footing.
The key questions are

• First, when does such an infinite trigonometric series converge?

• Second, what kinds of functions f(x) can be represented by a convergent Fourier series?

• Third, if we have such an f , how do we determine its Fourier coefficients ak, bk?

• And lastly, since we are trying to solve differential equations, can we safely differentiate
a Fourier series?

These are the fundamental questions of Fourier analysis, and must be properly dealt with
before we can make any serious progress towards solving the heat equation.

A similar analysis applies to a second order dynamical system of the Newtonian form

∂2u

∂t2
= −K[u ]. (12.17)

Such differential equations are used to describe the free vibrations of continuous mechanical
systems, such as bars, strings, and, in higher dimensions, membranes, solid bodies, fluids,
etc. For example, the vibration system (12.17) corresponding to the differential operator
(12.8) is the wave equation

∂2u

∂t2
=

∂2u

∂x2
. (12.18)

The wave equation models stretching vibrations of a bar, sound vibrations in a column of
air, e.g., inside a wind instrument, transverse vibrations of a string, e.g., a violin string,
surfaces waves on a fluid, electromagnetic waves, and a wide variety of other vibrational
and wave phenomena.

As always, we need to impose suitable boundary conditions in order to proceed. Con-
sider, for example, the wave equation with homogeneous Dirichlet boundary conditions

∂2u

∂t2
=

∂2u

∂x2
, u(t, 0) = 0, u(t, `) = 0, (12.19)

that models, for instance, the vibrations of a uniform violin string whose ends are tied
down. Adapting our discrete trigonometric ansatz, we are naturally led to look for a
separable solution of the form

u(t, x) = cos(ωt) v(x) (12.20)
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in which ω represents the vibrational frequency. Substituting into the wave equation
and the associated boundary conditions, we deduce that v(x) must be a solution to the
eigenvalue problem

d2v

dx2
+ ω2 v = 0, v(0) = 0 = v(`), (12.21)

in which ω2 = λ plays the role of the eigenvalue. We require a nonzero solution to this
linear boundary value problem, and this requires ω2 to be strictly positive. As above,
this can be checked by directly solving the boundary value problem, but is, in fact, a
consequence of positive definiteness; see Section 14.7 for details. Assuming ω2 > 0, the
general solution to the differential equation is a trigonometric function

v(x) = a cos ωx + b sinωx.

The boundary condition at x = 0 requires a = 0, and so

v(x) = b sinωx.

The second boundary condition requires

v(`) = b sinω` = 0.

Assuming b 6= 0, as otherwise the solution is trivial, ω` must be an integer multiple of π.
Thus, the natural frequencies of vibration are

ωk =
kπ

`
, k = 1, 2, 3, . . . .

The corresponding eigenfunctions are

vk(x) = sin
k π x

`
, k = 1, 2, 3, . . . . (12.22)

Thus, we find the following natural modes of vibration of the wave equation:

uk(t, x) = cos
kπ t

`
sin

kπx

`
, ũk(t, x) = sin

kπ t

`
sin

kπx

`
.

Each solution represents a spatially periodic standing wave form. We expect to write the
general solution to the boundary value problem as an infinite series

u(t, x) =
∞∑

k=1

(
bk cos

kπ t

`
sin

kπx

`
+ dk sin

kπ t

`
sin

kπx

`

)
(12.23)

in the natural modes. Interestingly, in this case at each fixed t, there are no cosine terms,
and so we have a more specialized type of Fourier series. The same convergence issues for
such Fourier sine series arise. It turns out that the general theory of Fourier series will
also cover Fourier sine series.

We have now completed our brief introduction to the dynamical equations of continu-
ous media and the Fourier series method of solution. The student should now be sufficiently
motivated, and it is time to delve into the underlying Fourier theory. In Chapter 14 we
will return to the applications to the one-dimensional heat and wave equations.
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12.2. Fourier Series.

While the need to solve physically interesting partial differential equations served
as our (and Fourier’s) initial motivation, the remarkable range of applications qualifies
Fourier’s discovery as one of the most important in all of mathematics. We therefore take
some time to properly develop the basic theory of Fourier series and, in the following
chapter, a number of important extensions. Then, properly equipped, we will be in a
position to return to the source — solving partial differential equations.

The starting point is the need to represent a given function f(x), defined for −π ≤
x ≤ π, as a convergent series in the elementary trigonometric functions:

f(x) =
a0

2
+

∞∑

k=1

[ ak cos kx + bk sin kx ] . (12.24)

The first order of business is to determine the formulae for the Fourier coefficients ak, bk.
The key is orthogonality. We already observed, in Example 5.12, that the trigonometric
functions are orthogonal with respect to the rescaled L2 inner product

〈 f , g 〉 =
1

π

∫ π

−π

f(x) g(x) dx (12.25)

on the interval† [−π, π ]. The explicit orthogonality relations are

〈 cos kx , cos l x 〉 = 〈 sin kx , sin l x 〉 = 0,

〈 cos kx , sin l x 〉 = 0,

‖ 1 ‖ =
√

2 , ‖ cos kx ‖ = ‖ sin kx ‖ = 1,

for k 6= l,

for all k, l,

for k 6= 0,

(12.26)

where k and l indicate non-negative integers.

Remark : If we were to replace the constant function 1 by 1√
2
, then the resulting

functions would form an orthonormal system. However, this extra
√

2 turns out to be
utterly annoying, and is best omitted from the outset.

Remark : Orthogonality of the trigonometric functions is not an accident, but follows
from their status as eigenfunctions for the self-adjoint boundary value problem (12.13).
The general result, to be presented in Section 14.7, is the function space analog of the
orthogonality of eigenvectors of symmetric matrices, cf. Theorem 8.20.

If we ignore convergence issues for the moment, then the orthogonality relations
(12.26) serve to prescribe the Fourier coefficients: Taking the inner product of both sides

† We have chosen the interval [−π, π ] for convenience. A common alternative is the interval
[0, 2π ]. In fact, since the trigonometric functions are 2π periodic, any interval of length 2π
will serve equally well. Adapting Fourier series to intervals of other lengths will be discussed in
Section 12.4.
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with cos l x for l > 0, and invoking the underlying linearity‡ of the inner product, yields

〈 f , cos l x 〉 =
a0

2
〈 1 , cos l x 〉 +

∞∑

k=1

[ ak 〈 cos kx , cos l x 〉+ bk 〈 sin kx , cos l x 〉 ]

= al 〈 cos l x , cos l x 〉 = al,

since, by the orthogonality relations (12.26), all terms but the lth vanish. This serves to pre-
scribe the Fourier coefficient al. A similar manipulation with sin l x fixes bl = 〈 f , sin l x 〉,
while taking the inner product with the constant function 1 gives

〈 f , 1 〉 =
a0

2
〈 1 , 1 〉 +

∞∑

k=1

[ ak 〈 cos kx , 1 〉+ bk 〈 sin kx , 1 〉 ] =
a0

2
‖ 1 ‖2 = a0,

which agrees with the preceding formula for al when l = 0, and explains why we include
the extra factor of 1

2 in the constant term. Thus, if the Fourier series converges to the

function f(x), then its coefficients are prescribed by taking inner products with the basic

trigonometric functions. The alert reader may recognize the preceding argument — it is the
function space version of our derivation or the fundametnal orthonormal and orthogonal
basis formulae (5.4, 7), which are valid in any inner product space. The key difference here
is that we are dealing with infinite series instead of finite sums, and copnvergence issues
must be properly addressed. However, we defer these more delicate considerations until
after we have gained some basic familiarity with how Fourier series work in practice.

Let us summarize where we are with the following fundamental definition.

Definition 12.1. The Fourier series of a function f(x) defined on −π ≤ x ≤ π is
the infinite trigonometric series

f(x) ∼
a0

2
+

∞∑

k=1

[ ak cos kx + bk sin kx ] , (12.27)

whose coefficients are given by the inner product formulae

ak =
1

π

∫ π

−π

f(x) cos kx dx, k = 0, 1, 2, 3, . . . ,

bk =
1

π

∫ π

−π

f(x) sin kx dx, k = 1, 2, 3, . . . .

(12.28)

Note that the function f(x) cannot be completely arbitrary, since, at the vary least,
the integrals in the coefficient formulae must be well defined and finite. Even if the the
coefficients (12.28) are finite, there is no guarantee that the resulting Fourier series con-
verges, and, even if it converges, no guarantee that it converges to the original function
f(x). For these reasons, we use the ∼ symbol instead of an equals sign when writing down
a Fourier series. Before tackling these key issues, let us look at an elementary example.

‡ More rigorously, linearity only applies to finite linear combinations, not infinite series. Here,
thought, we are just trying to establish and motivate the basic formulae, and can safely defer such
technical complications until the final section.
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Example 12.2. Consider the function f(x) = x. We may compute its Fourier
coefficients directly, employing integration by parts to evaluate the integrals:

a0 =
1

π

∫ π

−π

x dx = 0, ak =
1

π

∫ π

−π

x cos kx dx =
1

π

[
x sin kx

k
+

cos kx

k2

] ∣∣∣∣
π

x=−π

= 0,

bk =
1

π

∫ π

−π

x sin kx dx =
1

π

[
−

x cos kx

k
+

sin kx

k2

] ∣∣∣∣
π

x=−π

=
2

k
(−1)k+1 . (12.29)

Therefore, the Fourier cosine coefficients of the function x all vanish, ak = 0, and its
Fourier series is

x ∼ 2

(
sinx −

sin 2x

2
+

sin 3x

3
−

sin 4x

4
+ · · ·

)
. (12.30)

Convergence of this series is not an elementary matter. Standard tests, including the ratio
and root tests, fail to apply. Even if we know that the series converges (which it does
— for all x), it is certainly not obvious what function it converges to. Indeed, it cannot

converge to the function f(x) = x for all values of x. If we substitute x = π, then every
term in the series is zero, and so the Fourier series converges to 0 — which is not the same
as f(π) = π.

The nth partial sum of a Fourier series is the trigonometric polynomial†

sn(x) =
a0

2
+

n∑

k=1

[ ak cos kx + bk sin kx ] . (12.31)

By definition, the Fourier series converges at a point x if and only if the partial sums have
a limit:

lim
n→∞

sn(x) = f̃(x), (12.32)

which may or may not equal the value of the original function f(x). Thus, a key require-
ment is to formulate conditions on the function f(x) that guarantee that the Fourier series
converges, and, even more importantly, the limiting sum reproduces the original function:
f̃(x) = f(x). This will all be done in detail below.

Remark : The passage from trigonometric polynomials to Fourier series is similar to
the passage from polynomials to power series. A power series

f(x) ∼ c0 + c1 x + · · · + cn xn + · · · =

∞∑

k=0

ck xk

can be viewed as an infinite linear combination of the basic monomials 1, x, x2, x3, . . . .

According to Taylor’s formula, (C.3), the coefficients ck =
f (k)(0)

k!
are given in terms of

† The reason for the term “trigonometric polynomial” was discussed at length in Exam-
ple 2.17(c).
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the derivatives of the function at the origin. The partial sums

sn(x) = c0 + c1 x + · · · + cn xn =

n∑

k=0

ck xk

of a power series are ordinary polynomials, and the same convergence issues arise.

Although superficially similar, in actuality the two theories are profoundly different.
Indeed, while the theory of power series was well established in the early days of the cal-
culus, there remain, to this day, unresolved foundational issues in Fourier theory. A power
series either converges everywhere, or on an interval centered at 0, or nowhere except at 0.
(See Section 16.2 for additional details.) On the other hand, a Fourier series can converge
on quite bizarre sets. In fact, the detailed analysis of the convergence properties of Fourier
series led the nineteenth century German mathematician Georg Cantor to formulate mod-
ern set theory, and, thus, played a seminal role in the establishment of the foundations of
modern mathematics. Secondly, when a power series converges, it converges to an analytic
function, which is infinitely differentiable, and whose derivatives are represented by the
power series obtained by termwise differentiation. Fourier series may converge, not only to
periodic continuous functions, but also to a wide variety of discontinuous functions and,
even, when suitably interpreted, to generalized functions like the delta function! Therefore,
the termwise differentiation of a Fourier series is a nontrivial issue.

Once one comprehends how different the two subjects are, one begins to understand
why Fourier’s astonishing claims were initially widely disbelieved. Before the advent of
Fourier, mathematicians only accepted analytic functions as the genuine article. The fact
that Fourier series can converge to nonanalytic, even discontinuous functions was extremely
disconcerting, and resulted in a complete re-evaluation of function theory, culminating in
the modern definition of function that you now learn in first year calculus. Only through
the combined efforts of many of the leading mathematicians of the nineteenth century was
a rigorous theory of Fourier series firmly established; see Section 12.5 for the main details
and the advanced text [193] for a comprehensive treatment.

Periodic Extensions

The trigonometric constituents (12.14) of a Fourier series are all periodic functions

of period 2π. Therefore, if the series converges, the limiting function f̃(x) must also be
periodic of period 2π:

f̃(x + 2π) = f̃(x) for all x ∈ R.

A Fourier series can only converge to a 2π periodic function. So it was unreasonable to
expect the Fourier series (12.30) to converge to the non-periodic to f(x) = x everywhere.
Rather, it should converge to its periodic extension, as we now define.

Lemma 12.3. If f(x) is any function defined for −π < x ≤ π, then there is a unique

2π periodic function f̃ , known as the 2π periodic extension of f , that satisfies f̃(x) = f(x)
for all −π < x ≤ π.
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Figure 12.1. Periodic extension of x.

Proof : Pictorially, the graph of the periodic extension of a function f(x) is obtained
by repeatedly copying that part of the graph of f between −π and π to adjacent intervals
of length 2π; Figure 12.1 shows a simple example. More formally, given x ∈ R, there is a
unique integer m so that (2m− 1)π < x ≤ (2m + 1)π. Periodicity of f̃ leads us to define

f̃(x) = f̃(x− 2mπ) = f(x− 2mπ), (12.33)

noting that if −π < x ≤ π, then m = 0 and hence f̃(x) = f(x) for such x. The proof that

the resulting function f̃ is 2π periodic is left as Exercise . Q.E.D.

Remark : The construction of the periodic extension of Lemma 12.3 uses the value
f(π) at the right endpoint and requires f̃(−π) = f̃(π) = f(π). One could, alternatively,

require f̃(π) = f̃(−π) = f(−π), which, if f(−π) 6= f(π), leads to a slightly different
2π periodic extension of the function. There is no a priori reason to prefer one over the
other. In fact, for Fourier theory, as we shall discover, one should use neither, but rather
an “average” of the two. Thus, the preferred Fourier periodic extension f̃(x) will satisfy

f̃(π) = f̃(−π) = 1
2

[
f(π) + f(−π)

]
, (12.34)

which then fixes its values at the odd multiples of π.

Example 12.4. The 2π periodic extension f̃(x) of f(x) = x is the “sawtooth”
function graphed in Figure 12.1. It agrees with x between −π and π. Since f(π) =

π, f(−π) = −π, the Fourier extension (12.34) sets f̃(kπ) = 0 for any odd integer k.
Explicitly,

f̃(x) =

{
x− 2mπ, (2m− 1)π < x < (2m + 1)π,

0, x = (2m− 1)π,
where m is any integer.

With this convention, it can be proved that the Fourier series (12.30) converges everywhere

to the 2π periodic extension f̃(x). In particular,

2

∞∑

k=1

(−1)k+1 sin kx

k
=

{
x, −π < x < π,

0, x = ±π.
(12.35)
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Even this very simple example has remarkable and nontrivial consequences. For in-
stance, if we substitute x = 1

2 π in (12.30) and divide by 2, we obtain Gregory’s series

π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− · · · . (12.36)

While this striking formula predates Fourier theory — it was, in fact, first discovered by
Leibniz — a direct proof is not easy.

Remark : While numerologically fascinating, Gregory’s series is of scant practical use
for actually computing π since its rate of convergence is painfully slow. The reader may
wish to try adding up terms to see how far out one needs to go to accurately compute
even the first two decimal digits of π. Round-off errors will eventually interfere with any
attempt to compute the complete summation to any reasonable degree of accuracy.

Piecewise Continuous Functions

As we shall see, all continuously differentiable, 2π periodic functions can be repre-
sented as convergent Fourier series. More generally, we can allow the function to have
some simple discontinuities. Although not the most general class of functions that pos-
sess convergent Fourier series, such “piecewise continuous” functions will suffice for all the
applications we consider in this text.

Definition 12.5. A function f(x) is said to be piecewise continuous on an interval
[a, b ] if it is defined and continuous except possibly at a finite number of points a ≤ x1 <
x2 < . . . < xn ≤ b. At each point of discontinuity, the left and right hand limits†

f(x−
k ) = lim

x→ x−

k

f(x), f(x+
k ) = lim

x→ x+

k

f(x),

exist. Note that we do not require that f(x) be defined at xk. Even if f(xk) is defined, it
does not necessarily equal either the left or the right hand limit.

A function f(x) defined for all x ∈ R is piecewise continuous provided it is piece-

wise continuous on every bounded interval. In particular, a 2π periodic function f̃(x) is
piecewise continuous if and only if it is piecewise continuous on the interval [−π, π ].

A representative graph of a piecewise continuous function appears in Figure 12.2. The
points xk are known as jump discontinuities of f(x) and the difference

βk = f(x+
k )− f(x−

k ) = lim
x→ x+

k

f(x)− lim
x→ x−

k

f(x) (12.37)

between the left and right hand limits is the magnitude of the jump, cf. (11.48). If βk = 0,
and so the right and left hand limits agree, then the discontinuity is removable since
redefining f(xk) = f(x+

k ) = f(x−
k ) makes f continuous at xk. We will assume, without

significant loss of generality, that our functions have no removable discontinuities.

† At the endpoints a, b we only require one of the limits, namely f(a+) and f(b−), to exist.
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Figure 12.2. Piecewise Continuous Function.

The simplest example of a piecewise continuous function is the step function

σ(x) =

{
1, x > 0,

0, x < 0.
(12.38)

It has a single jump discontinuity at x = 0 of magnitude 1, and is continuous — indeed,
constant — everywhere else. If we translate and scale the step function, we obtain a
function

h(x) = β σ(x− y) =

{
β, x > y,

0, x < y,
(12.39)

with a single jump discontinuity of magnitude β at the point x = y.

If f(x) is any piecewise continuous function, then its Fourier coefficients are well-
defined — the integrals (12.28) exist and are finite. Continuity, however, is not enough to
ensure convergence of the resulting Fourier series.

Definition 12.6. A function f(x) is called piecewise C1 on an interval [a, b ] if it is
defined, continuous and continuously differentiable except possibly at a finite number of
points a ≤ x1 < x2 < . . . < xn ≤ b. At each exceptional point, the left and right hand
limits† exist:

f(x−
k ) = lim

x→x−

k

f(x), f(x+
k ) = lim

x→x+

k

f(x),

f ′(x−
k ) = lim

x→x−

k

f ′(x), f ′(x+
k ) = lim

x→x+

k

f ′(x).

See Figure 12.3 for a representative graph. For a piecewise continuous C1 function,
an exceptional point xk is either

• a jump discontinuity of f , but where the left and right hand derivatives exist, or

• a corner , meaning a point where f is continuous, so f(x−
k ) = f(x+

k ), but has different
left and right hand derivatives: f ′(x−

k ) 6= f ′(x+
k ).

† As before, at the endpoints we only require the appropriate one-sided limits, namely f(a+),

f ′(a+) and f(b−), f ′(b−), to exist.
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Figure 12.3. Piecewise C1 Function.

Thus, at each point, including jump discontinuities, the graph of f(x) has well-defined
right and left tangent lines. For example, the function f(x) = |x | is piecewise C1 since it
is continuous everywhere and has a corner at x = 0, with f ′(0+) = +1, f ′(0−) = −1.

There is an analogous definition of a piecewise Cn function. One requires that the
function has n continuous derivatives, except at a finite number of points. Moreover, at
every point, the function has well-defined right and left hand limits of all its derivatives
up to order n.

The Convergence Theorem

We are now able to state the fundamental convergence theorem for Fourier series.

Theorem 12.7. If f̃(x) is any 2π periodic, piecewise C1 function, then, for any

x ∈ R, its Fourier series converges to

f̃(x), if f̃ is continuous at x,
1
2

[
f̃(x+) + f̃(x−)

]
, if x is a jump discontinuity.

Thus, the Fourier series converges, as expected, to f(x) at all points of continuity;
at discontinuities, the Fourier series can’t decide whether to converge to the right or left
hand limit, and so ends up “splitting the difference” by converging to their average; see
Figure 12.4. If we redefine f̃(x) at its jump discontinuities to have the average limiting
value, so

f̃(x) = 1
2

[
f̃(x+) + f̃(x−)

]
, (12.40)

— an equation that automatically holds at all points of continuity — then Theorem 12.7

would say that the Fourier series converges to f̃(x) everywhere. We will discuss the ideas
underlying the proof of the Convergence Theorem 12.7 at the end of Section 12.5.

Example 12.8. Let σ(x) denote the step function (12.38). Its Fourier coefficients
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Figure 12.4. Splitting the Difference.

are easily computed:

a0 =
1

π

∫ π

−π

σ(x) dx =
1

π

∫ π

0

dx = 1,

ak =
1

π

∫ π

−π

σ(x) cos kx dx =
1

π

∫ π

0

cos kx dx = 0,

bk =
1

π

∫ π

−π

σ(x) sin kx dx =
1

π

∫ π

0

sin kx dx =





2

kπ
, k = 2 l + 1 odd,

0, k = 2 l even.

Therefore, the Fourier series for the step function is

σ(x) ∼
1

2
+

2

π

(
sinx +

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ · · ·

)
. (12.41)

According to Theorem 12.7, the Fourier series will converge to the 2π periodic extension
of the step function:

σ̃(x) =





0, (2m− 1)π < x < 2mπ,

1, 2mπ < x < (2m + 1)π,
1
2 , x = mπ,

where m is any integer,

which is plotted in Figure 12.5. Observe that, in accordance with Theorem 12.7, σ̃(x)
takes the midpoint value 1

2 at the jump discontinuities 0,±π,±2π, . . . .

It is instructive to investigate the convergence of this particular Fourier series in
some detail. Figure 12.6 displays a graph of the first few partial sums, taking, respectively,
n = 3, 5, and 10 terms. The reader will notice that away from the discontinuities, the series
does appear to be converging, albeit slowly. However, near the jumps there is a consistent
overshoot of about 9%. The region where the overshoot occurs becomes narrower and
narrower as the number of terms increases, but the magnitude of the overshoot persists no
matter how many terms are summed up. This was first noted by the American physicist
Josiah Gibbs, and is now known as the Gibbs phenomenon in his honor. The Gibbs
overshoot is a manifestation of the subtle non-uniform convergence of the Fourier series.
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Figure 12.5. Periodic Step Function.
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Figure 12.6. Gibbs Phenomenon.

Even and Odd Functions

We already noted that the Fourier cosine coefficients of the function f(x) = x are all
0. This is not an accident, but rather a direct consequence of the fact that x is an odd
function. Recall first the basic definition:

Definition 12.9. A function is called even if f(−x) = f(x). A function is odd if
f(−x) = −f(x).

For example, the functions 1, cos kx, and x2 are all even, whereas x, sin kx, and sign x
are odd. We require two elementary lemmas, whose proofs are left to the reader.

Lemma 12.10. The sum, f(x) + g(x), of two even functions is even; the sum of two

odd functions is odd. The product f(x) g(x) of two even functions, or of two odd functions,

is an even function. The product of an even and an odd function is odd.

Remark : Every function can be represented as the sum of an even and an odd function;
see Exercise .

Lemma 12.11. If f(x) is odd and integrable on the symmetric interval [−a, a ], then∫ a

−a

f(x) dx = 0. If f(x) is even and integrable, then

∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx.
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The next result is an immediate consequence of applying Lemmas 12.10 and 12.11 to
the Fourier integrals (12.28).

Proposition 12.12. If f(x) is even, then its Fourier sine coefficients all vanish,

bk = 0, and so f can be represented by a Fourier cosine series

f(x) ∼
a0

2
+

∞∑

k=1

ak cos kx , (12.42)

where

ak =
2

π

∫ π

0

f(x) cos kx dx, k = 0, 1, 2, 3, . . . . (12.43)

If f(x) is odd, then its Fourier cosine coefficients vanish, ak = 0, and so f can be represented

by a Fourier sine series

f(x) ∼
∞∑

k=1

bk sin kx , (12.44)

where

bk =
2

π

∫ π

0

f(x) sin kx dx, k = 1, 2, 3, . . . . (12.45)

Conversely, a convergent Fourier cosine (respectively, sine) series always represents an even

(respectively, odd) function.

Example 12.13. The absolute value f(x) = |x | is an even function, and hence has
a Fourier cosine series. The coefficients are

a0 =
2

π

∫ π

0

x dx = π, (12.46)

ak =
2

π

∫ π

0

x cos kx dx =
2

π

[
x sin kx

k
+

cos kx

k2

]π

x=0

=





0, 0 6= k even,

−
4

k2 π
, k odd.

Therefore

|x | ∼
π

2
−

4

π

(
cos x +

cos 3x

9
+

cos 5x

25
+

cos 7x

49
+ · · ·

)
. (12.47)

According to Theorem 12.7, this Fourier cosine series converges to the 2π periodic extension
of |x |, the “sawtooth function” graphed in Figure 12.7.

In particular, if we substitute x = 0, we obtain another interesting series

π2

8
= 1 +

1

9
+

1

25
+

1

49
+ · · · =

∞∑

n=0

1

(2n + 1)2
. (12.48)

It converges faster than Gregory’s series (12.36), and, while far from optimal in this regards,
can be used to compute reasonable approximations to π. One can further manipulate this
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Figure 12.7. Periodic extension of |x |.

result to compute the sum of the series

S =
∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+ · · · .

We note that

S

4
=

∞∑

n=1

1

4n2
=

∞∑

n=1

1

(2n)2
=

1

4
+

1

16
+

1

36
+

1

64
+ · · · .

Therefore, by (12.48),

3

4
S = S −

S

4
= 1 +

1

9
+

1

25
+

1

49
+ · · · =

π2

8
,

from which we conclude that

S =

∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · · =

π2

6
. (12.49)

Remark : The most famous function in number theory — and the source of the most
outstanding problem in mathematics, the Riemann hypothesis — is the Riemann zeta

function

ζ(s) =
∞∑

n=1

1

ns
. (12.50)

Formula (12.49) shows that ζ(2) = 1
6 π2. In fact, the value of the zeta function at any even

positive integer s = 2n can be written as a rational polynomial in π.

If f(x) is any function defined on [0, π ], then its Fourier cosine series is defined by
the formulas (12.42–43); the resulting series represents its even, 2π periodic extension. For
example, the cosine series of f(x) = x is given in (12.47); indeed the even, 2π periodic
extension of x coincides with the 2π periodic extension of |x |. Similarly, the formulas
(12.44, 45) define its Fourier sine series, representing its odd, 2π periodic extension.
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Complex Fourier Series

An alternative, and often more convenient, approach to Fourier series is to use complex
exponentials instead of sines and cosines. Indeed, Euler’s formula

e i kx = cos kx + i sin kx, e− i kx = cos kx− i sin kx, (12.51)

shows how to write the trigonometric functions

cos kx =
e i kx + e− i kx

2
, sin kx =

e i kx − e− i kx

2 i
, (12.52)

in terms of complex exponentials. Orthonormality with respect to the rescaled L2 Hermi-
tian inner product

〈 f , g 〉 =
1

2π

∫ π

−π

f(x) g(x) dx , (12.53)

was proved by direct computation in Example 3.45:

〈 e i kx , e i lx 〉 =
1

2π

∫ π

−π

e i (k−l)x dx =

{
1, k = l,

0, k 6= l,

‖ e i kx ‖2 =
1

2π

∫ π

−π

| e i kx |2 dx = 1.

(12.54)

Again, orthogonality follows from their status as (complex) eigenfunctions for the periodic
boundary value problem (12.13).

The complex Fourier series for a (piecewise continuous) real or complex function f is

f(x) ∼
∞∑

k=−∞

ck e i kx = · · · +c−2 e−2 i x +c−1 e− i x +c0 +c1 e i x +c2 e2 i x + · · · . (12.55)

The orthonormality formulae (12.53) imply that the complex Fourier coefficients are ob-
tained by taking the inner products

ck = 〈 f , e i kx 〉 =
1

2π

∫ π

−π

f(x) e− i kx dx (12.56)

with the associated complex exponential. Pay attention to the minus sign in the integrated
exponential — the result of taking the complex conjugate of the second argument in the
inner product (12.53). It should be emphasized that the real (12.27) and complex (12.55)
Fourier formulae are just two different ways of writing the same series! Indeed, if we apply
Euler’s formula (12.51) to (12.56) and compare with the real Fourier formulae (12.28), we
find that the real and complex Fourier coefficients are related by

ak = ck + c−k,

bk = i (ck − c−k),

ck = 1
2 (ak − i bk),

c−k = 1
2 (ak + i bk),

k = 0, 1, 2, . . . . (12.57)
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Remark : We already see one advantage of the complex version. The constant function
1 = e0 i x no longer plays an anomalous role — the annoying factor of 1

2 in the real Fourier
series (12.27) has mysteriously disappeared!

Example 12.14. For the step function σ(x) considered in Example 12.8, the complex
Fourier coefficients are

ck =
1

2π

∫ π

−π

σ(x) e− i kx dx =
1

2π

∫ π

0

e− i kx dx =





1
2 , k = 0,

0, 0 6= k even,

1

i k π
, k odd.

Therefore, the step function has the complex Fourier series

σ(x) ∼
1

2
−

i

π

∞∑

l=−∞

e(2 l+1) i x

2 l + 1
.

You should convince yourself that this is exactly the same series as the real Fourier series
(12.41). We are merely rewriting it using complex exponentials instead of real sines and
cosines.

Example 12.15. Let us find the Fourier series for the exponential function eax. It
is much easier to evaluate the integrals for the complex Fourier coefficients, and so

ck = 〈 eax , e i kx 〉 =
1

2π

∫ π

−π

e(a− i k)x dx =
e(a− i k)x

2π (a− i k)

∣∣∣∣
π

x=−π

=
e(a− i k)π − e−(a− i k)π

2π (a− i k)
= (−1)k eaπ − e−aπ

2π (a− i k)
=

(−1)k(a + i k) sinh aπ

π (a2 + k2)
.

Therefore, the desired Fourier series is

eax ∼
sinh aπ

π

∞∑

k=−∞

(−1)k(a + i k)

a2 + k2
e i kx. (12.58)

As an exercise, the reader should try writing this as a real Fourier series, either by breaking
up the complex series into its real and imaginary parts, or by direct evaluation of the real
coefficients via their integral formulae (12.28). According to Theorem 12.7 (which is equally
valid for complex Fourier series) the Fourier series converges to the 2π periodic extension
of the exponential function, graphed in Figure 12.8.

The Delta Function

Fourier series can even be used to represent more general objects than mere functions.
The most important example is the delta function δ(x). Using its characterizing properties
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(11.36), the real Fourier coefficients are computed as

ak =
1

π

∫ π

−π

δ(x) cos kx dx =
1

π
cos k0 =

1

π
,

bk =
1

π

∫ π

−π

δ(x) sin kx dx =
1

π
sin k0 = 0.

(12.59)

Therefore,

δ(x) ∼
1

2π
+

1

π

(
cos x + cos 2x + cos 3x + · · ·

)
. (12.60)

Since δ(x) is an even function, it should come as no surprise that it has a cosine series.

To understand in what sense this series converges to the delta function, it will help to
rewrite it in complex form

δ(x) ∼
1

2π

∞∑

k=−∞

e i kx =
1

2π

(
· · · + e−2 i x + e− i x + 1 + e i x + e2 i x + · · ·

)
.

(12.61)
where the complex Fourier coefficients are computed† as

ck =
1

2π

∫ π

−π

δ(x) e− i kx dx =
1

2π
.

The nth partial sum

sn(x) =
1

2π

n∑

k=−n

e i kx =
1

2π

(
e− i nx + · · · + e− i x + 1 + e i x + · · · + e i nx

)

can, in fact, be explicitly evaluated. Recall the formula for the sum of a geometric series

m∑

k=0

a rk = a + a r + a r2 + · · · + a rm = a

(
rm+1 − 1

r − 1

)
. (12.62)

† Or, we could use (12.57).
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Figure 12.9. Partial Fourier Sums Approximating the Delta Function.

The partial sum sn(x) has this form, with m+1 = 2n+1 summands, initial term a = e− i nx,
and ratio r = e i x. Therefore,

sn(x) =
1

2π

n∑

k=−n

e i kx =
1

2π
e− i nx

(
e i (2n+1)x − 1

e i x − 1

)
=

1

2π

e i (n+1)x − e− i nx

e i x − 1

=
1

2π

e i
(
n+

1
2

)
x − e− i

(
n+

1
2

)
x

e i x/2 − e− i x/2
=

1

2π

sin
(
n + 1

2

)
x

sin 1
2 x

.

(12.63)

In this computation, to pass from the first to the second line, we multiplied numerator
and denominator by e− i x/2, after which we used the formula (3.86) for the sine function
in terms of complex exponentials. Incidentally, (12.63) is equivalent to the intriguing
trigonometric summation formula

sn(x) =
1

2π
+

1

π

(
cos x + cos 2x + cos 3x + · · · + cos nx

)
=

1

2π

sin
(
n + 1

2

)
x

sin 1
2 x

. (12.64)

Graphs of the partial sums sn(x) for several values of n are displayed in Figure 12.9.
Note that the spike, at x = 0, progressively becomes taller and thinner, converging to an
infinitely tall, infinitely thin delta spike. Indeed, by l’Hôpital’s Rule,

lim
x→0

1

2π

sin
(
n + 1

2

)
x

sin 1
2 x

= lim
x→0

1

2π

(
n + 1

2

)
cos

(
n + 1

2

)
x

1
2 cos 1

2 x
=

n + 1
2

π
−→ ∞ as n→∞.

(An elementary proof of this formula is to note that, at x = 0, every term in the original
sum (12.64) is equal to 1.) Furthermore, the integrals remain fixed,

1

2π

∫ π

−π

sn(x) dx =
1

2π

∫ π

−π

sin
(
n + 1

2

)
x

sin 1
2 x

dx =
1

2π

∫ π

−π

n∑

k=−n

e i kx dx = 1, (12.65)
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as required for convergence to the delta function. However, away from the spike, the partial
sums do not go to zero! Rather, they oscillate more and more rapidly, maintaining an
overall amplitude of 1

2π csc 1
2 x = 1/

(
2π sin 1

2 x
)
. As n gets large, the amplitude function

appears as an envelope of the increasingly rapid oscillations. Roughly speaking, the fact
that sn(x)→ δ(x) as n→∞ means that the “infinitely fast” oscillations somehow cancel
each other out, and the net effect is zero away from the spike at x = 0. Thus, the
convergence of the Fourier sums to δ(x) is much more subtle than in the original limiting
definition (11.31). The technical term is weak convergence, which plays an very important
role in advanced mathematical analysis, [153]; see Exercise below for additional details.

Remark : Although we stated that the Fourier series (12.60, 61) represent the delta
function, this is not entirely correct. Remember that a Fourier series converges to the
2π periodic extension of the original function. Therefore, (12.61) actually represents the
periodic extension of the delta function:

δ̃(x) = · · · +δ(x+4π)+δ(x+2π)+δ(x)+δ(x−2π)+δ(x−4π)+δ(x−6π)+ · · · , (12.66)

consisting of a periodic array of delta spikes concentrated at all integer multiples of 2π.

12.3. Differentiation and Integration.

If a series of functions converges “nicely” then one expects to be able to integrate
and differentiate it term by term; the resulting series should converge to the integral and
derivative of the original sum. Integration and differentiation of power series is always
valid within the range of convergence, and is used extensively in the construction of series
solutions of differential equations, series for integrals of non-elementary functions, and so
on. The interested reader can consult Appendix C for further details.

As we now appreciate, the convergence of Fourier series is a much more delicate mat-
ter, and so one must be considerably more careful with their differentiation and integration.
Nevertheless, in favorable situations, both operations lead to valid results, and are quite
useful for constructing Fourier series of more complicated functions. It is a remarkable,
profound fact that Fourier analysis is completely compatible with the calculus of general-
ized functions that we developed in Chapter 11. For instance, differentiating the Fourier
series for a piecewise C1 function leads to the Fourier series for the differentiated function
that has delta functions of the appropriate magnitude appearing at each jump discontinu-
ity. This fact reassures us that the rather mysterious construction of delta functions and
their generalizations is indeed the right way to extend calculus to functions which do not
possess derivatives in the ordinary sense.

Integration of Fourier Series

Integration is a smoothing operation — the integrated function is always nicer than
the original. Therefore, we should anticipate being able to integrate Fourier series without
difficulty. There is, however, one complication: the integral of a periodic function is not
necessarily periodic. The simplest example is the constant function 1, which is certainly
periodic, but its integral, namely x, is not. On the other hand, integrals of all the other
periodic sine and cosine functions appearing in the Fourier series are periodic. Thus, only
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the constant term might cause us difficulty when we try to integrate a Fourier series (12.27).
According to (2.4), the constant term

a0

2
=

1

2π

∫ π

−π

f(x) dx (12.67)

is the mean or average of the function f(x) on the interval [−π, π ]. A function has no
constant term in its Fourier series if and only if it has mean zero. It is easily shown,
cf. Exercise , that the mean zero functions are precisely the ones that remain periodic
upon integration.

Lemma 12.16. If f(x) is 2π periodic, then its integral g(x) =

∫ x

0

f(y) dy is 2π

periodic if and only if

∫ π

−π

f(x) dx = 0, so that f has mean zero on the interval [−π, π ].

In particular, Lemma 12.11 implies that all odd functions automatically have mean
zero, and hence periodic integrals.

Since ∫
cos kx dx =

sin kx

k
,

∫
sin kx dx = −

cos kx

k
, (12.68)

termwise integration of a Fourier series without constant term is straightforward. The
resulting Fourier series is given precisely as follows.

Theorem 12.17. If f is piecewise continuous, 2π periodic, and has mean zero, then

its Fourier series

f(x) ∼
∞∑

k=1

[ ak cos kx + bk sin kx ] ,

can be integrated term by term, to produce the Fourier series

g(x) =

∫ x

0

f(y) dy ∼ m +

∞∑

k=1

[
−

bk

k
cos kx +

ak

k
sin kx

]
, (12.69)

for its periodic integral. The constant term

m =
1

2π

∫ π

−π

g(x) dx

is the mean of the integrated function.

In many situations, the integration formula (12.69) provides a very convenient alter-
native to the direct derivation of the Fourier coefficients.

Example 12.18. The function f(x) = x is odd, and so has mean zero:

∫ π

−π

x dx = 0.
Let us integrate its Fourier series

x ∼ 2

∞∑

k=1

(−1)k−1

k
sin kx (12.70)
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that we found in Example 12.2. The result is the Fourier series

1

2
x2 ∼

π2

6
− 2

∞∑

k=1

(−1)k−1

k2
cos kx

=
π2

6
− 2

(
cos x −

cos 2x

4
+

cos 3x

9
−

cos 4x

16
+ · · ·

)
,

(12.71)

whose the constant term is the mean of the left hand side:

1

2π

∫ π

−π

x2

2
dx =

π2

6
.

Let us revisit the derivation of the integrated Fourier series from a slightly different
standpoint. If we were to integrate each trigonometric summand in a Fourier series (12.27)
from 0 to x, we would obtain

∫ x

0

cos ky dy =
sin kx

k
, whereas

∫ x

0

sin ky dy =
1

k
−

cos kx

k
.

The extra 1/k terms arising from the definite sine integrals do not appear explicitly in
our previous form for the integrated Fourier series, (12.69), and so must be hidden in
the constant term m. We deduce that the mean value of the integrated function can be
computed using the Fourier sine coefficients of f via the formula

1

2π

∫ π

−π

g(x) dx = m =

∞∑

k=1

bk

k
. (12.72)

For example, the result of integrating both sides of the Fourier series (12.70) for f(x) = x
from 0 to x is

x2

2
∼ 2

∞∑

k=1

(−1)k−1

k2
(1− cos kx).

The constant terms sum up to yield the mean value of the integrated function:

2

(
1−

1

4
+

1

9
−

1

16
+ . . .

)
= 2

∞∑

k=1

(−1)k−1

k2
=

1

2π

∫ π

−π

x2

2
dx =

π2

6
, (12.73)

which reproduces a formula established in Exercise .

More generally, if f(x) does not have mean zero, its Fourier series has a nonzero
constant term,

f(x) ∼
a0

2
+

∞∑

k=1

[ ak cos kx + bk sin kx ] .

In this case, the result of integration will be

g(x) =

∫ x

0

f(y) dy ∼
a0

2
x + m +

∞∑

k=1

[
−

bk

k
cos kx +

ak

k
sin kx

]
, (12.74)
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where m is given in (12.72). The right hand side is not, strictly speaking, a Fourier series.
There are two ways to interpret this formula within the Fourier framework. Either we can
write (12.74) as the Fourier series for the difference

g(x)−
a0

2
x ∼ m +

∞∑

k=1

[
−

bk

k
cos kx +

ak

k
sin kx

]
, (12.75)

which is a 2π periodic function, cf. Exercise . Alternatively, one can replace x by its
Fourier series (12.30), and the result will be the Fourier series for the 2π periodic extension

of the integral g(x) =

∫ x

0

f(y) dy.

Differentiation of Fourier Series

Differentiation has the opposite effect to integration. Differentiation makes a function
worse. Therefore, to justify taking the derivative of a Fourier series, we need to know that
the differentiated function remains reasonably nice. Since we need the derivative f ′(x) to
be piecewise C1 for the convergence Theorem 12.7 to be applicable, we must require that
f(x) itself be continuous and piecewise C2.

Theorem 12.19. If f is 2π periodic, continuous, and piecewise C2, then its Fourier

series can be differentiated term by term, to produce the Fourier series for its derivative

f ′(x) ∼

∞∑

k=1

[
k bk cos kx− k ak sin kx

]
. (12.76)

Example 12.20. The derivative (11.52) of the absolute value function f(x) = |x |
is the sign function

d

dx
|x | = sign x =

{
+1, x > 0

−1, x < 0.

Therefore, if we differentiate its Fourier series (12.47), we obtain the Fourier series

signx ∼
4

π

(
sinx +

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ · · ·

)
. (12.77)

Note that sign x = σ(x)−σ(−x) is the difference of two step functions. Indeed, subtracting
the step function Fourier series (12.41) at x from the same series at −x reproduces (12.77).

Example 12.21. If we differentiate the Fourier series

x ∼ 2

∞∑

k=1

(−1)k−1

k
sin kx = 2

(
sinx −

sin 2x

2
+

sin 3x

3
−

sin 4x

4
+ · · ·

)
,

we obtain an apparent contradiction:

1 ∼ 2

∞∑

k=1

(−1)k+1 cos kx = 2 cos x− 2 cos 2x + 2 cos 3x− 2 cos 4x + · · · . (12.78)
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But the Fourier series for 1 just consists of a single constant term! (Why?)

The resolution of this paradox is not difficult. The Fourier series (12.30) does not

converge to x, but rather to its periodic extension f̃(x), which has a jump discontinuity of
magnitude 2π at odd multiples of π; see Figure 12.1. Thus, Theorem 12.19 is not directly
applicable. Nevertheless, we can assign a consistent interpretation to the differentiated
series. The derivative f̃ ′(x) of the periodic extension is not equal to the constant function
1, but, rather, has an additional delta function concentrated at each jump discontinuity:

f̃ ′(x) = 1− 2π
∞∑

j =−∞

δ
(
x− (2j + 1)π

)
= 1− 2π δ̃(x− π),

where δ̃ denotes the 2π periodic extension of the delta function, cf. (12.66). The dif-
ferentiated Fourier series (12.78) does, in fact, converge to this modified distributional
derivative! Indeed, differentiation and integration of Fourier series is entirely compatible
with the calculus of generalized functions, as will be borne out in yet another example.

Example 12.22. Let us differentiate the Fourier series (12.41) for the step function
and see if we end up with the Fourier series (12.60) for the delta function. We find (12.41)

d

dx
σ(x) ∼

2

π

(
cos x + cos 3x + cos 5x + cos 7x + · · ·

)
, (12.79)

which does not agree with (12.60) — half the terms are missing! The explanation is
similar to the preceding example: the 2π periodic extension of the step function has two
jump discontinuities, of magnitudes +1 at even multiples of π and −1 at odd multiples.
Therefore, its derivative is the difference of the 2π periodic extension of the delta function
at 0, with Fourier series (12.60) minus the 2π periodic extension of the delta function at
π, with Fourier series

δ(x− π) ∼
1

2π
+

1

π

(
− cos x + cos 2x− cos 3x + · · ·

)

derived in Exercise . The difference of these two delta function series produces (12.79).

12.4. Change of Scale.

So far, we have only dealt with Fourier series on the standard interval of length 2π.
(We chose [−π, π ] for convenience, but all of the results and formulas are easily adapted
to any other interval of the same length, e.g., [0, 2π ].) Since physical objects like bars and
strings do not all come in this particular length, we need to understand how to adapt the
formulas to more general intervals. The basic idea is to rescale the variable so as to stretch
or contract the standard interval†.

† The same device was already used, in Section 5.4, to adapt the orthogonal Legendre polyno-
mials to other intervals.

5/1/06 671 c© 2006 Peter J. Olver



Any symmetric interval [−` , ` ] of length 2 ` can be rescaled to the standard interval
[−π, π ] by using the linear change of variables

x =
`

π
y, so that − π ≤ y ≤ π whenever − ` ≤ x ≤ `. (12.80)

Given a function f(x) defined on [−` , ` ], the rescaled function F (y) = f

(
`

π
y

)
lives on

[−π, π ]. Let

F (y) ∼
a0

2
+

∞∑

k=1

[
ak cos ky + bk sin ky

]
,

be the standard Fourier series for F (y), so that

ak =
1

π

∫ π

−π

F (y) cos ky dy, bk =
1

π

∫ π

−π

F (y) sin ky dy. (12.81)

Then, reverting to the unscaled variable x, we deduce that

f(x) ∼
a0

2
+

∞∑

k=1

[
ak cos

kπx

`
+ bk sin

kπx

`

]
. (12.82)

The Fourier coefficients ak, bk can be computed directly from f(x). Indeed, replacing the
integration variable in (12.81) by y = πx/`, and noting that dy = (π/`) dx, we deduce the
adapted formulae

ak =
1

`

∫ `

−`

f(x) cos
kπx

`
dx, bk =

1

`

∫ `

−`

f(x) sin
kπx

`
dx, (12.83)

for the Fourier coefficients of f(x) on the interval [−` , ` ].

All of the convergence results, integration and differentiation formulae, etc., that
are valid for the interval [−π, π ] carry over, essentially unchanged, to Fourier series on
nonstandard intervals. In particular, adapting our basic convergence Theorem 12.7, we
conclude that if f(x) is piecewise C1, then its rescaled Fourier series (12.82) converges

to its 2 ` periodic extension f̃(x), subject to the proviso that f̃(x) takes on the midpoint
values at all jump discontinuities.

Example 12.23. Let us compute the Fourier series for the function f(x) = x on the
interval −1 ≤ x ≤ 1. Since f is odd, only the sine coefficients will be nonzero. We have

bk =

∫ 1

−1

x sin kπx dx =

[
−

x cos kπx

kπ
+

sin kπx

(kπ)2

]1

x=−1

=
2(−1)k+1

k π
.

The resulting Fourier series is

x ∼
2

π

(
sin πx −

sin 2πx

2
+

sin 3πx

3
− · · ·

)
.
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Figure 12.10. 2 Periodic Extension of x.

The series converges to the 2 periodic extension of the function x, namely

f̃(x) =

{
x− 2m, 2m− 1 < x < 2m + 1,

0, x = m,
where m is an arbitrary integer,

plotted in Figure 12.10.

We can similarly reformulate complex Fourier series on the nonstandard interval
[−` , ` ]. Using (12.80) to rescale the variables in (12.55), we find

f(x) ∼

∞∑

k=−∞

ck e i kπx/`, where ck =
1

2 `

∫ `

−`

f(x) e− i kπx/` dx. (12.84)

Again, this is merely an alternative way of writing the real Fourier series (12.82).

When dealing with a more general interval [a, b ], there are two options. The first is to

take a function f(x) defined for a ≤ x ≤ b and periodically extend it to a function f̃(x) that
agrees with f(x) on [a, b ] and has period b− a. One can then compute the Fourier series

(12.82) for its periodic extension f̃(x) on the symmetric interval [ 1
2 (a−b), 1

2 (b−a) ] of width
2 ` = b − a; the resulting Fourier series will (under the appropriate hypotheses) converge
to f̃(x) and hence agree with f(x) on the original interval. An alternative approach is to
translate the interval by an amount 1

2 (a+b) so as to make it symmetric; this is accomplished
by the change of variables x̂ = x− 1

2 (a+b). an additional rescaling will convert the interval
into [−π, π ]. The two methods are essentially equivalent, and full details are left to the
reader.

12.5. Convergence of the Fourier Series.

The purpose of this final section is to establish some basic convergence results for
Fourier series. This is not a purely theoretical exercise, since convergence considerations
impinge directly upon a variety of applications of Fourier series. One particularly important
consequence is the connection between smoothness of a function and the decay rate of its
high order Fourier coefficients — a result that is exploited in signal and image denoising
and in the analytical properties of solutions to partial differential equations.

Be forewarned: the material in this section is more mathematical than we are used to,
and the more applied reader may consider omitting it on a first reading. However, a full
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understanding of the scope of Fourier analysis as well as its limitations does requires some
familiarity with the underlying theory. Moreover, the required techniques and proofs serve
as an excellent introduction to some of the most important tools of modern mathematical
analysis. Any effort expended to assimilate this material will be more than amply rewarded
in your later career.

Unlike power series, which converge to analytic functions on the interval of conver-
gence, and diverge elsewhere (the only tricky point being whether or not the series con-
verges at the endpoints), the convergence of a Fourier series is a much more subtle matter,
and still not understood in complete generality. A large part of the difficulty stems from
the intricacies of convergence in infinite-dimensional function spaces. Let us therefore
begin with a brief discussion of the fundamental issues.

Convergence in Vector Spaces

We assume that you are familiar with the usual calculus definition of the limit of a
sequence of real numbers: lim

n→∞
an = a?. In any finite-dimensional vector space, e.g.,

R
m, there is essentially only one way for a sequence of vectors v(0),v(1),v(2), . . . ∈ R

m to
converge, which is guaranteed by any one of the following equivalent criteria:

(a) The vectors converge: v(n) −→ v? ∈ R
m as n→∞.

(b) The individual components of v(n) = (v
(n)
1 , . . . , v(n)

m ) converge, so lim
n→∞

v
(n)
i = v?

i for
all i = 1, . . . ,m.

(c) The difference in norms goes to zero: ‖v(n) − v? ‖ −→ 0 as n→∞.

The last requirement, known as convergence in norm, does not, in fact, depend on which
norm is chosen. Indeed, Theorem 3.17 implies that, on a finite-dimensional vector space,
all norms are essentially equivalent, and if one norm goes to zero, so does any other norm.

The analogous convergence criteria are certainly not the same in infinite-dimensional
vector spaces. There are, in fact, a bewildering variety of convergence mechanisms in func-
tion space, that include pointwise convergence, uniform convergence, convergence in norm,
weak convergence, and many others. All play a significant role in advanced mathematical
analysis, and hence all are deserving of study. Here, though, we shall be content to learn
just the most basic aspects of convergence of the Fourier series, leaving further details to
more advanced texts, e.g., [62, 153, 193].

The most basic convergence mechanism for a sequence of functions vn(x) is called
pointwise convergence, which requires that

lim
n→∞

vn(x) = v?(x) for all x. (12.85)

In other words, the functions’ values at each individual point converge in the usual sense.
Pointwise convergence is the function space version of the convergence of the components of
a vector. Indeed, pointwise convergence immediately implies component-wise convergence
of the sample vectors v(n) = ( vn(x1), . . . , vn(xm) )

T
∈ R

m for any choice of sample points
x1, . . . , xm.

On the other hand, convergence in norm of the function sequence requires

lim
n→∞

‖ vn − v? ‖ = 0,
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Figure 12.11. Uniform and Non-Uniform Convergence of Functions.

where ‖ · ‖ is a prescribed norm on the function space. As we have learned, not all norms
on an infinite-dimensional function space are equivalent: a function might be small in one
norm, but large in another. As a result, convergence in norm will depend upon the choice
of norm. Moreover, convergence in norm does not necessarily imply pointwise convergence
or vice versa. A variety of examples can be found in the exercises.

Uniform Convergence

Proving uniform convergence of a Fourier series is reasonably straightforward, and
so we will begin there. You no doubt first saw the concept of a uniformly convergent
sequence of functions in your calculus course, although chances are it didn’t leave much
of an impression. In Fourier analysis, uniform convergence begins to play an increasingly
important role, and is worth studying in earnest. For the record, let us restate the basic
definition.

Definition 12.24. A sequence of functions vn(x) is said to converge uniformly to a
function v?(x) on a subset I ⊂ R if, for every ε > 0, there exists an integer N = N(ε) such
that

| vn(x)− v?(x) | < ε for all x ∈ I and all n ≥ N . (12.86)

The key point — and the reason for the term “uniform convergence” — is that the
integer N depends only upon ε and not on the point x ∈ I. Roughly speaking, the se-
quence converges uniformly if and only if for any small ε, the graphs of the functions
eventually lie inside a band of width 2ε centered around the graph of the limiting func-
tion; see Figure 12.11. Functions may converge pointwise, but non-uniformly: the Gibbs
phenomenon is the prototypical example of a nonuniformly convergent sequence: For a
given ε > 0, the closer x is to the discontinuity, the larger n must be chosen so that the
inequality in (12.86) holds, and hence there is no consistent choice of N that makes (12.86)
valid for all x and all n ≥ N . A detailed discussion of these issues, including the proofs of
the basic theorems, can be found in any basic real analysis text, e.g., [9, 152, 153].

A key consequence of uniform convergence is that it preserves continuity.

Theorem 12.25. If vn(x) → v?(x) converges uniformly, and each vn(x) is continu-

ous, then v?(x) is also a continuous function.
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The proof is by contradiction. Intuitively, if v?(x) were to have a discontinuity, then,
as sketched in Figure 12.11, a sufficiently small band around its graph would not connect
together, and this prevents the graph of any continuous function, such as vn(x), from
remaining entirely within the band. Rigorous details can be found in [9].

Warning : A sequence of continuous functions can converge non-uniformly to a contin-

uous function. An example is the sequence vn(x) =
2nx

1 + n2x2
, which converges pointwise

to v?(x) ≡ 0 (why?) but not uniformly since max | vn(x) | = vn

(
1
n

)
= 1, which implies

that (12.86) cannot hold when ε < 1.

The convergence (pointwise, uniform, in norm, etc.) of a series

∞∑

k=1

uk(x) is, by

definition, governed by the convergence of its sequence of partial sums

vn(x) =
n∑

k=1

uk(x). (12.87)

The most useful test for uniform convergence of series of functions is known as the Weier-

strass M–test , in honor of the nineteenth century German mathematician Karl Weierstrass,
known as the “father of modern analysis”.

Theorem 12.26. Let I ⊂ R. Suppose the functions uk(x) are bounded by

|uk(x) | ≤ mk for all x ∈ I, (12.88)

where the mk ≥ 0 are fixed positive constants. If the series

∞∑

k=1

mk <∞ (12.89)

converges, then the series
∞∑

k=1

uk(x) = f(x) (12.90)

converges uniformly and absolutely† to a function f(x) for all x ∈ I. In particular, if the

summands uk(x) in Theorem 12.26 are continuous, so is the sum f(x).

With some care, we are allowed to manipulate uniformly convergent series just like
finite sums. Thus, if (12.90) is a uniformly convergent series, so is the term-wise product

∞∑

k=1

g(x)uk(x) = g(x)f(x) (12.91)

† Recall that a series
∞X

n=1

an = a? is said to converge absolutely if and only if
∞X

n=1

| an |
converges, [9].
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with any bounded function: | g(x) | ≤ C for x ∈ I. We can integrate a uniformly convergent
series term by term‡, and the resulting integrated series

∫ x

a

(
∞∑

k=1

uk(y)

)
dy =

∞∑

k=1

∫ x

a

uk(y) dy =

∫ x

a

f(y) dy (12.92)

is uniformly convergent. Differentiation is also allowed — but only when the differentiated
series converges uniformly.

Proposition 12.27. If

∞∑

k=1

u′
k(x) = g(x) is a uniformly convergent series, then

∞∑

k=1

uk(x) = f(x) is also uniformly convergent, and, moreover, f ′(x) = g(x).

We are particularly interested in applying these results to Fourier series, which, for
convenience, we take in complex form

f(x) ∼

∞∑

k=−∞

ck e i kx. (12.93)

Since x is real,
∣∣ e i kx

∣∣ ≤ 1, and hence the individual summands are bounded by

∣∣ ck e i kx
∣∣ ≤ | ck | for all x.

Applying the Weierstrass M–test, we immediately deduce the basic result on uniform
convergence of Fourier series.

Theorem 12.28. If the Fourier coefficients ck satisfy

∞∑

k=−∞

| ck | <∞, (12.94)

then the Fourier series (12.93) converges uniformly to a continuous function f̃(x) having

the same Fourier coefficients: ck = 〈 f , e i kx 〉 = 〈 f̃ , e i kx 〉.

Proof : Uniform convergence and continuity of the limiting function follow from Theo-
rem 12.26. To show that the ck actually are the Fourier coefficients of the sum, we multiply
the Fourier series by e− i kx and integrate term by term from −π to π. As in (12.91, 92),
both operations are valid thanks to the uniform convergence of the series. Q.E.D.

The one thing that the theorem does not guarantee is that the original function f(x)

used to compute the Fourier coefficients ck is the same as the function f̃(x) obtained by
summing the resulting Fourier series! Indeed, this may very well not be the case. As we
know, the function that the series converges to is necessarily 2π periodic. Thus, at the
very least, f̃(x) will be the 2π periodic extension of f(x). But even this may not suffice.

‡ Assuming that the individual functions are all integrable.
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Two functions f(x) and f̂(x) that have the same values except for a finite set of points
x1, . . . , xm have the same Fourier coefficients. (Why?) More generally, two functions which
agree everywhere outside a set of “measure zero” will have the same Fourier coefficients.
In this way, a convergent Fourier series singles out a distinguished representative from a
collection of essentially equivalent 2π periodic functions.

Remark : The term “measure” refers to a rigorous generalization of the notion of the
length of an interval to more general subsets S ⊂ R. In particular, S has measure zero

if it can be covered by a collection of intervals of arbitrarily small total length. For
example, any collection of finitely many points, or even countably many points, e.g., the
rational numbers, has measure zero. The proper development of the notion of measure,
and the consequential Lebesgue theory of integration, is properly studied in a course in
real analysis, [152, 153].

As a consequence of Theorem 12.28, Fourier series cannot converge uniformly when
discontinuities are present. Non-uniform convergence is typically manifested by some form
of Gibbs pehnomenon at the discontinuities. However, it can be proved, [32, 62, 193], that
even when the function fails to be everywhere continuous, its Fourier series is uniformly
convergent on any closed subset of continuity.

Theorem 12.29. Let f(x) be 2π periodic and piecewise C1. If f is continuous for

a < x < b, then its Fourier series converges uniformly to f(x) on any closed subinterval

a + δ ≤ x ≤ b− δ, with δ > 0.

For example, the Fourier series (12.41) for the step function does converge uniformly
if we stay away from the discontinuities; for instance, by restriction to a subinterval of
the form [δ, π − δ ] or [−π + δ,−δ ] for any 0 < δ < 1

2 π. This reconfirms our observation
that the nonuniform Gibbs behavior becomes progressively more and more localized at the
discontinuities.

Smoothness and Decay

The uniform convergence criterion (12.94) requires, at the very least, that the Fourier
coefficients decay to zero: ck → 0 as k → ±∞. In fact, the Fourier coefficients cannot
tend to zero too slowly. For example, the individual summands of the infinite series

∞∑

k=−∞

1

| k |α
(12.95)

go to 0 as k →∞ whenever α > 0, but the series only converges when α > 1. (This follows
from the standard integral convergence test for series, [9, 153].) Thus, if we can bound
the Fourier coefficients by

| ck | ≤
M

| k |α
for all | k | À 0, (12.96)

for some power α > 1 and some positive constant M > 0, then the Weierstrass M test will
guarantee that the Fourier series converges uniformly to a continuous function.
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An important consequence of the differentiation formulae (12.76) for Fourier series is
the fact that the faster the Fourier coefficients of a function tend to zero as k → ∞, the
smoother the function is. Thus, one can detect the degree of smoothness of a function by
seeing how rapidly its Fourier coefficients decay to zero. More rigorously:

Theorem 12.30. If the Fourier coefficients satisfy

∞∑

k=−∞

kn | ck | < ∞, (12.97)

then the Fourier series (12.55) converges to an n times continuously differentiable 2π
periodic function f(x) ∈ Cn. Moreover, for any m ≤ n, the m times differentiated Fourier

series converges uniformly to the corresponding derivative f (m)(x).

Proof : This is an immediate consequence of Proposition 12.27 combined with Theo-
rem 12.28. Application of the Weierstrass M test to the differentiated Fourier series based
on our hypothesis (12.97) serves to complete the proof. Q.E.D.

Corollary 12.31. If the Fourier coefficients satisfy (12.96) for some α > n + 1, then

the function f(x) is n times continuously differentiable.

Thus, stated roughly, the smaller its high frequency Fourier coefficients, the smoother
the function. If the Fourier coefficients go to zero faster than any power of k, e.g., ex-
ponentially fast, then the function is infinitely differentiable. Analyticity is a little more
delicate, and we refer the reader to [62, 193] for details.

Example 12.32. The 2π periodic extension of the function |x | is continuous with
piecewise continuous first derivative. Its Fourier coefficients (12.46) satisfy the estimate
(12.96) for α = 2, which is not quite fast enough to ensure a continuous second derivative.
On the other hand, the Fourier coefficients (12.29) of the step function σ(x) only tend
to zero as 1/k, so α = 1, reflecting the fact that its periodic extension is only piecewise
continuous. Finally, the Fourier coefficients (12.59) for the delta function do not tend to
zero at all, indicative of the fact that it is not an ordinary function, and its Fourier series
does not converge in the standard sense.

Hilbert Space

In order to make further progress, we must take a little detour. The proper setting
for the rigorous theory of Fourier series turns out to be the most important function space
in modern physics and modern analysis, known as Hilbert space in honor of the great
German mathematician David Hilbert. The precise definition of this infinite-dimensional
inner product space is rather technical, but a rough version goes as follows:

Definition 12.33. A complex-valued function f(x) is called square-integrable on the
interval [−π, π ] if it satisfies

‖ f ‖2 =
1

2π

∫ π

−π

| f(x) |2 dx <∞. (12.98)
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The Hilbert space L2 = L2[−π, π ] is the vector space consisting of all complex-valued
square-integrable functions.

Note that (12.98) is the L2 norm based on the standard Hermitian inner product

〈 f , g 〉 =
1

2π

∫ π

−π

f(x) g(x) dx. (12.99)

The triangle inequality

‖ c f + d g ‖ ≤ | c | ‖ f ‖+ | d | ‖ g ‖,

implies that the Hilbert space is, as claimed, a complex vector space, i.e., if f, g ∈ L2, so
‖ f ‖, ‖ g ‖ < ∞, then any linear combination cf + dg ∈ L2 since ‖ c f + d g ‖ < ∞. The
Cauchy–Schwarz inequality

| 〈 f , g 〉 | ≤ ‖ f ‖ ‖ g ‖,

implies that the inner product of two square-integrable functions is well-defined and finite.
In particular, the Fourier coefficients of a function f(x) are defined as inner products

ck = 〈 f , e i kx 〉 =
1

2π

∫ π

−π

f(x) e− i kx dx

of f with the complex exponentials (which are continuous and so in L2), and hence are
well-defined for any f ∈ L2.

There are some interesting analytical subtleties that arise when one tries to prescribe
precisely which functions are to be admitted to Hilbert space. Every piecewise continuous
function belongs to L2. But some functions with singularities are also members. For
example, the power function |x |−α belongs to L2 for any α < 1

2 , but not if α ≥ 1
2 .

Analysis requires limiting procedures, and Hilbert space must be “complete” in the
sense that appropriately convergent† sequences of functions have a limit. The completeness
requirement is not elementary, and relies on the development of the more sophisticated
Lebesgue theory of integration, which was formalized in the early part of the twentieth
century by the French mathematician Henri Lebesgue. Any function which is square-
integrable in the Lebesgue sense is admitted into L2. This includes such non-piecewise

continuous functions as sin
1

x
and x−1/3, as well as the strange function

r(x) =

{
1 if x is a rational number,

0 if x is irrational.
(12.100)

One soon discovers that square-integrable functions can be quite bizarre.

† The precise technical requirement is that every Cauchy sequence of functions vk(x) ∈ L2

converges to a function v?(x) ∈ L2; see Exercise for details.
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A second complication is that (12.98) does not, strictly speaking, define a norm once
we allow discontinuous functions into the fold. For example, the piecewise continuous
function

f0(x) =

{
1, x = 0,

0, x 6= 0,
(12.101)

has norm zero, ‖ f0 ‖ = 0, even though it is not zero everywhere. Indeed, any function
which is zero except on a set of measure zero also has norm zero, including the function
(12.100). Therefore, in order to make (12.98) into a legitimate norm on Hilbert space, we
must agree to identify any two functions which have the same values except on a set of
measure zero. For instance, the zero function 0 and the preceding examples f0(x) and r(x)
are all viewed as defining the same element of Hilbert space. Thus, although we treat them
as if they were ordinary functions, each element of Hilbert space is not, in fact, a function,
but, rather, an equivalence class of functions all differing on a set of measure zero. All this
might strike the applied reader as becoming much too abstract and arcane. In practice, you
will not lose much by assuming that the “functions” in L2 are always piecewise continuous
and square-integrable. Nevertheless, the full analytical power of Hilbert space theory is
only unleashed by including completely general functions in L2.

After its invention by pure mathematicians around the turn of the twentieth century,
physicists in the 1920’s suddenly realized that Hilbert space was the correct setting to
establish the modern theory of quantum mechanics. A quantum mechanical wave function

is a element† ϕ ∈ L2 that has unit norm: ‖ϕ ‖ = 1. Thus, the set of wave functions
is merely the unit sphere in Hilbert space. Quantum mechanics endows each physical
wave function with a probabilistic interpretation. Suppose the wave function represents
a single subatomic particle — photon, electron, etc. The modulus |ϕ(x) | of the wave
function quantifies the probability of finding the particle at the position x. More cor-
rectly, the probability that the particle resides in a prescribed interval [a, b ] is equal to√

1

2π

∫ b

a

|ϕ(x) |2 dx . In particular, the wave function has unit norm

‖ϕ ‖ =

√
1

2π

∫ π

−π

|ϕ(x) |2 dx = 1

because the particle must certainly, i.e., with probability 1, be somewhere!

Convergence in Norm

We are now in a position to discuss convergence in norm of the Fourier series. We
begin with the basic definition, which makes sense on any normed vector space.

Definition 12.34. Let V be a normed vector space. A sequence v(n) is said to
converge in norm to v? ∈ V if ‖v(n) − v? ‖ → 0 as n→∞.

† Here we are acting as if the physical space were represented by the one-dimensional interval
[−π, π ]. The more apt case of three-dimensional physical space is developed analogously, replacing

the single integral by a triple integral over all of R
3.
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As we noted earlier, on finite-dimensional vector spaces, convergence in norm is equiv-
alent to ordinary convergence. On the other hand, on infinite-dimensional function spaces,
convergence in norm is very different from pointwise convergence. For instance, it is pos-
sible, cf. Exercise , to construct a sequence of functions that converges in norm to 0, but
does not converge pointwise anywhere!

We are particularly interested in the convergence in norm of the Fourier series of a
square integrable function f(x) ∈ L2. Let

sn(x) =

n∑

k=−n

ck e i kx (12.102)

be the nth partial sum of its Fourier series (12.55). The partial sum (12.102) belongs to
the subspace T (n) ⊂ L2 of all trigonometric polynomials of degree at most n, spanned by
e− i nx, . . . , e i nx. It is, in fact, distinguished as the function in T (n) that lies the closest
to f , where the distance between functions is measured by the L2 norm of their differ-
ence: ‖ f − g ‖. This important characterization of the Fourier partial sums is, in fact, an
immediate consequence of the orthonormality of the trigonometric basis.

Theorem 12.35. The nth order Fourier partial sum sn ∈ T
(n) is the best least

squares approximation to f ∈ L2, meaning that it minimizes the distance, as measured by

the L2 norm of the difference

‖ f − pn ‖
2 =

1

2π

∫ π

−π

| f(x)− pn(x) |2 dx, (12.103)

among all possible degree n trigonometric polynomials

pn(x) =
n∑

k=−n

dk e i kx ∈ T (n). (12.104)

Proof : The proof is, in fact, an exact replica of that of the finite-dimensional Theorems
5.37 and 5.39. Note first that, owing to the orthonormality of the basis exponentials,
(12.54), we can compute the norm of a trigonometric polynomial (12.104) by summing the
squared moduli of its Fourier coefficients:

‖ pn ‖
2 = 〈 pn , pn 〉 =

n∑

k,l=−n

dk dl 〈 e
i kx , e i lx 〉 =

n∑

k=−n

| dk |
2,

reproducing our standard formula (5.5) for the norm with respect to an orthonormal basis
in this situation. Therefore, employing the identity in Exercise 3.6.42(a),

‖ f − pn ‖
2 = ‖ f ‖2 − 2 Re 〈 f , pn 〉+ ‖ pn ‖

2 = ‖ f ‖2 − 2 Re

n∑

k=−n

dk 〈 f , e i kx 〉+ ‖ pn ‖
2

= ‖ f ‖2 − 2
n∑

k=−n

Re
(
ck dk

)
+

n∑

k=−n

| dk |
2 = ‖ f ‖2 −

n∑

k=−n

| ck |
2 +

n∑

k=−n

| dk − ck |
2;
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the last equality results from adding and subtracting the squared norm

‖ sn ‖
2 =

n∑

k=−n

| ck |
2 (12.105)

of the Fourier partial sum. We conclude that

‖ f − pn ‖
2 = ‖ f ‖2 − ‖ sn ‖

2 +

n∑

k=−n

| dk − ck |
2. (12.106)

The first and second terms on the right hand side of (12.106) are uniquely determined by
f(x) and hence cannot be altered by the choice of trigonometric polynomial pn(x), which
only affects the final summation. Since the latter is a sum of nonnegative quantities, it is
minimized by setting all the summands to zero, i.e., setting dk = ck. We conclude that
‖ f − pn ‖ is minimized if and only if dk = ck are the Fourier coefficients, and hence the
least squares minimizer is the Fourier partial sum: pn(x) = sn(x). Q.E.D.

Setting pn = sn, so dk = ck, in (12.106), we conclude that the least squares error for
the Fourier partial sum is

0 ≤ ‖ f − sn ‖
2 = ‖ f ‖2 − ‖ sn ‖

2 = ‖ f ‖2 −
n∑

k=−n

| ck |
2.

Therefore, the Fourier coefficients of the function f must satisfy the basic inequality

n∑

k=−n

| ck |
2 ≤ ‖ f ‖2.

Consider what happens in the limit as n → ∞. Since we are summing a sequence of
non-negative numbers with uniformly bounded partial sums, the limiting summation must
exist, and be subject to the same bound. We have thus proved Bessel’s inequality :

∞∑

k=−∞

| ck |
2 ≤ ‖ f ‖2, (12.107)

which is an important waystation on the road to the general theory. Now, as noted earlier,
if a series is to converge, the individual summands must go to zero: | ck |

2 → 0. Therefore,
Bessel’s inequality immediately implies the following simplified form of the Riemann–

Lebesgue Lemma.

Lemma 12.36. If f ∈ L2 is square integrable, then its Fourier coefficients satisfy

ck =
1

2π

∫ π

−π

f(x) e− i kx dx −→ 0 as | k | → ∞, (12.108)
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which is equivalent to the decay of the real Fourier coefficients

ak =
1

π

∫ π

−π

f(x) cos kx dx

bk =
1

π

∫ π

−π

f(x) sin kx dx





−→ 0 as k →∞. (12.109)

Remark : As before, the convergence of the sum (12.107) requires that the coefficients
ck cannot tend to zero too slowly. For instance, assuming the power bound (12.96), namely

| ck | ≤M | k |−α, then requiring α > 1
2 is enough to ensure that

∞∑

k=−∞

| ck |
2 <∞.

Thus, as we should expect, convergence in norm imposes less restrictive requirements on
the decay of the Fourier coefficients than uniform convergence — which needed α > 1.
Indeed, a Fourier series may very well converge in norm to a discontinuous function, which
is not possible under uniform convergence. In fact, there even exist bizarre continuous
functions whose Fourier series do not converge uniformly, even failing to converge at all at
some points. A deep result says that the Fourier series of a continuous function converges
except possibly on a set of measure zero, [193]. Again, the subtle details of the convergence
of Fourier series are rather delicate, and lack of space and analytical savvy prevents us
from delving any further into these topics.

Completeness

As we know, specification of a basis enables you to prescribe all elements of a finite-
dimensional vector space as linear combinations of the basis elements. The number of
basis elements dictates the dimension. In an infinite-dimensional vector space, there are,
by definition, infinitely many linearly independent elements, and no finite collection can
serve to describe the entire space. The question then arises to what extent an infinite col-
lection of linearly independent elements can be considered as a basis for the vector space.
Mere counting will no longer suffice, since omitting one, or two, or any finite number — or
even certain infinite subcollections — from a purported basis will still leave infinitely many
linearly independent elements; but, clearly, the reduced collection should, in some sense,
no longer serve as a complete basis. The curse of infinity strikes again! For example, while
the complete trigonometric collection 1, cos x, sin x, cos 2x, sin 2x, . . . will represent any 2π
periodic L2 function as a Fourier series, the subcollection cos x, sin x, cos 2x, sin 2x, . . . can
only represent functions with mean zero, while the subcollection sinx, sin 2x, . . . only rep-
resents odd functions. All three consist of infinitely many linearly independent functions,
but only the first could possibly be deemed a basis of L2. In general, just because we have
found a infinite collection of independent elements in an infinite-dimensional vector space,
how do we know that we have enough, and are not missing one or two or 10,000 or even
infinitely many additional independent elements?

The concept of “completeness” serves to properly formalize the notion of a “basis”
of an infinite-dimensional vector space. We shall discuss completeness in a general, ab-
stract setting, but the key example is, of course, the Hilbert space L2 and the system of
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trigonometric (or complex exponential) functions forming a Fourier series. Other important
examples arising in later applications include wavelets, Bessel functions, Legendre polyno-
mials, spherical harmonics, and other systems of eigenfunctions of self-adjoint boundary
value problems.

For simplicity, we only define completeness in the case of orthonormal systems. (Sim-
ilar arguments will clearly apply to orthogonal systems, but normality helps to streamline
the presentation.) Let V be an infinite-dimensional complex† inner product space. Suppose
that u1, u2, u3, . . . ∈ V form an orthonormal collection of elements of V , so

〈ui , uj 〉 =

{
1 i = j,

0, i 6= j.
(12.110)

A straightforward argument, cf. Proposition 5.4, proves that the ui are linearly indepen-
dent. Given f ∈ V , we form its generalized Fourier series

f ∼

∞∑

k=1

ck uk, where ck = 〈 f , uk 〉, (12.111)

which is our usual orthonormal basis coefficient formula (5.4), and is obtained by formally
taking the inner product of the series with uk and invoking the orthonormality conditions
(12.110).

Definition 12.37. An orthonormal system u1, u2, u3, . . . ∈ V is called complete if
the generalized Fourier series (12.111) of any f ∈ V converges in norm to f :

‖ f − sn ‖ −→ 0, as n→∞, where sn =

n∑

k=1

ck uk (12.112)

is the nth partial sum of the generalized Fourier series (12.111).

Thus, completeness requires that every element can be arbitrarily closely approxi-
mated (in norm) by a suitable linear combination of the basis elements. A complete or-
thonormal system should be viewed as the infinite-dimensional version of an orthonormal
basis of a finite-dimensional vector space.

The key result for classical Fourier series is that the complex exponentials, or, equiv-
alently, the trigonometric functions, form a complete system. An indication of its proof
will appear below.

Theorem 12.38. The complex exponentials e i kx, k = 0,±1,±2, . . ., form a com-

plete orthonormal system in L2 = L2[−π, π ]. In other words, if sn(x) denotes the

nth partial sum of the Fourier series of the square-integrable function f(x) ∈ L2, then

lim
n→∞

‖ f − sn ‖ = 0.

† The results are equally valid in real inner product spaces, with slightly simpler proofs.
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In order to understand completeness, let us describe some equivalent characterizations.
The Plancherel formula is the infinite-dimensional counterpart of our formula (5.5) for the
norm of a vector in terms of its coordinates with respect to an orthonormal basis.

Theorem 12.39. The orthonormal system u1, u2, u3, . . . ∈ V is complete if and only

if the Plancherel formula

‖ f ‖2 =
∞∑

k=1

| ck |
2 =

∞∑

k=1

〈 f , uk 〉
2, (12.113)

holds for every f ∈ V .

Proof : We begin by computing† the Hermitian norm

‖ f − sn ‖
2 = ‖ f ‖2 − 2 Re 〈 f , sn 〉+ ‖ sn ‖

2.

Substituting the formula (12.112) for the partial sums, we find, by orthonormality,

‖ sn ‖
2 =

n∑

k=1

| ck |
2, while 〈 f , sn 〉 =

n∑

k=1

ck 〈 f , uk 〉 =
n∑

k=1

| ck |
2.

Therefore,

0 ≤ ‖ f − sn ‖
2 = ‖ f ‖2 −

n∑

k=1

| ck |
2. (12.114)

The fact that the left hand side of (12.114) is non-negative for all n implies the abstract
form of Bessel inequality

∞∑

k=1

| ck |
2 ≤ ‖ f ‖2, (12.115)

which is valid for any orthonormal system of elements in an inner product space. The
trigonometric Bessel inequality (12.107) is a particular case of this general result. As we
noted above, Bessel’s inequality implies that the generalized Fourier coefficients ck → 0
must tend to zero reasonably rapidly in order that the sum of their squares converges.

Plancherel’s Theorem 12.39, thus, states that the system of functions is complete if
and only if the Bessel inequality is, in fact, an equality! Indeed, letting n→∞ in (12.114),
we have

lim
n→∞

‖ f − sn ‖
2 = ‖ f ‖2 −

∞∑

k=1

| ck |
2.

Therefore, the completeness condition (12.112) holds if and only if the right hand side
vanishes, which is the Plancherel identity (12.113). Q.E.D.

† We are, in essence, repeating the proofs of Theorem 12.35 and the subsequent trigonometric
Bessel inequality (12.107) in a more abstract setting.

5/1/06 686 c© 2006 Peter J. Olver



Corollary 12.40. Let f, g ∈ V . Then their Fourier coefficients ck = 〈 f , ϕk 〉, dk =
〈 g , ϕk 〉 satisfy Parseval’s identity

〈 f , g 〉 =
∞∑

k=1

ck dk . (12.116)

Proof : Using the identity in Exercise 3.6.42(b),

〈 f , g 〉 = 1
4

(
‖ f + g ‖2 − ‖ f − g ‖2 + i ‖ f + i g ‖2 − i ‖ f − i g ‖2

)
.

Parseval’s identity results from applying the Plancherel formula (12.113) to each term on
the right hand side:

〈 f , g 〉 =
1

4

∞∑

k=−∞

(
| ck + dk |

2 − | ck − dk |
2 + i | ck + i dk |

2 − i | ck − i dk |
2
)

=
∞∑

k=−∞

ck dk,

by a straightforward algebraic manipulation. Q.E.D.

In particular, in the case of the complex exponential basis of L2[−π, π ], the Plancherel
and Parseval formulae tell us that

1

2π

∫ π

−π

| f(x) |2 dx =
∞∑

k=−∞

| ck |
2,

1

2π

∫ π

−π

f(x) g(x) dx =
∞∑

k=−∞

ck dk , (12.117)

in which ck = 〈 f , e i kk 〉, dk = 〈 g , e i kk 〉 are the ordinary Fourier coefficients of the
complex-valued functions f(x) and g(x). Note that the Plancherel formula is a special
case of the Parseval identity, obtained by setting f = g. In Exercise , you are asked to
rewrite these formulas in terms of the real Fourier coefficients.

Completeness also tells us that a function is uniquely determined by its Fourier coef-
ficients.

Proposition 12.41. If the orthonormal system u1, u2, . . . ∈ V is complete, then

the only element f ∈ V with all zero Fourier coefficients, 0 = c1 = c2 = · · · , is the zero

element: f = 0. More generally, two elements f, g ∈ V have the same Fourier coefficients

if and only if they are the same: f = g.

Proof : The proof is an immediate consequence of the Plancherel formula. Indeed, if
ck = 0, then (12.113) implies that ‖ f ‖ = 0. The second statement follows by applying
the first to their difference f − g. Q.E.D.

Another way of stating this result is that the only function which is orthogonal to
every element of a complete orthonormal system is the zero function†. Interpreted in
yet another way, a complete orthonormal system is maximal in the sense that no further
orthonormal elements can be appended to it.

† Or, to be more technically accurate, any function which is zero outside a set of measure zero.
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Let us now discuss the completeness of the Fourier trigonometric/complex exponential
functions. We shall prove the completeness criterion only for continuous functions, leaving
the harder general proof to the references, [62, 193]. According to Theorem 12.28, if f(x)
is continuous, 2π periodic, and piecewise C1, its Fourier series converges uniformly to f(x),
so

f(x) =

∞∑

k=−∞

ck e i kx for all − π ≤ x ≤ π.

The same holds for its complex conjugate f(x). Therefore,

| f(x) |2 = f(x) f(x) = f(x)

∞∑

k=−∞

ck e− i kx =

∞∑

k=−∞

ck f(x) e− i kx,

which also converges uniformly by (12.91). Equation (12.92) permits us to integrate both
sides from −π to π, yielding

‖ f ‖2 =
1

2π

∫ π

−π

| f(x) |2 dx =
∞∑

k=−∞

1

2π

∫ π

−π

ck f(x) e− i kx dx =
∞∑

k=−∞

ck ck =
∞∑

k=−∞

| ck |
2.

Therefore, Plancherel’s identity (12.113) holds for any continuous function. With some
additional technical work, this result is used to establish the validity of Plancherel’s formula
for all f ∈ L2, the key step being to suitably approximate f by continuous functions. With
this in hand, completeness is an immediate consequence of Theorem 12.39. Q.E.D.

Pointwise Convergence

Let us finally turn to the proof of the Pointwise Convergence Theorem 12.7. The
goal is to prove that, under the appropriate hypotheses on f(x), namely 2π periodic and
piecewise C1, the limit of the partial Fourier sums is

lim
n→∞

sn(x) = 1
2

[
f(x+) + f(x−)

]
. (12.118)

We begin by substituting the formulae (12.56) for the complex Fourier coefficients into the
formula (12.102) for the nth partial sum:

sn(x) =

n∑

k=−n

ck e i kx =

n∑

k=−n

(
1

2π

∫ π

−π

f(y) e− i ky dy

)
e i kx

=
1

2π

∫ π

−π

f(y)
n∑

k=−n

e i k(x−y) dy.

We can then use the geometric summation formula (12.63) to evaluate the result:

sn(x) =
1

2π

∫ π

−π

f(y)
sin
(
n + 1

2

)
(x− y)

sin 1
2 (x− y)

dy

=
1

2π

∫ x+π

x−π

f(x + y)
sin
(
n + 1

2

)
y

sin 1
2y

dy =
1

2π

∫ π

−π

f(x + y)
sin
(
n + 1

2

)
y

sin 1
2y

dy.
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The second equality is the result of changing the integration variable from y to x + y;
the final equality follows since the integrand is 2π periodic, and so its integrals over any

interval of length 2π all have the same value; see Exercise .

Thus, to prove (12.118), it suffices to show that

lim
n→∞

1

π

∫ π

0

f(x + y)
sin
(
n + 1

2

)
y

sin 1
2y

dy = f(x+),

lim
n→∞

1

π

∫ 0

−π

f(x + y)
sin
(
n + 1

2

)
y

sin 1
2y

dy = f(x−).

(12.119)

The proofs of the two formulae are identical, and so we concentrate on the first. Since the
integrand is even,

1

π

∫ π

0

sin
(
n + 1

2

)
y

sin 1
2y

dy =
1

2π

∫ π

−π

sin
(
n + 1

2

)
y

sin 1
2y

dy = 1,

by equation (12.65). Multiplying this formula by f(x+) and substracting off the right hand
side leads to

lim
n→∞

1

π

∫ π

0

f(x + y)− f(x+)

sin 1
2y

sin
(
n + 1

2

)
y dy = 0, (12.120)

which we now proceed to prove. We claim that, for each fixed value of x, the function

g(y) =
f(x + y)− f(x+)

sin 1
2y

is piecewise continuous for all 0 ≤ y ≤ π. Owing to our hypotheses on f(x), the only
problematic point is when y = 0, but then, by l’Hôpital’s rule (for one-sided limits),

lim
y → 0+

g(y) = lim
y → 0+

f(x + y)− f(x+)

sin 1
2y

= lim
y → 0+

f ′(x + y)
1
2 cos 1

2y
= 2 f ′(x+).

Consequently, (12.120) will be established if we can show that

lim
n→∞

1

π

∫ π

0

g(y) sin
(
n + 1

2

)
y dy = 0 (12.121)

whenever g is piecewise continuous. Were it not for the extra 1
2 , this would immediately

follow from the simplified Riemann–Lebesgue Lemma 12.36. More honestly, we can invoke
the addition formula for sin

(
n + 1

2

)
y to write

1

π

∫ π

0

g(y) sin
(
n + 1

2

)
y dy =

1

π

∫ π

0

(
g(y) sin 1

2 y
)
cos ny dy +

1

π

∫ π

0

(
g(y) cos 1

2 y
)
sinny dy

The first integral is the nth Fourier cosine coefficient for the piecewise continuous function
g(y) sin 1

2 y, while the second integral is the nth Fourier sine coefficient for the piecewise
continuous function g(y) cos 1

2 y. Lemma 12.36 implies that both of these converge to zero
as n → ∞, and hence (12.121) holds. This completes the proof, establishing pointwise
convergence of the Fourier series. Q.E.D.
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Remark : An alternative approach to the last part of the proof is to use the general
Riemann–Lebesgue Lemma, whose proof can be found in [62, 193].

Lemma 12.42. Suppose g(x) is piecewise continuous on [a, b ]. Then

0 = lim
ω →∞

∫ b

a

g(x) e i ωx dx =

∫ b

a

g(x) cosωx dx + i

∫ b

a

g(x) sinωxdx. (12.122)

Intuitively, as the frequency ω gets larger and larger, the increasingly rapid oscillations
in e i ωx tend to cancel each other out. In mathematical language, the Riemann–Lebesgue
formula (12.122) says that, as ω → ∞, the integrand g(x) e i ωx converges weakly to 0;
we saw the same phenomenon in the weak convergence of the Fourier series of the delta
function (12.61).
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Chapter 13

Fourier Analysis

In addition to their inestimable importance in mathematics and its applications,
Fourier series also serve as the entry point into the wonderful world of Fourier analy-
sis and its wide-ranging extensions and generalizations. An entire industry is devoted to
further developing the theory and enlarging the scope of applications of Fourier–inspired
methods. New directions in Fourier analysis continue to be discovered and exploited in
a broad range of physical, mathematical, engineering, chemical, biological, financial, and
other systems. In this chapter, we will concentrate on four of the most important variants:
discrete Fourier sums leading to the Fast Fourier Transform (FFT); the modern theory
of wavelets; the Fourier transform; and, finally, its cousin, the Laplace transform. In ad-
dition, more general types of eigenfunction expansions associated with partial differential
equations in higher dimensions will appear in the following chapters.

Modern digital media, such as CD’s, DVD’s and MP3’s, are based on discrete data,
not continuous functions. One typically samples an analog signal at equally spaced time
intervals, and then works exclusively with the resulting discrete (digital) data. The asso-
ciated discrete Fourier representation re-expresses the data in terms of sampled complex
exponentials; it can, in fact, be handled by finite-dimensional vector space methods, and
so, technically, belongs back in the linear algebra portion of this text. However, the insight
gained from the classical continuous Fourier theory proves to be essential in understand-
ing and analyzing its discrete digital counterpart. An important application of discrete
Fourier sums is in signal and image processing. Basic data compression and noise removal
algorithms are applied to the sample’s discrete Fourier coefficients, acting on the obser-
vation that noise tends to accumulate in the high frequency Fourier modes, while most
important features are concentrated at low frequencies. The first Section 13.1 develops
the basic Fourier theory in this discrete setting, culminating in the Fast Fourier Transform
(FFT), which produces an efficient numerical algorithm for passing between a signal and
its discrete Fourier coefficients.

One of the inherent limitations of classical Fourier methods, both continuous and
discrete, is that they are not well adapted to localized data. (In physics, this lack of
localization is the basis of the Heisenberg Uncertainty Principle.) As a result, Fourier-based
signal processing algorithms tend to be inaccurate and/or inefficient when confronting
highly localized signals or images. In the second section, we introduce the modern theory
of wavelets, which is a recent extension of Fourier analysis that more naturally incorporates
multiple scales and localization. Wavelets are playing an increasingly dominant role in
many modern applications; for instance, the new JPEG digital image compression format
is based on wavelets, as are the computerized FBI fingerprint data used in law enforcement
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in the United States.

Spectral analysis of non-periodic functions defined on the entire real line requires re-
placing the Fourier series by a limiting Fourier integral. The resulting Fourier transform
plays an essential role in functional analysis, in the analysis of ordinary and partial differ-
ential equations, and in quantum mechanics, data analysis, signal processing, and many
other applied fields. In Section 13.3, we introduce the most important applied features of
the Fourier transform.

The closely related Laplace transform is a basic tool in engineering applications. To
mathematicians, the Fourier transform is the more fundamental of the two, while the
Laplace transform is viewed as a certain real specialization. Both transforms change differ-
entiation into multiplication, thereby converting linear differential equations into algebraic
equations. The Fourier transform is primarily used for solving boundary value problems
on the real line, while initial value problems, particularly those involving discontinuous
forcing terms, are effectively handled by the Laplace transform.

13.1. Discrete Fourier Analysis and the Fast Fourier Transform.

In modern digital media — audio, still images or video — continuous signals are
sampled at discrete time intervals before being processed. Fourier analysis decomposes the
sampled signal into its fundamental periodic constituents — sines and cosines, or, more
conveniently, complex exponentials. The crucial fact, upon which all of modern signal
processing is based, is that the sampled complex exponentials form an orthogonal basis.
The section introduces the Discrete Fourier Transform, and concludes with an introduction
to the Fast Fourier Transform, an efficient algorithm for computing the discrete Fourier
representation and reconstructing the signal from its Fourier coefficients.

We will concentrate on the one-dimensional version here. Let f(x) be a function
representing the signal, defined on an interval a ≤ x ≤ b. Our computer can only store its
measured values at a finite number of sample points a ≤ x0 < x1 < · · · < xn ≤ b. In the
simplest and, by far, the most common case, the sample points are equally spaced, and so

xj = a + j h, j = 0, . . . , n, where h =
b− a

n

indicates the sample rate. In signal processing applications, x represents time instead of
space, and the xj are the times at which we sample the signal f(x). Sample rates can be
very high, e.g., every 10–20 milliseconds in current speech recognition systems.

For simplicity, we adopt the “standard” interval of 0 ≤ x ≤ 2π, and the n equally
spaced sample points†

x0 = 0, x1 =
2π

n
, x2 =

4π

n
, . . . xj =

2j π

n
, . . . xn−1 =

2(n− 1)π

n
. (13.1)

(Signals defined on other intervals can be handled by simply rescaling the interval to have
length 2π.) Sampling a (complex-valued) signal or function f(x) produces the sample

† We will find it convenient to omit the final sample point xn = 2π from consideration.
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Figure 13.1. Sampling e− i x and e7 i x on n = 8 sample points.

vector

f =
(
f0, f1, . . . , fn−1

)T
=
(
f(x0), f(x1), . . . , f(xn−1)

)T
,

where

fj = f(xj) = f

(
2j π

n

)
. (13.2)

Sampling cannot distinguish between functions that have the same values at all of the
sample points — from the sampler’s point of view they are identical. For example, the
periodic complex exponential function

f(x) = e i nx = cosnx + i sin nx

has sampled values

fj = f

(
2j π

n

)
= exp

(
in

2j π

n

)
= e2j π i = 1 for all j = 0, . . . , n− 1,

and hence is indistinguishable from the constant function c(x) ≡ 1 — both lead to the

same sample vector ( 1, 1, . . . , 1 )
T
. This has the important implication that sampling at n

equally spaced sample points cannot detect periodic signals of frequency n. More generally,
the two complex exponential signals

e i (k+n)x and e i kx

are also indistinguishable when sampled. This has the important consequence that we
need only use the first n periodic complex exponential functions

f0(x) = 1, f1(x) = e i x, f2(x) = e2 i x, . . . fn−1(x) = e(n−1) i x, (13.3)

in order to represent any 2π periodic sampled signal. In particular, exponentials e− i kx of
“negative” frequency can all be converted into positive versions, namely e i (n−k)x, by the
same sampling argument. For example,

e− i x = cosx− i sin x and e(n−1) i x = cos(n− 1)x + i sin(n− 1)x
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have identical values on the sample points (13.1). However, off of the sample points, they
are quite different; the former is slowly varying, while the latter represents a high frequency
oscillation. In Figure 13.1, we compare e− i x and e7 i x when there are n = 8 sample values,
indicated by the dots on the graphs. The top row compares the real parts, cos x and cos 7x,
while the bottom row compares the imaginary parts, sinx and − sin 7x. Note that both
functions have the same pattern of sample values, even though their overall behavior is
strikingly different.

This effect is commonly referred to as aliasing†. If you view a moving particle under
a stroboscopic light that flashes only eight times, you would be unable to determine which
of the two graphs the particle was following. Aliasing is the cause of a well-known artifact
in movies: spoked wheels can appear to be rotating backwards when our brain interprets
the discretization of the high frequency forward motion imposed by the frames of the
film as an equivalently discretized low frequency motion in reverse. Aliasing also has
important implications for the design of music CD’s. We must sample an audio signal at
a sufficiently high rate that all audible frequencies can be adequately represented. In fact,
human appreciation of music also relies on inaudible high frequency tones, and so a much
higher sample rate is actually used in commercial CD design. But the sample rate that was
selected remains controversial; hi fi aficionados complain that it was not set high enough
to fully reproduce the musical quality of an analog LP record!

The discrete Fourier representation decomposes a sampled function f(x) into a linear
combination of complex exponentials. Since we cannot distinguish sampled exponentials
of frequency higher than n, we only need consider a finite linear combination

f(x) ∼ p(x) = c0 + c1 e i x + c2 e2 i x + · · · + cn−1 e(n−1) i x =

n−1∑

k=0

ck e i kx (13.4)

of the first n exponentials (13.3). The symbol ∼ in (13.4) means that the function f(x)
and the sum p(x) agree on the sample points:

f(xj) = p(xj), j = 0, . . . , n− 1. (13.5)

Therefore, p(x) can be viewed as a (complex-valued) interpolating trigonometric polynomial

of degree ≤ n− 1 for the sample data fj = f(xj).

Remark : If f(x) is real, then p(x) is also real on the sample points, but may very well
be complex-valued in between. To avoid this unsatisfying state of affairs, we will usually
discard its imaginary component, and regard the real part of p(x) as “the” interpolating
trigonometric polynomial. On the other hand, sticking with a purely real construction
unnecessarily complicates the analysis, and so we will retain the complex exponential form
(13.4) of the discrete Fourier sum.

† In computer graphics, the term “aliasing” is used in a much broader sense that covers a
variety of artifacts introduced by discretization — particularly, the jagged appearance of lines
and smooth curves on a digital monitor.
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Since we are working in the finite-dimensional vector space C
n throughout, we may

reformulate the discrete Fourier series in vectorial form. Sampling the basic exponentials
(13.3) produces the complex vectors

ωk =
(
e i kx0 , e i kx1 , e i kx2 , . . . , e i kxn

)T

=
(

1, e2kπ i /n, e4kπ i /n, . . . , e2(n−1)kπ i /n
)T

,
k = 0, . . . , n− 1. (13.6)

The interpolation conditions (13.5) can be recast in the equivalent vector form

f = c0 ω0 + c1 ω1 + · · · + cn−1 ωn−1. (13.7)

In other words, to compute the discrete Fourier coefficients c0, . . . , cn−1 of f , all we need
to do is rewrite its sample vector f as a linear combination of the sampled exponential
vectors ω0, . . . ,ωn−1.

Now, as with continuous Fourier series, the absolutely crucial property is the orthonor-
mality of the basis elements ω0, . . . ,ωn−1. Were it not for the power of orthogonality,
Fourier analysis might have remained a mere mathematical curiosity, rather than today’s
indispensable tool.

Proposition 13.1. The sampled exponential vectors ω0, . . . ,ωn−1 form an orthonor-

mal basis of C
n with respect to the inner product

〈 f ,g 〉 =
1

n

n−1∑

j =0

fj gj =
1

n

n−1∑

j =0

f(xj) g(xj) , f ,g ∈ C
n. (13.8)

Remark : The inner product (13.8) is a rescaled version of the standard Hermitian dot
product (3.90) between complex vectors. We can interpret the inner product between the
sample vectors f ,g as the average of the sampled values of the product signal f(x) g(x).

Remark : As usual, orthogonality is no accident. Just as the complex exponentials
are eigenfunctions for a self-adjoint boundary value problem, so their discrete sampled
counterparts are eigenvectors for a self-adjoint matrix eigenvalue problem; details can be
found in Exercise 8.4.12. Here, though, to keep the discussion on track, we shall outline a
direct proof.

Proof : The crux of the matter relies on properties of the remarkable complex numbers

ζn = e2π i /n = cos
2π

n
+ i sin

2π

n
, where n = 1, 2, 3, . . . . (13.9)

Particular cases include

ζ2 = −1, ζ3 = −
√

3
2 + 1

2 i , ζ4 = i , and ζ8 =
√

2
2 +

√
2

2 i . (13.10)

The nth power of ζn is

ζn
n =

(
e2π i /n

)
n = e2π i = 1,

5/1/06 695 c© 2006 Peter J. Olver



ζ0
5 = 1

ζ5

ζ2
5

ζ3
5

ζ4
5

Figure 13.2. The Fifth Roots of Unity.

and hence ζn is one of the complex nth roots of unity : ζn = n
√

1. There are, in fact, n
different complex nth roots of 1, including 1 itself, namely the powers of ζn:

ζk
n = e2 k π i /n = cos

2 k π

n
+ i sin

2 k π

n
, k = 0, . . . , n− 1. (13.11)

Since it generates all the others, ζn is known as the primitive nth root of unity . Geometri-
cally, the nth roots (13.11) lie on the vertices of a regular unit n–gon in the complex plane;
see Figure 13.2. The primitive root ζn is the first vertex we encounter as we go around the
n–gon in a counterclockwise direction, starting at 1. Continuing around, the other roots
appear in their natural order ζ2

n, ζ3
n, . . . , ζn−1

n , and finishing back at ζn
n = 1. The complex

conjugate of ζn is the “last” nth root

e−2π i /n = ζn =
1

ζn

= ζn−1
n = e2(n−1)π i /n. (13.12)

The complex numbers (13.11) are a complete set of roots of the polynomial zn − 1,
which can therefore be factored:

zn − 1 = (z − 1)(z − ζn)(z − ζ2
n) · · · (z − ζn−1

n ).

On the other hand, elementary algebra provides us with the real factorization

zn − 1 = (z − 1)(1 + z + z2 + · · · + zn−1).

Comparing the two, we conclude that

1 + z + z2 + · · · + zn−1 = (z − ζn)(z − ζ2
n) · · · (z − ζn−1

n ).

Substituting z = ζk
n into both sides of this identity, we deduce the useful formula

1 + ζk
n + ζ2k

n + · · · + ζ(n−1)k
n =

{
n, k = 0,

0, 0 < k < n.
(13.13)

Since ζn+k
n = ζk

n, this formula can easily be extended to general integers k; the sum is
equal to n if n evenly divides k and is 0 otherwise.
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Now, let us apply what we’ve learned to prove Proposition 13.1. First, in view of
(13.11), the sampled exponential vectors (13.6) can all be written in terms of the nth roots
of unity:

ωk =
(
1, ζk

n, ζ2k
n , ζ3k

n , . . . , ζ(n−1)k
n

)T
, k = 0, . . . , n− 1. (13.14)

Therefore, applying (13.12, 13), we conclude that

〈ωk ,ωl 〉 =
1

n

n−1∑

j =0

ζj k
n ζjl

n =
1

n

n−1∑

j =0

ζj(k−l)
n =

{
1, k = l,

0, k 6= l,
0 ≤ k, l < n,

which establishes orthonormality of the sampled exponential vectors. Q.E.D.

Orthonormality of the basis vectors implies that we can immediately compute the
Fourier coefficients in the discrete Fourier sum (13.4) by taking inner products:

ck = 〈 f ,ωk 〉 =
1

n

n−1∑

j =0

fj e i kxj =
1

n

n−1∑

j =0

fj e− i kxj =
1

n

n−1∑

j =0

ζ−j k
n fj . (13.15)

In other words, the discrete Fourier coefficient ck is obtained by averaging the sampled val-
ues of the product function f(x) e− i kx. The passage from a signal to its Fourier coefficients
is known as the Discrete Fourier Transform or DFT for short. The reverse procedure of
reconstructing a signal from its discrete Fourier coefficients via the sum (13.4) (or (13.7))
is known as the Inverse Discrete Fourier Transform or IDFT. The Discrete Fourier Trans-
form and its inverse define mutually inverse linear transformations on the space C

n, whose
matrix representations can be found in Exercise 5.7.9.

Example 13.2. If n = 4, then ζ4 = i . The corresponding sampled exponential
vectors

ω0 =




1
1
1
1


, ω1 =




1
i
−1
− i


, ω2 =




1
−1

1
−1


, ω3 =




1
− i
−1

i


,

form an orthonormal basis of C
4 with respect to the averaged Hermitian dot product

〈v ,w 〉 = 1
4

(
v0 w0 + v1 w1 + v2 w2 + v3 w3

)
, where v =




v0

v1

v2

v3


, w =




w0

w1

w2

w3


.

Given the sampled function values

f0 = f(0), f1 = f
(

1
2 π
)
, f2 = f(π), f3 = f

(
3
2 π
)
,

we construct the discrete Fourier representation

f = c0 ω0 + c1 ω1 + c2 ω2 + c3 ω3, (13.16)

where

c0 = 〈 f ,ω0 〉 =
1
4 (f0 + f1 + f2 + f3), c1 = 〈 f ,ω1 〉 =

1
4 (f0 − i f1 − f2 + i f3),

c2 = 〈 f ,ω2 〉 =
1
4 (f0 − f1 + f2 − f3), c3 = 〈 f ,ω3 〉 =

1
4 (f0 + i f1 − f2 − i f3).
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Figure 13.3. The Discrete Fourier Representation of x2 − 2πx.

We interpret this decomposition as the complex exponential interpolant

f(x) ∼ p(x) = c0 + c1 e i x + c2 e2 i x + c3 e3 i x

that agrees with f(x) on the sample points.

For instance, if
f(x) = 2πx− x2,

then
f0 = 0., f1 = 7.4022, f2 = 9.8696, f3 = 7.4022,

and hence

c0 = 6.1685, c1 = −2.4674, c2 = −1.2337, c3 = −2.4674.

Therefore, the interpolating trigonometric polynomial is given by the real part of

p(x) = 6.1685− 2.4674 e i x − 1.2337 e2 i x − 2.4674 e3 i x, (13.17)

namely,

Re p(x) = 6.1685− 2.4674 cos x− 1.2337 cos 2x− 2.4674 cos 3x. (13.18)

In Figure 13.3 we compare the function, with the interpolation points indicated, and dis-
crete Fourier representations (13.18) for both n = 4 and n = 16 points. The resulting
graphs point out a significant difficulty with the Discrete Fourier Transform as developed
so far. While the trigonometric polynomials do indeed correctly match the sampled func-
tion values, their pronounced oscillatory behavior makes them completely unsuitable for
interpolation away from the sample points.

However, this difficulty can be rectified by being a little more clever. The problem is
that we have not been paying sufficient attention to the frequencies that are represented
in the Fourier sum. Indeed, the graphs in Figure 13.3 might remind you of our earlier
observation that, due to aliasing, low and high frequency exponentials can have the same
sample data, but differ wildly in between the sample points. While the first half of the
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Figure 13.4. The Low Frequency Discrete Fourier Representation of x2 − 2πx.

summands in (13.4) represent relatively low frequencies, the second half do not, and can be
replaced by equivalent lower frequency, and hence less oscillatory exponentials. Namely, if
0 < k ≤ 1

2 n, then e− i kx and e i (n−k)x have the same sample values, but the former is of
lower frequency than the latter. Thus, for interpolatory purposes, we should replace the
second half of the summands in the Fourier sum (13.4) by their low frequency alternatives.
If n = 2m + 1 is odd, then we take

p̂(x) = c−m e− i mx+ · · ·+c−1 e− i x+c0+c1 e i x+ · · ·+cm e i mx =

m∑

k=−m

ck e i kx (13.19)

as the equivalent low frequency interpolant. If n = 2m is even — which is the most
common case occurring in applications — then

p̂(x) = c−m e− i mx+ · · · +c−1 e− i x+c0+c1 e i x+ · · · +cm−1 e i (m−1)x =
m−1∑

k=−m

ck e i kx

(13.20)
will be our choice. (It is a matter of personal taste whether to use e− i mx or e i mx to
represent the highest frequency term.) In both cases, the Fourier coefficients with negative
indices are the same as their high frequency alternatives:

c−k = cn−k = 〈 f ,ωn−k 〉 = 〈 f ,ω−k 〉, (13.21)

where ω−k = ωn−k is the sample vector for e− i kx ∼ e i (n−k)x.

Returning to the previous example, for interpolating purposes, we should replace
(13.17) by the equivalent low frequency interpolant

p̂(x) = −1.2337 e−2 i x − 2.4674 e− i x + 6.1685− 2.4674 e i x, (13.22)

with real part
Re p̂(x) = 6.1685− 4.9348 cos x− 1.2337 cos 2x.

Graphs of the n = 4 and 16 low frequency trigonometric interpolants can be seen in
Figure 13.4. Thus, by utilizing only the lowest frequency exponentials, we successfully
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suppress the aliasing artifacts, resulting in a quite reasonable trigonometric interpolant to
the given function.

Remark : The low frequency version also serves to unravel the reality of the Fourier
representation of a real function f(x). Since ω−k = ωk, formula (13.21) implies that
c−k = ck, and so the common frequency terms

c−k e− i kx + ck e i kx = ak cos kx + bk sin kx

add up to a real trigonometric function. Therefore, the odd n interpolant (13.19) is a real
trigonometric polynomial, whereas in the even version (13.20) only the highest frequency
term c−m e− i mx produces a complex term — which is, in fact, 0 on the sample points.

Compression and Noise Removal

In a typical experimental signal, noise primarily affects the high frequency modes,
while the authentic features tend to appear in the low frequencies. Think of the hiss and
static you hear on an AM radio station or a low quality audio recording. Thus, a very
simple, but effective, method for denoising a corrupted signal is to decompose it into its
Fourier modes, as in (13.4), and then discard the high frequency constituents. A similar
idea underlies the Dolby©T recording system used on most movie soundtracks: during
the recording process, the high frequency modes are artificially boosted, so that scaling
them back when showing the movie in the theater has the effect of eliminating much of
the extraneous noise. The one design issue is the specification of a cut-off between low
and high frequency, that is, between signal and noise. This choice will depend upon the
properties of the measured signal, and is left to the discretion of the signal processor.

A correct implementation of the denoising procedure is facilitated by using the un-
aliased forms (13.19, 20) of the trigonometric interpolant, in which the low frequency
summands only appear when | k | is small. In this version, to eliminate high frequency
components, we replace the full summation by

ql(x) =

l∑

k=− l

ck e i kx, (13.23)

where l < 1
2 (n + 1) specifies the selected cut-off frequency between signal and noise. The

2 l + 1 ¿ n low frequency Fourier modes retained in (13.23) will, in favorable situations,
capture the essential features of the original signal while simultaneously eliminating the
high frequency noise.

In Figure 13.5 we display a sample signal followed by the same signal corrupted by
adding in random noise. We use n = 28 = 256 sample points in the discrete Fourier repre-
sentation, and to remove the noise, we retain only the 2 l+1 = 11 lowest frequency modes.
In other words, instead of all n = 512 Fourier coefficients c−256, . . . , c−1, c0, c1, . . . , c255, we
only compute the 11 lowest order ones c−5, . . . , c5. Summing up just those 11 exponentials
produces the denoised signal q(x) = c−5 e−5 i x + · · · + c5 e5 i x. To compare, we plot both
the original signal and the denoised version on the same graph. In this case, the maximal
deviation is less than .15 over the entire interval [0, 2π ].
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Figure 13.5. Denoising a Signal.
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Figure 13.6. Compressing a Signal.

The same idea underlies many data compression algorithms for audio recordings, digi-
tal images and, particularly, video. The goal is efficient storage and/or transmission of the
signal. As before, we expect all the important features to be contained in the low frequency
constituents, and so discarding the high frequency terms will, in favorable situations, not
lead to any noticeable degradation of the signal or image. Thus, to compress a signal
(and, simultaneously, remove high frequency noise), we retain only its low frequency dis-
crete Fourier coefficients. The signal is reconstructed by summing the associated truncated
discrete Fourier series (13.23). A mathematical justification of Fourier-based compression
algorithms relies on the fact that the Fourier coefficients of smooth functions tend rapidly
to zero — the smoother the function, the faster the decay rate. Thus, the small high
frequency Fourier coefficients will be of negligible importance.

In Figure 13.6, the same signal is compressed by retaining, respectively, 2 l + 1 = 21
and 2 l + 1 = 7 Fourier coefficients only instead of all n = 512 that would be required for
complete accuracy. For the case of moderate compression, the maximal deviation between
the signal and the compressed version is less than 1.5 × 10−4 over the entire interval,
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while even the highly compressed version deviates at most .05 from the original signal. Of
course, the lack of any fine scale features in this particular signal means that a very high
compression can be achieved — the more complicated or detailed the original signal, the
more Fourier modes need to be retained for accurate reproduction.

The Fast Fourier Transform

While one may admire an algorithm for its intrinsic beauty, in the real world, the
bottom line is always efficiency of implementation: the less total computation, the faster
the processing, and hence the more extensive the range of applications. Orthogonality is
the first and most important feature of many practical linear algebra algorithms, and is the

critical feature of Fourier analysis. Still, even the power of orthogonality reaches its limits
when it comes to dealing with truly large scale problems such as three-dimensional medical
imaging or video processing. In the early 1960’s, James Cooley and John Tukey, [43],
discovered† a much more efficient approach to the Discrete Fourier Transform, exploiting
the rather special structure of the sampled exponential vectors. The resulting algorithm is
known as the Fast Fourier Transform, often abbreviated FFT, and its discovery launched
the modern revolution in digital signal and data processing, [29, 30].

In general, computing all the discrete Fourier coefficients (13.15) of an n times sampled
signal requires a total of n2 complex multiplications and n2 − n complex additions. Note
also that each complex addition

z + w = (x + i y) + (u + i v) = (x + u) + i (y + v) (13.24)

generally requires two real additions, while each complex multiplication

zw = (x + i y)(u + i v) = (xu− y v) + i (xv + yu) (13.25)

requires 4 real multiplications and 2 real additions, or, by employing the alternative formula

xv + yu = (x + y)(u + v)− xu− y v (13.26)

for the imaginary part, 3 real multiplications and 5 real additions. (The choice of formula
(13.25) or (13.26) will depend upon the processor’s relative speeds of multiplication and
addition.) Similarly, given the Fourier coefficients c0, . . . , cn−1, reconstruction of the sam-
pled signal via (13.4) requires n2−n complex multiplications and n2−n complex additions.
As a result, both computations become quite labor intensive for large n. Extending these
ideas to multi-dimensional data only exacerbates the problem.

In order to explain the method without undue complication, we return to the original,
aliased form of the discrete Fourier representation (13.4). (Once one understands how the
FFT works, one can easily adapt the algorithm to the low frequency version (13.20).) The
seminal observation is that if the number of sample points

n = 2m

† In fact, the key ideas can be found in Gauss’ hand computations in the early 1800’s, but his
insight was not fully appreciated until modern computers arrived on the scene.
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is even, then the primitive mth root of unity ζm = m
√

1 equals the square of the primitive
nth root:

ζm = ζ2
n.

We use this fact to split the summation (13.15) for the order n discrete Fourier coefficients
into two parts, collecting together the even and the odd powers of ζk

n:

ck =
1

n

(
f0 + f1 ζ−k

n + f2 ζ−2k
n + · · · + fn−1 ζ−(n−1)k

n

)

=
1

n

(
f0 + f2 ζ−2k

n + f4 ζ−4k
n + · · · + f2m−2 ζ−(2m−2)k

n

)
+

+ ζ−k
n

1

n

(
f1 + f3 ζ−2k

n + f5 ζ−4k
n + · · · + f2m−1 ζ−(2m−2)k

n

)

=
1

2

{
1

m

(
f0 + f2 ζ−k

m + f4 ζ−2k
m + · · · + f2m−2 ζ−(m−1)k

m

)}
+

+
ζ−k
n

2

{
1

m

(
f1 + f3 ζ−k

m + f5 ζ−2k
m + · · · + f2m−1 ζ−(m−1)k

m

)}
.

(13.27)

Now, observe that the expressions in braces are the order m Fourier coefficients for the
sample data

fe =
(
f0, f2, f4, . . . , f2m−2

)T
=
(
f(x0), f(x2), f(x4), . . . , f(x2m−2)

)T
,

fo =
(
f1, f3, f5, . . . , f2m−1

)T
=
(
f(x1), f(x3), f(x5), . . . , f(x2m−1)

)T
.

(13.28)

Note that fe is obtained by sampling f(x) on the even sample points x2j , while fo is
obtained by sampling the same function f(x), but now at the odd sample points x2j+1. In
other words, we are splitting the original sampled signal into two “half-sampled” signals
obtained by sampling on every other point. The even and odd Fourier coefficients are

ce
k =

1

m

(
f0 + f2 ζ−k

m + f4 ζ−2k
m + · · · + f2m−2 ζ−(m−1)k

m

)
,

co
k =

1

m

(
f1 + f3 ζ−k

m + f5 ζ−2k
m + · · · + f2m−1 ζ−(m−1)k

m

)
,

k = 0, . . . ,m− 1.

(13.29)

Since they contain just m data values, both the even and odd samples require only m
distinct Fourier coefficients, and we adopt the identification

ce
k+m = ce

k, co
k+m = co

k, k = 0, . . . ,m− 1. (13.30)

Therefore, the order n = 2m discrete Fourier coefficients (13.27) can be constructed from
a pair of order m discrete Fourier coefficients via

ck = 1
2

(
ce
k + ζ−k

n co
k

)
, k = 0, . . . , n− 1. (13.31)

Now if m = 2 l is also even, then we can play the same game on the order m Fourier
coefficients (13.29), reconstructing each of them from a pair of order l discrete Fourier
coefficients — obtained by sampling the signal at every fourth point. If n = 2r is a power
of 2, then this game can be played all the way back to the start, beginning with the trivial
order 1 discrete Fourier representation, which just samples the function at a single point.
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The result is the desired algorithm. After some rearrangement of the basic steps, we arrive
at the Fast Fourier Transform, which we now present in its final form.

We begin with a sampled signal on n = 2r sample points. To efficiently program
the Fast Fourier Transform, it helps to write out each index 0 ≤ j < 2r in its binary (as
opposed to decimal) representation

j = jr−1 jr−2 . . . j2 j1 j0, where jν = 0 or 1; (13.32)

the notation is shorthand for its r digit binary expansion

j = j0 + 2j1 + 4j2 + 8j3 + · · · + 2r−1 jr−1.

We then define the bit reversal map

ρ(jr−1 jr−2 . . . j2 j1 j0) = j0 j1 j2 . . . jr−2 jr−1. (13.33)

For instance, if r = 5, and j = 13, with 5 digit binary representation 01101, then ρ(j) = 22
has the reversed binary representation 10110. Note especially that the bit reversal map
ρ = ρr depends upon the original choice of r = log2 n.

Secondly, for each 0 ≤ k < r, define the maps

αk(j) = jr−1 . . . jk+1 0 jk−1 . . . j0,

βk(j) = jr−1 . . . jk+1 1 jk−1 . . . j0 = αk(j) + 2k,
for j = jr−1 jr−2 . . . j1 j0.

(13.34)
In other words, αk(j) sets the kth binary digit of j to 0, while βk(j) sets it to 1. In the
preceding example, α2(13) = 9, with binary form 01001, while β2(13) = 13 with binary
form 01101. The bit operations (13.33, 34) are especially easy to implement on modern
binary computers.

Given a sampled signal f0, . . . , fn−1, its discrete Fourier coefficients c0, . . . , cn−1 are
computed by the following iterative algorithm:

c
(0)
j = fρ(j), c

(k+1)
j = 1

2

(
c
(k)
αk(j) + ζ−j

2k+1 c
(k)
βk(j)

)
,

j = 0, . . . , n− 1,

k = 0, . . . , r − 1,
(13.35)

in which ζ2k+1 is the primitive 2k+1 root of unity. The final output of the iterative proce-
dure, namely

cj = c
(r)
j , j = 0, . . . , n− 1, (13.36)

are the discrete Fourier coefficients of our signal. The preprocessing step of the algorithm,

where we define c
(0)
j , produces a more convenient rearrangement of the sample values.

The subsequent steps successively combine the Fourier coefficients of the appropriate even
and odd sampled subsignals together, reproducing (13.27) in a different notation. The
following example should help make the overall process clearer.

Example 13.3. Consider the case r = 3, and so our signal has n = 23 = 8 sampled
values f0, f1, . . . , f7. We begin the process by rearranging the sample values

c
(0)
0 = f0, c

(0)
1 = f4, c

(0)
2 = f2, c

(0)
3 = f6, c

(0)
4 = f1, c

(0)
5 = f5, c

(0)
6 = f3, c

(0)
7 = f7,
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in the order specified by the bit reversal map ρ. For instance ρ(3) = 6, or, in binary
notation, ρ(011) = 110.

The first stage of the iteration is based on ζ2 = −1. Equation (13.35) gives

c
(1)
0 = 1

2 (c
(0)
0 + c

(0)
1 ), c

(1)
1 = 1

2 (c
(0)
0 − c

(0)
1 ), c

(1)
2 = 1

2 (c
(0)
2 + c

(0)
3 ), c

(1)
3 = 1

2 (c
(0)
2 − c

(0)
3 ),

c
(1)
4 = 1

2 (c
(0)
4 + c

(0)
5 ), c

(1)
5 = 1

2 (c
(0)
4 − c

(0)
5 ), c

(1)
6 = 1

2 (c
(0)
6 + c

(0)
7 ), c

(1)
7 = 1

2 (c
(0)
6 − c

(0)
7 ),

where we combine successive pairs of the rearranged sample values. The second stage of
the iteration has k = 1 with ζ4 = i . We find

c
(2)
0 = 1

2 (c
(1)
0 + c

(1)
2 ), c

(2)
1 = 1

2 (c
(1)
1 − i c

(1)
3 ), c

(2)
2 = 1

2 (c
(1)
0 − c

(1)
2 ), c

(2)
3 = 1

2 (c
(1)
1 + i c

(1)
3 ),

c
(2)
4 = 1

2 (c
(1)
4 + c

(1)
6 ), c

(2)
5 = 1

2 (c
(1)
5 − i c

(1)
7 ), c

(2)
6 = 1

2 (c
(1)
4 − c

(1)
6 ), c

(2)
7 = 1

2 (c
(1)
5 + i c

(1)
7 ).

Note that the indices of the combined pairs of coefficients differ by 2. In the last step,

where k = 2 and ζ8 =
√

2
2 (1 + i ), we combine coefficients whose indices differ by 4 = 22;

the final output

c0 = c
(3)
0 = 1

2 (c
(2)
0 + c

(2)
4 ), c4 = c

(3)
4 = 1

2 (c
(2)
0 − c

(2)
4 ),

c1 = c
(3)
1 = 1

2

(
c
(2)
1 +

√
2

2 (1− i ) c
(2)
5

)
, c5 = c

(3)
5 = 1

2

(
c
(2)
1 −

√
2

2 (1− i ) c
(2)
5

)
,

c2 = c
(3)
2 = 1

2

(
c
(2)
2 − i c

(2)
6

)
, c6 = c

(3)
6 = 1

2

(
c
(2)
2 + i c

(2)
6

)
,

c3 = c
(3)
3 = 1

2

(
c
(2)
3 −

√
2

2 (1 + i ) c
(2)
7

)
, c7 = c

(3)
7 = 1

2

(
c
(2)
3 +

√
2

2 (1 + i ) c
(2)
7

)
,

is the complete set of discrete Fourier coefficients.

Let us count the number of arithmetic operations required in the Fast Fourier Trans-
form algorithm. At each stage in the computation, we must perform n = 2r complex
additions/subtractions and the same number of complex multiplications. (Actually, the
number of multiplications is slightly smaller since multiplications by ±1 and ± i are ex-
tremely simple. However, this does not significantly alter the final operations count.)
There are r = log2 n stages, and so we require a total of r n = n log2 n complex addi-
tions/subtractions and the same number of multiplications. Now, when n is large, n log2 n
is significantly smaller than n2, which is the number of operations required for the direct
algorithm. For instance, if n = 210 = 1, 024, then n2 = 1, 048, 576, while n log2 n = 10, 240
— a net savings of 99%. As a result, many large scale computations that would be in-
tractable using the direct approach are immediately brought into the realm of feasibility.
This is the reason why all modern implementations of the Discrete Fourier Transform are
based on the FFT algorithm and its variants.

The reconstruction of the signal from the discrete Fourier coefficients c0, . . . , cn−1 is

speeded up in exactly the same manner. The only differences are that we replace ζ−1
n = ζn

by ζn, and drop the factors of 1
2 since there is no need to divide by n in the final result

(13.4). Therefore, we apply the slightly modified iterative procedure

f
(0)
j = cρ(j), f

(k+1)
j = f

(k)
αk(j) + ζj

2k+1 f
(k)
βk(j),

j = 0, . . . , n− 1,

k = 0, . . . , r − 1,
(13.37)
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and finish with

f(xj) = fj = f
(r)
j , j = 0, . . . , n− 1. (13.38)

Example 13.4. The reconstruction formulae in the case of n = 8 = 23 Fourier coef-
ficients c0, . . . , c7, which were computed in Example 13.3, can be implemented as follows.
First, we rearrange the Fourier coefficients in bit reversed order:

f
(0)
0 = c0, f

(0)
1 = c4, f

(0)
2 = c2, f

(0)
3 = c6, f

(0)
4 = c1, f

(0)
5 = c5, f

(0)
6 = c3, f

(0)
7 = c7,

Then we begin combining them in successive pairs:

f
(1)
0 = f

(0)
0 + f

(0)
1 , f

(1)
1 = f

(0)
0 − f

(0)
1 , f

(1)
2 = f

(0)
2 + f

(0)
3 , f

(1)
3 = f

(0)
2 − f

(0)
3 ,

f
(1)
4 = f

(0)
4 + f

(0)
5 , f

(1)
5 = f

(0)
4 − f

(0)
5 , f

(1)
6 = f

(0)
6 + f

(0)
7 , f

(1)
7 = f

(0)
6 − f

(0)
7 .

Next,

f
(2)
0 = f

(1)
0 + f

(1)
2 , f

(2)
1 = f

(1)
1 + i f

(1)
3 , f

(2)
2 = f

(1)
0 − f

(1)
2 , f

(2)
3 = f

(1)
1 − i f

(1)
3 ,

f
(2)
4 = f

(1)
4 + f

(1)
6 , f

(2)
5 = f

(1)
5 + i f

(1)
7 , f

(2)
6 = f

(1)
4 − f

(1)
6 , f

(2)
7 = f

(1)
5 − i f

(1)
7 .

Finally, the sampled signal values are

f(x0) = f
(3)
0 = f

(2)
0 + f

(2)
4 , f(x4) = f

(3)
4 = f

(2)
0 − f

(2)
4 ,

f(x1) = f
(3)
1 = f

(2)
1 +

√
2

2 (1 + i ) f
(2)
5 , f(x5) = f

(3)
5 = f

(2)
1 −

√
2

2 (1 + i ) f
(2)
5 ,

f(x2) = f
(3)
2 = f

(2)
2 + i f

(2)
6 , f(x6) = f

(3)
6 = f

(2)
2 − i f

(2)
6 ,

f(x3) = f
(3)
3 = f

(2)
3 −

√
2

2 (1− i ) f
(2)
7 , f(x7) = f

(3)
7 = f

(2)
3 +

√
2

2 (1− i ) f
(2)
7 .

13.2. Wavelets.

Trigonometric Fourier series, both continuous and discrete, are amazingly powerful,
but they do suffer from one potentially serious defect. The basis functions e i kx = cos kx+
i sin kx are spread out over the entire interval [−π, π ], and so are not well-suited to
processing localized signals — meaning data that are concentrated in a relatively small
regions. Indeed, the most concentrated data of all — a single delta function — has every
Fourier component of equal magnitude in its Fourier series (12.61) and its high degree
of localization is completely obscured. Ideally, one would like to construct a system of
functions that is orthogonal, and so has all the advantages of the Fourier trigonometric
functions, but, in addition, adapts to localized structures in signals. This dream was the
inspiration for the development of the modern theory of wavelets.

The Haar Wavelets

Although the modern era of wavelets started in the mid 1980’s, the simplest example
of a wavelet basis was discovered by the Hungarian mathematician Alfréd Haar in 1910,
[86]. We consider the space of functions (signals) defined the interval [0, 1], equipped with
the standard L2 inner product

〈 f , g 〉 =

∫ 1

0

f(x) g(x) dx. (13.39)

5/1/06 706 c© 2006 Peter J. Olver



-0.2 0.2 0.4 0.6 0.8 1 1.2

-1

-0.5

0.5

1

ϕ1(x)

-0.2 0.2 0.4 0.6 0.8 1 1.2

-1

-0.5

0.5

1

ϕ2(x)

-0.2 0.2 0.4 0.6 0.8 1 1.2

-1

-0.5

0.5

1

ϕ3(x)

-0.2 0.2 0.4 0.6 0.8 1 1.2

-1

-0.5

0.5

1

ϕ4(x)

Figure 13.7. The First Four Haar Wavelets.

This choice is merely for convenience, being slightly better suited to our construction than
[−π, π ] or [0, 2π ]. Moreover, the usual scaling arguments can be used to adapt the wavelet
formulas to any other interval.

The Haar wavelets are certain piecewise constant functions. The first four are graphed
in Figure 13.7 The first is the box function

ϕ1(x) = ϕ(x) =

{
1, 0 < x ≤ 1,

0, otherwise,
(13.40)

known as the scaling function, for reasons that shall appear shortly. Although we are only
interested in the value of ϕ(x) on the interval [0, 1], it will be convenient to extend it, and
all the other wavelets, to be zero outside the basic interval. Its values at the points of
discontinuity, i.e., 0, 1, is not critical, but, unlike the Fourier series midpoint value, it will
be more convenient to consistently choose the left hand limiting value. The second Haar
function

ϕ2(x) = w(x) =





1, 0 < x ≤ 1
2 ,

−1, 1
2 < x ≤ 1,

0, otherwise,

(13.41)

is known as the mother wavelet . The third and fourth Haar functions are compressed
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versions of the mother wavelet:

ϕ3(x) = w(2x) =





1, 0 < x ≤ 1
4 ,

−1, 1
4 < x ≤ 1

2 ,

0, otherwise,

ϕ4(x) = w(2x− 1) =





1, 1
2 < x ≤ 3

4 ,

−1, 3
4 < x ≤ 1,

0, otherwise,

called daughter wavelets. One can easily check, by direct evaluation of the integrals, that
the four Haar wavelet functions are orthogonal with respect to the L2 inner product (13.39).

The scaling transformation x 7→ 2x serves to compress the wavelet function, while
the translation 2x 7→ 2x − 1 moves the compressed version to the right by a half a unit.
Furthermore, we can represent the mother wavelet by compressing and translating the
scaling function,:

w(x) = ϕ(2x)− ϕ(2x− 1). (13.42)

It is these two operations of scaling and compression — coupled with the all-important
orthogonality — that underlies the power of wavelets.

The Haar wavelets have an evident discretization. If we decompose the interval (0, 1]
into the four subintervals

(
0 , 1

4

]
,

(
1
4 , 1

2

]
,

(
1
2 , 3

4

]
,

(
3
4 , 1

]
, (13.43)

on which the four wavelet functions are constant, then we can represent each of them by
a vector in R

4 whose entries are the values of each wavelet function sampled at the left
endpoint of each subinterval. In this manner, we obtain the wavelet sample vectors

v1 =




1
1
1
1


, v2 =




1
1
−1
−1


, v3 =




1
−1

0
0


, v4 =




0
0
1
−1


, (13.44)

that form the orthogonal wavelet basis of R
4 we encountered in Examples 2.35 and 5.10.

Orthogonality of the vectors (13.44) with respect to the standard Euclidean dot product is
equivalent to orthogonality of the Haar wavelet functions with respect to the inner product
(13.39). Indeed, if

f(x) ∼ f = (f1, f2, f3, f4) and g(x) ∼ g = (g1, g2, g3, g4)

are piecewise constant real functions that achieve the indicated values on the four subin-
tervals (13.43), then their L2 inner product

〈 f , g 〉 =

∫ 1

0

f(x) g(x) dx = 1
4

(
f1 g1 + f2 g2 + f3 g3 + f4 g4

)
= 1

4 f · g,

is equal to the averaged dot product of their sample values — the real form of the inner
product (13.8) that was used in the discrete Fourier transform.

Since the vectors (13.44) form an orthogonal basis of R
4, we can uniquely decompose

any such piecewise constant function as a linear combination of wavelets

f(x) = c1 ϕ1(x) + c2 ϕ2(x) + c3 ϕ3(x) + c4 ϕ4(x),
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or, equivalently, in terms of the sample vectors,

f = c1v1 + c2v2 + c3v3 + c4v4.

The required coefficients

ck =
〈 f , ϕk 〉

‖ϕk ‖
2

=
f · vk

‖vk ‖
2

are fixed by our usual orthogonality formula (5.7). Explicitly,

c1 = 1
4 (f1 + f2 + f3 + f4),

c2 = 1
4 (f1 + f2 − f3 − f4),

c3 = 1
2 (f1 − f2),

c4 = 1
2 (f3 − f4).

Before proceeding to the more general case, let us introduce an important analytical
definition that quantifies precisely how localized a function is.

Definition 13.5. The support of a function f(x), written supp f , is the closure of
the set where f(x) 6= 0.

Thus, a point will belong to the support of f(x), provided f is not zero there, or at
least is not zero at nearby points. More precisely:

Lemma 13.6. If f(a) 6= 0, then a ∈ supp f . More generally, a point a ∈ supp f if

and only if there exist a convergent sequence xn → a such that f(xn) 6= 0. Conversely,

a 6∈ supp f if and only if f(x) ≡ 0 on an interval a− δ < x < a + δ for some δ > 0.

Intuitively, the smaller the support of a function, the more localized it is. For example,
the support of the Haar mother wavelet (13.41) is supp w = [0, 1] — the point x = 0 is
included, even though w(0) = 0, because w(x) 6= 0 at nearby points. The two daughter
wavelets have smaller support:

suppϕ3 =
[
0 , 1

2

]
, suppϕ4 =

[
1
2 , 1

]
,

and so are twice as localized. An extreme case is the delta function, whose support is a
single point. In contrast, the support of the Fourier trigonometric basis functions is all of
R, since they only vanish at isolated points.

The effect of scalings and translations on the support of a function is easily discerned.

Lemma 13.7. If supp f = [a, b ], and

g(x) = f(rx− δ), then supp g =

[
a + δ

r
,
b + δ

r

]
.

In other words, scaling x by a factor r compresses the support of the function by a
factor 1/r, while translating x translates the support of the function.

The key requirement for a wavelet basis is that it contains functions with arbitrarily
small support. To this end, the full Haar wavelet basis is obtained from the mother wavelet
by iterating the scaling and translation processes. We begin with the scaling function

ϕ(x), (13.45)
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from which we construct the mother wavelet via (13.42). For any “generation” j ≥ 0, we
form the wavelet offspring by first compressing the mother wavelet so that its support fits
into an interval of length 2−j ,

wj,0(x) = w(2j x), so that suppwj,0 = [0, 2−j ], (13.46)

and then translating wj,0 so as to fill up the entire interval [0, 1] by 2j subintervals, each

of length 2−j , defining

wj,k(x) = wj,0(x− k) = w(2j x− k), where k = 0, 1, . . . 2j − 1. (13.47)

Lemma 13.7 implies that suppwj,k = [ 2−j k, 2−j (k + 1) ], and so the combined supports

of all the jth generation of wavelets is the entire interval:
2j−1

[

k=0

supp wj,k = [0, 1] . The

primal generation, j = 0, just consists of the mother wavelet

w0,0(x) = w(x).

The first generation, j = 1, consists of the two daughter wavelets already introduced as
ϕ3 and ϕ4, namely

w1,0(x) = w(2x), w1,1(x) = w(2x− 1).

The second generation, j = 2, appends four additional granddaughter wavelets to our
basis:

w2,0(x) = w(4x), w2,1(x) = w(4x− 1), w2,2(x) = w(4x− 2), w2,3(x) = w(4x− 3).

The 8 Haar wavelets ϕ,w0,0, w1,0, w1,1, w2,0, w2,1, w2,2, w2,3 are constant on the 8 subin-

tervals of length 1
8 , taking the successive sample values indicated by the columns of the

matrix

W8 =




1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1




. (13.48)

Orthogonality of the wavelets is manifested in the orthogonality of the columns of W8.
(Unfortunately, the usual terminological constraints of Definition 5.18 prevent us from
calling W8 an orthogonal matrix because its columns are not orthonormal!)

The nth stage consists of 2n+1 different wavelet functions comprising the scaling func-
tions and all the generations up to the nth : w0(x) = ϕ(x) and wj,k(x) for 0 ≤ j ≤ n and

0 ≤ k < 2j . They are all constant on each subinterval of length 2−n−1.

Theorem 13.8. The wavelet functions ϕ(x), wj,k(x) form an orthogonal system

with respect to the inner product (13.39).
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Proof : First, note that each wavelet wj,k(x) is equal to +1 on an interval of length

2−j−1 and to −1 on an adjacent interval of the same length. Therefore,

〈wj,k , ϕ 〉 =

∫ 1

0

wj,k(x) dx = 0, (13.49)

since the +1 and −1 contributions cancel each other. If two different wavelets wj,k and
wl,m with, say j ≤ l, have supports which are either disjoint, or just overlap at a single
point, then their product wj,k(x)wl,m(x) ≡ 0, and so their inner product is clearly zero:

〈wj,k , wl,m 〉 =

∫ 1

0

wj,k(x)wl,m(x) dx = 0.

Otherwise, except in the case when the two wavelets are identical, the support of wl,m is
entirely contained in an interval where wj,k is constant and so wj,k(x)wl,m(x) = ±wl,m(x).
Therefore, by (13.49),

〈wj,k , wl,m 〉 =

∫ 1

0

wj,k(x)wl,m(x) dx = ±

∫ 1

0

wl,m(x) dx = 0.

Finally, we compute

‖ϕ ‖2 =

∫ 1

0

dx = 1, ‖wj,k ‖
2 =

∫ 1

0

wj,k(x)2 dx = 2−j . (13.50)

The second formula follows from the fact that |wj,k(x) | = 1 on an interval of length 2−j

and is 0 elsewhere. Q.E.D.

In direct analogy with the trigonometric Fourier series, the wavelet series of a signal
f(x) is given by

f(x) ∼ c0 ϕ(x) +

∞∑

j =0

2j−1∑

k=0

cj,k wj,k(x). (13.51)

Orthogonality implies that the wavelet coefficients c0, cj,k can be immediately computed
using the standard inner product formula coupled with (13.50):

c0 =
〈 f , ϕ 〉

‖ϕ ‖2
=

∫ 1

0

f(x) dx,

cj,k =
〈 f , wj,k 〉

‖wj,k ‖
2

= 2j

∫ 2−jk+2−j−1

2−jk

f(x) dx − 2j

∫ 2−j(k+1)

2−jk+2−j−1

f(x) dx.

(13.52)

The convergence properties of the wavelet series (13.51) are similar to those of Fourier
series; details can be found [50].

Example 13.9. In Figure 13.8, we plot the Haar expansions of the signal in the first
plot. The next plots show the partial sums over j = 0, . . . , r with r = 2, 3, 4, 5, 6. We have
used a discontinuous signal to demonstrate that there is no nonuniform Gibbs phenomenon
in a Haar wavelet expansion. Indeed, since the wavelets are themselves discontinuous, they
do not have any difficult uniformly converging to a discontinuous function. On the other
hand, it takes quite a few wavelets to begin to accurately reproduce the signal. In the last
plot, we combine a total of 26 = 64 Haar wavelets, which is considerably more than would
be required in a comparably accurate Fourier expansion (excluding points very close to
the discontinuity).
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Figure 13.8. Haar Wavelet Expansion.

Remark : To the novice, there may appear to be many more wavelets than trigono-
metric functions. But this is just another illusion of the magic show of infinite dimensional
space. The point is that they both form a countably infinite set of functions, and so could,
if necessary, but less conveniently, be numbered in order 1, 2, 3, . . . . On the other hand,
accurate reproduction of functions usually does require many more Haar wavelets. This
handicap makes the Haar system of less use in practical situations, and served to motivate
the search for a more sophisticated choice of wavelet basis.

Just as the discrete Fourier representation arises from a sampled version of the full
Fourier series, so there is a discrete wavelet transformation for suitably sampled signals.
To take full advantage of the wavelet basis, we sample the signal f(x) at n = 2r equally
spaced sample points xk = k/2r, for k = 0, . . . , n− 1, on the interval [0, 1]. As before, we
can identify the sampled signal with the vector

f =
(
f(x0), f(x1), . . . , f(xn−1)

)T
=
(
f0, f1, . . . , fn−1

)T
∈ R

n. (13.53)

Since we are only sampling on intervals of length 2−r, the discrete wavelet transform of our
sampled signal will only use the first n = 2r wavelets ϕ(x) and wj,k(x) for j = 0, . . . , r− 1

and k = 0, . . . , 2j − 1. Let w0 ∼ ϕ(x) and wj,k ∼ wj,k(x) denote the corresponding
sampled wavelet vectors; all of their entries are either +1, −1, or 0. (When r = 3, so
n = 8, these are the columns of the wavelet matrix (13.48).) Moreover, orthogonality of
the wavelets immediately implies that the wavelet vectors form an orthogonal basis of R

n

with n = 2r. We can decompose our sample vector (13.53) as a linear combination of the
sampled wavelets,

f = ĉ0 w0 +
r−1∑

j =0

2j−1∑

k=0

ĉj,k wj,k, (13.54)
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where, by our usual orthogonality formulae,

ĉ0 =
〈 f ,w0 〉

‖w0 ‖
2

=
1

2r

2r−1∑

i=0

fi,

ĉj,k =
〈 f ,wj,k 〉

‖wj,k ‖
2

= 2j−r




k+2r−j−1−1∑

i=k

fi −

k+2r−j−1∑

i=k+2r−j−1

fi


 .

(13.55)

These are the basic formulae connecting the functions f(x), or, rather, its sample vector
f , and its discrete wavelet transform consisting of the 2r coefficients ĉ0, ĉj,k. The recon-
structed function

f̃(x) = ĉ0 ϕ(x) +

r−1∑

j =0

2j−1∑

k=0

ĉj,k wj,k(x) (13.56)

is constant on each subinterval of length 2−r, and has the same value

f̃(x) = f̃(xi) = f(xi) = fi, xi = 2−r i ≤ x < xi+1 = 2−r (i + 1),

as our signal at the left hand endpoint of the interval. In other words, we are interpolating
the sample points by a piecewise constant (and thus discontinuous) function.

Modern Wavelets

The main defect of the Haar wavelets is that they do not provide a very efficient means
of representing even very simple functions — it takes quite a large number of wavelets to
reproduce signals with any degree of precision. The reason for this is that the Haar
wavelets are piecewise constant, and so even an affine function y = α x + β requires many
sample values, and hence a relatively extensive collection of Haar wavelets, to be accurately
reproduced. In particular, compression and denoising algorithms based on Haar wavelets
are either insufficiently precise or hopelessly inefficient, and hence of minor practical value.

For a long time it was thought that it was impossible to simultaneously achieve the
requirements of localization, orthogonality and accurate reproduction of simple functions.
The breakthrough came in 1988, when, in her Ph.D. thesis, the Dutch mathematician In-
grid Daubechies produced the first examples of wavelet bases that realized all three basic
criteria. Since then, wavelets have developed into a sophisticated and burgeoning industry
with major impact on modern technology. Significant applications include compression,
storage and recognition of fingerprints in the FBI’s data base, and the JPEG2000 image
format, which, unlike earlier Fourier-based JPEG standards, incorporates wavelet tech-
nology in its image compression and reconstruction algorithms. In this section, we will
present a brief outline of the basic ideas underlying Daubechies’ remarkable construction.

The recipe for any wavelet system involves two basic ingredients — a scaling function
and a mother wavelet. The latter can be constructed from the scaling function by a
prescription similar to that in (13.42), and therefore we first concentrate on the properties
of the scaling function. The key requirement is that the scaling function must solve a
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Figure 13.9. The Hat Function.

dilation equation of the form

ϕ(x) =

p∑

k=0

ck ϕ(2x− k) = c0 ϕ(2x) + c1 ϕ(2x− 1) + · · · + cp ϕ(2x− p) (13.57)

for some collection of constants c0, . . . , cp. The dilation equation relates the function ϕ(x)
to a finite linear combination of its compressed translates. The coefficients c0, . . . , cp are
not arbitrary, since the properties of orthogonality and localization will impose certain
rather stringent requirements.

Example 13.10. The Haar or box scaling function (13.40) satisfies the dilation
equation (13.57) with c0 = c1 = 1, namely

ϕ(x) = ϕ(2x) + ϕ(2x− 1). (13.58)

We recommend that you convince yourself of the validity of this identity before continuing.

Example 13.11. Another example of a scaling function is the hat function

ϕ(x) =





x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,

0, otherwise,

(13.59)

graphed in Figure 13.9, whose variants play a starring role in the finite element method,
cf. (11.167). The hat function satisfies the dilation equation

ϕ(x) = 1
2 ϕ(2x) + ϕ(2x− 1) + 1

2 ϕ(2x− 2), (13.60)

which is (13.57) with c0 = 1
2 , c1 = 1, c2 = 1

2 . Again, the reader should be able to check
this identity by hand.

The dilation equation (13.57) is a kind of functional equation, and, as such, is not
so easy to solve. Indeed, the mathematics of functional equations remains much less well
developed than that of differential equations or integral equations. Even to prove that
(nonzero) solutions exist is a nontrivial analytical problem. Since we already know two
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explicit examples, let us defer the discussion of solution techniques until we understand
how the dilation equation can be used to construct a wavelet basis.

Given a solution to the dilation equation, we define the mother wavelet to be

w(x) =

p∑

k=0

(−1)kcp−k ϕ(2x− k)

= cp ϕ(2x)− cp−1 ϕ(2x− 1) + cp−2 ϕ(2x− 2) + · · · ± c0 ϕ(2x− p),

(13.61)

This formula directly generalizes the Haar wavelet relation (13.42), in light of its dilation
equation (13.58). The daughter wavelets are then all found, as in the Haar basis, by
iteratively compressing and translating the mother wavelet:

wj,k(x) = w(2j x− k). (13.62)

In the general framework, we do not necessarily restrict our attention to the interval [0, 1]
and so j and k can, in principle, be arbitrary integers.

Let us investigate what sort of conditions should be imposed on the dilation coeffi-
cients c0, . . . , cp in order that we obtain a viable wavelet basis by this construction. First,
localization of the wavelets requires that the scaling function has bounded support, and
so ϕ(x) ≡ 0 when x lies outside some bounded interval [a, b ]. If we integrate both sides of
(13.57), we find

∫ b

a

ϕ(x) dx =

∫ ∞

−∞

ϕ(x) dx =

p∑

k=0

ck

∫ ∞

−∞

ϕ(2x− k) dx. (13.63)

Now using the change of variables y = 2x− k, with dx = 1
2 dy, we find

∫ ∞

−∞

ϕ(2x− k) dx =
1

2

∫ ∞

−∞

ϕ(y) dy =
1

2

∫ b

a

ϕ(x) dx, (13.64)

where we revert to x as our (dummy) integration variable. We substitute this result back

into (13.63). Assuming that

∫ b

a

ϕ(x) dx 6= 0, we discover that the dilation coefficients must

satisfy

c0 + · · · + cp = 2. (13.65)

Example 13.12. Once we impose the constraint (13.65), the very simplest version
of the dilation equation is

ϕ(x) = 2ϕ(2x) (13.66)

where c0 = 2 is the only (nonzero) coefficient. Up to constant multiple, the only “solutions”
of the functional equation (13.66) with bounded support are scalar multiples of the delta
function δ(x), which follows from the identity in Exercise 11.2.5. Other solutions, such as
ϕ(x) = 1/x, are not localized, and thus not useful for constructing a wavelet basis.
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The second condition we require is orthogonality of the wavelets. For simplicity, we
only consider the standard L2 inner product†

〈 f , g 〉 =

∫ ∞

−∞

f(x) g(x) dx.

It turns out that the orthogonality of the complete wavelet system is guaranteed once we
know that the scaling function ϕ(x) is orthogonal to all its integer translates:

〈ϕ(x) , ϕ(x−m) 〉 =

∫ ∞

−∞

ϕ(x)ϕ(x−m) dx = 0 for all m 6= 0. (13.67)

We first note the formula

〈ϕ(2x− k) , ϕ(2x− l) 〉 =

∫ ∞

−∞

ϕ(2x− k)ϕ(2x− l) dx (13.68)

=
1

2

∫ ∞

−∞

ϕ(x)ϕ(x + k − l) dx =
1

2
〈ϕ(x) , ϕ(x + k − l) 〉

follows from the same change of variables y = 2x − k used in (13.64). Therefore, since ϕ
satisfies the dilation equation (13.57),

〈ϕ(x) , ϕ(x−m) 〉 =

〈
p∑

j =0

cj ϕ(2x− j) ,

p∑

k=0

ck ϕ(2x− 2m− k)

〉
(13.69)

=

p∑

j,k=0

cj ck 〈ϕ(2x− j) , ϕ(2x− 2m− k) 〉 =
1

2

p∑

j,k=0

cj ck 〈ϕ(x) , ϕ(x + j − 2m− k) 〉.

If we require orthogonality (13.67) of all the integer translates of ϕ, then the left hand side
of this identity will be 0 unless m = 0, while only the summands with j = 2m + k will be
nonzero on the right. Therefore, orthogonality requires that

∑

0 ≤ k ≤ p−2m

c2m+k ck =

{
2, m = 0,

0, m 6= 0.
(13.70)

The algebraic equations (13.65, 70) for the dilation coefficients are the key requirements
for the construction of an orthogonal wavelet basis.

For example, if we have just two nonzero coefficients c0, c1, then (13.65, 70) reduce to

c0 + c1 = 2, c2
0 + c2

1 = 2,

and so c0 = c1 = 1 is the only solution, resulting in the Haar dilation equation (13.58). If
we have three coefficients c0, c1, c2, then (13.65), (13.70) require

c0 + c1 + c2 = 2, c2
0 + c2

1 + c2
2 = 2, c0 c2 = 0.

† In all instances, the functions have bounded support, and so the inner product integral can
be reduced to an integral over a finite interval where both f and g are nonzero.
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Thus either c2 = 0, c0 = c1 = 1, and we are back to the Haar case, or c0 = 0, c1 = c2 = 1,
and the resulting dilation equation is a simple reformulation of the Haar case; see Exercise
. In particular, the hat function (13.59) does not give rise to orthogonal wavelets.

The remarkable fact, discovered by Daubechies, is that there is a nontrivial solution
for four (and, indeed, any even number) of nonzero coefficients c0, c1, c2, c3. The basic
equations (13.65), (13.70) require

c0 + c1 + c2 + c3 = 2, c2
0 + c2

1 + c2
2 + c2

3 = 2, c0 c2 + c1 c3 = 0. (13.71)

The particular values

c0 = 1+
√

3
4 , c1 = 3+

√
3

4 , c2 = 3−
√

3
4 , c3 = 1−

√
3

4 , (13.72)

solve (13.71). These coefficients correspond to the Daubechies dilation equation

ϕ(x) = 1+
√

3
4 ϕ(2x) + 3+

√
3

4 ϕ(2x− 1) + 3−
√

3
4 ϕ(2x− 2) + 1−

√
3

4 ϕ(2x− 3). (13.73)

Any nonzero solution of bounded support to this remarkable functional equation will give
rise to a scaling function ϕ(x), a mother wavelet

w(x) = 1−
√

3
4 ϕ(2x)− 3−

√
3

4 ϕ(2x− 1) + 3+
√

3
4 ϕ(2x− 2)− 1+

√
3

4 ϕ(2x− 3), (13.74)

and then, by compression and translation (13.62), the complete system of orthogonal
wavelets wj,k(x).

Before explaining how to solve the Daubechies dilation equation, let us complete the
proof of orthogonality. It is easy to see that, by translation invariance, since ϕ(x) and
ϕ(x−m) are orthogonal for any m 6= 0, so are ϕ(x− k) and ϕ(x− l) for any k 6= l. Next
we prove orthogonality of ϕ(x−m) and w(x):

〈w(x) , ϕ(x−m) 〉 =

〈
p∑

j =0

(−1)j+1 cj ϕ(2x− 1 + j) ,

p∑

k=0

ck ϕ(2x− 2m− k)

〉

=

p∑

j,k=0

(−1)j+1 cj ck 〈ϕ(2x− 1 + j) , ϕ(2x− 2m− k) 〉

=
1

2

p∑

j,k=0

(−1)j+1 cj ck 〈ϕ(x) , ϕ(x− 1 + j − 2m− k) 〉,

using (13.68). By orthogonality (13.67) of the translates of ϕ, the only summands that are
nonzero are when j = 2m + k + 1; the resulting coefficient of ‖ϕ(x) ‖2 is

∑

k

(−1)k c1−2m−k ck = 0,

where the sum is over all 0 ≤ k ≤ p such that 0 ≤ 1− 2m− k ≤ p. Each term in the sum
appears twice, with opposite signs, and hence the result is always zero — no matter what
the coefficients c0, . . . , cp are! The proof of orthogonality of the translates w(x − m) of

the mother wavelet, along with all her wavelet descendants w(2j x− k), relies on a similar
argument, and the details are left as an exercise for the reader.
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Figure 13.10. Approximating the Daubechies Wavelet.

Solving the Dilation Equation

Let us next discuss how to solve the dilation equation (13.57). The solution we are
after does not have an elementary formula, and we require a slightly sophisticated approach
to recover it. The key observation is that (13.57) has the form of a fixed point equation

ϕ = F [ϕ ],

not in ordinary Euclidean space, but in an infinite-dimensional function space. With luck,
the fixed point (or, more correctly, fixed function) will be stable, and so starting with a
suitable initial guess ϕ0(x), the successive iterates

ϕn+1 = F [ϕn ]

will converge to the desired solution: ϕn(x) −→ ϕ(x). In detail, the iterative version of
the dilation equation (13.57) reads

ϕn+1(x) =

p∑

k=0

ck ϕn(2x− k), n = 0, 1, 2, . . . . (13.75)

Before attempting to prove convergence of this iterative procedure to the Daubechies scal-
ing function, let us experimentally investigate what happens.

A reasonable choice for the initial guess might be the Haar scaling or box function

ϕ0(x) =

{
1, 0 < t ≤ 1.

0, otherwise.

In Figure 13.10 we graph the next 5 iterates ϕ1(x), . . . , ϕ5(x). There clearly appears to
be converging to some function ϕ(x), although the final result does look a little bizarre.
Bolstered by this preliminary experimental evidence, we can now try to prove convergence
of the iterative scheme. This turns out to be true; a fully rigorous proof relies on the
Fourier transform, [50], but is a little too advanced for this text and will be omitted.

Theorem 13.13. The functions converge ϕn(x) defined by the iterative functional

equation (13.75) converge uniformly to a continuous function ϕ(x), called the Daubechies
scaling function.
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Once we have established convergence, we are now able to verify that the scaling
function and consequential system of wavelets form an orthogonal system of functions.

Proposition 13.14. All integer translates ϕ(x − k), for k ∈ Z of the Daubechies

scaling function, and all wavelets wj,k(x) = w(2j x − k), j ≥ 0, are mutually orthogonal

functions with respect to the L2 inner product. Moreover, ‖ϕ ‖2 = 1, while ‖wj,k ‖
2 = 2−j .

Proof : As noted earlier, the orthogonality of the entire wavelet system will follow once
we know the orthogonality (13.67) of the scaling function and its integer translates. We
use induction to prove that this holds for all the iterates ϕn(x), and so, in view of uniform
convergence, the limiting scaling function also satisfies this property. Details are relegated
to Exercise . Q.E.D.

In practical computations, the limiting procedure for constructing the scaling function
is not so convenient, and an alternative means of computing its values is employed. The
starting point is to determine its values at integer points. First, the initial box function
has values ϕ0(m) = 0 for all integers m ∈ Z except ϕ0(1) = 1. The iterative functional
equation (13.75) will then produce the values of the iterates ϕn(m) at integer points m ∈ Z.
A simple induction will convince you that ϕn(m) = 0 except for m = 1 and m = 2, and,
therefore, by (13.75),

ϕn+1(1) = 3+
√

3
4 ϕn(1) + 1+

√
3

4 ϕn(2), ϕn+1(2) = 1−
√

3
4 ϕn(1) + 3−

√
3

4 ϕn(2),

since all other terms are 0. This has the form of a linear iterative system

v(n+1) = Av(n) (13.76)

with coefficient matrix

A =

(
3+

√
3

4
1+

√
3

4
1−

√
3

4
3−

√
3

4

)
and where v(n) =

(
ϕn(1)
ϕn(2)

)
.

Referring back to Chapter 10, the solution to such an iterative system is specified by
the eigenvalues and eigenvectors of the coefficient matrix, which are

λ1 = 1, v1 =

(
1+

√
3

4
1−

√
3

4

)
, λ2 = 1

2 , v2 =

(
−1

1

)
.

We write the initial condition as a linear combination of the eigenvectors

v(0) =

(
ϕ0(1)
ϕ0(2)

)
=

(
1
0

)
= 2v1 −

1−
√

3

2
v2.

The solution is

v(n) = An v(0) = 2Anv1 −
1−
√

3

2
Anv2 = 2v1 −

1

2n

1−
√

3

2
v2.

5/1/06 719 c© 2006 Peter J. Olver



-0.5 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0.5

1

1.5

2

-0.5 0.5 1 1.5 2 2.5 3 3.5

-1.5

-1

-0.5

0.5

1

1.5

2

Figure 13.11. The Daubechies Scaling Function and Mother Wavelet.

The limiting vector

(
ϕ(1)

ϕ(2)

)
= lim

n→∞
v(n) = 2v1 =

(
1+

√
3

2
1−

√
3

2

)

gives the desired values of the scaling function:

ϕ(1) =
1−
√

3

2
= 1.366025 . . . , ϕ(2) =

−1 +
√

3

2
= − .366025 . . . ,

ϕ(m) = 0, for all m 6= 1, 2.

(13.77)

With this in hand, the Daubechies dilation equation (13.73) then prescribes the func-
tion values ϕ

(
1
2 m

)
at all half integers, because when x = 1

2 m then 2x− k = m− k is an
integer. Once we know its values at the half integers, we can re-use equation (13.73) to give
its values at quarter integers 1

4 m. Continuing onwards, we determine the values of ϕ(x) at
all dyadic points, meaning rational numbers of the form x = m/2j for m, j ∈ Z. Continuity
will then prescribe its value at any other x ∈ R since x can be written as the limit of dyadic
numbers xn — namely those obtained by truncating its binary (base 2) expansion at the
nth digit beyond the decimal (or, rather “binary”) point. But, in practice, this latter step
is unnecessary, since all computers are ultimately based on the binary number system, and
so only dyadic numbers actually reside in a computer’s memory. Thus, there is no real
need to determine the value of ϕ at non-dyadic points.

The preceding scheme was used to produce the graphs of the Daubechies scaling
function in Figure 13.11. It is continuous, but non-differentiable function — and its graph
has a very jagged, fractal-like appearance when viewed at close range. The Daubechies
scaling function is, in fact, a close relative of the famous example of a continuous, nowhere
differentiable function originally due to Weierstrass, [125, 152], whose construction also
relies on a similar scaling argument.

With the values of the Daubechies scaling function on a sufficiently dense set of dyadic
points in hand, the consequential values of the mother wavelet are given by formula (13.74).
Note that supp ϕ = suppw = [0, 3]. The daughter wavelets are then found by the usual
compression and translation procedure (13.62).
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Figure 13.12. Daubechies Wavelet Expansion.

The Daubechies wavelet expansion of a function whose support is contained in† [0, 1]
is then given by

f(x) ∼ c0 ϕ(x) +
∞∑

j =0

2j−1∑

k=−2

cj,k wj,k(x). (13.78)

The inner summation begins at k = −2 so as to include all the wavelet offspring wj,k whose
support has a nontrivial intersection with the interval [0, 1]. The wavelet coefficients c0, cj,k

are computed by the usual orthogonality formula

c0 = 〈 f , ϕ 〉 =

∫ 3

0

f(x)ϕ(x) dx,

cj,k = 〈 f , wj,k 〉 = 2j

∫ 2−j (k+3)

2−j k

f(x)wj,k(x) dx =

∫ 3

0

f
(
2−j (x + k)

)
w(x) dx,

(13.79)

where we agree that f(x) = 0 whenever x < 0 or x > 1. In practice, one employs a
numerical integration procedure, e.g., the trapezoid rule, [9], based on dyadic nodes to
speedily evaluate the integrals (13.79). A proof of completeness of the resulting wavelet
basis functions can be found in [50]. Compression and denoising algorithms based on
retaining only low frequency modes proceed as before, and are left as exercises for the
reader to implement.

Example 13.15. In Figure 13.12, we plot the Daubechies wavelet expansions of
the same signal for Example 13.9. The first plot is the original signal, and the following
show the partial sums of (13.78) over j = 0, . . . , r with r = 2, 3, 4, 5, 6. Unlike the Haar
expansion, the Daubechies wavelets do exhibit the nonuniform Gibbs phenomenon at the
interior discontinuity as well as the endpoints, since the function is set to 0 outside the
interval [0, 1]. Indeed, the Daubechies wavelets are continuous, and so cannot converge
uniformly to a discontinuous function.

† For functions with larger support, one should include additional terms in the expansion
corresponding to further translates of the wavelets so as to cover the entire support of the function.
Alternatively, one can translate and rescale x to fit the function’s support inside [0, 1].
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13.3. The Fourier Transform.

Fourier series and their ilk are designed to solve boundary value problems on bounded
intervals. The extension of Fourier methods to unbounded intervals — the entire real line
— leads naturally to the Fourier transform, which is a powerful mathematical tool for the
analysis of non-periodic functions. The Fourier transform is of fundamental importance in
a broad range of applications, including both ordinary and partial differential equations,
quantum mechanics, signal processing, control theory, and probability, to name but a few.

We begin by motivating the Fourier transform as a limiting case of Fourier series.
Although the rigorous details are rather exacting, the underlying idea is not so difficult. Let
f(x) be a reasonably nice function defined for all −∞ < x <∞. The goal is to construct a
Fourier expansion for f(x) in terms of basic trigonometric functions. One evident approach
is to construct its Fourier series on progressively larger and larger intervals, and then take
the limit as the intervals’ length becomes infinite. The limiting process converts the Fourier
sums into integrals, and the resulting representation of a function is renamed the Fourier
transform. Since we are dealing with an infinite interval, there are no longer any periodicity
requirements on the function f(x). Moreover, the frequencies represented in the Fourier
transform are no longer constrained by the length of the interval, and so we are effectively
decomposing a quite general, non-periodic function into a continuous superposition of
trigonometric functions of all possible frequencies.

Let us present the details of this construction in a more concrete form. The computa-
tions will be significantly simpler if we work with the complex version of the Fourier series
from the outset. Our starting point is the rescaled Fourier series (12.84) on a symmetric
interval [−` , ` ] of length 2 `, which we rewrite in the adapted form

f(x) ∼
∞∑

ν =−∞

√
π

2

f̂ `(kν)

`
e i kνx. (13.80)

The sum is over the discrete collection of frequencies

kν =
πν

`
, ν = 0,±1,±2, . . . , (13.81)

corresponding to those trigonometric functions that have period 2 `. For reasons that will
soon become apparent, the Fourier coefficients of f are now denoted as

cν = 〈 f , e i kν x 〉 =
1

2 `

∫ `

−`

f(x) e− i kν x dx =

√
π

2

f̂(kν)

`
,

so that

f̂(kν) =
1
√

2π

∫ `

−`

f(x) e− i kν x dx. (13.82)

This reformulation of the basic Fourier series formula allows us to smoothly pass to the
limit when the intervals’ length `→∞.

On an interval of length 2 `, the frequencies (13.81) required to represent a function
in Fourier series form are equally distributed, with interfrequency spacing

∆k = kν+1 − kν =
π

`
.
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As ` → ∞, the spacing ∆k → 0, and so the relevant frequencies become more and more
densely packed in the space of all possible frequencies: −∞ < k < ∞. In the limit, we
anticipate that all possible frequencies will be represented. Indeed, letting kν = k be
arbitrary in (13.82), and sending `→∞, results in the infinite integral

f̂(k) =
1
√

2π

∫ ∞

−∞

f(x) e− i kx dx (13.83)

known as the Fourier transform of the function f(x). If f(x) is a reasonably nice function,
e.g., piecewise continuous and decayin to 0 reasonably quickly as |x | → ∞, its Fourier

transform f̂(k) is defined for all possible frequencies −∞ < k < ∞. This formula will
sometimes conveniently be abbreviated as

f̂(k) = F [f(x) ], (13.84)

where F is the Fourier transform operator . The extra
√

2π factor in front of the integral,
which is sometimes omitted, is for later convenience.

To reconstruct the function from its Fourier transform, we employ a similar limiting
procedure on the Fourier series (13.80), which we first rewrite in a more suggestive form:

f(x) ∼
1
√

2π

∞∑

ν =−∞

f̂ `(kν) e i kν x ∆k. (13.85)

For each fixed value of x, the right hand side has the form of a Riemann sum, [9, 153],

over the entire frequency space −∞ < k <∞, for the function g`(k) = f̂ `(k) e i kx. Under

reasonable hypotheses, as ` → ∞, the functions f̂ `(k) → f̂(k) converge to the Fourier
transform; moreover, the interfrequency spacing ∆k → 0 and so one expects the Riemann
sums to converge to the integral

f(x) ∼
1
√

2π

∫ ∞

−∞

f̂(k) e i kx dk, (13.86)

known as the inverse Fourier transform, that serves to recover the original signal from its
Fourier transform. In abbreviated form

f(x) = F−1[ f̂(k) ] (13.87)

is the inverse of the Fourier transform operator (13.84). In this manner, the Fourier series
(13.85) becomes a Fourier integral that reconstructs the function f(x) as a (continuous)
superposition of complex exponentials e i kx of all possible frequencies. The contribution
of each such exponential is the value of the Fourier transform f̂(k) at the exponential’s
frequency.

It is also worth pointing out that both the Fourier transform (13.84) and its inverse
(13.87) define linear maps on function space. This means that the Fourier transform of
the sum of two functions is the sum of their individual transforms, while multiplying a
function by a constant multiplies its Fourier transform bby the same factor:

F [f(x) + g(x) ] = F [f(x) ] + F [g(x) ] = f̂(k) + ĝ(k),

F [cf(x) ] = cF [f(x) ] = c f̂(k).
(13.88)
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Figure 13.13. Fourier Transform of a Rectangular Pulse.

A similar statement hold for the inverse Fourier transform F−1.

Recapitulating, by letting the length of the interval go to ∞, the discrete Fourier
series has become a continuous Fourier integral, while the Fourier coefficients, which were
defined only at a discrete collection of possible frequencies, have become an entire function
f̂(k) defined on all of frequency space k ∈ R. The reconstruction of f(x) from its Fourier

transform f̂(k) via (13.86) can be rigorously justified under suitable hypotheses. For
example, if f(x) is piecewise C1 on all of R and f(x) → 0 decays reasonably rapidly as
|x | → ∞ ensuring that its Fourier integral (13.83) converges, then it can be proved that
the inverse Fourier integral (13.86) will converge to f(x) at all points of continuity, and
to the midpoint 1

2 (f(x−) + f(x+)) at jump discontinuities — just like a Fourier series. In

particular, its Fourier transform f̂(k) → 0 must also decay as | k | → 0, implying that
(as with Fourier series) the very high frequency modes make negligible contributions to
the reconstruction of the signal. A more precise, general result will be formulated in
Theorem 13.28 below.

Example 13.16. The Fourier transform of a rectangular pulse or box function

f(x) = σ(x + a)− σ(x− a) =

{
1, − a < x < a,

0, |x | > a.
(13.89)

of width 2a is easily computed:

f̂(k) =
1
√

2π

∫ a

−a

e− i kx dx =
e i ka − e− i ka

√
2π i k

=

√
2

π

sin ak

k
. (13.90)

On the other hand, the reconstruction of the pulse via the inverse transform (13.86) tells
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us that

1

π

∫ ∞

−∞

e i kx sin ak

k
dk = f(x) =





1, −a < x < a,
1
2 , x = ± a,

0, |x | > a.

(13.91)

Note the convergence to the middle of the jump discontinuities at x = ±a. Splitting this
complex integral into its real and imaginary parts, we deduce a pair of striking trigono-
metric integral identities

1

π

∫ ∞

−∞

cos kx sin ak

k
dk =





1, −a < x < a,

1
2 , x = ±a,

0, |x | > a,

1

π

∫ ∞

−∞

sin kx sin ak

k
dk = 0.

(13.92)

Just as many Fourier series yield nontrivial summation formulae, the reconstruction
of a function from its Fourier transform often leads to nontrivial integral identities. One
cannot compute the integral (13.91) by the Fundamental Theorem of Calculus, since there
is no elementary function† whose derivative equals the integrand. Moreover, it is not even
clear that the integral converges; indeed, the amplitude of the oscillatory integrand decays
like 1/| k |, but the latter function does not have a convergent integral, and so the usual
comparison test for infinite integrals, [9, 45, 165], fails to apply. Thus, the convergence
of the integral is marginal at best: the trigonometric oscillations somehow overcome the
slow rate of decay of 1/k and thereby induce the (conditional) convergence of the integral!
In Figure 13.13 we display the box function with a = 1, its Fourier transform, along with
a reconstruction obtained by numerically integrating (13.92). Since we are dealing with
an infinite integral, we must break off the numerical integrator by restricting it to a finite
interval. The first graph is obtained by integrating from −5 ≤ k ≤ 5 while the second is
from −10 ≤ k ≤ 10. The non-uniform convergence of the integral leads to the appearance
of a Gibbs phenomenon at the two discontinuities, similar to that of a Fourier series.

Example 13.17. Consider an exponentially decaying right-handed pulse‡

fr(x) =

{
e−ax, x > 0,

0, x < 0,
(13.93)

where a > 0. We compute its Fourier transform directly from the definition:

f̂(k) =
1
√

2π

∫ ∞

0

e−ax e− i kx dx = −
1
√

2π

e−(a+ i k)x

a + i k

∣∣∣∣
∞

x=0

=
1

√
2π (a + i k)

.

† One can use Euler’s formula (3.84) to reduce the integrand to one of the form eαk/k, but it

can be proved, [int], that there is no formula for
Z

(eαk/k) dk in terms of elementary functions.

‡ Note that we can’t Fourier transform the entire exponential function e−ax because it does
not go to zero at both ±∞, which is required for the integral (13.83) to converge.
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Figure 13.14. Exponential Pulses.

As in the preceding example, the inverse Fourier transform for this function produces a
nontrivial complex integral identity:

1

2π

∫ ∞

−∞

e i kx

a + i k
dk =





e−ax, x > 0,
1
2 , x = 0,

0, x < 0.

(13.94)

Similarly, a pulse that decays to the left,

fl(x) =

{
eax, x < 0,

0, x > 0,
(13.95)

where a > 0 is still positive, has Fourier transform

f̂(k) =
1

√
2π (a− i k)

. (13.96)

This also follows from the general fact that the Fourier transform of f(−x) is f̂(−k); see
Exercise . The even exponentially decaying pulse

fe(x) = e−a | x | (13.97)

is merely the sum of left and right pulses: fe = fr + fl. Thus, by linearity,

f̂e(k) =
1

√
2π (a + i k)

+
1

√
2π (a− i k)

=

√
2

π

a

k2 + a2
, (13.98)

The result is real and even because fe(x) is a real even function; see Exercise . The
inverse Fourier transform (13.86) produces another nontrivial integral identity:

e−a | x | =
1

π

∫ ∞

−∞

a e i kx

k2 + a2
dk =

a

π

∫ ∞

−∞

cos kx

k2 + a2
dk. (13.99)
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(The imaginary part of the integral vanishes because the integrand is odd.) On the other
hand, the odd exponentially decaying pulse,

fo(x) = (signx) e−a | x | =

{
e−ax, x > 0,

− eax, x < 0,
(13.100)

is the difference of the right and left pulses, fo = fr − fl, and has purely imaginary and
odd Fourier transform

f̂o(k) =
1

√
2π (a + i k)

−
1

√
2π (a− i k)

= − i

√
2

π

k

k2 + a2
. (13.101)

The inverse transform is

(sign x) e−a | x | = −
i

π

∫ ∞

−∞

k e i kx

k2 + a2
dk =

1

π

∫ ∞

−∞

k sin kx

k2 + a2
dk. (13.102)

As a final example, consider the rational function

f(x) =
1

x2 + c2
, where c > 0. (13.103)

Its Fourier transform requires integrating

f̂(k) =
1
√

2π

∫ ∞

−∞

e− i kx

x2 + a2
dx. (13.104)

The indefinite integral (anti-derivative) does not appear in basic integration tables, and, in
fact, cannot be done in terms of elementary functions. However, we have just managed to
evaluate this particular integral! Look at (13.99). If we change x to k and k to −x, then
we exactly recover the integral (13.104) up to a factor of a

√
2/π. Therefore, in accordance

with Theorem 13.18, we conclude that the Fourier transform of (13.103) is

f̂(k) =

√
π

2

e−a | k |

a
. (13.105)

This last example is indicative of an important general fact. The reader has no doubt
already noted the remarkable similarity between the Fourier transform (13.83) and its
inverse (13.86). Indeed, the only difference is that the former has a minus sign in the
exponential. This implies the following symmetry principle relating the direct and inverse
Fourier transforms.

Theorem 13.18. If the Fourier transform of the function f(x) is f̂(k), then the

Fourier transform of f̂(x) is f(−k).

Symmetry allows us to reduce the tabulation of Fourier transforms by half. For
instance, referring back to Example 13.16, we deduce that the Fourier transform of the
function

f(x) =

√
2

π

sin ax

x
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is

f̂(k) = σ(−k + a)− σ(−k − a) = σ(k + a)− σ(k − a) =





1, −a < k < a,
1
2 , k = ±a,

0, | k | > a.

(13.106)

Note that, by linearity, we can divide both f(x) and f̂(k) by
√

2/π to deduce the Fourier

transform of
sin ax

x
.

Warning : Some authors leave out the
√

2π factor in the definition (13.83) of the

Fourier transform f̂(k). This alternative convention does have a slight advantage of elim-
inating many

√
2π factors in the Fourier transforms of elementary functions. However,

this requires an extra such factor in the reconstruction formula (13.86), which is achieved
by replacing

√
2π by 2π. A significant disadvantage is that the resulting formulae for the

Fourier transform and its inverse are no as symmetric, and so the symmetry principle of
Theorem 13.18 requires some modification. On the other hand, convolution (to be dis-
cussed below) is a little easier without the extra factor. When consulting any particular
reference book, the reader always needs to check which convention is being used.

All of the functions in Example 13.17 required a > 0 for the Fourier integrals to con-
verge. The functions that emerge in the limit as a goes to 0 are of fundamental importance.
Let us start with the odd exponential pulse (13.100). When a → 0, the function fo(x)
converges to the sign function

f(x) = sign x = σ(x)− σ(−x) =

{
+1, x > 0,

−1, x < 0.
(13.107)

Taking the limit of the Fourier transform (13.101) leads to

f̂(k) = − i

√
2

π

1

k
. (13.108)

The nonintegrable singularity of f̂(k) at k = 0 is indicative of the fact that the sign func-
tion does not decay as |x | → ∞. In this case, neither the Fourier transform integral nor its
inverse are well-defined as standard (Riemann, or even Lebesgue, [153]) integrals. Never-
theless, it is possible to rigorously justify these results within the framework of generalized
functions.

More interesting are the even pulse functions fe(x), which, in the limit a→ 0, become
the constant function

f(x) ≡ 1. (13.109)

The limit of the Fourier transform (13.98) is

lim
a→ 0

√
2

π

2a

k2 + a2
=

{
0, k 6= 0,

∞, k = 0.
(13.110)

This limiting behavior should remind the reader of our construction (11.31) of the delta
function as the limit of the functions

δ(x) = lim
n→∞

n

π (1 + n2 x2)
= lim

a→ 0

a

π (a2 + x2)
,
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Comparing with (13.110), we conclude that the Fourier transform of the constant function
(13.109) is a multiple of the delta function in the frequency variable:

f̂(k) =
√

2π δ(k). (13.111)

The direct transform integral

δ(k) =
1

2π

∫ ∞

−∞

e− i kx dx

is, strictly speaking, not defined because the infinite integral of the oscillatory sine and
cosine functions doesn’t converge! However, this identity can be validly interpreted within
the framework of weak convergence and generalized functions. On the other hand, the
inverse transform formula (13.86) yields

∫ ∞

−∞

δ(k) e i kx dk = e i k0 = 1,

which is in accord with the basic definition (11.36) of the delta function. As in the previous
case, the delta function singularity at k = 0 manifests the lack of decay of the constant
function.

Conversely, the delta function δ(x) has constant Fourier transform

δ̂(k) =
1
√

2π

∫ ∞

−∞

δ(x) e− i kx dx =
e− i k0

√
2π
≡

1
√

2π
. (13.112)

a result that also follows from the symmerty principle of Theorem 13.18. To determine
the Fourier transform of a delta spike δy(x) = δ(x− y) concentrated at position x = y, we
compute

δ̂y(k) =
1
√

2π

∫ ∞

−∞

δ(x− y) e− i kx dx ==
e− i ky

√
2π

. (13.113)

The result is a pure exponential in frequency space. Applying the inverse Fourier transform
(13.86) leads, formally, to the remarkable identity

δy(x) = δ(x− y) =
1

2π

∫ ∞

−∞

e− i k(x−y) dk =
1

2π
〈 e i ky , e i kx 〉 , (13.114)

where 〈 · , · 〉 denotes the usual L2 inner product on R. Since the delta function vanishes
for x 6= y, this identity is telling us that complex exponentials of differing frequencies
are mutually orthogonal. However, this statement must be taken with a grain of salt,
since the integral does not converge in the normal (Riemann or Lebesgue) sense. But
it is possible to make sense of this identity within the language of generalized functions.
Indeed, multiplying both sides by f(x), and then integrating with respect to x, we find

f(y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(x) e− i k(x−y) dx dk. (13.115)
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This is a perfectly valid formula, being a restatement (or, rather, combination) of the basic
formulae (13.83, 86) connecting the direct and inverse Fourier transforms of the function
f(x).

Conversely, the symmetry principle tells us that the Fourier transform of a pure ex-
ponential e i lx will be a shifted delta spike

√
2π δ(k− l), concentrated in frequency space.

Both results are particular cases of the general Shift Theorem, whose proof is left as an
exercise for the reader.

Proposition 13.19. If f(x) has Fourier transform f̂(k), then the Fourier transform

of the shifted function f(x − y) is e− i ky f̂(k). Similarly, the transform of the product

function e i lx f(x) is the shifted transform f̂(k − l).

Since the Fourier transform uniquely associates a function f̂(k) on frequency space
with each (reasonable) function f(x) on physical space, one can characterize functions by
their transforms. Practical applications rely on tables (or, even better, computer algebra
systems) that recognize a wide variety of transforms of basic functions of importance
in applications. The accompanying table lists some of the most important examples of
functions and their Fourier transforms. Note that, according to the symmetry principle of
Theorem 13.18, each tabular entry can be used to deduce two different Fourier transforms.
A more extensive collection of Fourier transforms can be found in [138].

Derivatives and Integrals

One of the most remarkable and important properties of the Fourier transform is that
it converts calculus into algebra! More specifically, the two basic operations in calculus —
differentiation and integration of functions — are realized as algebraic operations on their
Fourier transforms. (The downside is that algebraic operations become more complicated
in the transform domain.)

Let us begin with derivatives. If we differentiate† the basic inverse Fourier transform
formula

f(x) ∼
1
√

2π

∫ ∞

−∞

f̂(k) e i kx dk.

with respect to x, we obtain

f ′(x) ∼
1
√

2π

∫ ∞

−∞

i k f̂(k) e i kx dk. (13.116)

The resulting integral is itself in the form of an inverse Fourier transform, namely of
2π i k f̂(k) which immediately implies the following basic result.

Proposition 13.20. The Fourier transform of the derivative f ′(x) of a function is

obtained by multiplication of its Fourier transform by i k:

f̂ ′(k) = i k f̂(k). (13.117)

† We are assuming the integrand is sufficiently nice so that we can bring the derivative under
the integral sign; see [62, 193] for a fully rigorous derivation.
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Table of Fourier Transforms

f(x) f̂(k)

1
√

2π δ(k)

δ(x)
1
√

2π

σ(x)

√
π

2
δ(k)−

i
√

2π k

sign x − i

√
2

π

1

k

σ(x + a)− σ(x− a)

√
2

π

sin ka

k

e−ax σ(x)
1

√
2π (a + i k)

e−a | x |

√
2

π

a

k2 + a2

e−ax2 e−k2/4a

√
2 a

tan−1 x − i

√
π

2

e−| k |

k
+

π3/2

√
2

δ(k)

f(cx + d)
e i k d/c

| c |
f̂

(
k

c

)

f(x) f̂(−k)

f̂(x) f(−k)

f ′(x) i k f̂(k)

f (n)(x) ( i k)n f̂(k)

xn f(x)

(
i

d

dk

)n

f̂(k)

f ∗ g(x)
√

2π f̂(k) ĝ(k)

Note: The parameter a > 0 is always real and positive,
while c 6= 0 is any nonzero complex number.
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Example 13.21. The derivative of the even exponential pulse fe(x) = e−a | x | is a
multiple of the odd exponential pulse fo(x) = (signx) e−a | x |:

f ′
e(x) = −a (sign x) e−a | x | = − afo(x).

Proposition 13.20 says that their Fourier transforms are related by

f̂o(k) = −
i k

a
f̂e(k) = − i

√
2

π

k

k2 + a2
= −

i k

a
f̂o(k),

as previously noted in (13.98, 101). On the other hand, since the odd exponential pulse
has a jump discontinuity of magnitude 2 at x = 0, its derivative contains a delta function,
and is equal to

f ′
o(x) = − a e−a | x | + 2 δ(x) = − afe(x) + 2 δ(x).

This is reflected in the relation between their Fourier transforms. If we multiply (13.101)
by i k we obtain

i k f̂o(k) =

√
2

π

k2

k2 + a2
=

√
2

π
−

√
2

π

a2

k2 + a2
= 2 δ̂(k)− a f̂e(k).

The Fourier transform, just like Fourier series, is completely compatible with the calculus
of generalized functions.

Higher order derivatives are handled by iterating formula (13.117), and so:

Corollary 13.22. The Fourier transform of f (n)(x) is ( i k)n f̂(k).

This result has an important consequence: the smoothness of f(x) is manifested

in the rate of decay of its Fourier transform f̂(k). We already noted that the Fourier

transform of a (nice) function must decay to zero at large frequencies: f̂(k) → 0 as
| k | → ∞. If the nth derivative f (n)(x) is also a reasonable function, then its Fourier

transform f̂ (n)(k) = ( i k)n f̂(k) must go to zero as | k | → ∞. This requires that f̂(k) go to
zero more rapidly than | k |−n. Thus, the smoother f(x), the more rapid the decay of its
Fourier transform. As a general rule of thumb, local features of f(x), such as smoothness,

are manifested by global features of f̂(k), such as decay for large | k |. The symmetry
principle implies that reverse is also true: global features of f(x) correspond to local

features of f̂(k). This local-global duality is one of the major themes of Fourier theory.

Integration of functions is the inverse operation to differentiation, and so should corre-
spond to division by 2π i k in frequency space. As with Fourier series, this is not completely
correct; there is an extra constant involved, and this contributes an extra delta function
in frequency space.

Proposition 13.23. If f(x) has Fourier transform f̂(k), then the Fourier transform

of its integral g(x) =

∫ x

−∞

f(y) dy is

ĝ(k) =
f̂(k)

i k
+ c

√
π

2
δ(k), where c =

∫ ∞

−∞

f(x) dx. (13.118)
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Proof : First notice that

lim
x→−∞

g(x) = 0, lim
x→+∞

g(x) = c =

∫ ∞

−∞

f(x) dx.

Therefore, by subtracting a suitable multiple of the step function from the integral, the
resulting function

h(x) = g(x)− c σ(x)

decays to 0 at both ±∞. Consulting our table of Fourier transforms, we find

ĥ(k) = ĝ(k)− c

√
π

2
δ(k) +

i c
√

2π k
. (13.119)

On the other hand,
h′(x) = f(x)− c δ(x).

Since h(x)→ 0 as |x | → ∞, we can apply our differentiation rule (13.117), and conclude
that

i k ĥ(k) = f̂(k)−
c
√

2π
. (13.120)

Combining (13.119) and (13.120) establishes the desired formula (13.118). Q.E.D.

Example 13.24. The Fourier transform of the inverse tangent function

f(x) = tan−1 x =

∫ x

0

dy

1 + y2
=

∫ x

−∞

dy

1 + y2
−

π

2

can be computed by combining Proposition 13.23 with (13.105). Since

∫ ∞

−∞

tan−1 x dx = π,
we find

f̂(k) = − i

√
π

2

e−| k |

k
+

π3/2

√
2

δ(k).

Applications to Differential Equations

The fact that the Fourier transform changes differentiation in the physical domain
into multiplication in the frequency domain is one of its most compelling features. A
particularly important consequence is that the Fourier transform effectively converts dif-
ferential equations into algebraic equations, and thereby opens the door to their solution
by elementary algebra! One begins by applying the Fourier transform to both sides of
the differential equation under consideration. Solving the resulting algebraic equation will
produce a formula for the Fourier transform of the desired solution, which can then be
immediately reconstructed via the inverse Fourier transform.

The Fourier transform is particularly well adapted to boundary value problems on the
entire real line. In place of the boundary conditions used on finite intervals, we look for
solutions that decay to zero sufficiently rapidly as |x | → ∞ — in order that their Fourier
transform be well-defined (in the context of ordinary functions). In quantum mechanics,
[127], these solutions are known as the bound states of the system, and correspond to
subatomic particles that are trapped or localized in a region of space by some sort of

5/1/06 733 c© 2006 Peter J. Olver



force field. For example, the bound electrons in an atom are localized by the electrostatic
attraction of the nucleus.

As a specific example, consider the boundary value problem

−
d2u

dx2
+ ω2 u = h(x), −∞ < x <∞, (13.121)

where ω > 0 is a positive constant. In lieu of boundary conditions, we require that the
solution u(x) → 0 as |x | → ∞. We will solve this problem by applying the Fourier
transform to both sides of the differential equation. Taking Corollary 13.22 into account,
the result is a linear algebraic equation

k2 û(k) + ω2 û(k) = ĥ(k)

relating the Fourier transforms of u and h. Unlike the differential equation, the transformed
equation can be immediately solved for

û(k) =
ĥ(k)

k2 + ω2
(13.122)

Therefore, we can reconstruct the solution by applying the inverse Fourier transform for-
mula (13.86):

u(x) =
1
√

2π

∫ ∞

−∞

ĥ(k) e i kx

k2 + ω2
dk. (13.123)

For example, if the forcing function is an even exponential pulse,

h(x) = e−| x | with ĥ(k) =

√
2

π

1

k2 + 1
,

then (13.123) writes the solution as a Fourier integral:

u(x) =
1

π

∫ ∞

−∞

e i kx

(k2 + ω2)(k2 + 1)
dk =

1

π

∫ ∞

−∞

cos kx

(k2 + ω2)(k2 + 1)
dk .

noting that the imaginary part of the complex integral vanishes because the integrand is
an odd function. (Indeed, if the forcing function is real, the solution must also be real.)
The Fourier integral can be explicitly evaluated by using partial fractions to rewrite

û(k) =

√
2

π

1

(k2 + ω2)(k2 + 1)
=

√
2

π

1

ω2 − 1

(
1

k2 + 1
−

1

k2 + ω2

)
, ω2 6= 1,

Thus, according to our Fourier Transform Table, the solution to this boundary value
problem is

u(x) =

e−| x | −
1
ω

e−ω | x |

ω2 − 1
when ω2 6= 1. (13.124)

The reader may wish to verify that this function is indeed a solution, meaning that it is
twice continuously differentiable (which is not so immediately apparent from the formula),
decays to 0 as |x | → ∞, and satisfies the differential equation everywhere. The “resonant”
case ω2 = 1 is left as an exercise.
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Remark : The method of partial fractions that you learned in first year calculus is
often an effective tool for evaluating (inverse) Fourier transforms of rational functions.

A particularly important case is when the forcing function h(x) = δy(x) = δ(x − y)
represents a unit impulse concentrated at x = y. The resulting square-integrable solution
is the Green’s function G(x, y) for the boundary value problem. According to (13.122), its
Fourier transform with respect to x is

Ĝ(k, y) =
1
√

2π

e− i ky

k2 + ω2
.

which is the product of an exponential factor e− i ky, representing the Fourier transform of
δy(x), times a multiple of the Fourier transform of the even exponential pulse e−ω | x |. We
apply Proposition 13.19, and conclude that the Green’s function for this boundary value
problem is an exponential pulse centered at y, namely

G(x, y) =
1

2ω
e−ω | x−y | .

Observe that, as with other self-adjoint boundary value problems, the Green’s function is
symmetric under interchange of x and y. As a function of x, it satisfies the homogeneous
differential equation −u′′ + ω2 u = 0, except at the point x = y when its derivative has
a jump discontinuity of unit magnitude. It also decays as |x | → ∞, as required by
the boundary conditions. The Green’s function superposition principle tells us that the
solution to the inhomogeneous boundary value problem (13.121) under a general forcing
can be represented in the integral form

u(x) =

∫ ∞

−∞

G(x, y)h(y) dy =
1

2ω

∫ ∞

−∞

e−ω| x−y | h(y) dy. (13.125)

The reader may enjoy recovering the particular exponential solution (13.124) from this
integral formula.

Convolution

The final Green’s function formula (13.125) is indicative of a general property of
Fourier transforms. The right hand side has the form of a convolution product between
functions.

Definition 13.25. The convolution of scalar functions f(x) and g(x) is the scalar
function h = f ∗ g defined by the formula

h(x) = f(x) ∗ g(x) =

∫ ∞

−∞

f(x− y) g(y) dy. (13.126)

We record the basic properties of the convolution product, leaving their verification
as exercises for the reader. All of these assume that the implied convolution integrals
converge.

(a) Symmetry : f ∗ g = g ∗ f ,
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(b) Bilinearity :

{
f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h),

(af + bg) ∗ h = a(f ∗ h) + b(g ∗ h),
a, b ∈ C,

(c) Associativity : f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(d) Zero function: f ∗ 0 = 0,

(e) Delta function: f ∗ δ = f .

One tricky feature is that the constant function 1 is not a unit for the convolution product;
indeed,

f ∗ 1 =

∫ ∞

−∞

f(y) dy

is a constant function — the total integral of f — not the original function f(x). In fact,
according to the last property, the delta function plays the role of the “convolution unit”:

f(x) ∗ δ(x) =

∫ ∞

−∞

f(x− y) δ(y) dy = f(x),

which follows from the basic property (11.36) of the delta function.

In particular, our solution (13.125) has the form of a convolution product between an

even exponential pulse g(x) =
1

2ω
e−ω| x | and the forcing function:

u(x) = g(x) ∗ h(x).

On the other hand, its Fourier transform (13.122) is the ordinary multiplicative product

û(k) = ĝ(k) ĥ(k)

of the Fourier transforms of g and h. In fact, this is a general property of the Fourier trans-
form: convolution in the physical domain corresponds to multiplication in the frequency
domain, and conversely.

Theorem 13.26. The Fourier transform of the convolution u(x) = f ∗ g(x) of two

functions is a multiple of the product of their Fourier transforms:

û(k) =
√

2π f̂(k) ĝ(k).

Vice versa, the Fourier transform of their product h(x) = f(x) g(x) is, up to multiple, the

convolution of their Fourier transforms:

ĥ(k) =
1
√

2π
f̂ ∗ ĝ(k).

Proof : Combining the definition of the Fourier transform with the convolution for-
mula (13.126), we find

û(k) =
1
√

2π

∫ ∞

−∞

h(x) e− i kx dx =
1
√

2π

∫ ∞

−∞

∫ ∞

−∞

f(x− y) g(y) e− i kx dx dy.
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where we are assuming that the integrands are sufficiently nice to allow us to interchange
the order of integration, [9]. Applying the change of variables z = x − y in the inner
integral produces

û(k) =
1
√

2π

∫ ∞

−∞

∫ ∞

−∞

f(z) g(y) e− i k(y+z) dy dz

=
√

2π

(
1
√

2π

∫ ∞

−∞

f(z) e− i kz dz

)(
1
√

2π

∫ ∞

−∞

g(y) e− i ky dy

)
=
√

2π f̂(k) ĝ(k).

The second statement follows directly from the symmetry principle of Theorem 13.18.
Q.E.D.

Example 13.27. We already know, (13.106), that the Fourier transform of

f(x) =
sinx

x
is the box function

f̂(k) =

√
π

2

[
σ(k + 1)− σ(k − 1)

]
=





√
π

2
, −1 < k < 1,

0, | k | > 1,

We also know that the Fourier transform of

g(x) =
1

x
is ĝ(k) = − i

√
π

2
sign k.

Therefore, the Fourier transform of their product

h(x) = f(x) g(x) =
sinx

x2

can be obtained by convolution:

ĥ(k) =
1
√

2π
f̂ ∗ ĝ(k) =

1
√

2π

∫ ∞

−∞

f̂(l) ĝ(k − l) dl

= − i

√
π

8

∫ 1

−1

sign(k − l) dl =





i

√
π

2
k < −1,

− i

√
π

2
k, −1 < k < 1,

− i

√
π

2
k > 1.

A graph of ĥ(k) appears in Figure 13.15.

The Fourier Transform on Hilbert Space

While we do not have the space to embark on a fully rigorous treatment of the theory
underlying the Fourier transform, it is worth outlining a few of the most basic features.
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Figure 13.15. The Fourier transform of
sinx

x2
.

We have already noted that the Fourier transform, when defined, is a linear map, taking
functions f(x) on physical space to functions f̂(k) on frequency space. A critical question is
precisely which function space should the theory be applied to. Not every function admits
a Fourier transform in the classical sense† — the Fourier integral (13.83) is required to
converge, and this places restrictions on the function and its asymptotics at large distances.

It turns out the proper setting for the rigorous theory is the Hilbert space of complex-
valued square-integrable functions — the same infinite-dimensional vector space that lies
at the heart of modern quantum mechanics. In Section 12.5, we already introduced the
Hilbert space L2[−π, π ] on a finite interval; here we adapt Definition 12.33 to the entire
real line. Thus, the Hilbert space L2 = L2(R) is the infinite-dimensional vector space
consisting of all complex-valued functions f(x) which are defined for all x ∈ R and have
finite L2 norm:

‖ f ‖2 =

∫ ∞

−∞

| f(x) |2 dx <∞. (13.127)

For example, any piecewise continuous function that satisfies the decay criterion

| f(x) | ≤
M

|x |1/2+δ
, for all sufficiently large |x | À 0, (13.128)

for some M > 0 and δ > 0, belongs to L2. However, as in Section 12.5, Hilbert space
contains many more functions, and the precise definitions and identification of its elements
is quite subtle. The inner product on the Hilbert space L2 is prescribed in the usual
manner,

〈 f , g 〉 =

∫ ∞

−∞

f(x) g(x) dx.

The Cauchy–Schwarz inequality

| 〈 f , g 〉 | ≤ ‖ f ‖ ‖ g ‖

ensures that the inner product integral is finite whenever f, g ∈ L2.

† We leave aside the more advanced issues involving generalized functions in this subsection.
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Let us state the fundamental theorem governing the effect of the Fourier transform on
functions in Hilbert space. It can be regarded as a direct analog of the pointwise conver-
gence Theorem 12.7 for Fourier series. A fully rigorous proof can be found in [173, 193].

Theorem 13.28. If f(x) ∈ L2 is square-integrable, then its Fourier transform f̂(k) ∈
L2 is a well-defined, square-integrable function of the frequency variable k. If f(x) is

continuously differentiable at a point x, then its inverse Fourier transform (13.86) equals

its value f(x). More generally, if the right and left hand limits f(x−), f ′(x−), and f(x+),
f ′(x+) exist, then the inverse Fourier transform integral converges to the average value
1
2

[
f(x−) + f(x+)

]
.

Thus, the Fourier transform f̂ = F [f ] defines a linear transformation from L2 func-
tions of x to L2 functions of k. In fact, the Fourier transform preserves inner products.
This important result is known as Parseval’s formula, whose Fourier series counterpart
appeared in (12.116).

Theorem 13.29. If f̂(k) = F [f(x) ] and ĝ(k) = F [g(x) ], then 〈 f , g 〉 = 〈 f̂ , ĝ 〉, i.e.,

∫ ∞

−∞

f(x) g(x) dx =

∫ ∞

−∞

f̂(k) ĝ(k) dk. (13.129)

Proof : Let us sketch a formal proof that serves to motivate why this result is valid.
We use the definition (13.83) of the Fourier transform to evaluate

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

(
1
√

2π

∫ ∞

−∞

f(x) e− i kx dx

)(
1
√

2π

∫ ∞

−∞

g(y) e+ i ky dy

)
dk

=

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y)

(
1

2π

∫ ∞

−∞

e− i k(x−y) dk

)
dx dy.

Now according to (13.114), the inner k integral can be replaced by a delta function δ(x−y),
and hence

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y) δ(x− y) dx dy =

∫ ∞

−∞

f(x) g(x) dx.

This completes our “proof”; see [173, 193] for a rigorous version. Q.E.D.

In particular, orthogonal functions, 〈 f , g 〉 = 0, will have orthogonal Fourier trans-

forms, 〈 f̂ , ĝ 〉 = 0. Choosing f = g in (13.129) results in the Plancherel formula ‖ f ‖2 =

‖ f̂ ‖2, or, explicitly, ∫ ∞

−∞

| f(x |2 dx =

∫ ∞

−∞

| f̂(k) |2 dk. (13.130)

We conclude that the Fourier transform map F : L2 → L2 defines a unitary or norm-
preserving linear transformation on Hilbert space, mapping L2 functions of the physical
variable x to L2 functions of the frequency variable k.
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Quantum Mechanics and the Uncertainty Principle

In quantum mechanics, the wave functions or probability densities of a quantum sys-
tem are characterized as unit elements, ‖ϕ ‖ = 1 of the underlying state space, which, in a
one-dimensional model of a single particle, is the Hilbert space L2 = L2(R). All measurable
physical quantities are represented as linear operators A: L2 → L2 acting on (a suitable
dense subspace of) the state space. These are obtained by the tahter myusterious process
of “quantizing” their classical counterparts, which are ordinary functions. In particular,
the particle’s position, usually denoted by Q, is represented by the operation of multiplica-
tion by x, so Q[ϕ ] = xϕ(x), whereas its momentum, denoted by P for historical reasons,
is represented by the differentiation operator P = d/dx, so that P [ϕ ] = ϕ′(x).

In its popularized form, Heisenberg’s Uncertainty Principle is a by now familiar philo-
sophical concept. The principle, first formulated by the twentieth century German physi-
cist Werner Heisenberg, one of the founders of modern quantum mechanics, states that,
in a physical system, certain quantities cannot be simultaneously measured with complete
accuracy. For instance, the more precisely one measures the position of a particle, the
less accuracy there will be in the measurement of its momentum; vice versa, the greater
the accuracy in the momentum, the less certainty in its position. A similar uncertainty
couples energy and time. Experimental verification of the uncertainty principle can be
found even in fairly simple situations. Consider a light beam passing through a small hole.
The position of the photons is constrained by the hole; the effect of their momenta is in
the pattern of light diffused on a screen placed beyond the hole. The smaller the hole, the
more constrained the position, and the wider the image on the screen, meaning the less
certainty there is in the momentum.

This is not the place to discuss the philosophical and experimental consequences of
Heisenberg’s principle. What we will show is that the Uncertainty Principle is, in fact, a
rigorous theorem concerning the Fourier transform! In quantum theory, each of the paired
quantities, e.g., position and momentum, are interrelated by the Fourier transform. Indeed,
Proposition 13.20 says that the Fourier transform of the differentiation operator represent-
ing monmentum is a multiplication operator representing position on the frequency space
and vice versa. This Fourier transform-based duality between position and momentum, or
multiplication and differentiation, lies at the heart of the Uncertainty Principle.

In general, suppose A is a linear operator on Hilbert space representing a physical
quantity. If the quantum system is in a state represented by a particular wave function
ϕ, then the localization of the quantity A is measured by the norm ‖A[ϕ ] ‖. The smaller
this norm, the more accurate the measurement. Thus, ‖Q[ϕ ] ‖ = ‖xϕ(x) ‖ measures the
localization of the position of the particle represented by ϕ; the smaller ‖Q[ϕ ] ‖, the more
concentrated the probability of finding the particle near† x = 0 and hence the smaller the
error in the measurement of its position. Similarly, by Plancherel’s formula (13.130),

‖P [ϕ ] ‖ = ‖ϕ′(x) ‖ = ‖ i k ϕ̂(k) ‖ = ‖ k ϕ̂(k) ‖,

† At another position a, one replaces x by x − a.
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measures the localization in the momentum of the particle, which is small if and only
if its Fourier transform is concentrated near k = 0, and hence the smaller the error in
its measured momentum. With this interpretation, the Uncertainty Principle states that
these two quantities cannot simultaneously be arbitrarily small.

Theorem 13.30. If ϕ(x) is a wave function, so ‖ϕ ‖ = 1, then

‖Q[ϕ ] ‖ ‖P [ϕ ] ‖ ≥ 1
2 . (13.131)

Proof : The proof rests on the Cauchy–Schwarz inequality
∣∣∣ 〈xϕ(x) , ϕ′(x) 〉

∣∣∣ ≤ ‖xϕ(x) ‖ ‖ϕ′(x) ‖ = ‖Q[ϕ ] ‖ ‖P [ϕ ] ‖. (13.132)

On the other hand, writing out the inner product term

〈xϕ(x) , ϕ′(x) 〉 =

∫ ∞

−∞

xϕ(x)ϕ′(x) dx.

Let us integrate by parts, using the fact that

ϕ(x)ϕ′(x) =
d

dx

[
1
2 ϕ(x)2

]
.

Since ϕ(x)→ 0 as |x | → ∞, the boundary terms vanish, and hence

〈xϕ(x) , ϕ′(x) 〉 =

∫ ∞

−∞

xϕ(x)ϕ′(x) dx = −

∫ ∞

−∞

1
2 ϕ(x)2 dx = − 1

2 ,

since ‖ϕ ‖ = 1. Substituting back into (13.132) completes the proof. Q.E.D.

The inequality (13.131) quantifies the statement that the more accurately we measure
the momentum Q, the less accurately we are able to measure the position P , and vice
versa. For more details and physical consequences, you should consult an introductory
text on mathematical quantum mechanics, e.g., [122, 127].

13.4. The Laplace Transform.

In engineering applications, the Fourier transform is often overshadowed by a close
relative. The Laplace transform plays an essential role in control theory, linear systems
analysis, electronics, and many other fields of practical engineering and science. How-
ever, the Laplace transform is most properly interpreted as a particular real form of the
more fundamental Fourier transform. When the Fourier transform is evaluated along the
imaginary axis, the complex exponential factor becomes real, and the result is the Laplace
transform, which maps real-valued functions to real-valued functions. Since it is so closely
allied to the Fourier transform, the Laplace transform enjoys many of its featured proper-
ties, including linearity. Moreover, derivatives are transformed into algebraic operations,
which underlies its applications to solving differential equations. The Laplace transform
is one-sided; it only looks forward in time and prefers functions that decay — transients.
The Fourier transform looks in both directions and prefers oscillatory functions. For this
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reason, while the Fourier transform is used to solve boundary value problems on the real
line, the Laplace transform is much better adapted to initial value problems.

Since we will be applying the Laplace transform to initial value problems, we switch
our variable from x to t to emphasize this fact. Suppose f(t) is a (reasonable) function
which vanishes on the negative axis, so f(t) = 0 for all t < 0. The Fourier transform of f
is

f̂(k) =
1
√

2π

∫ ∞

0

f(t) e− i kt dt,

since, by our assumption, its negative t values make no contribution to the integral. The
Laplace transform of such a function is obtained by replacing i k by a real† variable s,
leading to

F (s) = L[f(t) ] =

∫ ∞

0

f(t) e−s t dt, (13.133)

where, in accordance with the standard convention, the factor of
√

2π has been omitted.
By allowing complex values of the Fourier frequency variable k, we may identify the Laplace
transform with

√
2π times the evaluation of the Fourier transform for values of k = − i s

on the imaginary axis:

F (s) =
√

2π f̂(− i s). (13.134)

Since the exponential factor in the integral has become real, the Laplace transform L takes
real functions to real functions. Moreover, since the integral kernel e−s t is exponentially
decaying for s > 0, we are no longer required to restrict our attention to functions that
decay to zero as t→∞.

Example 13.31. Consider an exponential function f(t) = eαt, where the exponent
α is allowed to be complex. Its Laplace transform is

F (s) =

∫ ∞

0

e(α−s) t dt =
1

s− α
. (13.135)

Note that the integrand is exponentially decaying, and hence the integral converges, if and
only if Re (α− s) < 0. Therefore, the Laplace transform (13.135) is, strictly speaking,
only defined at sufficiently large s > Re α. In particular, for an oscillatory exponential,

L[e i ωt ] =
1

s− i ω
=

s + i ω

s2 + ω2
provided s > 0.

Taking real and imaginary parts of this identity, we discover the formulae for the Laplace
transforms of the simplest trigonometric functions:

L[ cos ωt ] =
s

s2 + ω2
, L[ sin ωt ] =

ω

s2 + ω2
. (13.136)

† One can also define the Laplace transform at complex values of s, but this will not be required
in the applications discussed here.
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Two additional important transforms are

L[1 ] =

∫ ∞

0

e−st dt =
1

s
, L[ t ] =

∫ ∞

0

t e−st dt =
1

s

∫ ∞

0

e−st dt =
1

s2
. (13.137)

The second computation relies on an integration by parts, making sure that the boundary
terms at s = 0,∞ vanish.

Remark : In every case, we really mean the Laplace transform of the function whose
values are given for t > 0 and is equal to 0 for all negative t. Therefore, the function 1 in
reality signifies the step function

σ(t) =

{
1, t > 0,

0, t < 0,
(13.138)

and so the first formula in (13.137) should more properly be written

L[σ(t) ] =
1

s
. (13.139)

However, in the traditional approach to the Laplace transform, one only considers the
functions on the positive t axis, and so the step function and the constant function are, from
this viewpoint, indistinguishable. However, once one moves beyond a purely mechanistic
approach, any deeper understanding of the properties of the Laplace transform requires
keeping this distinction firmly in mind.

Let us now pin down the precise class of functions to which the Laplace transform can
be applied.

Definition 13.32. A function f(t) is said to have exponential growth of order a if

| f(t) | < M eat, for all t > t0, (13.140)

for some M > 0 and t0 > 0.

Note that the exponential growth condition only depends upon the function’s behavior
for large values of t. If a < 0, then f is, in fact, exponentially decaying as x → ∞. Since
eat < ebt for a < b and all t > 0, if f(t) has exponential growth of order a, it automat-
ically has exponential growth of any higher order b > a. All polynomial, trigonometric,
and exponential functions (with linear argument) have exponential growth. The simplest

example of a function that does not satisfy any exponential growth bound is f(t) = et2 ,
since it grows faster than any simple exponential eat.

The following result guarantees the existence of the Laplace transform, at least for
sufficiently large values of the transform variable s, for a rather broad class of functions
that includes almost all of the functions that arise in applications.

Theorem 13.33. If f(t) is piecewise continuous and has exponential growth of order

a, then its Laplace transform F (s) = L[f(t) ] is defined for all s > a.
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Table of Laplace Transforms

f(t) F (s)

1
1

s

t
1

s2

tn
n!

sn+1

δ(t− c) e−sc

σ(t− c)
e−sc

s

eαt 1

s− α

cosωt
s

s2 + ω2

sin ωt
ω

s2 + ω2

ect f(t) F (s− c)

f(t)

t

∫ ∞

s

F (r) dr

f(t− c) e−sc F (s)

f ′(t) sF (s)− f(0)

f (n)(t) sn F (s)− sn−1 f(0)−

− sn−2 f ′(0)− · · · − f (n−1)(0)

f(t) ∗ g(t) F (s)G(s)
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Proof : The exponential growth inequality (13.140) implies that we can bound the in-
tegrand in (13.133) by | f(t) e−st | < M e(a−s) t. Therefore, as soon as s > a, the integrand
is exponentially decaying as t → ∞, and this suffices to ensure the convergence of the
Laplace transform integral. Q.E.D.

Theorem 13.33 is an existential result, and of course, in practice, we may not be able
to explicitly evaluate the Laplace transform integral. Nevertheless, the Laplace transforms
of most common functions are not hard to find, and extensive lists have been tabulated,
[139]. An abbreviated table of Laplace transforms can be found on the following page.
Nowadays, the most convenient sources of transform formulas are computer algebra pack-
ages, including Mathematica and Maple.

According to Theorem 13.28, when it exists, the Fourier transform uniquely specifies
the function, except possibly at jump discontinuities where the limiting value must be half
way in between. An analogous result can be established for the Laplace transform.

Lemma 13.34. If f(t) and g(t) are piecewise continuous functions that are of ex-

ponential growth, and L[f(t) ] = L[g(t) ] for all s sufficiently large, then f(t) = g(t) at all

points of continuity t > 0.

In fact, there is an explicit formula for the inverse Laplace transform, which follows
from its identification, (13.134), with the Fourier transform along the imaginary axis.
Under suitable hypotheses, a given function F (s) is the Laplace transform of the function
f(t) determined by the complex integral formula†

f(t) =
1

2π i

∫ i∞

− i∞

F (s) est ds, t > 0. (13.141)

In practice, one hardly ever uses this complicated formula to compute the inverse Laplace
transform. Rather, one simply relies on tables of known Laplace transforms, coupled with
a few basic rules that will be covered in the following subsection.

The Laplace Transform Calculus

The first observation is that the Laplace transform is a linear operator, and so

L[f + g ] = L[f ] + L[g ], L[cf ] = cL[f ], (13.142)

for any constant c. Moreover, just like its Fourier progenitor, the Laplace transform
converts calculus into algebra. In particular, differentiation turns into multiplication by
the transform variable, but with one additional term that depends upon the value of the
function at t = 0.

† See Section 16.5 for details on complex integration. The stated formula doesn’t apply to all
functions of exponential growth. A more universally valid inverse Laplace transform formula is
obtained by shifting the complex contour to run from b− i∞ to b+ i∞ for some b > a, the order
of exponential growth of f .
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Theorem 13.35. Let f(t) be continuously differentiable for t > 0 and have expo-

nential growth of order a. If L[f(t) ] = F (s) then, for s > a,

L[f ′(t) ] = sF (s)− f(0). (13.143)

Proof : The proof relies on an integration by parts:

L[f ′(t)(t) ] =

∫ ∞

0

f ′(t) e−st dt = f(t) e−st

∣∣∣∣
∞

t=0

+ s

∫ ∞

0

f(t) e−st dt

= lim
t→∞

f(t) e−st − f(0) + sF (s).

The exponential growth inequality (13.140) implies that first term vanishes for s > a, and
the remaining terms agree with (13.143). Q.E.D.

Example 13.36. According to Example 13.31, the Laplace transform of the function
sinωt is

L[ sinωt ] =
ω

s2 + ω2
.

Its derivative is
d

dt
sinωt = ω cos ωt,

and therefore

L[ω cos ωt ] = sL[ sinωt ] =
ωs

s2 + ω2
,

since sin ωt vanishes at t = 0. The result agrees with (13.136). On the other hand,

d

dt
cos ωt = −ω sinωt,

and so

L[−ω sin ωt ] = sL[ cosωt ]− 1 =
s2

s2 + ω2
− 1 = −

ω2

s2 + ω2
,

again in agreement with the known formula.

Remark : The final term −f(0) in (13.143) is a manifestation of the discontinuity in
f(t) at t = 0. Keep in mind that the Laplace transform only applies to functions with
f(t) = 0 for all t < 0, and so if f(0) 6= 0, then f(t) has a jump discontinuity of magnitude
f(0) at t = 0. Therefore, by the calculus of generalized functions, its derivative f ′(t) should
include a delta function term, namely f(0) δ(0), which accounts for the additional constant
term in its transform. In the practical approach to the Laplace transform calculus, one
suppresses the delta function when computing the derivative f ′(t). However, its effect
must reappear on the other side of the differentiation formula (13.143), and the upshot is
the extra term −f(0).
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Laplace transforms of higher order derivatives are found by iterating the first order
formula (13.143). For example, if f ∈ C2, then

L[f ′′(t) ] = s L[f ′(t) ]− f ′(0) = s2 F (s)− s f(0)− f ′(0). (13.144)

In general, for an n times continuously differentiable function,

L
[
f (n)

]
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0). (13.145)

Conversely, integration corresponds to dividing the Laplace transform by s, so

L

[ ∫ t

0

f(τ) dτ

]
=

F (s)

s
. (13.146)

Unlike the Fourier transform, there are no additional terms in the integration formula as
long as we start the integral at t = 0. For instance,

L[ t2 ] =
1

s
L[2 t ] =

2

s3
, and, more generally, L[ tn ] =

n!

sn+1
. (13.147)

There is also a shift formula, analogous to Proposition 13.19 for Fourier transforms,
but with one important caveat. Since all functions must vanish for t < 0, we are only
allowed to shift them to the right, a shift to the left would produce nonzero function values
for some t < 0. In general, the Laplace transform of the function f(t − c) shifted to the
right by an amount c > 0, is

L[f(t− c) ] =

∫ ∞

0

f(t− c) e−st dt =

∫ ∞

−c

f(t) e−s(t+c) dt (13.148)

=

∫ 0

−c

f(t) e−s(t+c) dt +

∫ ∞

0

f(t) e−s(t+c) dt = e−sc

∫ ∞

0

f(t) e−st dt = e−sc F (s).

In this computation, we first used a change of variables in the integral, replacing t− c by
t; then, the fact that f(t) ≡ 0 for t < 0 was used to eliminate the integral from −c to 0.
When using the shift formula in practice, it is important to keep in mind that c > 0 and
the function f(t− c) vanishes for all t < c.

Example 13.37. Consider the square wave pulse f(t) =

{
1, b < t < c,

0, otherwise,
for some

0 < b < c. To compute its Laplace transform, we write it as the difference

f(t) = σ(t− b)− σ(t− c)

of shifted versions of the step function (13.138). Combining the shift formula (13.148) and
the formula (13.139) for the Laplace transform of the step function, we find

L[f(t) ] = L[σ(t− b) ]− L[σ(t− c) ] =
e−sb − e−sc

s
. (13.149)

We already noted that the Fourier transform of the convolution product of two func-
tions is realized as the ordinary product of their individual transforms. A similar result
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holds for the Laplace transform. Let f(t), g(t) be given functions. Since we are implicitly
assuming that the functions vanish at all negative values of t, their convolution product
(13.126) reduces to a finite integral

h(t) = f(t) ∗ g(t) =

∫ t

0

f(t− τ) g(τ) dτ. (13.150)

In particular h(t) = 0 for all t < 0 also. Further, it is not hard to show that the convolution
of two functions of exponential growth also has exponential growth.

Theorem 13.38. If L[f(t) ] = F (s) and L[g(t) ] = G(s), then the convolution

h(t) = f(t) ∗ g(t) has Laplace transform given by the product H(s) = F (s)G(s).

The proof of the convolution theorem for the Laplace transform proceeds along the
same lines as its Fourier transform version Theorem 13.26, and is left as Exercise for the
reader.

Applications to Initial Value Problems

The key application of the Laplace transform is to facilitate the solution of initial value
problems for linear, constant coefficient ordinary differential equations. As a prototypical
example, consider the second order initial value problem

a
d2u

dt2
+ b

du

dt
+ cu = f(t), u(0) = α,

du

dt
(0) = β, (13.151)

in which a, b, c are constant. We will solve the initial value problem by applying the Laplace
transform to both sides of the differential equation. In view of the differentiation formulae
(13.143, 144),

a
(
s2L[u(t) ]− s u(0)−

¦

u(0)
)

+ b
(
sL[u(t) ]− u(0)

)
+ cL[u(t) ] = L[f(t) ].

Setting L[u(t) ] = U(s) and L[f(t) ] = F (s), and making use of the initial conditions, the
preceding equation takes the form

(as2 + bs + c)U(s) = F (s) + (as + b)α + aβ. (13.152)

Thus, by applying the Laplace transform, we have effectively reduced the entire initial
value problem to a single elementary algebraic equation! Solving for

U(s) =
F (s) + (as + b)α + aβ

as2 + bs + c
, (13.153)

we then recover solution u(t) to the initial value problem by finding the inverse Laplace
transform of U(s). As noted earlier, in practice the inverse transform is found by suitably
massaging the answer (13.153) to be a combination of known transforms.

Example 13.39. Consider the initial value problem

¦¦

u + u = 10 e−3 t, u(0) = 1,
¦

u(0) = 2.
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Taking the Laplace transform of the differential equation as above, we find

(s2 + 1)U(s)− s− 2 =
10

s + 3
, and so U(s) =

s + 2

s2 + 1
+

10

(s + 3)(s2 + 1)
.

The second summand does not directly correspond to any of the entries in our table of
Laplace transforms. However, we can use the method of partial fractions to write it as a
sum

U(s) =
s + 2

s2 + 1
+

1

s + 3
+

3− s

s2 + 1
=

1

s + 3
+

5

s2 + 1
of terms appearing in the table. We conclude that the solution to our initial value problem
is

u(t) = e−3 t + 5 sin t.

Of course, the last example is a problem that you can easily solve directly. The stan-
dard method learned in your first course on differential equations is just as effective in
finding the final solution, and does not require all the extra Laplace transform machin-
ery! The Laplace transform method is, however, particularly effective when dealing with
complications that arise in cases of discontinuous forcing functions.

Example 13.40. Consider a mass vibrating on a spring with fixed stiffness c = 4.
Assume that the mass starts at rest, is then subjected to a unit force over time interval
1
2 π < t < 2π, after which it left to vibrate on its own. The initial value problem is

d2u

dt2
+ 4u =

{
1, 1

2 π < t < 2π,

0, otherwise,
u(0) =

¦

u(0) = 0.

Taking the Laplace transform of the differential equation, and using (13.149), we find

(s2 + 4)U(s) =
e−πs/2 − e−2πs

s
, and so U(s) =

e−πs/2 − e−2πs

s(s2 + 4)
.

Therefore, by the shift formula (13.148)

u(t) = h
(
t− 1

2 π
)
− h(t− 2π),

where h(t) is the function with Laplace transform

L[h(t) ] = H(s) =
1

s(s2 + 4)
=

1

4

(
1

s
−

s

s2 + 4

)
,

which has been conveniently rewritten using partial fractions. Referring to our table of
Laplace transforms,

h(t) =

{ 1
4 −

1
4 cos 2t, t > 0,

0, t < 0.

Therefore, our desired solution is

u(t) =





0, 0 ≤ t ≤ 1
2 π,

1
4 + 1

4 cos 2t, 1
2 π ≤ t ≤ 2π,

1
2 cos 2t, 2π ≤ t.

Note that the solution u(t) is only C1 at the points of discontinuity of the forcing function.
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Remark : A direct solution of this problem would proceed as follows. One solves
the differential equation on each interval of continuity of the forcing function, leading to
a solution on that interval depending upon two integration constants. The integration
constants are then adjusted so that the solution satisfies the initial conditions and is
continuously differentiable at each point of discontinuity of the forcing function. The details
are straightforward, but messy. The Laplace transform method successfully bypasses these
intervening manipulations.

Example 13.41. Consider the initial value problem

d2u

dt2
+ ω2 u = f(t), u(0) =

¦

u(0) = 0,

involving a general forcing function f(t). Applying the Laplace transform to the differential
equation and using the initial conditions,

(s2 + ω2)U(s) = F (s), and hence U(s) =
F (s)

s2 + ω2
.

The right hand side is the product of the Laplace transform of the forcing function f(t)

and that of the trigonometric function k(t) =
sin ωt

ω
. Therefore, Theorem 13.38 implies

that the solution can be written as their convolution

u(t) = f ∗ k(t) =

∫ t

0

k(t− τ) f(τ) dτ =

∫ t

0

sinω(t− τ)

ω
f(τ) dτ. (13.154)

where

k(t) =

{ sin ωt

ω
, t > 0,

0, t < 0.

The integral kernel k(t − τ) is known as the fundamental solution to the initial value
problem, and prescribes the response of the system to a unit impulse force that is applied
instantaneously at the time t = τ . Note particularly that (unlike boundary value problems)
the impulse only affect the solutions at later times t > τ . For initial value problems, the
fundamental solution plays a role similar to that of a Green’s function in a boundary value
problem. The convolution formula (13.154) can be viewed as a linear superposition of
fundamental solution responses induced by expressing the forcing function

f(t) =

∫ ∞

0

f(τ) δ(t dτ − τ)

as a superposition of concentrated impulses over time.

This concludes our brief introduction to the Laplace transform and a few of its many
applications to physical problems. More details can be found in almost all applied texts
on mechanics, electronic circuits, signal processing, control theory, and many other areas,
[Ltr].
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Chapter 14

Vibration and Diffusion

in One–Dimensional Media

In this chapter, we study the solutions, both analytical and numerical, to the two most
important equations of one-dimensional continuum dynamics. The heat equation models
the diffusion of thermal energy in a body; here, we analyze the case of a one-dimensional
bar. The wave equation describes vibrations and waves in continuous media, including
sound waves, water waves, elastic waves, electromagnetic waves, and so on. Again, we
restrict our attention here to the case of waves in a one-dimensional medium, e.g., a string,
or a bar, or a column of air. The two- and three-dimensional versions of these fundamental
equations will be analyzed in the later Chapters 17 and 18.

As we saw in Section 12.1, the basic solution technique is inspired by our eigenvalue-
based methods for solving linear systems of ordinary differential equations. Substituting
the appropriate exponential or trigonometric ansatz will effectively reduce the partial dif-
ferential equation to a one-dimensional boundary value problem. The linear superposition
principle implies that general solution can then be expressed as a infinite series in the
resulting eigenfunction solutions. In both cases considered here, the eigenfunctions of the
one-dimensional boundary value problem are trigonometric, and so the solution to the
partial differential equation takes the form of a time-dependent Fourier series. Although
we cannot, in general, analytically sum the Fourier series to produce a simpler formula for
the solution, there are a number of useful observations that can be gleaned from it.

In the case of the heat equation, the solutions decay exponentially fast to thermal equi-
librium, at a rate governed by the smallest positive eigenvalue of the associated boundary
value problem. The higher order Fourier modes damp out very rapidly, and so the heat
equation can be used to automatically smooth and denoise signals and images. It also
implies that the heat equation cannot be run backwards in time — determining the initial
temperature profile from a later measurement is an ill-posed problem. The response to
a concentrated unit impulse leads to the fundamental solution, which can then be used
to construct integral representations of the solution to the inhomogeneous heat equation.
We will also explain how to exploit the symmetry properties of the differential equation in
order to construct new solutions from known solutions.

In the case of the wave equation, each Fourier mode vibrates with its natural fre-
quency. In a stable situation, the full solution is a linear combination of these fundamen-
tal vibrational modes, while an instability induces an extra linearly growing mode. For
one-dimensional media, the natural frequencies are integral multiples of a single lowest fre-
quency, and hence the solution is periodic, which, in particular, explains the tonal qualities
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of string and wind instruments. The one-dimensional wave equation admits an alternative
explicit solution formula, due to d’Alembert, which points out the role of characteristics in
signal propagation and the behavior of solutions. The analytic and series solution methods
serve to shed complementary lights on the physical phenomena of waves and vibration in
continuous media.

Following our analytical study, we introduce several basic numerical solution methods
for both the heat and the wave equations. We begin with a general discussion of finite
difference formulae for numerically approximating derivatives of functions. The basic finite

difference scheme is obtained by replacing the derivatives in the equation by the appropri-
ate numerical differentiation formulae. However, there is no guarantee that the resulting
numerical scheme will accurately approximate the true solution, and further analysis is
required to elicit bona fide, convergent numerical algorithms. In dynamical problems, the
finite difference schemes replace the partial differential equation by an iterative linear ma-
trix system, and the analysis of convergence relies on the methods covered in Chapter 10.

In preparation for our treatment of partial differential equations in higher dimen-
sions, the final section introduces a general framework for dynamics that incorporates
both discrete dynamics, modeled by linear systems of ordinary differential equations, and
continuum dynamics, modeled by the heat and wave equations, their multidimensional
counterparts, as well as the equilibrium boundary value problems governing bars, beams,
membranes and solid bodies. Common features, based on eigenvalues, are discussed.

14.1. The Diffusion and Heat Equations.

Let us begin with a physical derivation of the heat equation from first principles of
thermodynamics. The reader solely interested in the mathematical developments can skip
ahead to the following subsection. However, physical insight can often play an critical role
in understanding the underlying mathematics, and is neglected at one’s peril.

We consider a bar — meaning a thin, heat-conducting body of length `. “Thin” means
that we can regard the bar as a one-dimensional continuum with no significant transverse
temperature variation. We use 0 ≤ x ≤ ` to denote the position along the bar. Our goal
is to find the temperature u(t, x) of the bar at position x and time t. The dynamical
equations governing the temperature are based on three fundamental physical laws.

The first law is that, in the absence of external sources, thermal energy can only enter
the bar through its ends. In physical terms, we are assuming that the bar is fully insulated
along its length. Let ε(t, x) to denote the thermal energy in the bar at position x and time
t. Consider a small section of the bar lying between x and x+∆x. The total amount of heat

energy contained in this section is obtained by integrating (summing):

∫ x+∆x

x

ε(t, y) dy.

Further, let w(t, x) denote the heat flux , i.e., the rate of flow of thermal energy along the
bar. We use the convention that w(t, x) > 0 means that the energy is moving to the right,
while w(t, x) < 0 if it moves to the left. The first law implies that the rate of change in
the thermal energy in any section of the bar is equal to the total heat flux, namely the
amount of the heat passing through its ends. Therefore, in view of our sign convention on
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the flux,

∂

∂t

∫ x+∆x

x

ε(t, y) dy = −w(t, x + ∆x) + w(t, x),

the latter two terms denoting the respective flux of heat into the section of the bar at its
right and left ends. Assuming sufficient regularity of the integrand, we are permitted to
bring the derivative inside the integral. Thus, dividing both sides of the resulting equation
by ∆x,

1

∆x

∫ x+∆x

x

∂ε

∂t
(t, y) dy = −

w(t, x + ∆x)− w(t, x)

∆x
.

In the limit as the length ∆x→ 0, the right hand side of this equation converges to minus
the x derivative of w(t, x), while, by the Fundamental Theorem of Calculus, the left hand
side converges to the integrand ∂ε/∂t at the point x; the net result is the fundamental
differential equation

∂ε

∂t
= −

∂w

∂x
(14.1)

relating thermal energy ε and heat flux w. A partial differential equation of this partic-
ular form is known as a conservation law , and, in this instance, formulates the law of
conservation of thermal energy. See Exercise for details.

The second physical law is a constitutive assumption, based on experimental evidence.
In most physical materials, thermal energy is found to be proportional to temperature,

ε(t, x) = σ(x)u(t, x). (14.2)

The factor

σ(x) = ρ(x)χ(x) > 0

is the product of the density ρ of the material and its specific heat χ, which is the amount
of heat energy required to raise the temperature of a unit mass of the material by one unit.
Note that we are assuming the bar is not changing in time, and so physical quantities such
as density and specific heat depend only on position x. We also assume, perhaps with less
physical justification, that the material properties do not depend upon the temperature;
otherwise, we would be led to a much more difficult nonlinear diffusion equation.

The third physical law relates the heat flux to the temperature. Physical experiments
in a wide variety of materials indicate that the heat energy moves from hot to cold at a
rate that is in direct proportion to the rate of change — meaning the derivative — of the
temperature. The resulting linear constitutive relation

w(t, x) = −κ(x)
∂u

∂x
(14.3)

is known as Fourier’s Law of Cooling . The proportionality factor κ(x) > 0 is called the
thermal conductivity of the bar at position x. A good heat conductor, e.g., silver, will
have high conductivity, while a poor conductor, e.g., glass, will have low conductivity.

The minus sign tells us that heat energy moves from hot to cold; if
∂u

∂x
(t, x) > 0 the
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temperature is increasing from left to right, and so the heat energy moves back to the left,
with consequent flux w(t, x) < 0.

Combining the three laws (14.1), (14.2) and (14.3) produces the basic partial differ-
ential equation

∂

∂t

[
σ(x)u

]
=

∂

∂x

(
κ(x)

∂u

∂x

)
, 0 < x < `, (14.4)

governing the diffusion of heat in a non-uniform bar. The resulting linear diffusion equation

is used to model a variety of diffusive processes, including heat flow, chemical diffusion,
population dispersion, and the spread of infectious diseases. If, in addition, we allow
external heat sources h(t, x), then the linear diffusion equation acquires an inhomogeneous
term:

∂

∂t

[
σ(x)u

]
=

∂

∂x

(
κ(x)

∂u

∂x

)
+ h(t, x), 0 < x < `. (14.5)

In order to uniquely prescribe the solution u(t, x) to the diffusion equation, we need
to specify the initial temperature distribution

u(t0, x) = f(x), 0 ≤ x ≤ `, (14.6)

along the bar at an initial time t0. In addition, we must impose suitable boundary condi-
tions at the two ends of the bar. As with the equilibrium equations discussed in Chapter 11,
there are three common physical types. The first is a Dirichlet boundary condition, where
an end of the bar is held at prescribed temperature. Thus, the boundary condition

u(t, 0) = α(t) (14.7)

fixes the temperature at the left hand end of the bar. Alternatively, the Neumann boundary

condition
∂u

∂x
(t, 0) = ξ(t) (14.8)

prescribes the heat flux w(t, 0) = −κ(0)
∂u

∂x
(t, 0) at the left hand end. In particular, the

homogeneous Neumann condition with ξ(t) ≡ 0 corresponds to an insulated end, where
no heat can flow in or out. Each end of the bar should have one or the other of these
boundary conditions. For example, a bar with both ends having prescribed temperatures
is governed by the pair of Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), (14.9)

whereas a bar with two insulated ends requires two homogeneous Neumann boundary
conditions

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, `) = 0. (14.10)

The mixed case, with one end fixed and the other insulated, is similarly formulated. Finally,
the periodic boundary conditions

u(t, 0) = u(t, `),
∂u

∂x
(t, 0) =

∂u

∂x
(t, `), (14.11)
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correspond to a circular ring of length `. As before, we are assuming the heat is only
allowed to flow around the ring — insulation prevents any radiation of heat from one side
of the ring to the other.

The Heat Equation

In this book, we will retain the term “heat equation” to refer to the homogeneous
case, in which the bar is made of a uniform material, and so its density ρ, conductivity κ,
and specific heat χ are all positive constants. Under these assumptions, the homogeneous
diffusion equation (14.4) reduces to the heat equation

∂u

∂t
= γ

∂2u

∂x2
(14.12)

for the temperature u(t, x) in the bar at time t and position x. The constant

γ =
κ

σ
=

κ

ρχ
(14.13)

is called the thermal diffusivity of the bar, and incorporates all of its relevant physical prop-
erties. The solution u(t, x) will be uniquely prescribed once we specify initial conditions
(14.6) and a suitable pair of boundary conditions at the ends of the bar.

As we learned in Section 12.1, the elementary, separable solutions to the heat equation
are based on the exponential ansatz

u(t, x) = e−λt v(x), (14.14)

where v(x) is a time-independent function. Substituting the solution formula (14.14) into
(14.12) and canceling the common exponential factors, we find that v(x) must solve the
ordinary differential equation

−γ v′′ = λ v.

In other words, v is an eigenfunction with eigenvalue λ, for the second derivative operator
K = −γ D2. Once we determine the eigenvalues and eigenfunctions, we will be able to
reconstruct the solution u(t, x) as a linear combination, or, rather, infinite series in the
corresponding separable eigenfunction solutions.

Let us consider the simplest case of a uniform bar held at zero temperature at each
end. For simplicity, we take the initial time to be t0 = 0, and so the initial and boundary
conditions are

u(t, 0) = 0, u(t, `) = 0, t ≥ 0,

u(0, x) = f(x), 0 < x < `.
(14.15)

According to the general prescription, we need to solve the eigenvalue problem

γ
d2v

dx2
+ λ v = 0, v(0) = 0, v(`) = 0. (14.16)

As noted in Exercise , positive definiteness of the underlying differential operator K =
−γ D2 when subject to Dirichlet boundary conditions implies that we need only look
for positive eigenvalues: λ > 0. In Exercises – , the skeptical reader is asked to check
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explicitly that if λ ≤ 0 or λ is complex, then the boundary value problem (14.16) admits
only the trivial solution v(x) ≡ 0.

Setting λ = γ ω2 with ω > 0, the general solution to the differential equation is a
trigonometric function

v(x) = a cos ωx + b sinωx,

where a, b are constants whose values will be fixed by the boundary conditions. The
boundary condition at x = 0 requires a = 0. The second boundary condition requires

v(`) = b sinω` = 0.

Therefore, assuming b 6= 0, as otherwise the solution is trivial, ω` must be an integer
multiple of π, and so

ω =
π

`
,

2π

`
,

3π

`
, . . . .

We conclude that the eigenvalues and eigenfunctions of the boundary value problem (14.16)
are

λn = γ
(nπ

`

)2

, vn(x) = sin
nπx

`
, n = 1, 2, 3, . . . . (14.17)

The corresponding separable solutions (14.14) to the heat equation with the given boundary
conditions are

un(t, x) = exp

(
−

γ n2 π2 t

`2

)
sin

nπx

`
, n = 1, 2, 3, . . . . (14.18)

Each represents a trigonometrically oscillating temperature profile that maintains its form
while decaying to zero at an exponential rate. The first of these,

u1(t, x) = exp

(
−

γ π2 t

`2

)
sin

πx

`
,

experiences the slowest decay. The higher “frequency” modes un(t, x), n ≥ 2, all go to
zero at a faster rate, with those having a highly oscillatory temperature profile, where
n À 0, effectively disappearing almost instantaneously. Thus, small scale temperature
fluctuations tend to rapidly cancel out through diffusion of heat energy.

Linear superposition is used to assemble the general series solution

u(t, x) =
∞∑

n=1

bn un(t, x) =
∞∑

n=1

bn exp

(
−

γ n2 π2 t

`2

)
sin

nπx

`
(14.19)

as a combination of the separable solutions. Assuming that the series converges, the initial
temperature profile is

u(0, x) =
∞∑

n=1

bn sin
nπx

`
= f(x). (14.20)

This has the form of a Fourier sine series (12.44) on the interval [0, ` ]. By orthogonality of
the eigenfunctions — which is a direct consequence of the self-adjointness of the underlying
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Figure 14.1. A Solution to the Heat Equation.

boundary value problem (14.16) — the coefficients are determined by the inner product
formulae (12.45), and so

bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx, n = 1, 2, 3, . . . . (14.21)

The resulting solution (14.19) describes the Fourier sine series for the temperature u(t, x)
of the bar at each later time t ≥ 0. It can be rigorously proved that, for quite general initial
conditions, the Fourier series does indeed converge to a solution to the initial-boundary
value problem, [181].

Example 14.1. Consider the initial temperature profile

u(0, x) = f(x) =





−x, 0 ≤ x ≤ 1
5 ,

x− 2
5 , 1

5 ≤ x ≤ 7
10 ,

1− x, 7
10 ≤ x ≤ 1,

(14.22)

on a bar of length 1, plotted in the first graph in Figure 14.1. Using (14.21), the first few
Fourier coefficients of f(x) are computed as

b1 = .0448 . . . , b2 = − .096 . . . , b3 = − .0145 . . . , b4 = 0,

b5 = − .0081 . . . , b6 = .0066 . . . , b7 = .0052 . . . , b8 = 0,
. . . .

Setting γ = 1, the resulting Fourier series solution to the heat equation is

u(t, x) =

∞∑

n=1

bn un(t, x) =

∞∑

n=1

bn e−n2 π2 t sinnπx

= .0448 e−π2 t sin πx− .096 e−4π2 t sin 2πx− .0145 e−9π2 t sin 3πx− · · · .

In Figure 14.1, the solution is plotted at the successive times t = ., .02, .04, . . . , .1. Observe
that the corners in the initial data are immediately smoothed out. As time progresses,
the solution decays, at an exponential rate of π2 ≈ 9.87, to a uniform, zero temperature,
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which is the equilibrium temperature distribution for the homogeneous Dirichlet boundary
conditions. As the solution decays to thermal equilibrium, it also assumes the progressively
more symmetric shape of a single sine arc, of exponentially decreasing amplitude.

Smoothing and Long Time Behavior

The fact that we can write the solution to an initial-boundary value problem in the
form of an infinite series is progress of a sort. However, because it cannot be summed in
closed form, this “solution” is much less satisfying than a direct, explicit formula. Never-
theless, there are important qualitative and quantitative features of the solution that can
be easily gleaned from such series expansions.

If the initial data f(x) is piecewise continuous, then its Fourier coefficients are uni-
formly bounded; indeed, for any n ≥ 1,

| bn | ≤
2

`

∫ `

0

∣∣∣ f(x) sin
nπx

`

∣∣∣ dx ≤
2

`

∫ `

0

| f(x) | dx ≡M. (14.23)

This property holds even for quite irregular data; for instance, the Fourier coefficients
(12.59) of the delta function are also uniformly bounded. Under these conditions, each
term in the series solution (14.19) is bounded by an exponentially decaying function

∣∣∣∣ bn exp

(
−

γ n2 π2

`2
t

)
sin

nπx

`

∣∣∣∣ ≤ M exp

(
−

γ n2 π2

`2
t

)
.

This means that, as soon as t > 0, most of the high frequency terms, n À 0, will be
extremely small. Only the first few terms will be at all noticeable, and so the solution
essentially degenerates into a finite sum over the first few Fourier modes. As time in-
creases, more and more of the Fourier modes will become negligible, and the sum further
degenerates into progressively fewer significant terms. Eventually, as t → ∞, all of the
Fourier modes will decay to zero. Therefore, the solution will converge exponentially fast
to a zero temperature profile: u(t, x) → 0 as t → ∞, representing the bar in its final uni-
form thermal equilibrium. The fact that its equilibrium temperature is zero is the result
of holding both ends of the bar fixed at zero temperature, and any initial heat energy will
eventually be dissipated away through the ends. The last term to disappear is the one
with the slowest decay, namely

u(t, x) ≈ b1 exp

(
−

γ π2

`2
t

)
sin

πx

`
, where b1 =

1

π

∫ π

0

f(x) sin x dx. (14.24)

Generically, b1 6= 0, and the solution approaches thermal equilibrium exponentially fast
with rate equal to the smallest eigenvalue, λ1 = γ π2/`2, which is proportional to the
thermal diffusivity divided by the square of the length of the bar. The longer the bar,
or the smaller the diffusivity, the longer it takes for the effect of holding the ends at zero
temperature to propagate along the entire bar. Also, again provided b1 6= 0, the asymptotic
shape of the temperature profile is a small sine arc, just as we observed in Example 14.1.
In exceptional situations, namely when b1 = 0, the solution decays even faster, at a rate
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Figure 14.2. Denoising a Signal with the Heat Equation.

equal to the eigenvalue λk = γ k2 π2/`2 corresponding to the first nonzero term, bk 6= 0, in
the series; its asymptotic shape now oscillates k times over the interval.

The heat equation’s smoothing effect on irregular initial data by fast damping of the
high frequency modes underlies its effectiveness for smoothing out and denoising signals.
We take the initial data u(0, x) = f(x) to be a noisy signal, and then evolve the heat
equation forward to a prescribed time t? > 0. The resulting function g(x) = u(t?, x) will
be a smoothed version of the original signal f(x) in which most of the high frequency
noise has been eliminated. Of course, if we run the heat flow for too long, all of the
low frequency features will be also be smoothed out and the result will be a uniform,
constant signal. Thus, the choice of stopping time t? is crucial to the success of this
method. Figure 14.2 shows the effect running the heat equation†, with γ = 1, to times
t = 0., .00001, .00005, .0001, .001, .01 on the same signal from Figure 13.5. Observe how
quickly the noise is removed. By the final time, the overall smoothing effect of the heat
flow has caused significant degradation (blurring) of the original signal. The heat equation
approach to denoising has the advantage that no Fourier coefficients need be explicitly
computed, nor does one need to reconstruct the smoothed signal from its remaining Fourier
coefficients. The final section discusses some numerical methods that can be used to solve
the heat equation directly.

Another, closely related observation is that, for any fixed time t > 0 after the initial
moment, the coefficients in the Fourier series (14.19) decay exponentially fast as n → ∞.
According to the discussion at the end of Section 12.3, this implies that the solution u(t, x)
is a very smooth, infinitely differentiable function of x at each positive time t, no matter

how unsmooth the initial temperature profile. We have discovered the basic smoothing
property of heat flow.

Theorem 14.2. If u(t, x) is a solution to the heat equation with piecewise continuous

† To be honest, we are using periodic boundary conditions in the figures, although the Dirichlet
version leads to similar results
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initial data f(x) = u(0, x), or, more generally, initial data satisfying (14.23), then, for any

t > 0, the solution u(t, x) is an infinitely differentiable function of x.

After even a very short amount of time, the heat equation smoothes out most, and,
eventually, all of the fluctuations in the initial temperature profile. As a consequence, it
becomes impossible to reconstruct the initial temperature u(0, x) = f(x) by measuring the
temperature distribution h(x) = u(t, x) at a later time t > 0. Diffusion is irreversible — we
cannot run the heat equation backwards in time! Indeed, if the initial data u(0, x) = f(x)
is not smooth, there is no function u(t, x) for t < 0 that could possibly yield such an
initial distribution because all corners and singularities are smoothed out by the diffusion
process as t goes forward! Or, to put it another way, the Fourier coefficients (14.21) of any
purported solution will be exponentially growing when t < 0, and so high frequency noise
will completely overwhelm the solution. For this reason, the backwards heat equation is
said to be ill-posed .

On the other hand, the unsmoothing effect of the backwards heat equation does have
potential benefits. For example, in image processing, diffusion will gradually blur an image.
Image enhancement is the reverse process, and requires running the heat flow backwards
in some stable manner. One option is to restrict to the backwards evolution to the first few
Fourier modes, which prevents the small scale fluctuations from overwhelming the com-
putation. Similar issues arise in the reconstruction of subterranean profiles from seismic
data, a problem of great concern in the oil and gas industry. In forensics, determining
the time of death based on the current temperature of a corpse also requires running the
equations governing the dissipation of body heat backwards in time. For these and other
applications, a key issue in contemporary research is how to cleverly circumventing the
ill-posedness of the backwards heat flow.

Remark : The irreversibility of the heat equation points out a crucial distinction be-
tween partial differential equations and ordinary differential equations. Ordinary differ-
ential equations are always reversible — unlike the heat equation, existence, uniqueness
and continuous dependence properties of solutions are all equally valid in reverse time
(although the detailed qualitative and quantitative properties of solutions can very well
depend upon whether time is running forwards or backwards). The irreversibility of partial
differential equations modeling the diffusive processes in our universe may well be why, in
our experience, Time’s Arrow points exclusively to the future.

The Heated Ring

Let us next consider the periodic boundary value problem modeling heat flow in an
insulated circular ring. Let us fix the length of the ring to be ` = 2π, with −π < x < π
representing “angular” coordinate around the ring. For simplicity, we also choose units in
which the thermal diffusivity is γ = 1. Thus, we seek to solve the heat equation

∂u

∂t
=

∂2u

∂x2
, −π < x < π, t > 0, (14.25)

subject to periodic boundary conditions

u(t,−π) = u(t, π),
∂u

∂x
(t,−π) =

∂u

∂x
(t, π), t ≥ 0. (14.26)
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The initial temperature distribution is

u(0, x) = f(x), −π < x < π. (14.27)

The resulting temperature u(t, x) will be a periodic function in x of period 2π.

Substituting the separable solution ansatz u(t, x) = e−λtv(x) into the heat equation
and the boundary conditions leads to the periodic eigenvalue problem

d2v

dx2
+ λ v = 0, v(−π) = v(π), v(−π) = v(π). (14.28)

As we know, in this case the eigenvalues are λn = n2 where n = 0, 1, 2, . . . is a non-negative
integer, and the corresponding eigenfunction solutions are the trigonometric functions

vn(x) = cos nx, ṽn(x) = sin nx, n = 0, 1, 2, . . . .

Note that λ0 = 0 is a simple eigenvalue, with constant eigenfunction cos 0x = 1 — the
sine solution sin 0x ≡ 0 is trivial — while the positive eigenvalues are, in fact, double, each
possessing two linearly independent eigenfunctions. The corresponding separable solutions
to the heated ring equation are

un(t, x) = e−n2 t cos nx, ũn(t, x) = e−n2 t sinnx, n = 0, 1, 2, 3, . . . .

The resulting infinite series solution is

u(t, x) = 1
2 a0 +

∞∑

n=1

(
an e−n2 t cos nx + bn e−n2 t sinnx

)
. (14.29)

The initial conditions require

u(0, x) = 1
2 a0 +

∞∑

n=1

(
an cos nx + bn sinnx

)
= f(x), (14.30)

which is precisely the Fourier series of the initial temperature profile f(x). Consequently,

an =
1

π

∫ π

−π

f(x) cos nx dx, bn =
1

π

∫ π

−π

f(x) sinnx dx, (14.31)

are the usual Fourier coefficients of f(x).

As in the Dirichlet problem, after the initial instant, the high frequency terms in
the series (14.29) become extremely small, since e−n2 t ¿ 1 for n À 0. Therefore, as
soon as t > 0, the solution essentially degenerates into a finite sum over the first few
Fourier modes. Moreover, as t→∞, all of the Fourier modes will decay to zero with the
exception of the constant one, with null eigenvalue λ0 = 0. Therefore, the solution will
converge exponentially fast to a constant temperature profile:

u(t, x) −→
1

2
a0 =

1

2π

∫ π

−π

f(x) dx,
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which equals the average of the initial temperature profile. Physically, we observe that the
heat energy is redistributed so that the ring achieves a uniform constant temperature and
is in thermal equilibrium. Indeed, the total heat

H(t) =

∫ π

−π

u(t, x) dx = constant (14.32)

is conserved, meaning constant, for all time; the proof of this fact is left as an Exercise .
(On the other hand, the Dirichlet boundary value problem does not conserve hear energy.)

Prior to equilibrium, only the lowest frequency Fourier modes will still be noticeable,
and so the solution will asymptotically look like

u(t, x) ≈ 1
2 a0 + e− t(a1 cos x + b1 sin x) = 1

2 a0 + r1 e− t cos(x + δ1), (14.33)

where

a1 = r1 cos δ1 =
1

2π

∫ π

−π

f(x) cos x dx, b1 = r1 sin δ1 =
1

2π

∫ π

−π

f(x) sinx dx.

Thus, for most initial data, the solution approaches thermal equilibrium exponentially
fast, at a unit rate. The exceptions are when r1 =

√
a2
1 + b2

1 = 0, for which the rate of

convergence is even faster, namely at a rate e−k2 t where k is the smallest integer such that
rk =

√
a2

k + b2
k 6= 0.

Inhomogeneous Boundary Conditions

So far, we have concentrated our attention on homogeneous boundary conditions.
There is a simple trick that will convert a boundary value problem with inhomogeneous
but constant Dirichlet boundary conditions,

u(t, 0) = α, u(t, `) = β, t ≥ 0, (14.34)

into a homogeneous Dirichlet problem. We begin by solving for the equilibrium tempera-
ture profile, which is the affine function that satisfies the two boundary conditions, namely

u?(x) = α +
β − α

`
x. (14.35)

The difference

ũ(t, x) = u(t, x)− u?(x) = u(t, x)− α−
β − α

`
x (14.36)

measures the deviation of the solution from equilibrium. It clearly satisfies the homoge-
neous boundary conditions at both ends:

ũ(t, 0) = 0 = ũ(t, `).

Moreover, by linearity, since both u(t, x) and u?(x) are solutions to the heat equation, so
is ũ(t, x). The initial data must be similarly adapted:

ũ(0, x) = f̃(x) = f(x)− u?(x) = f(x)− α−
β − α

`
x.
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Solving the resulting homogeneous initial value problem, we write ũ(t, x) in Fourier series
form (14.19), where the Fourier coefficients are computed from the modified initial data

f̃(x). The solution to the inhomogeneous boundary value problem thus has the series form

u(t, x) = α +
β − α

`
x +

∞∑

n=1

b̃n exp

(
−

γ n2 π2

`2
t

)
sin

nπx

`
, (14.37)

where

b̃n =
2

`

∫ `

0

f̃(x) sin
nπx

`
dx, n = 1, 2, 3, . . . . (14.38)

Since, for any reasonable initial data, ũ(t, 0) will decay to zero at an exponential rate as
t→∞, the actual temperature profile (14.37) will asymptotically decay to the equilibrium
profile,

u(t, x) −→ u?(x) = α +
β − α

`
x

at the same exponentially fast rate.

This method does not apply when the boundary conditions are time-dependent:
u(t, 0) = α(t), u(t, `) = β(t). Attempting to mimic the preceding technique, we discover
that the deviation

ũ(t, x) = u(t, x)− u?(t, x), where u?(t, x) = α(t) +
β(t)− α(t)

`
x, (14.39)

does satisfy the homogeneous boundary conditions, but now solves an inhomogeneous
version of the heat equation:

∂ũ

∂t
=

∂2ũ

∂x2
− h(t, x), where h(t, x) =

∂u?

∂t
(t, x). (14.40)

Solution techniques in this case will be discussed below.

14.2. Symmetry and the Maximum Principle.

So far we have relied on the method of separation of variables to construct explicit
solutions to partial differential equations. A second useful solution technique relies on
exploiting inherent symmetry properties of the differential equation. Unlike separation
of variables†, symmetry methods can be also successfully applied to produce solutions
to a broad range of nonlinear partial differential equations; examples can be found in
Chapter 22. While we do not have the space or required mathematical tools to develop
the full apparatus of symmetry techniques, we can introduce the important concept of a
similarity solution, applied in the particular context of the heat equation.

In general, by a symmetry of an equation, we mean a transformation, either linear
(as in Section 7.2), affine (as in Section 7.3), or even nonlinear, that takes solutions to
solutions. Thus, if we have a symmetry, and know one solution, then we can construct a

† This is not quite fair: separation of variables can be applied to some special nonlinear partial
differential equations such as Hamilton–Jacobi equations, [128].
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second solution by applying the symmetry. And, possibly, a third solution by applying the
symmetry yet again. And so on. If we know lots of symmetries, then we can produce lots
and lots of solutions by this simple device.

Remark : General symmetry techniques are founded on the theory of Lie groups,
named after the influential nineteenth century Norwegian mathematician Sophus Lie (pro-
nounced “Lee”). Lie’s theory provides an algorithm for completely determining all the
symmetries of a given differential equation, but this is beyond the scope of this introduc-
tory text. However, direct inspection and/or physical intuition will often detect the most
important symmetries without appealing to such a sophisticated theory. Modern appli-
cations of Lie’s symmetry methods to partial differential equations arising in physics and
engineering can be traced back to the influential book of G. Birkhoff, [18], on hydrody-
namics. A complete and comprehensive treatment of symmetry methods can be found in
the first author’s book [141], and, at a more introductory level, in the recent books by
Hydon, [104], and Cantwell, [38], with particular emphasis on fluid mechanics.

The heat equation serves as an excellent testing ground for the general symmetry
methodology, as it admits a rich variety of symmetry transformations that take solutions
to solutions. The simplest are the translations. Moving the space and time coordinates by
a fixed amount,

t 7−→ t− a, x 7−→ x− b, (14.41)

where a, b are constants, changes the function u(t, x) into the translated function

U(t, x) = u(t− a, x− b). (14.42)

A simple application of the chain rule proves that the partial derivatives of U with respect
to t and x agree with the corresponding partial derivatives of u, so

∂U

∂t
=

∂u

∂t
,

∂U

∂x
=

∂u

∂x
,

∂2U

∂x2
=

∂2u

∂x2
,

and so on. In particular, the function U(t, x) is a solution to the heat equation Ut = γ Uxx

whenever u(t, x) also solves ut = γ uxx. Physically, the translation symmetries formalize
the property that the heat equation models a homogeneous medium, and hence the solution
does not depend on the choice of reference point or origin of our coordinate system.

As a consequence, each solution to the heat equation will produce an infinite family
of translated solutions. For example, starting with the separable solution

u(t, x) = e−γ t sinx,

we immediately produce the additional solutions

u(t, x) = e−γ (t−a) sinπ (x− b),

valid for any choice of constants a, b.

Warning : Typically, the symmetries of a differential equation do not respect initial
or boundary conditions. For instance, if u(t, x) is defined for t ≥ 0 and in the domain
0 ≤ x ≤ `, then its translated version U(t, x) is defined for t ≥ a and in the translated
domain b ≤ x ≤ ` + b, and so will solve a translated initial-boundary value problem.
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A second, even more important class of symmetries are the scaling invariances. We
already know that if u(t, x) is a solution, so is any scalar multiple c u(t, x); this is a simple
consequence of linearity of the heat equation. We can also add an arbitrary constant to
the temperature, noting that

U(t, x) = cu(t, x) + k (14.43)

is a solution for any choice of constants c, k. Physically, the transformation (14.43) amounts
to a change in the scale for measuring temperature. For instance, if u is measured degrees
Celsius, and we set c = 9

5 and k = 32, then U = 9
5 u + 32 will be measured in degrees

Fahrenheit. Thus, reassuringly, the physical processes described by the heat equation do
not depend upon our choice of thermometer.

More interestingly, suppose we rescale the space and time variables:

t 7−→ α t, x 7−→ β x, (14.44)

where α, β > 0 are positive constants. The effect of such a scaling transformation is to
convert u(t, x) into a rescaled function

U(t, x) = u(α t, β x). (14.45)

The derivatives of U are related to those of u according to the following formulae, which
are direct consequences of the multi-variable chain rule:

∂U

∂t
= α

∂u

∂t
,

∂U

∂x
= β

∂u

∂x
,

∂2U

∂x2
= β2 ∂2u

∂x2
.

Therefore, if u satisfies the heat equation ut = γ uxx, then U satisfies the rescaled heat
equation

Ut = α ut = α γ uxx =
α γ

β2
Uxx,

which we rewrite as

Ut = ΓUxx, where Γ =
γ α

β2
. (14.46)

Thus, the net effect of scaling space and time is merely to rescale the diffusion coefficient in
the heat equation. Physically, the scaling symmetry (14.44) corresponds to a change in the
physical units used to measure time and distance. For instance, to change from seconds to
minutes, set α = 60, and from meters to yards, set β = 1.0936. The net effect (14.46) on
the diffusion coefficient is a reflection of its physical units, namely distance2/time.

In particular, if we choose

α =
1

γ
, β = 1,

then the rescaled diffusion coefficient becomes Γ = 1. This observation has the following
important consequence. If U(t, x) solves the heat equation for a unit diffusivity, Γ = 1,
then

u(t, x) = U(γ t, x) (14.47)
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solves the heat equation for the diffusivity γ. Thus, the only effect of the diffusion coefficient
γ is to speed up or slow down time! A body with diffusivity γ = 2 will cool down twice
as fast as a body (of the same shape subject to the same boundary conditions and initial
conditions) with diffusivity γ = 1. Note that this particular rescaling has not altered the
space coordinates, and so U(t, x) is defined on the same domain as u(t, x).

On the other hand, if we set α = β2, then the rescaled diffusion coefficient is exactly
the same as the original: Γ = γ. Thus, the transformation

t 7−→ β2 t, x 7−→ β x, (14.48)

does not alter the equation, and hence defines a scaling symmetry , also known as a simi-

larity transformation, for the heat equation. Combining (14.48) with the linear rescaling
u 7→ c u, we make the elementary, but important observation that if u(t, x) is any solution
to the heat equation, then so is the function

U(t, x) = c u(β2 t, β x), (14.49)

for the same diffusion coefficient γ. For example, rescaling the solution u(t, x) = e−γ t2 cos x

leads to the solution U(t, x) = c e−γ β2 t2 cosβ x.

Warning : As in the case of translations, rescaling space by a factor β 6= 1 will alter
the domain of definition of the solution. If u(t, x) is defined for 0 ≤ x ≤ `, then U(t, x) is
defined for 0 ≤ x ≤ `/β.

Suppose that we have solved the heat equation for the temperature u(t, x) on a bar
of length 1, subject to certain initial and boundary conditions. We are then given a bar
composed of the same material of length 2. Since the diffusivity coefficient has not changed,
and we can directly construct the new solution U(t, x) by rescaling. Setting β = 1

2 will
serve to double the length. If we also rescale time by a factor α = β2 = 1

4 , then the
rescaled function U(t, x) = u

(
1
4 t, 1

2 x
)

will be a solution of the heat equation on the longer
bar with the same diffusivity constant. The net effect is that the rescaled solution will be
evolving four times as slowly as the original. Thus, it effectively takes a bar that is twice
the length four times as long to cool down.

The Maximum Principle

The Maximum Principle is the mathematical formulation of the thermodynamical law
that heat cannot, in the absence of external sources, achieve a value at a point that strictly
larger than its surroundings.

We will help in the proof to formulate it for the more general case when the heat
equation is subject to external forcing.

Theorem 14.3. Let γ > 0. Suppose u(t, x) is a solution to the forced heat equation

∂u

∂t
= γ

∂2u

∂x2
+ F (t, x), on the rectangular domain R = {a ≤ x ≤ b, 0 ≤ t ≤ c.}

Suppose F (t, x) ≤ 0 for all (t, x) ∈ R. Then the global maximum of u(t, x) on the domain

R occurs either at t = 0 or at x = a or x = b.
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In other words, if we are no;t adding in any external heat, the maximum temperature
ion the bar occurs either at the initial time, or at one of the endpoints.

Proof : First let us prove the result under the assumption that F (t, x) < 0, and hence

∂u

∂t
< γ

∂2u

∂x2
(14.50)

everywhere in R. Suppose u(t, x) has a (local) maximum at a point in the interior of
R. Then, by multivariable calculus (see also Theorem 19.42), its gradient must vanish,
so ut = ux = 0, and its Hessian matrix must be positive definite, which, in particular,
requires that uxx ≤ 0. But these contradict the inequality (14.50). Thus, the solution
cannot have a local interior maximum. If the maximum were to occur on the top of the
rectangle, at a point (t, x) where t = c, then we would necessarily have ut ≥ 0 there, as
otherwise u(t, x) would be decreasing as a function of t and hence (c, x) could not be a
local maximum on R, and also uxx ≤ 0, again contradicting (14.50).

To generalize to the case when F (t, x) ≤ 0 — which includes the heat equation when
F (t, x) ≡ 0, requires a little trick. We set

v(t, x) = u(t, x) + ε x2, where ε > 0.

Then,
∂v

∂t
= γ

∂2v

∂x2
− 2γ ε + F (t, x) = γ

∂2v

∂x ∂+
F̃ (t, x),

where
F̃ (t, x) = F (t, x)− 2γ ε < 0

everywhere in R. Thus, by the previous paragraph, the maximum of v occurs on either
the bottom or sides of the rectangle. Now we let ε→ 0 and conclude the same for u. More
precisely, let u(t, x) ≤M on t = 0 or x = a or x = b. Then

v(t, x) ≤M + εmax{a2, b2 }

and hence, on all of R,

u(t, x) ≤ v(t, x) ≤M + εmax{a2, b2 }.

letting ε→ 0 proves that u(t, x) ≤M everywhere, which completes the proof. Q.E.D.

Thus, solution u(t, x) to the heat equation (14.12) can only achieve a maximum on the
boundary of its domain of definition. In other words, a solution cannot have a maximum
at any point (t, x) that lies in the interior of the domain and after the initial time t > 0.
Physically, if the temperature in a fully insulated bar starts out everywhere above freezing,
then, in the absence of external heat sources, it can never dip below freezing at any later
time.

Let us apply the Maximum Principle to prove uniqueness of solutions to the heat
equation.

Theorem 14.4. There is at most one solution to the boundary value problem.
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Proof : Suppose u and ũ are any two solutions. Then their difference v = u− ũ solves
the homogeneous boundary value problem. Thus, by the maximu principle v(t, x) ≤ 0 at
all points ofR. But −v = ũ − u also solves the homogeneous boundary value problem,
and hence −v ≤ 0 too. This implies v(t, x) ≡ 0 and hence u ≡ ũ everywhbere, proving
uniqueness. Q.E.D.

Remark : Existence follows from the Fourier series solution — assuming the initial and
boundary data and the forcing function are sufficiently nice.

14.3. The Fundamental Solution.

One disadvantage of the Fourier series solution to the heat equation is that it is not
nearly as explicit as one might desire for either practical applications, numerical computa-
tions, or even further theoretical investigations and developments. An alternative, general
approach is based on the idea of the fundamental solution, which derives its inspiration
from the Green’s function method for solving boundary value problems. For the heat
equation, the fundamental solution measures the effect of a concentrated heat source.

Let us restrict our attention to homogeneous boundary conditions. The idea is to
analyze the case when the initial data u(0, x) = δy(x) = δ(x− y) is a delta function, which
we can interpret as a highly concentrated unit heat source, e.g., a soldering iron or laser
beam, that is instantaneously applied at a position y along the bar. The heat will diffuse
away from its initial concentration, and the resulting fundamental solution is denoted by

u(t, x) = F (t, x; y), with F (0, x; y) = δ(x− y). (14.51)

For each fixed y, the fundamental solution, as a function of t > 0 and x, must satisfy the
differential equation as well as the specified homogeneous boundary conditions.

Once we have determined the fundamental solution, we can then use linear superpo-
sition to reconstruct the general solution to the initial-boundary value problem. Namely,
we first write the initial data

u(0, x) = f(x) =

∫ `

0

δ(x− y) f(y) dy (14.52)

as a superposition of delta functions, as in (11.36). Linearity implies that the solution is
then the corresponding superposition of the responses to those concentrated delta profiles:

u(t, x) =

∫ `

0

F (t, x; y) f(y) dy. (14.53)

Assuming that we can differentiate under the integral sign, the fact that F (t, x; y) satis-
fies the differential equation and the homogeneous boundary conditions for each fixed y
immediately implies that the integral (14.53) is also a solution with the correct initial and
(homogeneous) boundary conditions.

Unfortunately, most boundary value problems do not have fundamental solutions that
can be written down in closed form. An important exception is the case of an infinitely
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long homogeneous bar, which requires solving the heat equation

∂u

∂t
=

∂2u

∂x2
, for −∞ < x <∞, t > 0. (14.54)

For simplicity, we have chosen units in which the thermal diffusivity is γ = 1. The solution
u(t, x) is defined for all x ∈ R, and has initial conditions

u(0, x) = f(x) for −∞ < x <∞.

In order to specify the solution uniquely, we shall require that the temperature be square-
integrable at all times, so that

∫ ∞

−∞

|u(t, x) |2 dx <∞ for all t ≥ 0. (14.55)

Roughly speaking, we are requiring that the temperature be small at large distances, which
are the relevant boundary conditions for this situation.

On an infinite interval, the Fourier series solution to the heat equation becomes a
Fourier integral. We write the initial temperature distribution as a superposition

f(x) =

∫ ∞

−∞

f̂(k) e2π i kx dk

of complex exponentials e2π i kx, where f̂(k) is the Fourier transform (13.83) of f(x). The
corresponding separable solutions to the heat equation are

uk(t, x) = e−4π2 k2 t e2π i kx = e−4π2 k2 t
(
cos 2π i kx + i sin 2π i kx

)
, (14.56)

where the frequency variable k is allowed to assume any real value. We invoke linear
superposition to combine these complex solutions into a Fourier integral

u(t, x) =

∫ ∞

−∞

e−4π2 k2 t e2π i kx f̂(k) dk (14.57)

to form the solution to the initial value problem for the heat equation.

In particular, to recover the fundamental solution, we take the initial temperature
profile to be a delta function δy(x) = δ(x − y) concentrated at x = y. According to
(13.113), its Fourier transform is

δ̂y(k) = e−2π i ky.

Plugging this into (14.57), and then referring to our table of Fourier transforms, we find
the following explicit formula for the fundamental solution:

F (t, x; y) =

∫ ∞

−∞

e−4π2 k2 t e2π i k (x−y) dk =
1

2
√

π t
e−(x−y)2/(4 t). (14.58)

As you can verify, for each fixed y, the function F (t, x; y) is indeed a solution to the heat
equation for all t > 0. In addition,

lim
t→ 0+

F (t, x; y) =

{
0, x 6= y,

∞, x = y.
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Figure 14.3. The Fundamental Solution to the Heat Equation.

Furthermore, its integral ∫ ∞

−∞

F (t, x; y) dx = 1, (14.59)

which represents the total heat energy, is constant — in accordance with the law of conser-
vation of energy; see Exercise . Therefore, as t → 0+, the fundamental solution satisfies
the original limiting definition (11.29–30) of the delta function, and so F (0, x; y) = δy(x)
has the desired initial temperature profile. In Figure 14.3 we graph F (t, x; 0) at times
t = .05, .1, 1., 10.. It starts out as a delta spike concentrated at the origin and then im-
mediately smoothes out into a tall and narrow bell-shaped curve, centered at x = 0. As
time increases, the solution shrinks and widens, decaying everywhere to zero. Its maximal
amplitude is proportional to t−1/2, while its overall width is proportional to t1/2. The
total heat energy (14.59), which is the area under the graph, remains fixed while gradually
spreading out over the entire real line.

Remark : In probability, these exponentially bell-shaped curves are known as normal

or Gaussian distributions. The width of the bell curve corresponds to the standard devi-

ation. For this reason, the fundamental solution to the heat equation sometimes referred
to as a “Gaussian filter”.

Remark : One of the non-physical artifacts of the heat equation is that the heat energy
propagates with infinite speed. Indeed, the effect of any initial concentration of heat energy
will immediately be felt along the entire length of an infinite bar, because, at any t > 0,
the fundamental solution is nonzero for all x. (The graphs in Figure 14.3 are a little
misleading because they fail to show the extremely small, but still positive, exponentially
decreasing tails.) This effect, while more or less negligible at large distances, is nevertheless
in clear violation of physical intuition — not to mention relativity that postulates that
signals cannot propagate faster than the speed of light. Despite this non-physical property,
the heat equation remains an extremely accurate model for heat propagation and similar
diffusive phenomena.
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With the fundamental solution in hand, we can then adapt the linear superposition
formula (14.53) to reconstruct the general solution

u(t, x) =
1

2
√

π t

∫ ∞

−∞

e−(x−y)2/(4 t) f(y) dy (14.60)

to our initial value problem (14.54). Comparing with (13.126), we see that the solutions
are obtained by convolution,

u(t, x) = g(t, x) ∗ f(x), where g(t, x) = F (t, x; 0) = e−x2/(4 t),

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters. Since u(t, x) solves the heat equation, we conclude that Gaussian filter convolution
has the same smoothing effect on the initial signal f(x). Indeed, the convolution integral
(14.60) serves to replace each initial value f(x) by a weighted average of nearby values,
the weight being determined by the Gaussian distribution. Such a weighted averaging has
the effect of smoothing out high frequency variations in the signal, and, consequently, the
Gaussian convolution formula (14.60) provides an effective method for denoising signals
and images. In fact, for practical reasons, the graphs displayed earlier in Figure 14.2 were
computed by using a standard numerical integration routine to evaluate the convolution
integral (14.60), rather than by a numerical solution scheme for the heat equation.

Example 14.5. An infinite bar is initially heated to unit temperature along a finite
interval. This corresponds to an initial temperature profile

u(0, x) = f(x) = σ(x− a)− σ(x− b) =

{
1, a < x < b,

0, otherwise.

The corresponding solution to the heat equation is obtained by the integral formula (14.60),
producing

u(t, x) =
1

2
√

π t

∫ b

a

e−(x−y)2/(4 t) dy =
1

2

[
erf

(
x− a

2
√

t

)
− erf

(
x− b

2
√

t

)]
, (14.61)

where

erf x =
2
√

π

∫ x

0

e−z2

dz (14.62)

is known as the error function due to its applications in probability and statistics, [65].
A graph appears in Figure 14.4. The error function integral cannot be written in terms
of elementary functions. Nevertheless, its importance in various applications means that
its properties have been well studied, and its values tabulated, [58]. In particular, it has
asymptotic values

lim
x→∞

erf x = 1, lim
x→−∞

erf x = −1. (14.63)

A graph of the heat equation solution (14.61) when a = −5, b = 5, at successive times
t = 0., .1, 1, 5, 30, 300, is displayed in Figure 14.5. Note the initial smoothing or blurring
of the sharp interface, followed by a gradual decay to thermal equilibrium.
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Figure 14.5. Error Function Solution to the Heat Equation.

The Inhomogeneous Heat Equation

The fundamental solution can be also used to solve the inhomogeneous heat equation

ut = uxx + h(t, x), (14.64)

that models a bar under an external heat source h(t, x), that might depend upon both
position and time. We begin by solving the particular case

ut = uxx + δ(t− s) δ(x− y), (14.65)

whose inhomogeneity represents a heat source of unit magnitude that is concentrated at a
position 0 < y < ` and applied instantaneously at a single time t = s > 0. Physically, we
apply a soldering iron or laser beam to a single spot on the bar for a brief moment. Let
us also impose homogeneous initial conditions

u(0, x) = 0 (14.66)

as well as homogeneous boundary conditions of one of our standard types. The resulting
solution

u(t, x) = G(t, x; s, y) (14.67)
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will be referred to as the general fundamental solution to the heat equation. Since a heat
source which is applied at time s will only affect the solution at later times t ≥ s, we
expect that

G(t, x; s, y) = 0 for all t < s. (14.68)

Indeed, since u(t, x) solves the unforced heat equation at all times t < s subject to homo-
geneous boundary conditions and has zero initial temperature, this follows immediately
from the uniqueness of the solution to the initial-boundary value problem.

Once we know the general fundamental solution (14.67), we are able to solve the
problem for a general external heat source (14.64) by appealing to linearity. We first write
the forcing as a superposition

h(t, x) =

∫ ∞

0

∫ `

0

h(s, y) δ(t− s) δ(x− y) dy ds (14.69)

of concentrated instantaneous heat sources. Linearity allows us to conclude that the solu-
tion is given by the self-same superposition formula

u(t, x) =

∫ t

0

∫ `

0

h(s, y)G(t, x; s, y) dy ds. (14.70)

The fact that we only need to integrate over times 0 ≤ s ≤ t follows from (14.68).

Remark : If we have a nonzero initial condition, u(0, x) = f(x), then we appeal to
linear superposition to write the solution

u(t, x) =

∫ `

0

F (t, x; y) f(y) dy +

∫ t

0

∫ `

0

h(s, y)G(t, x; s, y) dy ds (14.71)

as a combination of (a) the solution with no external heat source, but nonzero initial
conditions, plus (b) the solution with homogeneous initial conditions but nonzero heat
source.

Let us solve the forced heat equation in the case of a infinite bar, so −∞ < x < ∞.
We begin by computing the general fundamental solution to (14.65), (14.66). As before,
we take the Fourier transform of both sides of the partial differential equation with respect
to x. In view of (13.113), (13.117), we find

∂ û

∂t
+ 4π2 k2 û = e−2π i k y δ(t− s), (14.72)

which is an inhomogeneous first order ordinary differential equation for the Fourier trans-
form û(t, k) of u(t, x). Assuming s > 0, by (14.68), the initial condition is

û(0, k) = 0. (14.73)

We solve the initial value problem (14.72–73) by the usual method, [26]. Multiplying the

differential equation by the integrating factor e4π2 k2 t yields

∂

∂t

(
e4π2 k2 t û

)
= e4π2 k2 t−2π i ky δ(t− s).
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Integrating both sides from 0 to t and using the initial condition, we find

û(t, k) = e4π2 k2(s−t)−2π i ky σ(t− s),

where σ(t) is the usual step function (11.42). Finally, we apply the inverse Fourier trans-
form formula (13.86) and then (14.58), we deduce that

G(t, x; s, y) = u(t, x) = σ(t− s)

∫ ∞

−∞

e4π2 k2(s−t)+2π i k (x−y) dk

=
σ(t− s)

2
√

π(t− s)
exp

[
−

(x− y)2

4(t− s)

]
= σ(t− s)F (t− s, x; y) .

Thus, the general fundamental solution is obtained by translating the fundamental solution
F (t, x; y) for the initial value problem to a starting time of t = s instead of t = 0. Thus, an
initial condition has the same aftereffect on the temperature as an instantaneous applied
heat source of the same magnitude. Finally, the superposition principle (14.70) produces
the solution

u(t, x) =

∫ t

0

∫ ∞

−∞

h(s, y)

2
√

π(t− s)
exp

[
−

(x− y)2

4(t− s)

]
dy ds. (14.74)

to the heat equation with source term on an infinite bar.

The Root Cellar Problem

As a final example, we discuss a problem that involves analysis of the heat equation
on a semi-infinite interval. The question is: how deep should you dig a root cellar? In the
prerefrigeration era, a root cellar was used to keep food cool in the summer, but not freeze
in the winter. We assume that the temperature in the earth only depends on the depth
and the time of year. Let u(t, x) denote the deviation in the temperature in the earth,
from its annual mean, at depth x > 0 and time t. We shall assume that the temperature
at the earth’s surface, x = 0, fluctuates in a periodic manner; specifically, we set

u(t, 0) = a cos ω t, (14.75)

where the oscillatory frequency

ω =
2π

365.25 days
= 2.0× 10−7sec−1 (14.76)

refers to yearly temperature variations. In this model, we shall ignore daily temperature
fluctuations as their effect is not significant below a very thin surface layer. At large depth
the temperature is assumed to be unvarying:

u(t, x) −→ 0 as x −→ ∞, (14.77)

where 0 refers to the mean temperature.

Thus, we must solve the heat equation on a semi-infinite bar 0 < x < ∞, with time-
dependent boundary conditions (14.75), (14.77) at the ends. The analysis will be simplified
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a little if we replace the cosine by a complex exponential, and so look for a complex solution
with boundary conditions

u(t, 0) = a e i ω t, lim
x→∞

u(t, x) = 0. (14.78)

Let us try a separable solution of the form

u(t, x) = v(x) e i ω t. (14.79)

Substituting this expression into the heat equation ut = γ uxx leads to

iω v(x) e i ω t = γ v′′(x) e i ω t.

Canceling the common exponential factors, we conclude that v(x) should solve the bound-
ary value problem

γ v′′(x) = i ω v, v(0) = a, lim
x→∞

v(x) = 0.

The solutions to the ordinary differential equation are

v1(x) = e
√

i ω/γ x = e
√

ω/2γ (1+ i ) x, v2(x) = e−
√

i ω/γ x = e−
√

ω/2γ (1+ i ) x .

The first solution is exponentially growing as x → ∞, and so not appropriate to our
problem. The solution to the boundary value problem must therefore be a multiple,

v(x) = a e−
√

ω/2γ (1+ i ) x

of the exponentially decaying solution. Substituting back into (14.79), we find the (com-
plex) solution to the root cellar problem to be

u(t, x) = a e−x
√

ω/2γ e i ω
(

t−
√

ω/2γ
)

x. (14.80)

The corresponding real solution is obtained by taking the real part,

u(t, x) = a e−x
√

ω/2γ cos

(
ω t−

√
ω

2γ
x

)
. (14.81)

The first term in (14.81) is exponentially decaying as a function of the depth. Thus, the
further down one goes, the less noticeable the effect of the surface temperature fluctuations.
The second term is periodic with the same annual frequency ω. The interesting feature is
the phase lag in the response. The temperature at depth x is out of phase with respect to
the surface temperature fluctuations, having an overall phase lag

δ =

√
ω

2γ
x

that depends linearly on depth. In particular, a cellar built at a depth where δ is an odd
multiple of π will be completely out of phase, being hottest in the winter, and coldest in
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the summer. Thus, the (shallowest) ideal depth at which to build a root cellar would take
δ = π, corresponding to a depth of

x = π

√
2γ

ω
.

For typical soils in the earth, γ ≈ 10−6 meters2 sec−1, and hence, by (14.76), x ≈
9.9 meters. However, at this depth, the relative amplitude of the oscillations is

e−x
√

ω/2γ = e−π = .04

and hence there is only a 4% temperature fluctuation. In Minnesota, the temperature
varies, roughly, from −40◦C to +40◦C, and hence our 10 meter deep root cellar would
experience only a 3.2◦C annual temperature deviation from the winter, when it is the
warmest, to the summer, where it is the coldest. Building the cellar twice as deep would
lead to a temperature fluctuation of .2%, now in phase with the surface variations, which
means that the cellar is, for all practical purposes, at constant temperature year round.

14.4. The Wave Equation.

The second important class of dynamical partial differential equations are those mod-
eling vibrations of continuous media. As we saw in Chapter 9, Newton’s Law implies that
the free vibrations of a discrete mechanical system are governed by a second order system
of ordinary differential equations of the form

M
d2u

dt2
= −Ku,

in which M is the positive definite, diagonal mass matrix, while K = A∗A = AT CA is the
positive definite (or semi-definite in the case of an unstable system) stiffness matrix.

The corresponding dynamical equations describing the small vibrations of continuous
media take an entirely analogous form

ρ
∂2u

∂t2
= −K[u ]. (14.82)

In this framework, ρ describes the density, while K = L∗ ◦L is the same self-adjoint dif-
ferential operator, with appropriate boundary conditions, that appears in the equilibrium
equations (11.89). For one-dimensional media, such as a vibrating bar or string, we are
led to a partial differential equation in the particular form

ρ(x)
∂2u

∂t2
=

∂

∂x

(
κ(x)

∂u

∂x

)
, 0 < x < `, (14.83)

where ρ(x) is the density of the bar or string at position x, while κ(x) > 0 denotes its stiff-
ness or tension. The second order partial differential equation (14.83) models the dynamics
of vibrations and waves in a broad range of applications, including elastic vibrations of a
bar, sound vibrations in a column of air, e.g., inside a wind instrument, and also transverse
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vibrations of a string, e.g., a violin string. (However, bending vibrations of a beam lead
to a fourth order partial differential equation; see Exercise .) The wave equation is also
used to model small amplitude water waves, electromagnetic waves, including light, radio
and microwaves, gravitational waves, and many others. A detailed derivation of the model
from first principles in the case of a vibrating string can be found in [181].

To specify the solution, we must impose suitable boundary conditions. The usual
suspects — Dirichlet, Neumann, mixed, and periodic boundary conditions — continue to
play a central role, and have immediate physical interpretations. Tying down an end of
the string imposes a Dirichlet condition u(t, 0) = α, while a free end is prescribed by a
homogeneous Neumann boundary condition ux(t, 0) = 0. Periodic boundary conditions,
as in (14.11), correspond to the vibrations of a circular ring. As with all second order New-
tonian systems of ordinary differential equations, the solution to the full boundary value
problem for the second order partial differential equation will then be uniquely specified
by its initial displacement and initial velocity:

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x). (14.84)

The simplest situation occurs when the medium is homogeneous, and so both its
density and stiffness are constant. Then the general vibration equation (14.83) reduces to
the one-dimensional wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
. (14.85)

The constant

c =

√
κ

ρ
> 0 (14.86)

is known as the wave speed , for reasons that will soon become apparent.

The method for solving such second order systems is motivated by our solution in the
discrete case discussed in Section 9.5. To keep matters simple, we shall concentrate on
the wave equation (14.85), although the method is easily extended to the general homoge-
neous Newtonian system (14.83). We will try a separable solution with trigonometric time
dependence:

u(t, x) = cos(ωt) v(x), (14.87)

in which both the frequency ω and profile v(x) are to be determined. Differentiating
(14.87), we find

∂2u

∂t2
= −ω2 cos(ωt) v(x),

∂2u

∂x2
= cos(ωt) v′′(x).

Substituting into the wave equation (14.85) and canceling the common cosine factors, we
deduce that v(x) must satisfy the ordinary differential equation

c2 d2v

dx2
+ ω2 v = 0. (14.88)

Thus ω2 = λ can be viewed as an eigenvalue with eigenfunction v(x) for the second order
differential operator K = −c2 D2. Ignoring the boundary conditions for the moment, if
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ω > 0, the solutions are the trigonometric functions cos
ωx
c , sin

ωx
c . Thus, (14.87) leads

to the pair of explicit solutions

cos ωt cos
ωx

c
, cos ωt sin

ωx

c
,

to the wave equation. Now, the computation will work just as well with a sine function,
which yields two additional solutions

sin ωt cos
ωx

c
, sin ωt sin

ωx

c
.

Each of these four solutions represents a spatially periodic standing wave form of period
2πc/ω, that is vibrating with frequency ω. Observe that the smaller scale waves vibrate
faster.

On the other hand, if ω = 0, then (14.88) has the solution v = α x + β, leading to the
solutions

u(t, x) = 1, and u(t, x) = x. (14.89)

The first is a constant, nonvibrating solution, while the second is also constant in time,
but will typically not satisfy the boundary conditions and so can be discarded. As we
learned in Chapter 9, the existence of a zero eigenvalue corresponds to an unstable mode
in the physical system, in which the displacement grows linearly in time. In the present
situation, these correspond to the two additional solutions

u(t, x) = t, and u(t, x) = x t, (14.90)

of the wave equation. Again, the second solution will typically not satisfy the homogeneous
boundary conditions, and can usually be ignored. Such null eigenfunction modes will only
arise in unstable situations.

The boundary conditions will distinguish the particular eigenvalues and natural fre-
quencies of vibration. Consider first the case of a string of length ` with two fixed ends,
and thus subject to homogeneous Dirichlet boundary conditions

u(t, 0) = 0 = u(t, `).

This forms a positive definite boundary value problem, and so there is no unstable mode.
Indeed, the eigenfunctions of the boundary value problem (14.88) with Dirichlet boundary
conditions v(0) = 0 = v(`) were found in (14.17):

vn(x) = sin
nπx

`
, ωn =

nπc

`
, n = 1, 2, 3, . . . .

Therefore, we can write the general solution as a Fourier sine series

u(t, x) =
∞∑

n=1

[
bn cos

nπc t

`
sin

nπx

`
+ dn sin

nπc t

`
sin

nπx

`

]

=
∞∑

n=1

rn cos

(
nπc t

`
+ δn

)
sin

nπx

`
.

(14.91)
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The solution is thus a linear combination of the natural Fourier modes vibrating with
frequencies

ωn =
nπc

`
=

nπ

`

√
κ

ρ
, n = 1, 2, 3, . . . . (14.92)

The longer the length ` of the string, or the higher its density ρ, the slower the vibrations;
whereas increasing its stiffness or tension κ speeds them up — in exact accordance with
our physical intuition.

The Fourier coefficients bn and dn in (14.91) will be uniquely determined by the
initial conditions (14.84). Differentiating the series term by term, we discover that we
must represent the initial displacement and velocity as Fourier sine series

u(0, x) =

∞∑

n=1

bn sin
nπx

`
= f(x),

∂u

∂t
(0, x) =

∞∑

n=1

dn

nπc

`
sin

nπx

`
= g(x).

Therefore,

bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx, n = 1, 2, 3, . . . .

are the Fourier sine coefficients (12.83) of the initial displacement f(x), while

dn =
2

nπc

∫ `

0

g(x) sin
nπx

`
dx, n = 1, 2, 3, . . . .

are rescaled versions of the Fourier sine coefficients of the initial velocity g(x).

Example 14.6. A string of unit length is held taut in the center and then released.
Our goal is to describe the ensuing vibrations. Let us assume the physical units are chosen
so that c2 = 1, and so we are asked to solve the initial-boundary value problem

utt = uxx, u(0, x) = f(x), ut(0, x) = 0, u(t, 0) = u(t, 1) = 0. (14.93)

To be specific, we assume that the center of the string has been displaced by half a unit,
and so the initial displacement is

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1.

The vibrational frequencies ωn = nπ are the integral multiples of π, and so the natural
modes of vibration are

cos nπ t sinnπx and sinnπ t sin nπx for n = 1, 2, . . . .

Consequently, the general solution to the boundary value problem is

u(t, x) =

∞∑

n=1

[
bn cos nπ t sin nπx + dn sinnπ t sinnπx

]
,

where

bn = 2

∫ 1

0

f(x) sinnπx dx =





4

∫ 1/2

0

x sinnπx dx =
4 (−1)k

(2k + 1)2 π2
, n = 2k + 1,

0, n = 2k,
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Figure 14.6. Plucked String Solution of the Wave Equation.

are the Fourier sine coefficients of the initial displacement, while dn = 0 are the Fourier
sine coefficients of the initial velocity. Therefore, the solution is the Fourier sine series

u(t, x) = 4
∞∑

k=0

(−1)k cos(2k + 1)π t sin(2k + 1)πx

(2k + 1)2 π2
, (14.94)

whose graph at times t = 0, .2, .4, .6, .8, 1. is depicted in Figure 14.6. At time t = 1, the
original displacement is reproduced exactly, but upside down. The subsequent dynamics
proceeds as before, but in mirror image form. The original displacement reappears at
time t = 2, after which time the motion is periodically repeated. Interestingly, at times
tk = .5, 1.5, 2.5, . . ., the displacement is identically zero: u(tk, x) ≡ 0, although the velocity
ut(tk, x) 6≡ 0. The solution appears to be piecewise affine, i.e., its graph is a collection of
straight lines. This fact will be verified in Exercise , where you are asked to construct
an exact analytical formula for this solution. Unlike the heat equation, the wave equation
does not smooth out discontinuities and corners in the initial data.

While the series form (14.91) of the solution is not entirely satisfying, we can still use it
to deduce important qualitative properties. First of all, since each term is periodic in t with
period 2 `/c, the entire solution is time periodic with that period: u(t + 2`/c, x) = u(t, x).
In fact, after half the period, at time t = `/c, the solution reduces to

u

(
`

c
, x

)
=

∞∑

n=1

(−1)n bn sin
nπx

`
= −

∞∑

n=1

bn sin
nπ (`− x)

`
= −u(0, `−x) = −f(`−x).

In general,

u

(
t +

`

c
, x

)
= − u(t, `− x), u

(
t +

2 `

c
, x

)
= u(t, x). (14.95)

Therefore, the initial wave form is reproduced, first as an upside down mirror image of itself
at time t = `/c, and then in its original form at time t = 2 `/c. This has the important
consequence that vibrations of (homogeneous) one-dimensional media are purely periodic
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phenomena! There is no quasi-periodicity because the fundamental frequencies are all
integer multiples of each other.

Remark : The preceding analysis has important musical consequences. To the human
ear, sonic vibrations that are integral multiples of a single frequency are harmonic, whereas
those that admit quasi-periodic vibrations, with irrationally related frequencies, sound
percussive. This is why most tonal instruments rely on vibrations in one dimension, be it
a violin string, a column of air in a wind instrument (flute, clarinet, trumpet or saxophone),
a xylophone bar or a triangle. On the other hand, most percussion instruments rely on
the vibrations of two-dimensional media, e.g., drums and cymbals, or three-dimensional
solid bodies, e.g., blocks. As we shall see in Chapters 17 and 18, the frequency ratios of
the latter are typically irrational.

A bar with both ends left free, and so subject to the Neumann boundary conditions

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, `), (14.96)

will have a slightly different behavior, owing to the instability of the underlying equilibrium
equations. The eigenfunctions of (14.88) with Neumann boundary conditions v ′(0) = 0 =
v′(`) are now

vn(x) = cos
nπx

`
with ωn =

nπc

`
, n = 0, 1, 2, 3, . . . .

The resulting solution takes the form of a Fourier cosine series

u(t, x) = a0 + c0 t +
∞∑

n=1

(
an cos

nπc t

`
cos

nπx

`
+ cn sin

nπc t

`
cos

nπx

`

)
. (14.97)

In accordance with (14.89), the first two terms come from the null eigenfunction v0(x) = 1
with ω0 = 0. The bar vibrates with the same fundamental frequencies (14.92) as in the
fixed end case, but there is now an additional unstable mode c0 t that is no longer periodic,
but grows linearly in time.

Substituting (14.97) into the initial conditions (14.84), we find the Fourier coefficients
are prescribed, as before, by the initial displacement and velocity,

an =
2

`

∫ `

0

f(x) cos
nπx

`
dx, cn =

2

nπc

∫ `

0

g(x) cos
nπx

`
dx, n = 1, 2, 3, . . . .

The order zero coefficients†,

a0 =
1

`

∫ `

0

f(x) dx, c0 =
1

`

∫ `

0

g(x) dx,

† Note that, we have not included the usual 1
2 factor in the constant terms in the Fourier series

(14.97).
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are equal to the average initial displacement and average initial velocity of the bar. In
particular, when c0 = 0 there is no net initial velocity, and the unstable mode is not
excited. In this case, the solution is time-periodic, oscillating around the position given by
the average initial displacement. On the other hand, if c0 6= 0, the bar will move off with
constant average speed c0, all the while vibrating at the same fundamental frequencies.

Similar considerations apply to the periodic boundary value problem for the wave
equation on a circular ring. The details are left as Exercise for the reader.

Forcing and Resonance

In Section 9.6, we learned that periodically forcing an undamped mechanical struc-
ture (or a resistanceless electrical circuit) at a frequency that is distinct from its natural
vibrational frequencies leads, in general, to a quasi-periodic response. The solution is a
sum of the unforced vibrations superimposed with an additional vibrational mode at the
forcing frequency. However, if forced at one of its natural frequencies, the system may go
into a catastrophic resonance.

The same type of quasi-periodic/resonant response is also observed in the partial
differential equations governing periodic vibrations of continuous media. To keep the
analysis as simple as possible, we restrict our attention to the forced wave equation for a
homogeneous bar

∂2u

∂t2
= c2 ∂2u

∂x2
+ F (t, x), (14.98)

subject to specified homogeneous boundary conditions. The external forcing function
F (t, x) may depend upon both time t and position x. We will be particularly interested
in a periodically varying external force of the form

F (t, x) = cos(ω t) h(x), (14.99)

where the function h(x) is fixed.

As always, the solution to an inhomogeneous linear equation can be written as a
combination,

u(t, x) = u?(t, x) + z(t, x) (14.100)

of a particular solution u?(t, x) plus the general solution z(t, x) to the homogeneous equa-
tion, namely

∂2z

∂t2
= c2 ∂2z

∂x2
. (14.101)

The boundary and initial conditions will serve to uniquely prescribe the solution u(t, x),
but there is some flexibility in its two constituents (14.100). For instance, we may ask that
the particular solution u? satisfy the homogeneous boundary conditions along with zero
(homogeneous) initial conditions, and thus represents the pure response of the system to
the forcing. The homogeneous solution z(t, x) will then reflect the effect of the initial and
boundary conditions unadulterated by the external forcing. The final solution will equal
the sum of the two individual responses.

In the case of periodic forcing (14.99), we look for a particular solution

u?(t, x) = cos(ω t) v?(x) (14.102)
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that vibrates at the forcing frequency. Substituting the ansatz (14.102) into the equa-
tion (14.98), and canceling the common cosine factors, we discover that v?(x) must satisfy
the boundary value problem prescribed by

−c2 v′′
? − ω2 v? = h(x), (14.103)

supplemented by the relevant homogeneous boundary conditions — Dirichlet, Neumann,
mixed, or periodic.

At this juncture, there are two possibilities. If the unforced, homogeneous boundary
value problem has only the trivial solution v ≡ 0, then there is a solution to the forced
boundary value problem for any form of the forcing function h(x). On the other hand, the
homogeneous boundary value problem has a nontrivial solution v(x) when ω2 = λ is an
eigenvalue, and so ω is a natural frequency of vibration to the homogeneous problem; the
solution v(x) is the corresponding eigenfunction appearing in the solution series (14.91).
In this case, according to the Fredholm alternative, Theorem 5.55, the boundary value
problem (14.103) has a solution if and only if the forcing function h(x) is orthogonal to
the eigenfunction(s):

〈h , v 〉 = 0. (14.104)

See Example 11.3 and Exercise 11.5.7 for details. If we force in a resonant manner —
meaning that (14.104) is not satisfied — then the solution will be a resonantly growing
vibration

u?(t, x) = t sin(ω t) v?(x).

In a real-world situation, such large resonant (or near resonant) vibrations will either cause
a catastrophic breakdown, e.g., the bar breaks or the string snaps, or will send the system
into a different, nonlinear regime that helps mitigate the resonant effects, but is no longer
modeled by the simple linear wave equation.

Example 14.7. As a specific example, consider the initial-boundary value problem
modeling the forced vibrations of a uniform bar of unit length and fixed at both ends:

utt = c2 uxx + cos(ω t) h(x),

u(t, 0) = 0 = u(t, 1), u(0, x) = f(x), ut(0, x) = g(x).
(14.105)

The particular solution will have the nonresonant form (14.102) provided there exists a
solution v?(x) to the boundary value problem

c2 v′′
? + ω2 v? = −h(x), v?(0) = 0 = v?(1). (14.106)

The natural frequencies and associated eigenfunctions are

ωn = ncπ, vn(x) = sinnπx, n = 1, 2, 3, . . . .

The boundary value problem (14.106) will have a solution, and hence the forcing is not
resonant, provided either ω 6= ωn is not a natural frequency, or ω = ωn, but

0 = 〈h , vn 〉 =

∫ 1

0

h(x) sinnπx dx (14.107)
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is orthogonal to the associated eigenfunction. Otherwise, the forcing profile will induce a
resonant response.

For example, under periodic forcing of frequency ω with trigonometric profile h(x) ≡
sin kπx, the particular solution to (14.106) is

v?(x) =
sin kπx

ω2 − k2 π2 c2
, so that u?(t, x) =

cos ω t sin kπx

ω2 − k2 π2 c2
, (14.108)

which is a valid solution as long as ω 6= ωk = k π c. Note that we may allow the forcing
frequency ω = ωn to coincide with any other resonant forcing frequency, n 6= k, because
the sine profiles are mutually orthogonal and so the nonresonance condition (14.107) holds.
On the other hand, if ω = ωk = k π c, then the particular solution

u?(t, x) =
t sin k π ct sin kπx

2k π c
, (14.109)

is resonant, and grows linearly in time.

To obtain the full solution to the initial-boundary value problem, we write u = u? + z
where z(t, x) must satisfy

ztt − c2zxx = 0, z(t, 0) = 0 = z(t, 1),

along with the modified initial conditions

z(0, x) = f(x) −
sin kπx

ω2 − k2 π2 c2
,

∂u

∂x
(0, x) = g(x),

stemming from the fact that the particular solution (14.108) has non-trivial initial data.
(In the resonant case (14.109), there is no extra term in the initial data.) Note that, the
closer ω is to the resonant frequency, the larger the modification of the initial data, and
hence the larger the response of the system to the periodic forcing. As before, the solution
z(t, x) to the homogeneous equation can be written as a Fourier sine series (14.91). The
final formulae are left to the reader to write out.

14.5. d’Alembert’s Solution.

The one-dimensional wave equation is distinguished by admitting an explicit solu-
tion formula, originally discovered by the eighteenth century French mathematician Jean
d’Alembert, that entirely avoids the complicated Fourier series form. D’Alembert’s solu-
tion provides additional valuable insight into the behavior of the solutions. Unfortunately,
unlike series methods that have a very broad range of applicability, d’Alembert’s method
only succeeds in this one very special situation: the homogeneous wave equation in a single
space variable.

The starting point is to write the wave equation (14.85) in the suggestive form

¤u = (∂2
t − c2 ∂2

x)u = utt − c2 uxx = 0. (14.110)

Here ¤ = ∂2
t − c2 ∂2

x is a common mathematical notation for the wave operator , while
∂t, ∂x are convenient shorthands for the partial derivative operators with respect to t and
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x. We note that ¤ is a linear, second order partial differential operator. In analogy with
the elementary polynomial factorization

t2 − c2 x2 = (t− cx)(t + cx),

we shall factor the wave operator into a product of two first order partial differential
operators:

¤ = ∂2
t − c2 ∂2

x = (∂t − c ∂x) (∂t + c ∂x). (14.111)

Now, if the second factor annihilates the function u(t, x), meaning

(∂t + c ∂x)u = ut + c ux = 0, (14.112)

then u is automatically a solution to the wave equation, since

¤u = (∂t − c ∂x) (∂t + c ∂x)u = (∂t − c ∂x) 0 = 0.

In other words, every solution to the simpler first order partial differential equation (14.112)
is a solution to the wave equation (14.85). (The converse is, of course, not true.)

It is relatively easy to solve linear† first order partial differential equations.

Proposition 14.8. Every solution u(t, x) to the partial differential equation

∂u

∂t
+ c

∂u

∂x
= 0 (14.113)

has the form

u(t, x) = p(x− c t), (14.114)

where p(ξ) is an arbitrary function of the characteristic variable ξ = x− c t.

Proof : We adopt a linear change of variables to rewrite the solution

u(t, x) = p(t, x− c t) = p(t, ξ)

as a function of the characteristic variable ξ and the time t. Applying the chain rule, we
express the derivatives of u in terms of the derivatives of p as follows:

∂u

∂t
=

∂p

∂t
− c

∂p

∂ξ
,

∂u

∂x
=

∂p

∂ξ
,

and hence
∂u

∂t
+ c

∂u

∂x
=

∂p

∂t
− c

∂p

∂ξ
+ c

∂p

∂ξ
=

∂p

∂t
.

Therefore, u is a solution to (14.113) if and only if p(t, ξ) is a solution to the very simple
partial differential equation

∂p

∂t
= 0.

† See Chapter 22 for more details, including extensions to first order nonlinear partial differ-
ential equations.
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Figure 14.7. Traveling Wave.

This clearly‡ implies that p = p(ξ) does not depend on the variable t, and hence

u = p(ξ) = p(x− c t)

is of the desired form. Q.E.D.

Therefore, any function of the characteristic variable, e.g., ξ2 + 1, or cos ξ, or eξ, will
produce a corresponding solution, (x− c t)2 + 1, or cos(x− c t), or ex−c t, to the first order
partial differential equation (14.113), and hence a solution to the wave equation (14.85).
The functions of the form u(t, x) = p(x− c t) are known as traveling waves. At t = 0 the
wave has the initial profile u(0, x) = p(x). As t progresses, the wave moves to the right ,
with constant speed c > 0 and unchanged in form; see Figure 14.7. For this reason, (14.113)
is sometimes referred to as the one-way or unidirectional wave equation. Proposition 14.8
tells us that every traveling wave with wave speed c is a solution to the full wave equation
(14.85). But keep in mind that such solutions do not necessarily respect the boundary
conditions, which, when present, will affect their ultimate behavior.

Now, since c is constant, the factorization (14.111) can be written equally well in the
reverse order:

¤ = ∂2
t − c2 ∂2

x = (∂t + c ∂x) (∂t − c ∂x). (14.115)

The same argument tells us that any solution to the alternative first order partial differ-
ential equation

∂u

∂t
− c

∂u

∂x
= 0, (14.116)

also provides a solution to the wave equation. This is also a unidirectional wave equation,
but with the opposite wave speed −c. Applying Proposition 14.8, now with c replaced by
−c, we conclude that the general solution to (14.116) has the form

u(t, x) = q(x + c t) (14.117)

where q(η) is an arbitrary differentiable function of the alternate characteristic variable
η = x + c t. The solutions (14.117) represent traveling waves moving to the left with
constant speed c > 0 and unchanged in form.

‡ More rigorously, one should also assume that, at each time t, the domain of definition of p(ξ)
is a connected interval. A similar technical restriction should be imposed upon the solutions in
the statement of Proposition 14.8. See Exercise for a detailed example.
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The wave equation (14.110) is bidirectional and admits both left and right traveling
wave solutions. Linearity of the wave equation implies that the sum of solutions is again a
solution. In this way, we can produce solutions which are superpositions of left and right
traveling waves. The remarkable fact is that every solution to the wave equation can be
so represented.

Theorem 14.9. Every solution to the wave equation (14.85) can be written as a

combination

u(t, x) = p(ξ) + q(η) = p(x− c t) + q(x + c t) (14.118)

of right and left traveling waves, each depending on its characteristic variable

ξ = x− c t, η = x + c t. (14.119)

Proof : The key is to use a linear changes of variables to rewrite the wave equation
entirely in terms of the characteristic variables. We set

u(t, x) = w(x− c t, x + c t) = w(ξ, η), whereby w(ξ, η) = u

(
η − ξ

2 c
,
ξ + η

2

)
.

Then, using the chain rule to compute the partial derivatives,

∂u

∂t
= c

(
∂w

∂ξ
−

∂w

∂η

)
,

∂u

∂x
=

∂w

∂ξ
+

∂w

∂η
.

and hence

∂2u

∂t2
= c2

(
∂2w

∂ξ2
− 2

∂2w

∂ξ ∂η
+

∂2w

∂η2

)
,

∂2u

∂x2
=

∂2w

∂ξ2
+ 2

∂2w

∂ξ ∂η
+

∂2w

∂η2
.

Therefore

¤u =
∂2u

∂t2
− c2 ∂2u

∂x2
= −4c2 ∂2w

∂ξ ∂η
.

We conclude that u(t, x) solves the wave equation ¤u = 0 if and only if w(ξ, η) solves the
second order partial differential equation

∂2w

∂ξ ∂η
= 0, which we write in the form

∂

∂ξ

(
∂w

∂η

)
= 0.

This partial differential equation can be integrated once with respect to ξ, resulting in

∂w

∂η
= r(η),

where r is an arbitrary function of the characteristic variable η. Integrating both sides of
the latter partial differential equation with respect to η, we find

w(ξ, η) = p(ξ) + q(η), where q′(η) = r(η),

while p(ξ) represents the integration “constant”. Replacing the characteristic variables by
their formulae in terms of t and x completes the proof. Q.E.D.
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Remark : As noted above, we have been a little cavalier with our specification of the
domain of definition of the functions and the differentiability assumptions required. Sorting
out the precise technical details is left to the meticulous reader.

Remark : As we know, the general solution to a second order ordinary differential
equation depends on two arbitrary constants. Here we observe that the general solution to
a second order partial differential equation depends on two arbitrary functions — in this
case p(ξ) and q(η). This serves as a useful rule of thumb, but should not be interpreted
too literally.

Let us now see how this new form of solution to the wave equation can be used to
effectively solve initial value problems. The simplest case is that of a bar or string of
infinite length, in which case we have a pure initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), for −∞ < x <∞.

Substituting the solution formula (14.118) into the initial conditions, we find

u(0, x) = p(x) + q(x) = f(x),
∂u

∂t
(0, x) = −c p′(x) + c q′(x) = g(x).

To solve this pair of linear equations for p and q, we differentiate the first equation:

p′(x) + q′(x) = f ′(x).

Subtracting the second equation divided by c, we find

2 p′(x) = f ′(x)−
1

c
g(x).

Therefore,

p(x) =
1

2
f(x)−

1

2 c

∫ x

0

g(z) dz + a,

where a is an integration constant. The first equation then yields

q(x) = f(x)− p(x) =
1

2
f(x) +

1

2 c

∫ x

0

g(z) dz − a.

Substituting these two expressions back into (14.118), we find

u(t, x)= p(ξ) + q(η) =
f(ξ) + f(η)

2
+

1

2 c

[
−

∫ ξ

0

+

∫ η

0

]
g(z) dz

=
f(ξ) + f(η)

2
+

1

2 c

∫ η

ξ

g(z) dz,

where ξ, η are the characteristic variables (14.119). In this fashion, we have derived
d’Alembert’s solution to the wave equation on the entire line −∞ < x <∞.
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Figure 14.8. Interaction of Waves.

Theorem 14.10. The solution to the initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), −∞ < x <∞. (14.120)

is given by

u(t, x) =
f(x− c t) + f(x + c t)

2
+

1

2 c

∫ x+c t

x−c t

g(z) dz. (14.121)

.

Let us investigate the implications of d’Alembert’s solution formula (14.121). First,
suppose there is no initial velocity, so g(x) ≡ 0, and the motion is purely the result of the
initial displacement u(0, x) = f(x). In this case, the solution (14.121) reduces to

u(t, x) = 1
2 f(x− c t) + 1

2 f(x + c t).

The effect is that the initial displacement f(x) splits into two waves, one traveling to the
right and one traveling to the left, each of constant speed c, and each of exactly the same
shape as the initial displacement f(x) but only half as tall. For example, if the initial
displacement is a localized pulse centered at the origin, say

u(0, x) = e−x2

,
∂u

∂t
(0, x) = 0,

then the solution

u(t, x) = 1
2 e−(x−c t)2 + 1

2 e−(x+c t)2

consists of two half size pulses running away from the origin in opposite directions with
equal speed c. If we take two separated pulses, say

u(0, x) = e−x2

+ 2 e−(x−1)2 ,
∂u

∂x
(0, x) = 0,

centered at x = 0 and x = 1, then the solution

u(t, x) = 1
2 e−(x−c t)2 + e−(x−1−c t)2 + 1

2 e−(x+c t)2 + e−(x−1+c t)2
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Figure 14.9. Characteristic Lines for the Wave Equation.

will consist of four pulses, two moving to the right and two to the left, all with the same
speed, as pictured in Figure 14.8.

An important observation is that when a right-moving pulse collides with a left-moving
pulse, they emerge from the collision unchanged — a consequence of the inherent linearity
of the wave equation. The first picture shows the initial displacement. In the second and
third pictures, the two localized bumps have each split into two copies moving in opposite
directions. In the fourth and fifth, the larger right moving bump is in the process of
interacting with the smaller left moving bump. Finally, in the last picture the interaction
is complete, and the two left moving bumps and two right moving bumps travel in tandem
with no further collisions.

Remark : If the initial displacement has bounded support, and so f(x) = 0 if x < a
or x > b for some a < b, then after a finite time the right and left-moving waves will be
completely separated, and the observer will see two exact half size replicas running away,
with speed c, in opposite directions. If the displacement is not localized, then the left and
right traveling waves will never fully disengage, and one might be hard pressed (just as
in our earlier discussion of quasi-periodic phenomena) in recognizing that a complicated
solution pattern is, in reality, just the superposition of two very simple traveling waves.
For example, using a trigonometric identity, any separable solution, e.g.,

sin ct sinx = 1
2 cos(x− ct)− 1

2 cos(x + ct),

can be rewritten in d’Alembert form. The interpretation of the two solution formulas is
quite different. Most observers will see a standing sinusoidal wave, vibrating with frequency
c, as represented on the left side of the equation. However, the right hand side says that
this is the same as the difference of a right and left traveling cosine wave. The interactions
of their peaks and troughs reproduces the standing wave. Thus, the same solution can be
interpreted in seemingly incompatible ways!

In general, the lines of slope ±c in the (t, x)–plane, where the characteristic variables
are constant,

ξ = x− c t = a, η = x + c t = b, (14.122)
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Figure 14.10. Concentrated Initial Velocity for Wave Equation.

are known as the characteristics of the wave equation. The two characteristics going
through a point on the x axis, where the initial data is prescribed, are illustrated in
Figure 14.9. The reader should note that, in this figure, the t axis is horizontal, while the
x axis is vertical.

In general, signals propagate along characteristics. More specifically, if we start out
with an initial displacement concentrated very close to a point x = a, t = 0, then the
solution will be concentrated along the two characteristic lines emanating from the point,
namely x−c t = a and x+c t = a. In the limit, a unit impulse or delta function displacement
at x = a, corresponding to the initial condition

u(0, x) = δ(x− a),
∂u

∂t
(0, x) = 0, (14.123)

will result in a solution

u(t, x) = 1
2 δ(x− c t− a) + 1

2 δ(x + c t− a) (14.124)

consisting of two half-strength delta spikes traveling away from the starting position con-
centrated on the two characteristic lines.

Let us return to the general initial value problem (14.120). Suppose now that there is
no initial displacement, u(0, x) = f(x) ≡ 0, but rather a concentrated initial velocity, say
a delta function

∂u

∂t
(0, x) = δa(x) = δ(x− a).

Physically, this would correspond to striking the string with a highly concentrated blow
at the point x = a. The d’Alembert solution (14.121) to this “hammer blow” problem is

u(t, x) =
1

2c

∫ x+c t

x−c t

δa(z) dz =





1

2 c
, x− c t < a < x + c t,

0, otherwise,

(14.125)

and consists of a constant displacement, of magnitude 1/(2c), between the two character-
istic lines x− c t = a = x + c t based at x = a, t = 0 — the shaded region of Figure 14.9.
This region is known as the domain of influence of the point (a, 0) since, in general, the
value of the initial data at that point will only affect the solution values in the region. The
particular solution, which is plotted in Figure 14.10, has two jump discontinuities between
the undisturbed state and the displaced state, each propagating along its characteristic line
with speed c, but in opposite directions. Note that, unlike a concentrated initial displace-
ment, where the signal remains concentrated and each point along the bar is temporarily
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Figure 14.11. Odd Periodic Extension of a Concentrated Pulse.

displaced, eventually returning to its undisturbed state, a concentrated initial velocity has
a lasting effect, and the bar remains permanently deformed by an amount 1/(2 c) .

Solutions on Bounded Intervals

So far, we have been using d’Alembert formula to solve the wave equation on an
infinite interval. The formula can still be used on bounded intervals, but in a suitably
modified format so as to respect the boundary conditions. The easiest to deal with is the
periodic problem on 0 ≤ x ≤ `, with boundary conditions

u(t, 0) = u(t, `), ux(t, 0) = ux(t, `). (14.126)

If we extend the initial displacement f(x) and velocity g(x) to be periodic functions of
period `, so f(x+`) = f(x) and g(x+`) = g(x) for all x ∈ R, then the resulting d’Alembert
solution (14.121) will also be periodic in x, so u(t, x+`) = u(t, x). In particular, it satisfies
the boundary conditions (14.126) and so coincides with the desired solution. Details can
be found in Exercises – .

Next, suppose we have fixed (Dirichlet) boundary conditions

u(t, 0) = 0, u(t, `) = 0. (14.127)

The resulting solution can be written as a Fourier sine series (14.91), and hence is both
odd and 2 ` periodic in x. Therefore, to write the solution in d’Alembert form, we extend
the initial displacement f(x) and velocity g(x) to be odd, periodic functions of period 2 `:

f(−x) = −f(x), f(x + 2 `) = f(x), g(−x) = −g(x), g(x + 2 `) = g(x).

This will ensure that the d’Alembert solution also remains odd and periodic. As a result,
it satisfies the boundary conditions (14.127) for all t. Keep in mind that, while the solution
u(t, x) is defined for all x, the only physically relevant values occur on the interval 0 ≤ x ≤ `.
Nevertheless, the effects of displacements in the unphysical regime will eventually be “felt”
as the propagating waves pass through the physical interval.

For example, consider an initial displacement which is concentrated near x = a for
some 0 < a < `. Its odd, periodic extension consists of two sets of replicas: those of
the same form occurring at positions a ± 2 `, a ± 4 `, . . . , and their mirror images at the
intermediate positions −a,−a ± 2 `,−a ± 4 `, . . . ; Figure 14.11 shows a representative
example. The resulting solution begins with each of the pulses, both positive and negative,
splitting into two half-size replicas that propagate with speed c in opposite directions. As
the individual pulses meet, they interact as they pass unaltered through each other. The
process repeats periodically, with an infinite row of half-size pulses moving to the right
kaleidoscopically interacting with an infinite row moving to the left.
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Figure 14.12. Solution to Wave Equation with Fixed Ends.

However, only the part of this solution that lies on 0 ≤ x ≤ ` is actually realized on
the physical bar. The net effect is as if we were forced to view the complete solution as it
passes by a window of length ` that blocks out all other regions of the real axis. What the
viewer effectively sees assumes a somewhat different interpretation. To wit, the original
pulse at position 0 < a < ` splits up into two half size replicas that move off in opposite
directions. As each half-size pulse reaches an end of the bar, it meets a mirror image pulse
that has been propagating in the opposite direction from the non-physical regime. The
pulse appears to be reflected at the end of the interval, and changes into an upside down
mirror image moving in the opposite direction. The original positive pulse has moved
off the end of the bar just as its mirror image has moved into the physical regime. (A
common physical illustration is a pulse propagating down a jump rope that is held fixed at
its end; the reflected pulse returns upside down.) A similar reflection occurs as the other
half-size pulse hits the other end of the physical interval, after which the solution consists
of two upside down half-size pulses moving back towards each other. At time t = `/c they
recombine at the point `− a to instantaneously form a full-sized, but upside-down mirror
image of the original disturbance — in accordance with (14.95). The recombined pulse
in turn splits apart into two upside down half-size pulses that, when each collides with
the end, reflects and returns to its original upright form. At time t = 2 `/c, the pulses
recombine to exactly reproduce the original displacement. The process then repeats, and
the solution is periodic in time with period 2 `/c.

In Figure 14.12, the first picture displays the initial displacement. In the second, it
has splits into left and right moving, half-size clones. In the third picture, the left moving
bump is in the process of colliding with the left end of the bar. In the fourth picture,
it has emerged from the collision, and is now upside down, reflected, and moving to the
right. Meanwhile, the right moving pulse is starting to collide with the right end. In the
fifth picture, both pulses have completed their collisions and are now moving back towards
each other, where, in the last picture, they recombine into an upside-down mirror image
of the original pulse. The process then repeats itself, in mirror image, finally recombining
to the original pulse, at which point the entire process starts over.
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The Neumann (free) boundary value problem

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, `) = 0, (14.128)

is handled similarly. Since the solution has the form of a Fourier cosine series in x, we
extend the initial conditions to be even, 2 ` periodic functions

f(−x) = f(x), f(x + 2 `) = f(x), g(−x) = g(x), g(x + 2 `) = g(x).

The resulting d’Alembert solution is also even and 2 ` periodic in x, and hence satisfies the
boundary conditions. In this case, when a pulse hits one of the ends, its reflection remains
upright, but becomes a mirror image of the original; a familiar physical illustration is a
water wave that reflects off a solid wall. Further details are left to the reader in Exercise

In summary, we have now learned two different ways to solve the one-dimensional
wave equation. The first, based on Fourier analysis, emphasizes the vibrational or wave
character of the solutions, while the second, based on the d’Alembert formula, emphasizes
their particle aspects, where individual wave packets collide with each other, or reflect
at the boundary, all the while maintaining their overall form. Some solutions look like
vibrating waves, while others seem much more like interacting particles. But, like the
blind men describing the elephant, these are merely two facets of the same solution. The
Fourier series formula shows how every particle-like solution can be decomposed into its
constituent vibrational modes, while the d’Alembert formula demonstrates how vibrating
waves combine as moving particles.

The coexistence of particle and wave features is reminiscent of the long running histor-
ical debate over the nature of light. In the beginning, Newton and his disciples advocated
a particle basis, in the form of photons. However, until the beginning of the twentieth cen-
tury, most physicists advocated a wave or vibrational viewpoint. Einstein’s explanation of
the photoelectric effect in 1905 served to resurrect the particle interpretation. Only with
the establishment of quantum mechanics was the debate resolved — light, and, indeed,
all subatomic particles are both, manifesting particle and wave features, depending upon
the experiment and the physical situation. But the theoretical evidence for wave-particle
duality already existed in the competing solution formulae of the classical wave equation!

14.6. Numerical Methods.

As you know, most differential equations are much too complicated to be solved an-
alytically. Thus, to obtain quantitative results, one is forced to construct a sufficiently
accurate numerical approximation to the solution. Even in cases, such as the heat and
wave equations, where explicit solution formulas (either closed form or infinite series) exist,
numerical methods still can be profitably employed. Moreover, justification of the numeri-
cal algorithm is facilitated by the ability compare it with an exact solution. Moreover, the
lessons learned in the design of numerical algorithms for “solved” problems prove to be of
immense value when one is confronted with more complicated problems for which solution
formulas no longer exist.

In this final section, we present some of the most basic numerical solution techniques
for the heat and wave equations. We will only introduce the most basic algorithms, leaving
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Figure 14.13. Finite Difference Approximations.

more sophisticated variations and extensions to a more thorough treatment, which can be
found in numerical analysis texts, e.g., [27, 34, 107].

Finite Differences

Numerical solution methods for differential equations can be partitioned into two prin-
cipal classes. (In this oversimplified presentation, we are ignoring more specialized methods
of less general applicability.) The first category, already introduced in Section 11.6, are the
finite element methods. Finite elements are designed for the differential equations describ-
ing equilibrium configurations, since they rely on minimizing a functional. A competitive
alternative is to directly approximate the derivatives appearing in the differential equation,
which requires knowing appropriate numerical differentiation formulae.

In general, to approximate the derivative of a function at a point, say f ′(x) or f ′′(x),
one constructs a suitable combination of sampled function values at nearby points. The
underlying formalism used to construct these approximation formulae is known as the
calculus of finite differences. Its development has a long and influential history, dating
back to Newton. The resulting finite difference numerical methods for solving differential
equations have extremely broad applicability, and can, with proper care, be adapted to
most problems that arise in mathematics and its many applications.

The simplest finite difference approximation is the ordinary difference quotient

u(x + h)− u(x)

h
≈ u′(x), (14.129)

used to approximate the first derivative of the function u(x). Indeed, if u is differentiable
at x, then u′(x) is, by definition, the limit, as h → 0 of the finite difference quotients.
Geometrically, the difference quotient equals the slope of the secant line through the two
points

(
x, u(x)

)
and

(
x + h, u(x + h)

)
on the graph of the function. For small h, this

should be a reasonably good approximation to the slope of the tangent line, u′(x), as
illustrated in the first picture in Figure 14.13.

How close an approximation is the difference quotient? To answer this question, we
assume that u(x) is at least twice continuously differentiable, and examine the first order
Taylor expansion

u(x + h) = u(x) + u′(x)h + 1
2 u′′(ξ)h2. (14.130)
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We have used the Cauchy form (C.8) for the remainder term, in which ξ represents some
point lying between x and x + h. The error or difference between the finite difference
formula and the derivative being approximated is given by

u(x + h)− u(x)

h
− u′(x) = 1

2 u′′(ξ)h. (14.131)

Since the error is proportional to h, we say that the finite difference quotient (14.131) is a
first order approximation. When the precise formula for the error is not so important, we
will write

u′(x) =
u(x + h)− u(x)

h
+ O(h). (14.132)

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more rigorously,
bounded by a constant multiple of h as h→ 0.

Example 14.11. Let u(x) = sinx. Let us try to approximate u′(1) = cos 1 =
0.5403023 . . . by computing finite difference quotients

cos 1 ≈
sin(1 + h)− sin 1

h
.

The result for different values of h is listed in the following table.

h 1 .1 .01 .001 .0001

approximation 0.067826 0.497364 0.536086 0.539881 0.540260

error −0.472476 −0.042939 −0.004216 −0.000421 −0.000042

We observe that reducing the step size by a factor of 1
10 reduces the size of the error by

approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about h = 10−11. The fact that the error is more of less proportional
to the step size confirms that we are dealing with a first order numerical approximation.

To approximate higher order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the nth order derivative u(n)(x) requires
at least n+1 distinct sample points. For simplicity, we shall only use equally spaced points,
leaving the general case to the exercises.

For example, let us try to approximate u′′(x) by sampling u at the particular points x,
x + h and x−h. Which combination of the function values u(x−h), u(x), u(x + h) should
be used? The answer to such a question can be found by consideration of the relevant
Taylor expansions

u(x + h) = u(x) + u′(x)h + u′′(x)
h2

2
+ u′′′(x)

h3

6
+ O(h4),

u(x− h) = u(x)− u′(x)h + u′′(x)
h2

2
− u′′′(x)

h3

6
+ O(h4),

(14.133)

where the error terms are proportional to h4. Adding the two formulae together gives

u(x + h) + u(x− h) = 2u(x) + u′′(x)h2 + O(h4).
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Rearranging terms, we conclude that

u′′(x) =
u(x + h)− 2u(x) + u(x− h)

h2
+ O(h2), (14.134)

The result is known as the centered finite difference approximation to the second derivative
of a function. Since the error is proportional to h2, this is a second order approximation.

Example 14.12. Let u(x) = ex2

, with u′′(x) = (4x2 + 2)ex2

. Let us approximate
u′′(1) = 6e = 16.30969097 . . . by using the finite difference quotient (14.134):

6e ≈
e(1+h)2 − 2e + e(1−h)2

h2
.

The results are listed in the following table.

h 1 .1 .01 .001 .0001

approximation 50.16158638 16.48289823 16.31141265 16.30970819 16.30969115

error 33.85189541 0.17320726 0.00172168 0.00001722 0.00000018

Each reduction in step size by a factor of 1
10 reduces the size of the error by a factor of

1
100 and results in a gain of two new decimal digits of accuracy, confirming that the finite
difference approximation is of second order.

However, this prediction is not completely borne out in practice. If we take† h = .00001
then the formula produces the approximation 16.3097002570, with an error of 0.0000092863
— which is less accurate that the approximation with h = .0001. The problem is that
round-off errors have now begun to affect the computation, and underscores the difficulty
with numerical differentiation. Finite difference formulae involve dividing very small quan-
tities, which can induce large numerical errors due to round-off. As a result, while they
typically produce reasonably good approximations to the derivatives for moderately small
step sizes, to achieve high accuracy, one must switch to a higher precision. In fact, a
similar comment applied to the previous Example 14.11, and our expectations about the
error were not, in fact, fully justified as you may have discovered if you tried an extremely
small step size.

Another way to improve the order of accuracy of finite difference approximations is to
employ more sample points. For instance, if the first order approximation (14.132) to the
first derivative based on the two points x and x+h is not sufficiently accurate, one can try
combining the function values at three points x, x + h and x− h. To find the appropriate
combination of u(x − h), u(x), u(x + h), we return to the Taylor expansions (14.133). To
solve for u′(x), we subtract‡ the two formulae, and so

u(x + h)− u(x− h) = 2u′(x)h + u′′′(x)
h3

3
+ O(h4).

† This next computation depends upon the computer’s precision; here we used single precision
in Matlab.

‡ The terms O(h4) do not cancel, since they represent potentially different multiples of h4.
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Rearranging the terms, we are led to the well-known centered difference formula

u′(x) =
u(x + h)− u(x− h)

2h
+ O(h2), (14.135)

which is a second order approximation to the first derivative. Geometrically, the cen-
tered difference quotient represents the slope of the secant line through the two points(
x− h, u(x− h)

)
and

(
x + h, u(x + h)

)
on the graph of u centered symmetrically about

the point x. Figure 14.13 illustrates the two approximations; the advantages in accuracy in
the centered difference version are graphically evident. Higher order approximations can be
found by evaluating the function at yet more sample points, including, say, x+2h, x−2h,
etc.

Example 14.13. Return to the function u(x) = sin x considered in Example 14.11.
The centered difference approximation to its derivative u′(1) = cos 1 = 0.5403023 . . . is

cos 1 ≈
sin(1 + h)− sin(1− h)

2h
.

The results are tabulated as follows:

h .1 .01 .001 .0001

approximation 0.53940225217 0.54029330087 0.54030221582 0.54030230497

error −0.00090005370 −0.00000900499 −0.00000009005 −0.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 14.11 at the same step size. Since it is a second order
approximation, each reduction in the step size by a factor of 1

10 results in two more decimal
places of accuracy.

Many additional finite difference approximations can be constructed by similar manip-
ulations of Taylor expansions, but these few very basic ones will suffice for our subsequent
purposes. In the following subsection, we apply the finite difference formulae to develop
numerical solution schemes for the heat and wave equations.

Numerical Algorithms for the Heat Equation

Consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
, 0 < x < `, t ≥ 0, (14.136)

representing a bar of length ` and thermal diffusivity γ > 0, which is assumed to be
constant. To be concrete, we impose time-dependent Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), t ≥ 0, (14.137)

specifying the temperature at the ends of the bar, along with the initial conditions

u(0, x) = f(x), 0 ≤ x ≤ `, (14.138)
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specifying the bar’s initial temperature distribution. In order to effect a numerical approx-
imation to the solution to this initial-boundary value problem, we begin by introducing a
rectangular mesh consisting of points (ti, xj) with

0 = x0 < x1 < · · · < xn = ` and 0 = t0 < t1 < t2 < · · · .

For simplicity, we maintain a uniform mesh spacing in both directions, with

h = xj+1 − xj =
`

n
, k = ti+1 − ti,

representing, respectively, the spatial mesh size and the time step size. It will be essential
that we do not a priori require the two to be the same. We shall use the notation

ui,j ≈ u(ti, xj) where ti = i k, xj = j h, (14.139)

to denote the numerical approximation to the solution value at the indicated mesh point.

As a first attempt at designing a numerical method, we shall use the simplest finite
difference approximations to the derivatives. The second order space derivative is approx-
imated by (14.134), and hence

∂2u

∂x2
(ti, xj) ≈

u(ti, xj+1)− 2u(ti, xj) + u(ti, xj−1)

h2
+ O(h2)

≈
ui,j+1 − 2ui,j + ui,j−1

h2
+ O(h2),

(14.140)

where the error in the approximation is proportional to h2. Similarly, the one-sided finite
difference approximation (14.132) is used for the time derivative, and so

∂u

∂t
(ti, xj) ≈

u(ti+1, xj)− u(ti, xj)

k
+ O(k) ≈

ui+1,j − ui,j

k
+ O(k), (14.141)

where the error is proportion to k. In practice, one should try to ensure that the approxi-
mations have similar orders of accuracy, which leads us to choose

k ≈ h2.

Assuming h < 1, this requirement has the important consequence that the time steps must
be much smaller than the space mesh size.

Remark : At this stage, the reader might be tempted to replace (14.141) by the sec-
ond order central difference approximation (14.135). However, this produces significant
complications, and the resulting numerical scheme is not practical.

Replacing the derivatives in the heat equation (14.142) by their finite difference ap-
proximations (14.140), (14.141), and rearranging terms, we end up with the linear system

ui+1,j = µui,j+1 + (1− 2µ)ui,j + µui,j−1,
i = 0, 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.142)
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in which

µ =
γ k

h2
. (14.143)

The resulting numerical scheme takes the form of an iterative linear system for the solution
values ui,j ≈ u(ti, xj), j = 1, . . . , n− 1, at each time step ti.

The initial condition (14.138) means that we should initialize our numerical data by
sampling the initial temperature at the mesh points:

u0,j = fj = f(xj), j = 1, . . . , n− 1. (14.144)

Similarly, the boundary conditions (14.137) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, . . . . (14.145)

For consistency, we should assume that the initial and boundary conditions agree at the
corners of the domain:

f0 = f(0) = u(0, 0) = α(0) = α0, fn = f(`) = u(0, `) = β(0) = β0.

The three equations (14.142–145) completely prescribe the numerical approximation algo-
rithm for solving the initial-boundary value problem (14.136–138).

Let us rewrite the scheme in a more transparent matrix form. First, let

u(i) =
(
ui,1, ui,2, . . . , ui,n−1

)T
≈
(
u(ti, x1), u(ti, x2), . . . , u(ti, xn−1)

)T
(14.146)

be the vector whose entries are the numerical approximations to the solution values at
time ti at the interior nodes. We omit the boundary nodes x0 = 0, xn = `, since those
values are fixed by the boundary conditions (14.137). Then (14.142) assumes the compact
vectorial form

u(i+1) = Au(i) + b(i), (14.147)

where

A =




1− 2µ µ
µ 1− 2µ µ

µ 1− 2µ µ

µ
. . .

. . .
. . .

. . . µ
µ 1− 2µ




, b(i) =




µαi

0
0
...
0

µβi




. (14.148)

The coefficient matrix A is symmetric and tridiagonal. The contributions (14.145) of the
boundary nodes appear in the vector b(i). This numerical method is known as an explicit

scheme since each iterate is computed directly without relying on solving an auxiliary
equation — unlike the implicit schemes to be discussed below.
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Figure 14.14. Numerical Solutions for the Heat Equation
Based on the Explicit Scheme.

Example 14.14. Let us fix the diffusivity γ = 1 and the bar length ` = 1. For
illustrative purposes, we take a spatial step size of h = .1. In Figure 14.14 we compare
two (slightly) different time step sizes on the same initial data as used in (14.22). The first
sequence uses the time step k = h2 = .01 and plots the solution at times t = 0., .02, .04.
The solution is already starting to show signs of instability, and indeed soon thereafter
becomes completely wild. The second sequence takes k = .005 and plots the solution at
times t = 0., .025, .05. (Note that the two sequences of plots have different vertical scales.)
Even though we are employing a rather coarse mesh, the numerical solution is not too far
away from the true solution to the initial value problem, which can be found in Figure 14.1.

In light of this calculation, we need to understand why our scheme sometimes gives
reasonable answers but at other times utterly fails. To this end, let us specialize to homo-
geneous boundary conditions

u(t, 0) = 0 = u(t, `), whereby αi = βi = 0 for all i = 0, 1, 2, 3, . . . ,
(14.149)

and so (14.147) reduces to a homogeneous, linear iterative system

u(i+1) = Au(i). (14.150)

According to Proposition 10.11, all solutions will converge to zero, u(i) → 0 — as they are
supposed to (why?) — if and only if A is a convergent matrix. But convergence depends
upon the step sizes. Example 14.14 is indicating that for mesh size h = .1, the time step
k = .01 yields a non-convergent matrix, while k = .005 leads to a convergent matrix and
a valid numerical scheme.

As we learned in Theorem 10.14, the convergence property of a matrix is fixed by
its spectral radius, i.e., its largest eigenvalue in magnitude. There is, in fact, an explicit
formula for the eigenvalues of the particular tridiagonal matrix in our numerical scheme,
which follows from the following general result, which solves Exercise 8.2.48. It is a direct
consequence of Exercise 8.2.47, which contains the explicit formulae for the eigenvectors.
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Lemma 14.15. The eigenvalues of an (n − 1) × (n − 1) tridiagonal matrix all of

whose diagonal entries are equal to a and all of whose sub- and super-diagonal entries are

equal to b are

λk = a + 2b cos
πk

n
, k = 1, . . . , n− 1. (14.151)

In our particular case, a = 1− 2µ and b = µ, and hence the eigenvalues of the matrix
A given by (14.148) are

λk = 1− 2µ + 2µ cos
πk

n
, k = 1, . . . , n− 1.

Since the cosine term ranges between −1 and +1, the eigenvalues satisfy

1− 4µ < λk < 1.

Thus, assuming that 0 < µ ≤ 1
2 guarantees that all |λk | < 1, and hence A is a convergent

matrix. In this way, we have deduced the basic stability criterion

µ =
γ k

h2
≤

1

2
, or k ≤

h2

2γ
. (14.152)

With some additional analytical work, [107], it can be shown that this is sufficient to
conclude that the numerical scheme (14.142–145) converges to the true solution to the
initial-boundary value problem for the heat equation.

Since not all choices of space and time steps lead to a convergent scheme, the numerical
method is called conditionally stable. The convergence criterion (14.152) places a severe
restriction on the time step size. For instance, if we have h = .01, and γ = 1, then we can
only use a time step size k ≤ .00005, which is minuscule. It would take an inordinately
large number of time steps to compute the value of the solution at even a moderate times,
e.g., t = 1. Moreover, owing to the limited accuracy of computers, the propagation of
round-off errors might then cause a significant reduction in the overall accuracy of the
final solution values.

An unconditionally stable method — one that does not restrict the time step — can
be constructed by using the backwards difference formula

∂u

∂t
(ti, xj) ≈

u(ti, xj)− u(ti−1, xj)

k
+ O(hk) (14.153)

to approximate the temporal derivative. Substituting (14.153) and the same approximation
(14.140) for uxx into the heat equation, and then replacing i by i+1, leads to the iterative
system

ui+1,j − µ
(
ui+1,j+1 − 2ui+1,j + ui+1,j−1

)
= ui,j ,

i = 0, 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.154)

where the parameter µ = γ k/h2 is as above. The initial and boundary conditions also
have the same form (14.144, 145). The system can be written in the matrix form

Âu(i+1) = u(i) + b(i+1), (14.155)
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Figure 14.15. Numerical Solutions for the Heat Equation
Based on the Implicit Scheme.

where Â is obtained from the matrix A in (14.148) by replacing µ by −µ. This defines
an implicit method since we have to solve a tridiagonal linear system at each step in order
to compute the next iterate u(i+1). However, as we learned in Section 1.7, tridiagonal
systems can be solved very rapidly, and so speed does not become a significant issue in the
practical implementation of this implicit scheme.

Let us look at the convergence properties of the implicit scheme. For homogeneous
Dirichlet boundary conditions (14.149), the system takes the form

u(i+1) = Â−1 u(i),

and the convergence is now governed by the eigenvalues of Â−1. Lemma 14.15 tells us that
the eigenvalues of Â are

λk = 1 + 2µ− 2µ cos
πk

n
, k = 1, . . . , n− 1.

As a result, its inverse Â−1 has eigenvalues

1

λk

=
1

1 + 2µ

(
1− cos

πk

n

) , k = 1, . . . , n− 1.

Since µ > 0, the latter are always less than 1 in absolute value, and so Â is always a
convergent matrix. The implicit scheme (14.155) is convergent for any choice of step sizes
h, k, and hence unconditionally stable.

Example 14.16. Consider the same initial-boundary value problem considered in
Example 14.14. In Figure 14.15, we plot the numerical solutions obtained using the implicit
scheme. The initial data is not displayed, but we graph the numerical solutions at times
t = .2, .4, .6 with a mesh size of h = .1. On the top line, we use a time step of k = .01,
while on the bottom k = .005. Unlike the explicit scheme, there is very little difference
between the two — both come much closer to the actual solution than the explicit scheme.
Indeed, even significantly larger time steps give reasonable numerical approximations to
the solution.
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Figure 14.16. Numerical Solutions for the Heat Equation
Based on the Crank–Nicolson Scheme.

Another popular numerical scheme is the Crank–Nicolson method

ui+1,j − ui,j =
µ

2

(
ui+1,j+1 − 2ui+1,j + ui+1,j−1 + ui,j+1 − 2ui,j + ui,j−1

)
. (14.156)

which can be obtained by averaging the explicit and implicit schemes (14.142, 154). We
can write the iterative system in matrix form

B u(i+1) = C u(i) + 1
2

(
b(i) + b(i+1)

)
,

where

B =




1 + µ − 1
2 µ

− 1
2 µ 1 + µ − 1

2 µ

− 1
2 µ

. . .
. . .

. . .
. . .




, C =




1− µ 1
2 µ

1
2 µ 1− µ 1

2 µ

1
2 µ

. . .
. . .

. . .
. . .




. (14.157)

Convergence is governed by the generalized eigenvalues of the tridiagonal matrix pair B,C,
or, equivalently, the eigenvalues of the product B−1 C, cf. Exercise 9.5.33. According to
Exercise , these are

λk =

1− µ

(
1− cos

πk

n

)

1 + µ

(
1− cos

πk

n

) , k = 1, . . . , n− 1. (14.158)

Since µ > 0, all of the eigenvalues are strictly less than 1 in absolute value, and so the
Crank–Nicolson scheme is also unconditionally stable. A detailed analysis will show that
the errors are of the order of k2 and h2, and so it is reasonable to choose the time step to
have the same order of magnitude as the space step, k ≈ h. This gives the Crank–Nicolson
scheme one advantage over the previous two methods. However, applying it to the initial
value problem considered earlier points out a significant weakness. Figure 14.16 shows the
result of running the scheme on the initial data (14.22). The top row has space and time

5/1/06 805 c© 2006 Peter J. Olver



step sizes h = k = .1, and does a rather poor job replicating the solution. The second row
uses h = k = .01, and performs better except near the corners where an annoying and
incorrect local time oscillation persists as the solution decays. Indeed, since most of its
eigenvalues are near −1, the Crank–Nicolson scheme does not do a good job of damping
out the high frequency modes that arise from small scale features, including discontinuities
and corners in the initial data. On the other hand, most of the eigenvalues of the fully
implicit scheme are near zero, and it tends to handle the high frequency modes better,
losing out to Crank–Nicolson when the data is smooth. Thus, a good strategy is to first
evolve using the implicit scheme until the small scale noise is dissipated away, and then
switch to Crank–Nicolson to use a much larger time step for final the large scale changes.

Numerical Solution Methods for the Wave Equation

Let us now look at some numerical solution techniques for the wave equation. Al-
though this is in a sense unnecessary, owing to the explicit d’Alembert solution for-
mula (14.121), the experience we gain in designing workable schemes will serve us well
in more complicated situations, including inhomogeneous media, and higher dimensional
problems, when analytic solution formulas are no longer available.

Consider the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 < x < `, t ≥ 0, (14.159)

modeling vibrations of a homogeneous bar of length ` with constant wave speed c > 0. We
impose Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), t ≥ 0. (14.160)

and initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ `. (14.161)

We adopt the same uniformly spaced mesh

ti = i k, xj = j h, where h =
`

n
.

In order to discretize the wave equation, we replace the second order derivatives by
their standard finite difference approximations (14.134), namely

∂2u

∂t2
(ti, xj) ≈

u(ti+1, xj)− 2u(ti, xj) + u(ti−1, xj)

k2
+ O(h2),

∂2u

∂x2
(ti, xj) ≈

u(ti, xj+1)− 2u(ti, xj) + u(ti, xj−1)

h2
+ O(k2),

(14.162)

Since the errors are of orders of k2 and h2, we anticipate to be able to choose the space
and time step sizes of comparable magnitude:

k ≈ h.
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Substituting the finite difference formulae (14.162) into the partial differential equation
(14.159), and rearranging terms, we are led to the iterative system

ui+1,j = σ2 ui,j+1 + 2 (1− σ2)ui,j + σ2 ui,j−1 − ui−1,j ,
i = 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.163)

for the numerical approximations ui,j ≈ u(ti, xj) to the solution values at the mesh points.
The positive parameter

σ =
c k

h
> 0 (14.164)

depends upon the wave speed and the ratio of space and time step sizes. The boundary
conditions (14.160) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, . . . . (14.165)

This allows us to rewrite the system in matrix form

u(i+1) = Bu(i) − u(i−1) + b(i), (14.166)

where

B =




2 (1− σ2) σ2

σ2 2 (1− σ2) σ2

σ2 . . .
. . .

. . .
. . . σ2

σ2 2 (1− σ2)




, u(j) =




u1,j

u2,j

...
un−2,j

un−1,j




, b(j) =




σ2 αj

0
...
0

σ2 βj




.

(14.167)
The entries of u(i) are, as in (14.146), the numerical approximations to the solution values
at the interior nodes. Note that the system (14.166) is a second order iterative scheme,
since computing the next iterate u(i+1) requires the value of the preceding two, u(i) and
u(i−1).

The one difficulty is getting the method started. We know u(0) since u0,j = fj = f(xj)

is determined by the initial position. However, we also need to find u(1) with entries
u1,j ≈ u(k, xj) at time t1 = k in order launch the iteration, but the initial velocity
ut(0, x) = g(x) prescribes the derivatives ut(0, xj) = gj = g(xj) at time t0 = 0 instead.
One way to resolve this difficult would be to utilize the finite difference approximation

gj =
∂u

∂t
(0, xj) ≈

u(k, xj)− u(0, xj)

k
≈

u1,j − gj

k
(14.168)

to compute the required values

u1,j = fj + k gj .

However, the approximation (14.168) is only accurate to order k, whereas the rest of the
scheme has error proportional to k2. Therefore, we would introduce an unacceptably large
error at the initial step.
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Figure 14.17. Numerically Stable Waves.

To construct an initial approximation to u(1) with error on the order of k2, we need
to analyze the local error in more detail. Note that, by Taylor’s theorem,

u(k, xj)− u(0, xj)

k
≈

∂u

∂t
(0, xj) +

k

2

∂2u

∂t2
(0, xj) =

∂u

∂t
(0, xj) +

c2 k

2

∂2u

∂x2
(0, xj) ,

where the error is now of order k2, and, in the final equality, we have used the fact that u
is a solution to the wave equation. Therefore, we find

u(k, xj) ≈ u(0, xj) + k
∂u

∂t
(0, xj) +

c2 k2

2

∂2u

∂x2
(0, xj)

= f(xj) + k g(xj) +
c2 k2

2
f ′′(xj) ≈ fj + k gj +

c2 k2

2h2
(fj+1 − 2fj + fj−1) ,

where we can use the finite difference approximation (14.134) for the second derivative of
f(x) if no explicit formula is known. Therefore, when we initiate the scheme by setting

u1,j = 1
2 σ2 fj+1 + (1− σ2)fj + 1

2 σ2 fj−1 + k gj , (14.169)

or, in matrix form,

u(0) = f , u(1) = 1
2 Bu(0) + kg + 1

2 b(0), (14.170)

we will have maintained the desired order k2 (and h2) accuracy.

Example 14.17. Consider the particular initial value problem

utt = uxx,
u(0, x) = e−400 (x−.3)2 , ut(0, x) = 0,

u(t, 0) = u(1, 0) = 0,

0 ≤ x ≤ 1,

t ≥ 0,

subject to homogeneous Dirichlet boundary conditions on the interval [0, 1]. The initial
data is a fairly concentrated single hump centered at x = .3, and we expect it to split into
two half sized humps, which then collide with the ends. Let us choose a space discretization
consisting of 90 equally spaced points, and so h = 1

90 = .0111 . . . . If we choose a time step
of k = .01, whereby σ = .9, then we get reasonably accurate solution over a fairly long
time range, as plotted in Figure 14.17 at times t = 0, .1, .2, . . . , .5. On the other hand,
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Figure 14.18. Numerically Unstable Waves.

if we double the time step, setting k = .02, so σ = 1.8, then, as plotted in Figure 14.18
at times t = 0, .05, .1, .14, .16, .18, we observe an instability eventually creeping into the
picture that eventually overwhelms the numerical solution. Thus, the numerical scheme
appears to only be conditionally stable.

The stability analysis of this numerical scheme proceeds as follows. We first need to
recast the second order iterative system (14.166) into a first order system. In analogy with

Example 10.6, this is accomplished by introducing the vector z(i) =

(
u(i)

u(i−1)

)
∈ R

2n−2.
Then

z(i+1) = C z(i) + c(i), where C =

(
B − I
I O

)
. (14.171)

Therefore, the stability of the method will be determined by the eigenvalues of the coeffi-

cient matrix C. The eigenvector equation C z = λ z, where z =

(
u

v

)
, can be written out

in its individual components:

Bu− v = λu, u = λv.

Substituting the second equation into the first, we find

(λB − λ2 − 1)v = 0, or Bv =

(
λ +

1

λ

)
v.

The latter equation implies that v is an eigenvector of B with λ + λ−1 the corresponding
eigenvalue. The eigenvalues of the tridiagonal matrix B are governed by Lemma 14.15, in
which a = 2(1− σ2) and b = σ2, and hence are

λ +
1

λ
= 2

(
1− σ2 + σ2 cos

πk

n

)
, k = 1, . . . , n− 1.

Multiplying both sides by λ leads to a quadratic equation for the eigenvalues,

λ2 − 2ak λ + 1 = 0, where 1− 2σ2 < ak = 1− σ2 + σ2 cos
πk

n
< 1. (14.172)
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Figure 14.19. The Courant Condition.

Each pair of solutions to these n− 1 quadratic equations, namely

λ±
k = ak ±

√
a2

k − 1 , (14.173)

yields two eigenvalues of the matrix C. If ak > 1, then one of the two eigenvalues will
be larger than one in magnitude, which means that the linear iterative system has an
exponentially growing mode, and so ‖u(i) ‖ → ∞ as i → ∞ for almost all choices of
initial data. This is clearly incompatible with the wave equation solution that we are
trying to approximate, which is periodic and hence remains bounded. On the other hand,
if | ak | < 1, then the eigenvalues (14.173) are complex numbers of modulus 1, indicated
stability (but not convergence) of the matrix C. Therefore, in view of (14.172), we should
require that

σ =
c k

h
< 1, or k <

h

c
, (14.174)

which places a restriction on the relative sizes of the time and space steps. We conclude
that the numerical scheme is conditionally stable.

The stability criterion (14.174) is known as the Courant condition, and can be as-
signed a simple geometric interpretation. Recall that the wave speed c is the slope of the
characteristic lines for the wave equation. The Courant condition requires that the mesh

slope, which is defined to be the ratio of the space step size to the time step size, namely
h/k, must be strictly greater than the characteristic slope c. A signal starting at a mesh
point (ti, xj) will reach positions xj ± k/c at the next time ti+1 = ti + k, which are still
between the mesh points xj−1 and xj+1. Thus, characteristic lines that start at a mesh
point are not allowed to reach beyond the neighboring mesh points at the next time step.

For instance, in Figure 14.19, the wave speed is c = 1.25. The first figure has equal
mesh spacing k = h, and does not satisfy the Courant condition (14.174), whereas the
second figure has k = 1

2 h, which does. Note how the characteristic lines starting at a
given mesh point have progressed beyond the neighboring mesh points after one time step
in the first case, but not in the second.
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14.7. A General Framework for Dynamics.

According to Section 12.1, the one-dimensional heat and wave equations are individual
instances of two broad classes of dynamical systems that include, in a common framework,
both discrete dynamics modeled by systems of ordinary differential equations and contin-
uum systems modeled by (systems of) partial differential equations. In preparation for
their multi-dimensional generalizations, it will be useful to summarize the general mathe-
matical framework, which can be regarded as the dynamical counterpart to the framework
for equilibrium developed in Sections 7.5 and 15.4, which you are advised to review before
going through this section. Readers more attuned to concrete examples, on the other hand,
might prefer to skip this material entirely, referring back as needed.

In all situations, the starting point is a certain linear function

L:U −→ V (14.175)

that maps a vector space U to another vector space V . In mechanics, the elements of
U represent displacements, while the elements of V represent strains (elongations). In
electromagnetism and gravitation, elements of U represent potentials and elements of V
electric or magnetic or gravitational fields. In thermodynamics, elements of U represent
temperature distributions, and elements of V temperature gradients. In fluid mechanics,
U contains potential functions and V is fluid velocities. And so on.

In the discrete, finite-dimensional setting, when U = R
n and V = R

m, the linear func-
tion L[u ] = Au is represented by multiplication by an m × n matrix A — the incidence
matrix and its generalizations. In the infinite-dimensional function space situation pre-
sented in Chapter 11 and earlier in this chapter, the linear map L is a differential operator;
in the case of one-dimensional elastic bars, it is the first order derivative L = Dx, while for
beams it is a second order derivative L = D2

x. In the multi-dimensional physics treated in
subsequent chapters, the most important example is the gradient operator, L = ∇, that
maps scalar potentials to vector fields.

The vector spaces U and V are further each endowed with inner products, that en-
capsulate the consitutive assumptions underlying the physical problem. Definition 7.53
explains how to construct the resulting adjoint map

L∗:V −→ U (14.176)

which goess in the reverse direction. In finite dimensions, when U = R
n and V = R

m

are both equipped with the Euclidean dot product, the adjoint corresponds to the sim-
ple transpose operation. Modifications under more general weighted inner products were
discussed in Section 7.5. In infinite-dimensional contexts, the computation of the adjoint
presented in Section 11.3 relied on an integration by parts argument, supplemented by suit-
able boundary conditions. In the next chapter, we will adapt this argument to determine
adjoints of multi-dimensional differential operators.

The crucial operator underlying the equilibrium and dynamical equations for a re-
markably broad range of physics is the self-adjoint combination

K = L∗ ◦L: U −→ U. (14.177)
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According to Theorem 7.60, the operator K is positive semi-definite in all situations, and
positive definite if and only if ker L = {0}. In the finite-dimensional context, K is repre-
sented by the symmetric positive (semi-)definite Gram matrix AT A when both U = R

n

and V = R
m have the dot product, by the symmetric combination AT C A when V has a

weighted inner product represented by the positive definite matrix C > 0, and the more
general self-adjoint form M−1AT C A when U also is endowed with a weighted inner prod-
uct represented by M > 0. In one-dimensional bars, K is represented by a self-adjoint
second order differential operator, whose form depends upon the underlying inner prod-
ucts., while in beams it becomes a fourth order differential operator. The definiteness of K
(or lack thereof) depends upon the imposed boundary conditions. In higher dimensions,
as we discuss in Section 15.4, K becomes the Laplacian or a more general elliptic partial
differential operator.

With this set-up, the basic equilibrium equation has the form

K[u ] = f, (14.178)

where f represents an external forcing function. In finite dimensions, this is a linear system
consisting of n equations in n unknowns with positive (semi-)definite coefficient matrix.
In function space, it becomes a self-adjoint boundary value problem for the unknown
function u. If K is positive definite, the solution is unique. (But rigorously proving the
existence of a solution is not trivial, requiring serious analysis beyond the scope of this
text.) Theorem 7.61 says that the solutions are characterized by a minimization principle,
as the minimizers of the quadratic function(al)

p[u ] = 1
2 ‖L[u ] ‖2 − 〈u , f 〉, (14.179)

which typically represents the potential energy in the system. If K is only positive semi-
definite, existence of a solution requires that the forcing function satisfy the Fredholm
condition that it be orthogonal to the the unstable modes, that is the elements of ker K =
ker L

With the equilibrium operator K in hand, there are two basic types of dynamical
systems of importance in physical models. Unforced diffusion processes are modeled by a
dynamical system of the form

ut = −K[u ], where K = L∗ ◦L (14.180)

is the standard self-adjoint combination of a linear operator L. In the discrete case, K is
a matrix and so this represents a first order system of ordinary differential equations, that
has the form of a linear gradient flow (9.18), so named because it decreases the energy
function

q[u ] = ‖L[u ] ‖2, (14.181)

which is (14.179) when f = 0, as rapidly as possible. In the continuous case, K is a
differential operator, and (14.180) represents a partial differential equation for the time-
varying function u = u(t,x).

The solution to the general diffusion equation (14.180) mimics earlier our separation
of variables method for the one-dimensional heat equation, as well as the original solution
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technique for linear systems of ordinary differential equations, as developed in Chapter 9.
The separable solutions are of exponential form

u(t) = e−λt v, (14.182)

where v ∈ U is a fixed element of the domain space — i.e., a vector in the discrete context,
or a function v = v(x) that only depends on the spatial variables in the continuum versions.
Since the operator K is linear and does not involve t differentiation, we find

∂u

∂t
= −λ e−λt v, while K[u ] = e−λt K[v ].

Substituting back into (14.180) and canceling the common exponential factors, we are led
to the eigenvalue problem

K[v ] = λ v. (14.183)

Thus, v must be an eigenvector/eigenfunction for the linear operator K, with λ the corre-
sponding eigenvalue.

Generalizing our earlier observations on the eigenvalues of positive definite matrices
and the boundary value problems associated with the one-dimensional heat equation, let us
establish the positivity of eigenvalues of such general self-adjoint, positive (semi-)definite
linear operators.

Theorem 14.18. All eigenvalues of the linear operator K = L∗ ◦L are real and non-

negative: λ ≥ 0. If, moreover, K is positive definite, or, equivalently, ker K = ker L = 0,
then all eigenvalues are strictly positive: λ > 0.

Proof : Suppose K[u ] = λu with u 6= 0. Then

λ ‖u ‖2 = λ 〈u , u 〉 = 〈K[u ] , u 〉 = 〈L∗ ◦L[u ] , u 〉 = 〈L[u ] , L[u ] 〉 = ‖L[u ] ‖2 ≥ 0,

by the defining equation (7.74) of the adjoint operator. Since ‖u ‖2 > 0, this immediately
implies that λ ≥ 0. Furthermore, in the positive definite case ker L = {0}, and so L[u ] 6= 0.
Thus, ‖L[u ] ‖2 > 0, proving that λ > 0. Q.E.D.

We index the eigenvalues in increasing order:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . (14.184)

where the eigenvalues are repeated according to their multiplicities, and λ0 = 0 is an
eigenvalue only in the positive semi-definite case. Each eigenvalue induces a separable
eigensolution

uk(t) = e−λk t vk (14.185)

to the diffusion equation (14.180). Those associated with strictly positive definite eigen-
values are exponentially decaying, at a rate equal to the eigenvalue λk > 0, while any
null eigenvalue modes correspond to constant solutions u0(t) ≡ v0 where v0 is any null
eigenvector/eigenfunction, i.e., element of ker K = ker L. The general solution is built up
as a linear combination

u(t) =
∑

k

ck uk(t) =
∑

k

ck e−λk t vk (14.186)
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of the eigensolutions. Thus, all solutions decay exponentially fast as t→∞ to an equilib-
rium solution, which is 0 in the positive definite case, or, more generally, the null eigenspace
component c0v0. The overall rate of decay is, generally, prescribed by the smallest positive
eigenvalue λ1 > 0.

In the discrete version, the summation (14.186) has only finitely many terms, cor-
responding to the n eigenvalues of the matrix representing K. Moreover, thanks to the
Spectral Theorem 8.26, the eigensolutions form a basis for the solution space to the dif-
fusion equation. In infinite-dimensional function space, there are, in many instances, an
infinite number of eigenvalues, with λk → ∞ as k → ∞. Completeness of the resulting
eigensolutions is a more delicate issue. Often, as in the one-dimensional heat equation,
the eigenfunctions are complete and the (Fourier) series (14.186) converges and represents
the general solution. But in situations involving unbounded domains, like the hydrogen
atom to be discussed in Section 18.7, there are additional separable solutions corresponding
to the so-called continuous spectrum that are not represented in terms of eigenfunctions,
and the analysis is considerably more involved, requiring analogs of the Fourier transform.
A full discussion of completeness and convergence of eigenfunction expansions must be
relegated to an advanced course in analysis, [46, 149].

Assuming completeness, the eigensolution coefficients ck in (14.186) are prescribed by
the initial conditions, which require

∑

k

ck vk = h, (14.187)

where h = u(0) represents the initial data. To compute the coefficients ck in the eigenfunc-
tion expansion (14.187), we appeal, as in the case of ordinary Fourier series, to orthogo-
nality of the eigenvectors/eigenfunctions vk. Orthogonality is proved by a straightforward
adaptation of our earlier proof of part (b) of Theorem 8.20, guaranteeing the orthogonality
of the eigenvectors of a symmetric matrix.

Theorem 14.19. Two eigenvectors/eigenfunctions u, v of the self-adjoint linear op-

erator K = L∗ ◦L that are associated with distinct eigenvalues λ 6= µ are orthogonal.

Proof : Self-adjointness of the operator K means that

〈K[u ] , v 〉 = 〈L[u ] , L[v ] 〉 = 〈u ,K[v ] 〉

for any for any u, v. In particular, if K[u ] = λu, K[v ] = µ v, are eigenfunctions, then

λ 〈u , v 〉 = 〈K[u ] , v 〉 = 〈u ,K[v ] 〉 = µ 〈u , v 〉,

which, assuming λ 6= µ, immediately implies orthogonality: 〈u , v 〉 = 0. Q.E.D.

If an eigenvalue λ admits more than one independent eigenvector/eigenfunction, we
can apply the Gram–Schmidt process to produce an orthogonal basis of its eigenspace†

† This assumes that the eigenspace Vλ is finite-dimensional — which is assured whenever the
eigenvalues λk → ∞ as k → ∞.
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Vλ = ker(K − λ I ). In this way, the entire set of eigenvectors/eigenfunctions can be
assumed to be mutually orthogonal:

〈 vj , vk 〉 = 0, j 6= k.

As a consequence, taking the inner product of both sides of (14.187) with the eigenfunction
vk leads to the equation

ck ‖ vk ‖
2 = 〈h , vk 〉 and hence ck =

〈h , vk 〉

‖ vk ‖
2

. (14.188)

In this manner we recover our standard orthogonality formula (5.7) for expressing elements
of a vector space in terms of an orthogonal basis.

The second important class of dynamical systems consists of second order (in time)
vibration equations

utt = −K[u ]. (14.189)

Newton’s equations of motion in the absence of non-conservative frictional forces, the
propagation of waves in fluids and solids, as well as electromagnetic waves, and many
other related physical problems lead to such vibrational systems. In this case, the separable
solutions are of trigonometric form

u(t, x, y) = cos(ωt) v or sin(ωt) v. (14.190)

Substituting this ansatz back into the vibration equation (14.189) results in the same
eigenvalue problem (14.183) with eigenvalue λ = ω2 equal to the square of the vibrational
frequency. We conclude that the normal mode or separable eigensolutions take the form

uk(t) = cos(ωk t) vk, ũk(t) = sin(ωk t) vk, provided λk = ω2
k > 0

is a non-zero eigenvalue. In the stable, positive definite case, there are no zero eigenvalues,
and so the general solution is built up as a (quasi-)periodic† combination

u(t) =
∑

k

[
ckuk(t) + dkũk(t)

]
=
∑

k

rk cos(ωk t + δk) vk, (14.191)

of the eigenmodes. The initial conditions

g = u(0) =
∑

k

ckvk, h = ut(0) =
∑

k

dkωkvk, (14.192)

are used to specify the coefficients ck, dk, using the same orthogonality formula (14.188):

ck =
〈 f , vk 〉

‖ vk ‖
2

, dk =
〈 f , vk 〉

ωk ‖ vk ‖
2

. (14.193)

† The solution is periodic if and only if the frequencies appearing in the sum are all integer
multiples of a common frequency: ωk = nkω? for nk ∈ N.
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In the unstable, positive semi-definite cases, the null eigensolutions have the form

u0(t) = v0, ũ0(t) = t v0,

where v0 ∈ ker K = ker L, and must be appended to the series solution. The unstable
mode ũ0(t) is excited if and only if the initial velocity is not orthogonal to the kernel
element: 〈h , v0 〉 6= 0.

In classical mechanics, the diffusion and vibration equations and their variants (see,
for instance, Exercises , for versions with external forcing and Exercise for vibrations
with frictional effects) are the most important classes of dynamical systems. In quantum
mechanics, the basic system for quantum dynamics is the Schrödinger equation, first writ-
ten down by the the German physicist Erwin Schrödinger, one of the founders of quantum
mechanics. The abstract form of the Schrödinger equation is

i ~ ut = K[u ]. (14.194)

Here i =
√
−1, while

~ =
h

2π
≈ 1.055× 10−34 Joule seconds (14.195)

is Planck’s constant , whose value governs the quantization of all physical quantities. At
each time t, the solution u(t,x) to the Schrödinger equation represents the wave function
of the quantum system, and so is a complex-valued square integrable function of constant
L2 norm: ‖u ‖ = 1. (See Sections 12.5 and 13.3 for the basics of quantum mechanics and
Hilbert space.) As usual, we interpret the wave fuction as a probability density on the
possible quantum states, and so the Schrödinger equation governs the dynamical evolution
of quantum probabilities. The operator K = L∗ ◦L is known as the Hamiltonian for the
quantum mechanical system governed by (14.194), and, typically represents the quantum
energy operator. For physical systems such as atoms and nuclei, the relevant Hamiltonian
operator is constructed from the classical energy through the rather mysterious process of
“quantization”. The interested reader should consult a basic text on quantum mechanics,
e.g., [122, 127], for full details on both the physics and underlying mathematics.

Proposition 14.20. If u(t) is a solution to the Schrödinger equation, its Hermitian

L2 norm ‖u ‖ is constant.

Proof : Since the solution is complex-valued, we use the sesquilinearity of the under-
lying Hermitian inner product, as in (3.92), to compute

d

dt
‖u ‖2 = 〈ut , u 〉+ 〈u , ut 〉

=

〈
−

i

~
K[u ] , u

〉
+

〈
u , −

i

~
K[u ]

〉
= −

i

~
〈K[u ] , u 〉+

i

~
〈u ,K[u ] 〉 = 0,

which vanishes since K is self-adjoint. Since its derivative vanishes everywhere, this implies
that ‖u ‖2 is constant. Q.E.D.

5/1/06 816 c© 2006 Peter J. Olver



As a result, if the initial data u(t0) = h is a quantum mechanical wave function,
meaning that ‖h ‖ = 1, then, at each time t, the solution to the Schrödinger equation also
has norm 1, and hence remains a wave function for all t.

Apart from the extra factor of i ~, the Schrödinger equation looks like a diffusion
equation (14.180). (Warning : Despite this superficial similarity, their solutions have radi-
cally different behavior.) This inspires us to seek separable solutions with an exponential
ansatz:

u(t, x) = eα t v(x).

Substituting this expression into the Schrödinger equation (14.194) and canceling the com-
mon exponential factors reduces us to the usual eigenvalue problem

K[v ] = λ v, with eigenvalue λ = − i ~ α.

Let vk(x) denote the normalized eigenfunction associated with the kth eigenvalue λk. Th
corresponding separable solution of the Schrödinger equation is the complex wave functions

uk(t, x) = e i λkt/~ vk(x).

Observe that, in contrast to the exponentially decaying solutions to the diffusion equation,
the eigensolutions to the Schrödinger equation are periodic, of frequencies proportional
to the eigenvalues: ωk = λk/~. (Along with constant solutions corresponding to the null
eigenmodes, if any.) The general solution is a (quasi-)periodic series in the fundamental
eigensolutions. The periodicity of the summands has the additional implication that, again
unlike the diffusion equation, the Schrödinger equation can be run backwards in time. So,
we can figure out both the past and future behavior of a quantum system from its present
configuration.

Example 14.21. In a single space dimension, the simplest version of the Schrödinger
equation is based on the derivative operator L = Dx, for which, assuming appropriate
boundary conditions, the self-adjoint combination K = L∗ ◦L = −D2

x. Thus, (14.194)
reduces to the second order partial differential equation

i ~ ut = −uxx. (14.196)

Imposing the Dirichlet boundary conditions

u(t, 0) = u(t, `) = 0,

the Schrödinger equation governs the dynamics of a quantum particle confined to the
interval 0 < x < `; the boundary conditions imply that there is zero probability of the
particle escaping from the interval.

According to Section 14.1, the eigenfunctions of the Dirichlet eigenvalue problem

vxx + λ v = 0, v(0) = v(`) = 0,

are

vk(x) =

√
2

`
sin

kπ

`
x for k = 1, 2, . . . , with eigenvalue λk =

k2π2

`2
,
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where the initial factor is ensures that vk has unit L2 norm, and hence is a bona fide wave
function. The corresponding separable solutions or eigenmodes are

uk(t, x) =

√
2

`
exp

(
i

k2π2

~ `2
t

)
sin

kπ

`
x.

The eigenvalues represent the energy levels of the particle, which can be observed from
the spectral lines emitted by the system. For instance, when an electron jumps from
one level to another, it conserves energy by emitting a photon, with energy equal to the
difference in energy between the two quantum levels. These emitted photons define the
observed electromagnetic spectral lines, hence the adoption of the physics term “spectrum”
to describe the eigenvalues of the Hamiltonian operator K.
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Chapter 15

The Planar Laplace Equation

The fundamental partial differential equations that govern the equilibrium mechanics
of multi-dimensional media are the Laplace equation and its inhomogeneous counterpart,
the Poisson equation. The Laplace equation is arguably the most important differential
equation in all of applied mathematics. It arises in an astonishing variety of mathematical
and physical systems, ranging through fluid mechanics, electromagnetism, potential the-
ory, solid mechanics, heat conduction, geometry, probability, number theory, and on and
on. The solutions to the Laplace equation are known as “harmonic functions”, and the
discovery of their many remarkable properties forms one of the most significant chapters
in the history of mathematics.

In this chapter, we concentrate on the Laplace and Poisson equations in a two-dim-
ensional (planar) domain. Their status as equilibrium equations implies that the solutions
are determined by their values on the boundary of the domain. As in the one-dimensional
equilibrium boundary value problems, the principal cases are Dirichlet or fixed, Neumann
or free, and mixed boundary conditions arise. In the introductory section, we shall briefly
survey the basic boundary value problems associated with the Laplace and Poisson equa-
tions. We also take the opportunity to summarize the crucially important tripartite clas-
sification of planar second order partial differential equations: elliptic, such as the Laplace
equation; parabolic, such as the heat equation; and hyperbolic, such as the wave equation.
Each species has quite distinct properties, both analytical and numerical, and each forms
an essentially distinct discipline. Thus, by the conclusion of this chapter, you will have
encountered all three of the most important genres of partial differential equations.

The most important general purpose method for constructing explicit solutions of
linear partial differential equations is the method of separation of variables. The method
will be applied to the Laplace and Poisson equations in the two most important coordinate
systems — rectangular and polar. Linearity implies that we may combine the separable
solutions, and the resulting infinite series expressions will play a similar role as for the
heat and wave equations. In the polar coordinate case, we can, in fact, sum the infinite
series in closed form, leading to the explicit Poisson integral formula for the solution. More
sophisticated techniques, relying on complex analysis, but (unfortunately) only applicable
to the two-dimensional case, will be deferred until Chapter 16.

Green’s formula allows us to properly formulate the Laplace and Poisson equations in
self-adjoint, positive definite form, and thereby characterize the solutions via a minimiza-
tion principle, first proposed by the nineteenth century mathematician Lejeune Dirichlet,
who also played a crucial role in putting Fourier analysis on a rigorous foundation. Mini-
mization forms the basis of the most important numerical solution technique — the finite
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Figure 15.1. Planar Domain.

element method that we first encountered in Chapter 11. In the final section, we discuss
numerical solution techniques based on finite element analysis for the Laplace and Poisson
equations and their elliptic cousins, including the Helmholtz equation and more general
positive definite boundary value problems.

15.1. The Planar Laplace Equation.

The two-dimensional Laplace equation is the second order linear partial differential
equation

∂2u

∂x2
+
∂2u

∂y2
= 0. (15.1)

It is named in honor of the outstanding eighteenth century French mathematician Pierre–
Simon Laplace. Along with the heat and wave equations, it completes the trinity of truly
fundamental partial differential equations. A real-valued solution u(x, y) to the Laplace
equation is known as a harmonic function. The space of harmonic functions can thus be
identified as the kernel of the second order linear partial differential operator

∆ =
∂2

∂x2
+

∂2

∂y2
, (15.2)

known as the Laplace operator , or Laplacian for short. The inhomogeneous or forced
version, namely

−∆[u ] = −
∂2u

∂x2
−
∂2u

∂y2
= f(x, y) (15.3)

is known as Poisson’s equation, named for Siméon–Denis Poisson, who was taught by
Laplace. Poisson’s equation can be viewed as the higher dimensional analogue of the basic
equilibrium equation (11.12) for a bar.

The Laplace and Poisson equations arise as the basic equilibrium equations in a re-
markable variety of physical systems. For example, we may interpret u(x, y) as the dis-
placement of a membrane, e.g., a drum skin; the inhomogeneity f(x, y) in the Poisson
equation represents an external forcing. Another example is in the thermal equilibrium
of flat plates; here u(x, y) represents the temperature and f(x, y) an external heat source.
In fluid mechanics, u(x, y) represents the potential function whose gradient v = ∇u is
the vleocity vector of a steady planar fluid flow. Similar considerations apply to two-
dimensional electrostatic and gravitational potentials. The dynamical counterparts to the
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∂Ω

h(x, y)

Figure 15.2. Dirichlet Boundary Conditions.

Laplace equation are the higher dimensional versions of the heat and wave equations, to
be analyzed in Chapter 17.

Since both the Laplace and Poisson equations describe equilibrium configurations, they
arise in applications in the context of boundary value problems. We seek a solution u(x, y)
to the partial differential equation defined on a fixed bounded, open domain† (x, y) ∈
Ω ⊂ R

2. The solution is required to satisfy suitable conditions on the boundary of the
domain, denoted ∂Ω, which will consist of one or more simple, closed curves, as illustrated
in Figure 15.1. As in one-dimensional equilibria, there are three especially important types
of boundary conditions.

The first are the fixed or Dirichlet boundary conditions, which specify the value of the
function u on the boundary:

u(x, y) = h(x, y) for (x, y) ∈ ∂Ω. (15.4)

The Dirichlet conditions (15.4) serve to uniquely specify the solution u(x, y) to the Laplace
or the Poisson equation. Physically, in the case of a free or forced membrane, the Dirichlet
boundary conditions correspond to gluing the edge of the membrane to a wire at height
h(x, y) over each boundary point (x, y) ∈ ∂Ω, as illustrated in Figure 15.2. Uniqueness
means that the shape of the boundary wire will unambiguously specify the vertical displace-
ment of the membrane in equilibrium. Similarly, in the modeling of thermal equilibrium,
a Dirichlet boundary condition represents the imposition of a prescribed temperature dis-
tribution, represented by the function h, along the boundary of the plate.

The second important class are the Neumann boundary conditions

∂u

∂n
= ∇u · n = k(x, y) on ∂Ω, (15.5)

in which the normal derivative of the solution u on the boundary is prescribed. For exam-
ple, in thermomechanics, a Neumann boundary condition specifies the heat flux into the

† See Appendix A for the precise definitions of the terms “domain”, “bounded”, “boundary”,
etc.
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plate through its boundary. The “no-flux” or homogeneous Neumann boundary conditions,
where k(x, y) ≡ 0, correspond to a fully insulated boundary. In the case of a membrane,
homogeneous Neumann boundary conditions correspond to an unattached edge of the
drum. In fluid mechanics, the no-flux conditions imply that the normal component of the
velocity vector v = ∇u vanishes on the boundary, and so no fluid is allowed to flow across
the solid boundary.

Finally, one can mix the previous two sorts of boundary conditions, imposing Dirichlet
conditions on part of the boundary, and Neumann on the complementary part. The general
mixed boundary value problem has the form

−∆u = f in Ω, u = h on D,
∂u

∂n
= k on N, (15.6)

with the boundary ∂Ω = D ∪N being the disjoint union of a “Dirichlet part”, denoted by
D, and a “Neumann part” N . For example, if u represents the equilibrium temperature
in a plate, then the Dirichlet part of the boundary is where the temperature is fixed, while
the Neumann part is insulated, or, more generally, has prescribed heat flux. Similarly,
when modeling the displacement of a membrane, the Dirichlet part is where the edge of
the drum is attached to a support, while the homogeneous Neumann part is where it is
left hanging free.

Classification of Linear Partial Differential Equations in Two Variables

We have, at last, encountered all three of the fundamental linear, second order, partial
differential equations for functions of two variables. The homogeneous versions of the
trinity are

(a) The wave equation: utt − c
2 uxx = 0, hyperbolic,

(b) The heat equation: ut − γ uxx = 0, parabolic,

(c) Laplace’s equation: uxx + uyy = 0, elliptic.

The last column specifies the equations’ type, in accordance with the standard taxonomy of
partial differential equations. An explanation of the terminology will appear momentarily.

The wave, heat and Laplace equations are the prototypical representatives of the three
fundamental genres of partial differential equations, each with its own intrinsic features
and physical manifestations. Equations governing vibrations, such as the wave equation,
are typically hyperbolic. Equations governing diffusion, such as the heat equation, are
parabolic. Hyperbolic and parabolic equations both govern dynamical processes, and
one of the variables is identified with the time. On the other hand, equations model-
ing equilibrium phenomena, including the Laplace and Poisson equations, are typically
elliptic, and only involve spatial variables. Elliptic partial differential equations are asso-
ciated with boundary value problems, whereas parabolic and hyperbolic equations require
initial-boundary value problems, with, respectively, one or two required initial conditions.
Furthermore, each type requires a fundamentally different kind of numerical solution al-
gorithm.

While the initial tripartite classification first appears in partial differential equations
in two variables, the terminology, underlying properties, and assocaited physical models
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carry over to equations in higher dimensions. Most of the important partial differential
equations arising in applications are of one of these three types, and it is fair to say that
the field of partial differential equations breaks into three major, disjoint subfields. Or,
rather four subfields, the last being all the equations, including higher order equations,
that do not fit into this preliminary categorization.

The classification of linear, second order partial differential equations for a scalar-
valued function u(x, y) of two variables† proceeds as follows. The most general such equa-
tion has the form

L[u ] = Auxx +Buxy + Cuyy +Dux + Euy + F u = f, (15.7)

where the coefficients A,B,C,D,E, F are all allowed to be functions of (x, y), as is the
inhomogeneity or forcing function f = f(x, y). The equation is homogeneous if and only
if f ≡ 0. We assume that at least one of the leading coefficients A,B,C is nonzero, as
otherwise the equation degenerates to a first order equation.

The key quantity that determines the type of such a partial differential equation is its
discriminant

∆ = B2 − 4AC. (15.8)

This should (and for good reason) remind the reader of the discriminant of the quadratic
equation

Q(ξ, η) = Aξ2 +B ξ η + C η2 +D ξ + E η + F = 0. (15.9)

The solutions (ξ, η) describes a plane curve — namely, a conic section. In the nondegen-
erate cases, the discriminant determines its geometrical type; it is

• a hyperbola when ∆ > 0,

• a parabola when ∆ = 0, or

• an ellipse when ∆ < 0.

This tripartite classification provides the underlying motivation for the terminology
used to classify second order partial differential equations.

Definition 15.1. At a point (x, y), the linear, second order partial differential equa-
tion (15.7) is called

(a) hyperbolic

(b) parabolic

(c) elliptic

(d) degenerate

if and only if

∆(x, y) > 0,

∆(x, y) = 0, but A2 +B2 + C2 6= 0,

∆(x, y) < 0,

A = B = C = 0.

In particular:

• The wave equation uxx − uyy = 0 has discriminant ∆ = 4, and is hyperbolic.

• The heat equation uxx − uy = 0 has discriminant ∆ = 0, and is parabolic.

• The Poisson equation uxx + uyy = − f has discriminant ∆ = −4, and is elliptic.

† For dynamical equations, we will identify y as the time variable t.
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Example 15.2. Since the coefficients in the partial differential equation are allowed
to vary over the domain, the type of an equation may vary from point to point. Equations
that change type are much less common, as well as being much harder to handle. One
example arising in the theory of supersonic aerodynamics is the Tricomi equation

yuxx − uyy = 0. (15.10)

Comparing with (15.7), we find that

A = y, C = −1, and B = D = E = F = f = 0.

The discriminant in this particular case is ∆ = 4y, and hence the equation is hyperbolic
when y > 0, elliptic when y < 0, and parabolic on the transition line y = 0. The hyperbolic
region corresponds to subsonic fluid flow, while the supersonic regions are of elliptic type.
The transitional parabolic boundary represents the shock line between the sub- and super-
sonic regions.

Characteristics

In Section 14.5, we learned the importance of the characteristic lines in understanding
the behavior of solutions to the wave equation. Characteristic curves play a similarly fun-
damental role in the study of more general linear hyperbolic partial differential equations.
Indeed, characteristics are another means of distinguishing between the three classes of
second order partial differential equations.

Definition 15.3. A smooth curve x(t) ⊂ R
2 is called a characteristic curve for the

second order partial differential equation (15.7) if its tangent vector
¦

x = (
¦

x,
¦

y)T satisfies
the quadratic characteristic equation

C(x, y)
¦

x2 −B(x, y)
¦

x
¦

y +A(x, y)
¦

y2 = 0. (15.11)

Pay careful attention to the form of the characteristic equation — the positions of A
and C are the opposite of what you might expect, while a minus sign appears in front of B.
Furthermore, the first and zeroth order terms in the original partial differential equation
play no role.

For example, consider the hyperbolic wave equation†

c2 uxx + uyy = 0.

In this case, A = −c2, B = 0, C = 1, and so (15.11) takes the form

¦

x2 − c2
¦

y2 = 0, which implies that
¦

x = ± c
¦

y.

All solutions to the latter ordinary differential equations are straight lines

x = ± c y + k, (15.12)

†
Warning : We regard y as the “time” variable in the differential equation, rather than t,

which assumes the role of the curve parameter.
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where k is an integration constant. Therefore, the wave equation has two characteristic
curves passing through each point (a, b), namely the straight lines (15.12) of slope ± 1/c,
in accordance with our earlier definition of characteristics. In general, a linear partial
differential equation is hyperbolic at a point (x, y) if and only if there are two characteristic
curves passing through it. Moreover, as with the wave equation, disturbances that are
concentrated near the point will tend to propagate along the characteristic curves. This
fact lies at the foundation of geometric optics. Light rays move along characteristic curves,
and are thereby subject to the optical phenomena of refraction and focusing.

On the other hand, the elliptic Laplace equation

uxx + uyy = 0

has no (real) characteristic curves since the characteristic equation (15.11) reduces to

¦

x2 +
¦

y2 = 0.

Elliptic equations have no characteristics, and as a consequence, do not admit propagating
signals; the effect of a localized disturbance, say on a membrane, is immediately felt
everywhere.

Finally, for the parabolic heat equation

uxx − uy = 0,

the characteristic equation is simply
¦

y2 = 0,

and so there is only one characteristic curve through each point (a, b), namely the hori-
zontal line y = b. Indeed, our observation that the effect of an initial concentrated heat
source is immediately felt all along the bar is in accordance with propagation of localized
disturbances along the characteristics.

In this manner, elliptic, parabolic, and hyperbolic partial differential equations are
distinguished by the number of (real) characteristic curves passing through a point —
namely, zero, one and two, respectively. Further discussion of characteristics and their
applications to solving both linear and nonlinear partial differential equations can be found
in Section 22.1.

15.2. Separation of Variables.

One of the oldest — and stillmost widely used — techniques for constructing explicit
analytical solutions to partial differential equations is the method of separation of variables.
We have, in fact, already used separation of variables to construct particular solutions to
the heat and wave equations. In each case, we sought a solution in the form of a product,
u(t, x) = h(t) v(x), of scalar functions of each individual variable. For the heat and similar
parabolic equations, h(t) was an exponential, while the wave equation chose a trigonometric
function. In more general situations, we might not know in advance which function h(t)
is appropriate. When the method succeeds (which is not guaranteed in advance), both
factors are found as solutions to certain ordinary differential equations.
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Turning to the Laplace equation, the solution depends on x and y, and so the multi-
plicative separation of variables ansatz has the form

u(x, y) = v(x)w(y). (15.13)

Let us see whether such a function can solve the Laplace equation by direct substitution.
First of all,

∂2u

∂x2
= v′′(x)w(y),

∂2u

∂y2
= v(x)w′′(y),

where the primes indicate ordinary derivatives, and so

∆u =
∂2u

∂x2
+
∂2u

∂y2
= v′′(x)w(y) + v(x)w′′(y) = 0.

The method will succeed if we are able to separate the variables by placing all of the terms
involving x on one side of the equation and all the terms involving y on the other. Here,
we first write the preceding equation in the form

v′′(x)w(y) = − v(x)w′′(y).

Dividing both sides by v(x)w(y) (which we assume is not identically zero as otherwise the
solution would be trivial) yields

v′′(x)

v(x)
= −

w′′(y)

w(y)
, (15.14)

which effectively “separates” the x and y variables on each side of the equation. Now, how
could a function of x alone be equal to a function of y alone? A moment’s reflection should
convince the reader that this can happen if and only if the two functions are constant†, so

v′′(x)

v(x)
= −

w′′(y)

w(y)
= λ,

where we use λ to indicate the common separation constant . Thus, the individual factors
v(x) and w(y) satisfy ordinary differential equations

v′′ − λ v = 0, w′′ + λw = 0,

as promised.

We already know how to solve both of these ordinary differential equations by elemen-
tary techniques. There are three different cases, depending on the sign of the separation
constant λ, each leading to four different solutions to the Laplace equation. We collect the
entire family of separable hbarmonic functions together in the following table.

† Technical detail: one should assume that the underlying domain be connected for this to be
valid; however, in practical analysis, this technicality is irrelevant.
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Separable Solutions to Laplace’s Equation

λ v(x) w(y) u(x, y) = v(x)w(y)

λ = −ω2 < 0 cosωx, sinωx e−ωy, eωy,
eωy cosωx,

e−ωy cosωx,

eωy sinωx,

e−ωy sinωx

λ = 0 1, x 1, y 1, x, y, xy

λ = ω2 > 0 e−ωx, eωx cosωy, sinωy
eωx cosωy,

e−ωx cosωy,

eωx sinωy,

e−ωx sinωy

Since Laplace’s equation is a homogeneous linear system, any linear combination of
solutions is also a solution. Thus, we can try to build general solutions as finite linear com-
binations, or, provided we pay proper attention to convergence issues, infinite series in the
separable solutions. To solve boundary value problems, one must ensure that the resulting
combination satisfies the boundary conditions. This is not easy, unless the underlying
domain has a rather specific geomdetry.

In fact, the only domains for which we can explicitly solve boundary value problems
using the separable solutions constructed above are rectangles. In this manner, we are led
to consider boundary value problems for Laplace’s equation

∆u = 0 on a rectangle R = {0 < x < a, 0 < y < b}. (15.15)

To be completely specific, we will focus on the following Dirichlet boundary conditions:

u(x, 0) = f(x), u(x, b) = 0, u(0, y) = 0, u(a, y) = 0. (15.16)

It will be important to only allow a nonzero boundary condition on one of the four sides
of the rectangle. Once we know how to solve this type of problem, we can emplloy linear
superposition to solve the general Dirichlet boundary value problem on a rectangle; see
Exercise for details. Other boundary conditions can be treated in a similar fashion —
with the proviso that the condition on each side of the rectangle is either entirely Dirichlet
or entirely Neumann.

We will ensure that the series solution we construct satisfies the three homogeneous
boundary conditions by only using separable solutions that satisfy them. The remaining
nonzero boundary condition will then specify the coefficients of the individual summands.
The function u(x, y) = v(x)w(y) will vanish on the top, right and left sides of the rectangle
provided

v(0) = v(a) = 0, and w(b) = 0.

Referring to the preceding table, the first condition v(0) = 0 requires

v(x) =





sinωx, λ = ω2 > 0,

x, λ = 0,

sinhωx, λ = −ω2 < 0,
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where sinh z = 1
2 (ez − e−z) is the usual hyperbolic sine function. However, the second

and third cases cannot satisfy the second boundary condition v(a) = 0, and so we discard
them. The first case leads to the condition

v(a) = sinω a = 0, and hence ω a = π, 2π, 3π, . . .

is an integral multiple of π. Therefore, the separation constant

λ = ω2 =
n2π2

a2
, where n = 1, 2, 3, . . . , (15.17)

and the corresponding functions are

v(x) = sin
nπx
a

, n = 1, 2, 3, . . . . (15.18)

Note: We have merely recomputed the known eigenvalues and eigenfunctions of the
familiar boundary value problem v′′ + λ v = 0, v(0) = v(a) = 0.

Since λ = ω2 > 0, the third boundary condition w(b) = 0 requires that, up to constant
multiple,

w(y) = sinh ω (b− y) = sinh
nπ (b− y)

a
. (15.19)

Therefore, each of the separable solutions

un(x, y) = sin
nπx
a

sinh
nπ (b− y)

a
, n = 1, 2, 3, . . . , (15.20)

satisfies the three homogeneous boundary conditions. It remains to analyze the inhomo-
geneous boundary condition along the bottom edge of the rectangle. To this end, let us
try a linear superposition of the separable solutions in the form of an infinite series

u(x, y) =

∞∑

n=1

cnun(x, y) =

∞∑

n=1

cn sin
nπx
a

sinh
nπ (b− y)

a
,

whose coefficients c1, c2, . . . are to be prescribed by the remaining boundary condition. At
the bottom edge, y = 0, we find

u(x, 0) =

∞∑

n=1

cn sinh
nπb
a

sin
nπx
a

= f(x), 0 ≤ x ≤ a, (15.21)

which takes the form of a Fourier sine series for the function f(x). According to (12.83),
the coefficients bn of the Fourier sine series

f(x) =
∞∑

n=1

bn sin
nπx
a

are given by bn =
2
a

∫ a

0

f(x) sin
nπx
a

dx. (15.22)

Comparing (15.21, 22), we discover that

cn sinh
nπb
a

= bn or cn =
bn

sinh
nπb
a

=
2

a sinh
nπb
a

∫ a

0

f(x) sin
nπx
a

dx.
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Figure 15.3. Square Membrane on a Wire.

Therefore, the solution to the boundary value problem takes the form of an infinite series

u(x, y) =
∞∑

n=1

bn sin
nπx
a

sinh
nπ (b− y)

a

sinh
nπb
a

, (15.23)

where bn are the Fourier sine coefficients (15.22) of f(x).

Does this series actually converge to the solution to the boundary value problem?
Fourier analysis says that, under very mild conditions on the boundary function f(x), the
answer is “yes”. Suppose that its Fourier coefficients are uniformly bounded,

| bn | ≤M for all n ≥ 1, (15.24)

which, according to (14.23) is true whenever f(x) is piecewise continuous or, more gen-

erally, integrable:

∫ a

0

| f(x) | dx < ∞. Boundedness is also satisfied by many generalized

functions, such as the delta function. In this case, as you are asked to prove in Exercise ,
the coefficients of the Fourier sine series (15.23)

Bn =
sinh

nπ (b− y)
a

sinh
nπb
a

bn −→ 0 as n −→∞ (15.25)

exponentially fast for all 0 < y ≤ b. Thus, according to Section 12.3, the solution u(x, y)
is an infinitely differentiable function of x at each point in the rectangle, and can be well
approximated by partial summation. The solution is also infinitely differentiable with
respect to y; see Exercise . In fact, as we shall see, the solutions to the Laplace equation
are always analytic functions inside their domain of definition — even when their boundary
values are rather rough.

Example 15.4. A membrane is stretched over a wire in the shape of a unit square
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with one side bent in half, as graphed in Figure 15.3. The precise boundary conditions are

u(x, y) =





x, 0 ≤ x ≤ 1
2 , y = 0,

1− x, 1
2 ≤ x ≤ 1, y = 0,

0, 0 ≤ x ≤ 1, y = 1,

0, x = 0, 0 ≤ y ≤ 1,

0, x = 1, 0 ≤ y ≤ 1.

The Fourier sine series of the inhomogeneous boundary function is readily computed:

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1,

=
4

π2

(
sinπx−

sin 3πx

9
+

sin 5πx

25
− · · ·

)
=

4

π2

∞∑

m=0

(−1)m sin(2m+ 1)πx

(2m+ 1)2
.

Specializing (15.23) when a = b = 1, we conclude that the solution to the boundary value
problem is given by the Fourier series

u(x, y) =
4

π2

∞∑

m=0

(−1)m sin(2m+ 1)πx sinh(2m+ 1)π(1− y)

(2m+ 1)2 sinh(2m+ 1)π
.

In Figure 15.3 we plot the sum of the first 10 terms in the series, which gives is a rea-
sonably good approximation to the actual solutio n, except when we are very close to the
raised corner of the boundary wire — which is the point of maximal displacement of the
membrane.

Polar Coordinates

The method of separation of variables can be successfully exploited in certain other
very special geometries. One particularly important case is a circular disk. To be specific,
let us take the disk to have radius 1 and centered at the origin. Consider the Dirichlet
boundary value problem

∆u = 0, x2 + y2 < 1, and u = h, x2 + y2 = 1, (15.26)

so that the function u(x, y) satisfies the Laplace equation on the unit disk and satisfies
the specified Dirichlet boundary conditions on the unit circle. For example, u(x, y) might
represent the displacement of a circular drum that is attached to a wire of height

h(x, y) = h(cos θ, sin θ) ≡ h(θ), 0 ≤ θ ≤ 2π, (15.27)

above each point (x, y) = (cos θ, sin θ) on the unit circle.

The rectangular separable solutions are not particularly helpful in this situation. The
fact that we are dealing with a circular geometry inspires us to adopt polar coordinates

x = r cos θ, y = r sin θ, or r =
√
x2 + y2 , θ = tan−1 y

x
,

and write the solution u(r, θ) as a function thereof.
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Warning : We will retain the same symbol, e.g., u, when rewriting a function in a
different coordinate system. This is the convention of tensor analysis and differential
geometry, [2], that treats the function or tensor as an intrinsic object, which is concretely
realized through its formula in any chosen coordinate system. For instance, if u(x, y) =
x2 + 2y in rectangular coordinates, then u(r, θ) = r2 cos θ + 2r sin θ — and not r2 + 2θ
— is its expression in polar coordinates. This convention avoids introducing new symbols
when changing coordinates.

We also need to relate derivatives with respect to x and y to those with respect to r
and θ. Performing a standard chain rule computation, we find

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
,

so

∂

∂x
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

(15.28)

These formulae allow us to rewrite the Laplace equation in polar coordinates; after some
calculation in which many of the terms cancel, we find

∆u =
∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (15.29)

The boundary conditions are imposed on the unit circle r = 1, and so, by (15.27), take the
form

u(1, θ) = h(θ). (15.30)

Keep in mind that, in order to be single-valued functions of x, y, the solution u(r, θ) and
its boundary values h(θ) must both be 2π periodic functions of the angular coordinate:

u(r, θ + 2π) = u(r, θ), h(θ + 2π) = h(θ). (15.31)

Polar separation of variables is based on the ansatz

u(r, θ) = v(r)w(θ) (15.32)

that assumes that the solution is a product of functions of the individual polar variables.
Substituting (15.32) into the polar form (15.29) of Laplace’s equation, we find

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0.

We now separate variables by moving all the terms involving r onto one side of the equation
and all the terms involving θ onto the other. This is accomplished by first multiplying the
equation by r2/v(r)w(θ), and then moving the last term to the right hand side:

r2 v′′(r) + r v′(r)

v(r)
= −

w′′(θ)

w(θ)
= λ.
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As in the rectangular case, a function of r can equal a function of θ if and only if both are
equal to a common separation constant, which we call λ. The partial differential equation
thus splits into a pair of ordinary differential equations

r2 v′′ + r v′ − λ r = 0, w′′ + λw = 0, (15.33)

that will prescribe the separable solution (15.32). Observe that both have the form of
eigenfunction equations in which the separation constant λ plays the role of the eigenvalue,
and we are only interested in nonzero solutions or eigenfunctions.

We have already solved the eigenvalue problem for w(θ). According to (15.31),
w(θ + 2π) = w(θ) must be a 2π periodic function. Therefore, according the discussion in
Section 12.1, this periodic boundary value problem has the nonzero eigenfunctions

1, sinnθ, cosnθ, for n = 1, 2, . . . . (15.34)

corresponding to the eigenvalues (separation constants) λ = n2, where n = 0, 1, 2, . . ..
Fixing the value of λ, the remaining ordinary differential equation

r2 v′′ + r v′ − n2 r = 0. (15.35)

has the form of a second order Euler equation for the radial component v(r). As discussed
in Example 7.35, its solutions are obtained by substituting the power ansatz v(r) = rk.
We discover that this is a solution if and only if

k2 − n2 = 0, and hence k = ±n.

Therefore, for n 6= 0, we find two linearly independent solutions,

v1(r) = rn, v2(r) = r−n, n = 1, 2, . . . . (15.36)

If n = 0, there is an additional logarithmic solution

v1(r) = 1, v2(r) = log r, n = 0. (15.37)

Combining (15.34) and (15.36–37), we produce a complete list of separable polar coordinate
solutions to the Laplace equation:

1, rn cosnθ, rn sinnθ,

log r, r−n cosnθ, r−n sinnθ,
n = 1, 2, 3, . . . . (15.38)

Now, the solutions in the top row of (15.38) are continuous (in fact analytic) at the origin,
whereas the solutions in the bottom row have singularities as r → 0. The latter are not
relevant since we require the solution u to remain bounded and smooth — even at the
center of the disk. Thus, we should only use the former to concoct a candidate series
solution

u(r, θ) =
a0

2
+

∞∑

n=1

(
an r

n cosnθ + bn r
n sinnθ

)
(15.39)

5/1/06 831 c© 2006 Peter J. Olver



Figure 15.4. Membrane Attached to a Helical Wire.

to the Dirichlet boundary value problem. The coefficients an, bn will be prescribed by the
boundary conditions (15.30). Substituting r = 1, we find

u(1, θ) =
a0

2
+

∞∑

n=1

(
an cosnθ + bn sinnθ

)
= h(θ).

We recognize this as a standard Fourier series for the 2π periodic function h(θ). Therefore,

an =
1

π

∫ π

−π

h(θ) cosnθ dθ, bn =
1

π

∫ π

−π

h(θ) sinnθ dθ, (15.40)

are precisely its Fourier coefficients, cf. (12.28).

Remark : Introducing the complex variable z = r e i θ = x+ i y allows us to write

zn = rn e i nθ = rn cosnθ + i rn sinnθ. (15.41)

Therefore, the non-singular separable solutions are nothing but the harmonic polynomial
solutions we first found in Example 7.52, namely

rn cosnθ = Re zn, rn sinnθ = Im zn. (15.42)

Exploitation of the remarkable connections between the solutions to the Laplace equation
and complex functions will form the focus of Chapter 16.

In view of (15.42), the nth order term in the series solution (15.39),

an r
n cosnθ + bn r

n sinnθ = an Re zn + bn Im zn = Re
[
(an − i bn)zn

]
,

is, in fact, a homogeneous polynomial in (x, y) of degree n. This means that, when written
in rectangular coordinates x and y, (15.39) is, in fact, a power series for the function
u(x, y). Proposition C.4 implies that the power series is, in fact, the Taylor series for
u(x, y) based at the origin, and so its coefficients are multiples of the derivatives of u
at x = y = 0. Details are worked out in Exercise . Thus, the fact that u(x, y) has a
convergent Taylor series implies that it is an analytic function at the origin. Indeed, as we
will see, analyticity holds at any point of the domain of definintion of a harmonic function
.
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ψ

(x, y)

Figure 15.5. Geometrical Construction of the Solution.

Example 15.5. Consider the Dirichlet boundary value problem on the unit disk
with

u(1, θ) = θ for − π < θ < π. (15.43)

The boundary data can be interpreted as a wire in the shape of a single turn of a spiral
helix sitting over the unit circle, with a jump discontinuity, of magnitude 2π, at (−1, 0).
The required Fourier series

h(θ) = θ ∼ 2

(
sin θ −

sin 2θ

2
+

sin 3θ

3
−

sin 4θ

4
+ · · ·

)

was computed in Example 12.2. Therefore, invoking our solution formula (15.39–40),

u(r, θ) = 2

(
r sin θ −

r2 sin 2θ

2
+
r3 sin 3θ

3
−
r4 sin 4θ

4
+ · · ·

)
(15.44)

is the desired solution, and is plotted in Figure 15.4. In fact, this series can be explicitly
summed. In view of (15.42),

u = 2 Im

(
z −

z2

2
+
z3

3
−
z4

4
+ · · ·

)
= 2 Im log(1 + z) = 2 ph (1 + z) = 2ψ, (15.45)

where

ψ = tan−1 y

1 + x
(15.46)

is the angle that the line passing through the two points (x, y) and (−1, 0) makes with the
x-axis, as sketched in Figure 15.5. You should try to convince yourself that, on the unit
circle, 2ψ = θ has the correct boundary values. Obserfve that, even though the boundary
values are discontinuous, the solution is an analytic function inside the disk.

Unlike the rectangular series solution (15.23), the polar series solution (15.39) can, in
fact, be summed in closed form! If we substitute the explicit Fourier formulae (15.40) into
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(15.39) — remembering to change the integration variable to, say, φ to avoid a notational
conflict — we find

u(r, θ) =
a0

2
+

∞∑

n=1

(
an r

n cosnθ + bn r
n sinnθ

)

=
1

2π

∫ π

−π

h(φ) dφ (15.47)

+

∞∑

n=1

[
rn cosnθ

π

∫ π

−π

h(φ) cosnφdφ+
rn sinnθ

π

∫ π

−π

h(φ) sinnφdφ

]

=
1

π

∫ π

−π

h(φ)

[
1

2
+

∞∑

n=1

rn
(
cosnθ cosnφ+ sinnθ sinnφ

)
]
dφ

=
1

π

∫ π

−π

h(φ)

[
1

2
+

∞∑

n=1

rn cosn(θ − φ)

]
dφ.

We next show how to sum the final series. Using (15.41), we can write it as the real part
of a geometric series:

1

2
+

∞∑

n=1

rn cosnθ = Re

(
1

2
+

∞∑

n=1

zn

)
= Re

(
1

2
+

z

1− z

)
= Re

(
1 + z

2(1− z)

)

= Re

(
(1 + z)(1− z)

2 | 1− z |2

)
=

Re (1 + z − z − | z |2)

2 | 1− z |2
=

1− | z |2

2 | 1− z |2
=

1− r2

2(1 + r2 − 2r cos θ)
.

Substituting back into (15.47) leads to the important Poisson Integral Formula for the
solution to the boundary value problem.

Theorem 15.6. The solution to the Laplace equation in the unit disk subject to

Dirichlet boundary conditions u(1, θ) = h(θ) is

u(r, θ) =
1

2π

∫ π

−π

h(φ)
1− r2

1 + r2 − 2 r cos(θ − φ)
dφ. (15.48)

Example 15.7. A particularly important case is when the boundary value

h(θ) = δ(θ − φ)

is a delta function concentrated at the point (cosφ, sinφ), −π < φ ≤ π, on the unit circle.
The solution to the resulting boundary value problem is the Poisson integral kernel

u(r, θ) =
1− r2

2π
[
1 + r2 − 2r cos(θ − φ)

] =
1− | z |2

2π | 1− z e− i φ |2
. (15.49)

The reader may enjoy verifying that this function does indeed, solve the Laplace equation
and has the correct boundary values in the limit as r → 1. Physically, if u(r, θ) represents
the equilibrium temperature of the disk, then the delta function boundary data correspond
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Figure 15.6. The Poisson Kernel.

to a concentrated unit heat source applied to a single point on the boundary. The result-
ing solution is sketched in Figure 15.6. OThus, the Poisson kernel plays the role of the
fundamental solution for the boundary value problem. Indeed, Poisson integral formula
(15.48) follows from our general superposition principle, writing the boundary data as a
superposition of delta functions:

h(θ) =

∫ π

−π

h(φ) δ(φ− θ) dφ,

Averaging and the Maximum Principle

If we set r = 0 in the Poisson formula (15.48), then we obtain

u(0, θ) =
1

2π

∫ π

−π

h(φ) dφ. (15.50)

The left hand side is the value of u at the origin — the center of the disk; the right hand
side is the average of its boundary values around the unit circle. This is a particular
instance of an important general fact.

Theorem 15.8. Let u(x, y) be harmonic inside a disk of radius a centered at a point

(x0, y0) with piecewise continuous (or, more generally, integrable) boundary values on the

circle C = {(x− x0)
2 + (y − y0)

2 = a2 }. Then its value at the center of the disk is equal

to the average of its values on the boundary circle:

u(x0, y0) =
1

2πa

∮

C

u ds =
1

2π

∫ 2π

0

u(x0 + a cos θ, y0 + a sin θ) dθ. (15.51)

Proof : We use the scaling and translation symmetries of the Laplace equation to map
the disk of radius r centered at (x0, y0) to the unit disk centered at the origin. Specifically,
we set

U(x, y) = u(x0 + ax, y0 + ay). (15.52)
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An easy chain rule computation proves that U(x, y) is harmonic on the unit disk, with
boundary values

h(θ) = U(cos θ, sin θ) = u(x0 + a cos θ, y0 + a sin θ).

Therefore, by (15.50) ,

U(0, 0) =
1

2π

∫ π

−π

h(θ) dθ =
1

2π

∫ π

−π

U(cos θ, sin θ) dθ.

Replacing U by its formula (15.52) produces the desired result. Q.E.D.

An important consequence of the integral formula (15.51) is the Maximum Principle

for harmonic functions.

Theorem 15.9. If u is a nonconstant harmonic function defined on a domain Ω,

then u does not have a local maximum or local minimum at any interior point of Ω.

Proof : The average of a continuous real function lies strictly between its maximum
and minimum values — except in the trivial case when the function is constant. Since
u is harmonic, it is continuous inside Ω. So Theorem 15.8 implies that the value of u at
(x, y) lies strictly between its maximal and minimal values on any small circle centered at
(x, y). This clearly excludes the possibility of u having a local maximum or minimum at
(x, y). Q.E.D.

Thus, on a bounded domain, a harmonic function achieves its maximum and minimum
values only at boundary points. Any interior critical point, where∇u = 0, must be a saddle
point. Physically, if we interpret u(x, y) as the vertical displacement of a membrane, then
Theorem 15.9 says that, in the absence of external forcing, the membrane cannot have
any internal bumps — its highest and lowest points are necessarily on the boundary of the
domain. This reconfirms our physical intuition: the restoring force exerted by the stretched
membrane will serve to flatten any bump, and hence a membrane with a local maximum
or minimum cannot be in equilibrium. A similar interpretation holds for heat conduction.
A body in thermal equilibrium can achieve its maximum and minimum temperature only
on the boundary of the domain. Again, physically, heat energy would flow away from any
internal maximum, or towards any local minimum, and so if the body contained a local
maximum or minimum on its interior, it could not be in thermal equilibrium.

This concludes our discussion of separation of variables for the planar Laplace equa-
tion. The method works in a few other special coordinate systems. See Exercise for
one example, and [128, 131, 133] for a complete account, including connections with the
underlying symmetries of the equation.

15.3. The Green’s Function.

Now we turn to the Poisson equation (15.3), which is the inhomogeneous form of the
Laplace equation. In Section 11.2, we learned how to solve one-dimensional inhomogeneous
boundary value problems by contructing the associated Green’s function. This important
technique can be adapted to solve inhomogeneous boundary value problems for elliptic
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Figure 15.7. Gaussian Distributions Converging to the Delta Function.

partial differential equations in higher dimensions, including Poisson’s equation. As before,
the Green’s function is characterized as the solution to the homogeneous boundary value
problem in which the inhomogeneity is a concentrated unit impulse — a delta function.
The solution to the general forced boundary value problem is then obtained via linear
superposition, that is, as a convolution integral with the Green’s function.

The first order of business is to establish the proper form for a unit impulse in our
two-dimensional situation. We denote the delta function concentrated at position ξ =
(ξ, η) ∈ R

2 by
δξ(x) = δ(ξ,η)(x, y) = δ(x− ξ). (15.53)

The delta function δ
0
(x) = δ(x, y) at the origin can be viewed as the limit, as n→∞, of

a sequence of more and more highly concentrated functions gn(x, y), with

lim
n→∞

gn(x, y) = 0, for (x, y) 6= (0, 0), while

∫ ∫

Ω

gn(x, y) dx dy = 1.

A good example of a suitable sequence is provided by the radial Gaussian distributions

gn(x, y) =
n
π
e−n (x2+y2) , (15.54)

which relies on the fact that
∫ ∫

R2

e−n (x2+y2) dx dy =
π
n
,

established in Exercise . As plotted in Figure 15.7, as n → ∞, the Gaussian profiles
become more and more concentrated at the origin, while maintaining a unit volume un-
derneath their graphs.

Alternatively, one can assign the delta function a dual interpretation as a linear func-
tional on the vector space of continuous scalar-valued functions. We formally prescribe the
delta function by the integral formula

〈 δ(ξ,η) , f 〉 =

∫ ∫

Ω

δ(ξ,η)(x, y)f(x, y) dx dy =

{
f(ξ, η), (ξ, η) ∈ Ω,

0, (ξ, η) 6∈ Ω,
(15.55)

which holds for any continuous function f(x, y) and any domain Ω ⊂ R
2. As in the

one-dimensional situation, we will avoid defining the integral when the delta function is
concentrated at a boundary point, (ξ, η) ∈ ∂Ω, of the integration domain.
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Since double integrals can be evaluated as repeated one-dimensional integrals, we can
conveniently view

δ(ξ,η)(x, y) = δξ(x) δη(y) = δ(x− ξ) δ(y − η) (15.56)

as the product of a pair of one-dimensional delta functions. Indeed, if

(ξ, η) ∈ R =
{
a < x < b, c < y < d

}
⊂ Ω

is contained in a rectangle inside the domain Ω, then

∫ ∫

Ω

δ(ξ,η)(x, y)f(x, y) dx dy =

∫ ∫

R

δ(ξ,η)(x, y)f(x, y) dx dy

=

∫ b

a

∫ b

a

δ(x− ξ) δ(y − η) f(x, y) dy dx =

∫ b

a

δ(x− ξ) f(x, η) dx = f(ξ, η).

To find the Green’s function, we must solve the equilibrium equation subject to a
concentrated unit delta force at a prescribed point ξ = (ξ, η) ∈ Ω inside the domain. In
the case of Poisson’s equation, the partial differential equation takes the form

−∆u = δξ, or −
∂2u

∂x2
−
∂2u

∂y2
= δ(x− ξ) δ(y − η), (x, y) ∈ Ω, (15.57)

and the solution is subject to homogeneous boundary conditions, either Dirichlet or mixed.
(The nonuniqueness of solutions to the pure Neumann boundary value problem precludes
the existence of a Green’s function.) The resulting solution to the Poisson boundary value
problem is denoted as

G(x; ξ) = G(x, y; ξ, η), (15.58)

and called the Green’s function. Thus, the Green’s function (15.58) measures the effect,
at position x = (x, y), of a concentrated force applied at position ξ = (ξ, η).

Once we know the Green’s function, the solution to the general Poisson boundary
value problem

−∆u = f in Ω, u = 0 on ∂Ω (15.59)

is reconstructed through a superposition principle. We regard the forcing function

f(x, y) =

∫ ∫

Ω

δ(x− ξ) δ(y − η)f(ξ, η) dξ dη

as a superposition of delta impulses, whose strength at each point equals the value of f
there. Linearity implies that the solution to the boundary value problem is the correspond-
ing superposition of Green’s function responses to each of the constituent impulses. The
net result is the fundamental superposition formula

u(x, y) =

∫ ∫

Ω

G(x, y; ξ, η) f(ξ, η) dξ dη (15.60)
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for the solution. This can be verified by direct evalution:

−∆u(x, y) =

∫ ∫

Ω

[−∆G(x, y; ξ, η) ] f(ξ, η) dξ dη

=

∫ ∫

Ω

δ(x− ξ, y − η) f(ξ, η) dξ dη = f(x, y),

as claimed.

As in the one-dimensional situation, self-adjointness of the boundary value problem
is manifested in the symmetry of the Green’s function under interchange of its arguments:

G(ξ, η;x, y) = G(x, y; ξ, η). (15.61)

The general proof of symmetry follows as in the one-dimensional version (11.90); see Ex-
ercise . Symmetry has the following intriguing physical interpretation: Let x, ξ ∈ Ω be
any pair of points in the domain. We apply a unit impulse to the membrane at the first
point, and measure its deflection at the second; the result is exactly the same as if we apply
the impulse at the second point, and measure the deflection at the first! (On the other
hand, the deflections at other points in the domain will typically bear very little connec-
tion with each other.) Similarly, in electrostatics, the solution u(x, y) is interpreted as the
electrostatic potential for a system in equilibrium. A delta function corresponds to a point
charge, e.g., an electron. The symmetry property says that the electrostatic potential at
x due to a point charge placed at position ξ is exactly the same as the potential at ξ due
to a point charge at x. The reader may wish to meditate on the physical plausibility of
these remarkable facts.

Unfortunately, most Green’s functions — with a few notable exceptions — cannot be
written down in closed form. However, their intrinsic form can be based on the following
construction. Let us begin by considering the solution to the required Poisson equation

−∆u = δ(x− ξ, y − η) (15.62)

where (ξ, η) ∈ Ω is the point that the unit impulse force is being applied. As usual, the
general solution to an inhomogeneous linear equation is a sum

u(x, y) = u?(x, y) + z(x, y) (15.63)

of a particular solution u? combined with the general solution z to the corresponding
homogeneous equation, namely

−∆z = 0.

That is, z(x, y) is an arbitrary harmonic function. We shall assume that the particular
solution u?(x, y) is due to the effect of the unit impulse, irrespective of any imposed
boundary conditions. Once we have determined u?, we shall use the freedom inherent
in the harmonic constituent z(x, y) to ensure that the sum (15.63) satisfies the required
boundary conditions.

One way to find a particular solution u? is to appeal to physical intuition. First,
since the delta function is concentrated at the point ξ, the solution u? must solve the
homogeneous Laplace equation ∆u? = 0 except at the point x = ξ, where we expect
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it to have some sort of discontinuity. Second, since the Poisson equation is modeling a
homogeneous, uniform medium (membrane, plate, gravitational potential in empty space,
etc.), in the absence of boundary conditions, the effect of a unit impulse should only depend
upon on the distance away from the source of the impulse. Therefore, we expect that the
desired particular solution will depend only on the radial variable:

u? = u?(r), where r = ‖x− ξ ‖ =
√

(x− ξ)2 + (y − η)2 .

According to (15.37), the only radially symmetric solutions to the Laplace equation are

u(r) = a+ b log r, (15.64)

where a and b are constants. The constant term a is smooth and harmonic everywhere, and
so cannot contribute to a delta function singularity. Therefore, our only chance to produce
a solution with such a singularity at the point ξ is to take a multiple of the logarithmic
potential:

u? = b log r.

We claim that, modulo the determination of b, this gives the correct formula, so

−∆u? = −b∆(log r) = δ(x− ξ), r = ‖x− ξ ‖. (15.65)

is the delta function for an appropriate constant b.

To justify this claim, and so determine the proper value of b, we first note that, by
construction, log r solves the Laplace equation everywhere except at r = 0, i.e., at x = ξ:

∆ log r = 0, r 6= 0. (15.66)

Secondly, if Da =
{

0 ≤ r ≤ a
}

=
{
‖x− ξ ‖ ≤ a

}
is any disk centered at ξ, then, by the

divergence form (A.58) of Green’s Theorem,

∫ ∫

Da

∆(log r) dx dy =

∫ ∫

Da

∇ · ∇(log r) dx dy

=

∮

Ca

∂(log r)

∂n
ds =

∮

Ca

∂(log r)

∂r
ds =

∮

Ca

1

r
ds =

∫ π

−π

dθ = 2π,

where Ca = ∂Da =
{
‖x− ξ ‖ = a

}
is the boundary of the disk, i.e., the circle of radius

a centered at ξ. (The identification ∂/∂n = ∂/∂r on a circle can be found in Exercise .)
Thus, if Ω is any domain, then

∫ ∫

Ω

∆(log r) dx dy =

{
2π, ξ ∈ Ω,

0, ξ 6∈ Ω.
(15.67)

In the first case, when ξ ∈ Ω, (15.66) allows us replace the integral over Ω by an integral
over a small disk centered at ξ, and then apply the preceding identity; in the second case,
(15.68) implies that the integrand vanishes on all of the domain, and so the integral is 0.
Equations (15.66–67) are the defining properties for 2π times the delta function, so

∆(log r) = 2π δ(x− ξ). (15.68)
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Comparing (15.68) with (15.65), we conclude that

u?(x, y) = −
1

2π
log r = −

1

2π
log ‖x− ξ ‖ = −

1

4π
log
[
(x− ξ)2 + (y − η)2

]
(15.69)

is a particular solution to the Poisson equation (15.62) with a unit impulse force.

The logarithmic potential (15.69) represents the gravitational potential in empty two-
dimensional space due to a unit point mass at position ξ, or, equivalently, the two-
dimensional electrostatic potential due to a point charge at ξ. The corresponding gravita-
tional (electrostatic) force field is obtained by taking its gradient:

F = ∇

(
−

1

2π
log ‖x− ξ ‖

)
= −

x− ξ

2π ‖x− ξ ‖2
.

Note that ‖F ‖ = 1/(2π ‖x− ξ ‖) is proportional to the inverse distance, which is the
two-dimensional form of Newton’s (Coulomb’s) three-dimensional inverse square law. The
gravitational potential due to a mass, e.g., a plate, in the shape of a domain Ω ⊂ R

2 can
be obtained by superimposing delta function sources with strengths equalo to the density
of the material at each point. The result is the potential function

u(x, y) = −
1

4π

∫ ∫

Ω

ρ(ξ, η) log
[
(x− ξ)2 + (y − η)2

]
dξ dη, (15.70)

in which ρ(ξ, η) denotes the density of the body at position (ξ, η). For example, the
gravitational potential due to the unit disk D = {x2 + y2 ≤ 1} with unit density ρ ≡ 1 is

u(x, y) = −
1

4π

∫ ∫

D

log
[
(x− ξ)2 + (y − η)2

]
dξ dη.

Returning to our boundary value problem, the general solution to the Poisson equa-
tion (15.62) can, therefore, be written in the form

u(x, y) = −
1

2π
log ‖x− ξ ‖+ z(x, y), (15.71)

where z(x, y) is an arbitrary harmonic function. To construct the Green’s function for a
prescribed domain, we need to choose the harmonic function z(x, y) so that (15.71) satisfies
the relevant homogeneous boundary conditions. Let us state this result for the Dirichlet
problem.

Proposition 15.10. The Green’s function for the Dirichlet boundary value problem

−∆u = f on Ω, u = 0 on ∂Ω,

has the form

G(x, y; ξ, η) = −
1

4π
log
[
(x− ξ)2 + (y − η)2

]
+ z(x, y) (15.72)

where z(x, y) is the harmonic function that has the same boundary values as the logarithmic

potential function:

∆z = 0 on Ω, z(x, y) =
1

4π
log
[
(x− ξ)2 + (y − η)2

]
for (x, y) ∈ ∂Ω.
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Let us conclude this subsection by summarizing the key properties of the Green’s
function G(x, ξ) for the two-dimensional Poisson equation., which

(a) Solves Laplace’s equation, ∆G = 0, for all x 6= ξ.

(b) Has a logarithmic singularity† at x = ξ.

(c) Satisfies the relevant homogeneous boundary conditions.

(d) Is symmetric: G(ξ,x) = G(x, ξ).

(e) Establishes the superposition formula (15.60) for a general forcing function.

The Method of Images

The preceding analysis exposes the underlying form of the Green’s function, but we
are still left with the determination of the harmonic component z(x, y) required to match
the logarithmic potential boundary values. There are three principal analytical techniques
employed to produce explicit formulas. The first is an adaptation of the method of separa-
tion of variables, and leads to infinite series expressions, similar to those of the fundamental
solution for the heat equation derived in Chapter 14. We will not dwell on this approach
here, although a couple of the exercises ask the reader to fill in the details. The second is
the method of images and will be developed in this section. The most powerful is based on
the theory of conformal mappings, but must be deferred until we have learned the basics
of complex analysis; the details can be found in Section 16.3. While the first two methods
only apply to a fairly limited class of domains, they do adapt straightforwardly to higher
dimensional problems, as well as certain other types of elliptic partial differential equations,
whereas the method of conformal mapping is, unfortunately, restricted to two-dimensional
problems involving the Laplace and Poisson equations.

We already know that the singular part of the Green’s function for the two-dimensional
Poisson equation is provided by a logarithmic potential. The problem, then, is to construct
the harmonic part, called z(x, y) in (15.72), so that the sum has the correct homogeneous
boundary values, or, equivalently, that z(x, y) has the same boundary values as the log-
arithmic potential. In certain cases, z(x, y) can be thought of as the potential induced
by one or more hypothetical electric charges (or, equivalently, gravitational point masses)
that are located outside the domain Ω, arranged in such a manner that their combined
electrostatic potential happens to coincide with the logarithmic potential on the boundary
of the domain. The goal, then, is to place the image charges of suitable strength in the
proper positions.

Here, we will only consider the case of a single image charge, located at a position
η 6∈ Ω. We scale the logarithmic potential (15.69) by the charge strength, and, for added
flexibility, include an additional constant — the charge’s potential baseline:

z(x, y) = a log ‖x− η ‖+ b, η ∈ R
2 \ Ω.

This function is harmonic inside Ω since the logarithmic potential is harmonic everywhere
except at the singularity η, which is assumed to lies outside the domain. For the Dirichlet

† Note that this is in contrast to the one-dimensional situation, where the Green’s function is
continuous at the impulse point.
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Figure 15.8. Method of Images for the Unit Disk.

boundary value problem, then, for each point ξ ∈ Ω, we must find a corresponding image
point η ∈ R

2 \ Ω and constants a, b ∈ R, such that‡

log ‖x− ξ ‖ = a log ‖x− η ‖+ b for all x ∈ ∂Ω,

or, equivalently,
‖x− ξ ‖ = λ ‖x− η ‖a for all x ∈ ∂Ω, (15.73)

where λ = log b. For each fixed ξ,η, λ, a, the equation in (15.73) will, typically, implicitly
prescribe a plane curve, but it is not clear that one can always arrange that these curves
all coincide with the boundary of our domain.

In order to make further progress, we appeal to a geometrical construction based upon
similar triangles. We select η = c ξ to be a point lying on the ray through ξ. Its location
is fixed so that the triangle with vertices 0,x,η is similar to the triangle with vertices
0, ξ,x, noting that they have the same angle at the common vertex 0 — see Figure 15.8.
Similarity requires that the triangles’ corresponding sides have a common ratio, and so

‖ ξ ‖

‖x ‖
=
‖x ‖

‖η ‖
=
‖x− ξ ‖

‖x− η ‖
= λ. (15.74)

The last equality implies that (15.73) holds with a = 1. Consequently, if we choose

‖η ‖ =
1

‖ ξ ‖
, so that η =

ξ

‖ ξ ‖2
, (15.75)

then
‖x ‖2 = ‖ ξ ‖ ‖η ‖ = 1.

Thus x lies on the unit circle, and, as a result, λ = ‖ ξ ‖. The map taking a point ξ inside
the disk to its image point η defined by (15.75) is known as inversion with respect to the
unit circle.

‡ To simplify the formulas, we have omitted the 1/(2π) factor, which can easily be reinstated
at the end of the analysis.
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Figure 15.9. Green’s Function for the Unit Disk.

We have now demonstrated that the functions

1

2π
log ‖x− ξ ‖ =

1

2π
log
(
‖ ξ ‖ ‖x− η ‖

)
=

1

2π
log
‖ ‖ ξ ‖2 x− ξ ‖

‖ ξ ‖
when ‖x ‖ = 1,

(15.76)
has the same boundary values on the unit circle. Consequently, their difference

G(x; ξ) = −
1

2π
log ‖x− ξ ‖+

1

2π
log
‖ ‖ ξ ‖2 x− ξ ‖

‖ ξ ‖
=

1

2π
log
‖ ‖ ξ ‖2 x− ξ ‖

‖ ξ ‖ ‖x− ξ ‖
(15.77)

has the required properties for the Green’s function for the Dirichlet problem on the unit
disk. In terms of polar coordinates

x = (r cos θ, r sin θ), ξ = (ρ cosϕ, ρ sinϕ),

applying the Law of Cosines to the triangles in Figure 15.8 leads to the explicit formula

G(r, θ; ρ, ϕ) =
1

4π
log

(
1 + r2ρ2 − 2rρ cos(θ − ϕ)

r2 + ρ2 − 2rρ cos(θ − ϕ)

)
. (15.78)

In Figure 15.9 we sketch the Green’s function corresponding to a unit impulse being applied
at a point half way between the center and the edge of the disk.

Remark : Unlike one-dimensional boundary value problems, the Green’s function (15.78)
has a singularity and is not continuous at the impulse point x = ξ.

Applying the general superposition rule (15.60), we arrive at a solution to the Dirichlet
boundary value problem for the Poisson equation in the unit disk.

Theorem 15.11. The solution to the homogeneous Dirichlet boundary value prob-

lem

−∆u = f, for r = ‖x ‖ < 1, u = 0, for r = 1,

is, when expressed in polar coordinates,

u(r, θ) =
1

4π

∫ 2π

0

∫ 1

0

f(ρ, ϕ) log

(
1 + r2ρ2 − 2rρ cos(θ − ϕ)

r2 + ρ2 − 2rρ cos(θ − ϕ)

)
ρ dρ dϕ. (15.79)
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The Green’s function was originally designed for the homogeneous boundary value
problem. Interestingly, it can also be used to handle inhomogeneous boundary conditions.

Theorem 15.12. Let G(x; ξ) denote the Green’s function for the homogeneous

Dirichlet boundary value problem for the Poisson equation on a domain Ω ⊂ R
2. Then

the solution to the inhomogeneous Dirichlet problem

−∆u = f, x ∈ Ω, u = h, x ∈ ∂Ω, (15.80)

is given by

u(x) =

∫ ∫

Ω

G(x; ξ) f(ξ) dξ dη −

∮

∂Ω

∂G(x; ξ)

∂n
h(ξ) ds. (15.81)

For example, applying (15.81) to the Green’s function (15.78) for the unit disk with
f ≡ 0 recovers the Poisson integral formula (15.48).

Proof : Let ψ(x) be any function such that

ψ = h for x ∈ ∂Ω.

Set v = u− ψ, so that v satisfies the homogeneous boundary value problem

−∆v = f + ∆ψ in Ω, v = 0 on ∂Ω.

We can therefore express

v(x) =

∫ ∫

Ω

G(x; ξ)
[
f(ξ) + ∆ψ(ξ)

]
dξ dη.

Integration by parts, based on the second formula in Exercise , can be used to simplify
the integral:

∫ ∫

Ω

G(x; ξ)∆ψ(ξ) dξ dη =

∫ ∫

Ω

∆G(x; ξ) ψ(ξ) dξ dη +

+

∮

∂Ω

(
G(x; ξ)

∂ψ(ξ)

∂n
−
∂G(x; ξ)

∂n
ψ(ξ)

)
ds.

Since the Green’s function solves −∆G = δξ, the first term reproduces −ψ(x). Moreover,
G = 0 and ψ = h on ∂Ω, and so the right hand side reduces to (15.81). Q.E.D.

15.4. Adjoints and Minimum Principles.

In this section, we explain how the Laplace and Poisson equations fit into our universal
self-adjoint equilibrium framework. The most important outcome will be to establish a
very famous minimization principle characterizing the equilibrium solution, that we will
exploit in the design of the finite element numerical solution method.

The one-dimensional version of the Poisson equation,

−
d2u

dx2
= f,
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is the equilibrium equation for a uniform elastic bar. In Section 11.3, we wrote the under-
lying boundary value problems in self-adjoint form

K[u ] = D∗ ◦D[u ] = f

based on the product of the derivative operator Du = u′ and its adjoint D∗ = −D with
respect to the standard L2 inner product.

For the two-dimensional Poisson equation

−∆[u ] = −
∂2u

∂x2
−
∂2u

∂y2
= f(x, y)

the role of the one-dimensional derivative D will be played by the gradient operator

∇u = gradu =

(
ux

uy

)
.

The gradient ∇ defines a linear map that takes a scalar-valued function u(x, y) to the
vector-valued function consisting of its two first order partial derivatives. Thus, its domain
is the vector space U = C1(Ω,R) consisting of all continuously differentiable functions
u(x, y) defined for (x, y) ∈ Ω. The target space V = C0(Ω,R2) consists of all continuous

vector-valued functions v(x, y) = ( v1(x, y), v2(x, y) )
T
, also known as vector fields. (By

way of analogy, scalar-valued functions are sometimes referred to as scalar fields.) Indeed,
if u1, u2 ∈ U are any two scalar functions and c1, c2 ∈ R any constants, then

∇(c1u1 + c2u2) = c1∇u1 + c2∇u2,

which is the requirement for linearity as stated in Definition 7.1.

In accordance with the general Definition 7.53, the adjoint of the gradient must go in
the reverse direction,

∇∗:V −→ U,

mapping vector fields v(x, y) to scalar functions z(x, y) = ∇∗v. The defining equation for
the adjoint

〈〈∇u ,v 〉〉 = 〈u ,∇∗v 〉 (15.82)

depends on the choice of inner products on the two vector spaces. The simplest inner
product between real-valued scalar functions u(x, y), z(x, y) defined on a domain Ω ⊂ R

2

is given by the double integral

〈u , v 〉 =

∫ ∫

Ω

u(x, y) z(x, y) dx dy. (15.83)

As in the one-dimensional case (3.12), this is often referred to as the L2 inner product

between scalar fields, with associated norm

‖u ‖2 = 〈u , u 〉 =

∫ ∫

Ω

u(x, y)2 dx dy.
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Similarly, the L2 inner product between vector-valued functions (vector fields) defined on
Ω is obtained by integrating their usual dot product:

〈〈v ,w 〉〉 =

∫ ∫

Ω

v(x, y) ·w(x, y) dx dy =

∫ ∫

Ω

[
v1(x, y)w1(x, y) + v2(x, y)w2(x, y)

]
dx dy.

(15.84)
These form the two most basic inner products on the spaces of scalar and vector fields,
and are the ones required to place the Laplace and Poisson equations in self-adjoint form.

The adjoint identity (15.82) is supposed to hold for all appropriate scalar fields u and
vector fields v. For the L2 inner products (15.83, 84), the two sides of the identity read

〈〈∇u ,v 〉〉 =

∫ ∫

Ω

∇u · v dx dy =

∫ ∫

Ω

(
∂u

∂x
v1 +

∂u

∂y
v2

)
dx dy,

〈u ,∇∗v 〉 =

∫ ∫

Ω

u∇∗v dx dy.

Thus, to equate these two double integrals, we must soomehow remove the derivatives from
the scalar field u. As in the one-dimensional computation (11.73), the secret is integration
by parts.

For single integrals, the integration by parts formula is found by applying the Fun-
damental Theorem of Calculus to Leibniz’s rule for the derivative of the product of two
functions. According to Appendix A, Green’s Theorem A.26 plays the role of the Funda-
mental Theorem when dealing with double integrals. We will find the divergence form

∫ ∫

Ω

∇ · v dx dy =

∮

∂Ω

v · n ds, (15.85)

as in (A.58), the more convenient for the present purposes. Proceeding in analogy with
the one-dimensional argument, we replace the vector field v by the product uv of a scalar
field u and a vector field v. An elementary computation proves that

∇ · (uv) = u∇ · v +∇u · v. (15.86)

As a result, we deduce what is usually known as Green’s formula

∫ ∫

Ω

[
u∇ · v +∇u · v

]
dx dy =

∮

∂Ω

u (v · n) ds, (15.87)

which is valid for arbitrary bounded domains Ω, and arbitrary scalar and vector fields
defined thereon. Rearranging the terms in this integral identity produces the required
integration by parts formula for double integrals:

∫ ∫

Ω

∇u · v dx dy =

∮

∂Ω

u (v · n) ds−

∫ ∫

Ω

u∇ · v dx dy. (15.88)

The terms in this identity have direct counterparts in our one-dimensional integration by
parts formula (11.76). The first term on the right hand side of this identity is a boundary
term, just like the first terms on the right hand side of the one-dimensional formula (11.76).
Moreover, the derivative operation has moved from a gradient on the scalar field in the

5/1/06 847 c© 2006 Peter J. Olver



doubl.e integral on the left to a divergence on the vector field in the double integral on the
right — even the minus sign is there!

Now, the left hand side in the integration by parts formula (15.88) is the same as the
left hand side of (15.82). If the boundary integral vanishes,

∮

∂Ω

uv · n ds = 0, (15.89)

then the right hand side of formula (15.88) also reduces to an L2 inner product

−

∫ ∫

Ω

u∇ · v dx dy =

∫ ∫

Ω

u (−∇ · v) dx dy = 〈u ,−∇ · v 〉

between the scalar field u and minus the divergence of the vector field v. Therefore, subject
to the boundary constraint (15.89), the integration by parts formula reduces to the inner
product identity

〈〈∇u ,v 〉〉 = 〈u , −∇ · v 〉. (15.90)

Comparing (15.82) with adjgrad, we conclude that

∇∗v = −∇ · v,

and hence, when subject to the proper boundary conditions, the adjoint of the gradient
operator is minus the divergence: ∇∗ = −∇· . In this manner, we are able to write the
two-dimensional Poisson equation in the standard self-adjoint form

−∆u = ∇∗ ◦∇u = −∇ · (∇u) = f (15.91)

subject to an appropriate system of boundary conditions that justify (15.90).

The vanishing of the boundary integral (15.89) will be ensured by the imposition of
suitable homogeneous boundary conditions on the scalar field u and/or the vector field
v. Clearly the line integral will vanish if either u = 0 or v · n = 0 at each point on the
boundary. These lead immediately to the three principle types of boundary conditions.
The first are the fixed or Dirichlet boundary conditions, which require

u = 0 on ∂Ω. (15.92)

Alternatively, we can require

v · n = 0 on ∂Ω, (15.93)

which requires that v be tangent to ∂Ω at each point, and so there is no net flux across
the (solid) boundary. If we identify v = ∇u, then the no flux boundary condition (15.93)
translates into the Neumann boundary conditions

∂u

∂n
= ∇u · n = 0 on ∂Ω. (15.94)

One can evidently also mix the boundary conditions, imposing Dirichlet conditions on part
of the boundary, and Neumann on the complementary part:

u = 0 on D,
∂u

∂n
= 0 on N, where ∂Ω = D ∪N (15.95)
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is the disjoint union of the Dirichlet and Neumann parts.

More generally, when modeling inhomogeneous membranes, heat flow through inho-
mogeneous media, and similar physical equilibria, we replace the L2 inner product between
vector fields by the weighted version

〈〈v ,w 〉〉 =

∫ ∫

Ω

[
p(x, y) v1(x, y)w1(x, y) + q(x, y) v2(x, y)w2(x, y)

]
dx dy, (15.96)

in which p(x, y), q(x, y) > 0 are strictly positive functions on the domain (x, y) ∈ Ω and
are prescribed by the physical properties of the membrane. Retaining the usual L2 inner
product (15.83) between scalar fields, let us compute the weighted adjoint of the gradient
operator. Retaining the basic defining formula (15.82),

〈〈∇u ,v 〉〉 =

∫ ∫

Ω

(
pv1

∂u

∂x
+ q v2

∂u

∂y

)
dx dy =

∫ ∫

Ω

∇u ·w dx dy, where w =

(
pv1
q v2

)
.

We then apply out integration by parts formula (15.88) to remove the derivatives from the
scalar field u, leading to

∫ ∫

Ω

∇u ·w dx dy =

∮

∂Ω

−u(w · n) ds−

∫ ∫

Ω

u∇ ·w dx dy (15.97)

=

∮

∂Ω

[
−uqv2 dx+ upv1 dy

]
−

∫ ∫

Ω

u

(
∂(pv1)

∂x
+
∂(q v2)

∂y

)
dx dy.

Equating this to the right hand side 〈u ,∇∗v 〉, we deduce that, provided the boundary
integral vanishes, the weighted adjoint of the gradient operator with respect to (15.96) is
given by

∇∗v = −∇w = −
∂(pv1)

∂x
−
∂(q v2)

∂y
= − p

∂v1
∂x
− q

∂v2
∂y
− v1

∂p

∂x
− v2

∂q

∂y
. (15.98)

The boundary integral in (15.97) vanishes provided either u = 0 or v = 0 on ∂Ω. Therefore,
the same homogeneous boundary conditions — Dirichlet, Neumann or mixed — remain
valid in this more general context.

The corresponding self-adjoint boundary value problem takes the form

∇∗ ◦∇u = −
∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂x

(
q(x, y)

∂u

∂x

)
= f(x, y), (x, y) ∈ Ω, (15.99)

along with boundary conditions of either Dirichlet, Neumann or mixed type.

Remark : In electrostatics, the gradient equation v = ∇u relates the voltage drop to
the electrostatic potential u, and is the continuous analog of the circuit formula (6.18)
relating potentials to voltages. The continuous version of Kirchhoff’s Voltage Law (6.20)
that the net voltage drop around any loop is zero is the fact that any gradient vector has
zero curl, ∇∧ v = 0, i.e., the flow is irrotational. Ohm’s law (6.23) has the form y = C v

where the vector field y represents the current, while C = diag (p(x, y), q(x, y)) represents
th conductance of the medium; in the case of Laplace’s equation, we are assuming a
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uniform unit conductance. Finally, the equation f = ∇ · y = ∇∗v relating current and
external current sources forms the continuous analog of Kirchhoff’s Current Law (6.26) —
the transpose of the discrete incidence matrix translates into the adjoint of the gradient
operator is the divergence. Thus, our discrete electro-mechanical analogy carries over,
in the continuous realm, to a tripartite electro-mechanical-fluid analogy, with all three
physical systems leading to the same very general mathematical structure.

Positive Definiteness and the Dirichlet Principle

In conclusion, as a result of the integration by parts calculation, we have formulated
the Poisson and Laplace equations (as well as their weighted counterparts) in positive
(semi-)definite, self-adjoint form

−∆u = ∇∗ ◦∇u = f,

when subject to the appropriate homogeneous boundary conditions: Dirichlet, Neumann,
or mixed. A key benefit is, in the positive definite cases, the characterization of the
solutions by a minimization principle.

According to Theorem 7.60, the self-adjoint operator ∇∗ ◦∇ is positive definite if and
only if the kernel of the underlying gradient operator — restricted to the appropriate space
of scalar fields — is trivial: ker∇ = {0}. The determination of the kernel of the gradient
operator relies on the following elementary fact.

Lemma 15.13. If u(x, y) is a C1 function defined on a connected domain Ω, then

∇u ≡ 0 if and only if u ≡ c is a constant.

This result can be viewed as the multi-variable counterpart of the result that the only
function with zero derivative is a constant. It is a simple consequence of Theorem A.20; see
Exercise . Therefore, the only functions which could show up in ker∇, and thus prevent
positive definiteness, are the constants. The boundary conditions will tell us whether or
not this occurs. The only constant function that satisfies either homogeneous Dirichlet or
homogeneous mixed boundary conditions is the zero function, and thus, just as in the one-
dimensional case, the boundary value problem for the Poisson equation with Dirichlet or
mixed boundary conditions is positive definite. On the other hand, any constant function
satisfies the homogeneous Neumann boundary conditions ∂u/∂n = 0, and hence such
boundary value problems are only positive semi-definite.

In the positive definite definite cases, the equilibrium solution is characterized by our
basic minimization principle (7.81). For the Poisson equation, the result is the justly
famous Dirichlet minimization principle.

Theorem 15.14. The function u(x, y) that minimizes the Dirichlet integral

1
2 ‖∇u ‖

2 − 〈u , f 〉 =

∫ ∫

Ω

(
1
2 u

2
x + 1

2 u
2
y − f u

)
dx dy (15.100)

among all C1 functions that satisfy the prescribed homogeneous Dirichlet or mixed bound-

ary conditions is the solution to the corresponding boundary value problem for the Poisson

equation −∆u = f .
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In physical applications, the Dirichlet integral (15.100) represents the energy in the
system. As always, Nature chooses the equilibrium configuration so as to minimize the
energy. A key application of the Dirichlet minimum principle is the finite element numerical
solution scheme, to be described in detail in Section 15.5.

Remark : The fact that a minimizer to the Dirichlet integral (15.100) satisfies the
Poisson equation is an immediate consequence of our general Minimization Theorem 7.62.
However, unlike the finite-dimensional situation, proving the existence of a minimizing
function is a non-trivial issue. This was not immediatiely recognized: Dirichlet originally
thought this to be self-evident, but it then took about 50 years until Hilbert supplied
the first rigorous existence proof. In this introductory treatment, we adopt a pragmatic
approach, concentrating on the computation of the solution — reassured, if necessary, by
the theoreticians’ efforts in establishing its existence.

The Dirichlet minimization principle (15.100) was derived under the assumption that
the boundary conditions are homogeneous — either pure Dirichlet or mixed. As it turns
out, the principle, as stated, also applies to inhomogeneous Dirichlet boundary conditions.
However, if we have a mixed boundary value problem with inhomogeneous Neumann con-
ditions on part of the boundary, then we must include an additional boundary term in the
minimizing functional. The general result can be stated as follows:

Theorem 15.15. The solution u(x, y) to the boundary value problem

−∆u = f in Ω, u = h on D,
∂u

∂n
= k on N,

with ∂Ω = D ∪N , and D 6= ∅, is characterized as the unique function that minimizes the

modified Dirichlet integral
∫ ∫

Ω

(
1
2‖∇u ‖

2 − f u
)
dx dy +

∫

N

u k ds (15.101)

among all C1 functions that satisfy the prescribed boundary conditions.

The inhomogeneous Dirichlet problem has N = ∅ and D = ∂Ω, in which case the
boundary integral does not appear. An outline of the proof of this result appears in the
exercises.

As we know, positive definiteness is directly related to the stability of the physical
system. The Dirichlet and mixed boundary value problems are stable, and can support
any imposed force. On the other hand, the pure Neumann boundary value problem is
unstable, owing to the existence of a nontrivial kernel — the constant functions. Physically,
the unstable mode represents a rigid translation of the entire membrane in the vertical
direction. Indeed, the Neumann problem leaves the entire boundary of the membrane
unattached to any support, and so the unforced membrane is free to move up or down
without affecting its equilibrium status.

Furthermore, as in finite-dimensional linear systems, non-uniqueness and non-existence
of solutions go hand in hand. As we learned in Section 11.3, the existence of a solution
to a Neumann boundary value problem is subject to the Fredholm alternative, suitably
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adapted to this multi-dimensional situation. A necessary condition for the existence of
a solution is that the forcing function be orthogonal to the elements of the kernel of the
underlying self-adjoint linear operator, which, in the present situation requires that f be
orthogonal to the subspace consisting of all constant functions. In practical terms, we only
need to check orthogonality with respect to a basis for the subspace, which in this situation
consists of the constant function 1.

Theorem 15.16. The Neumann boundary value problem

−∆u = f, in Ω,
∂u

∂n
= 0, on ∂Ω, (15.102)

admits a solution u(x, y) if and only if

〈 1 , f 〉 =

∫ ∫

Ω

f(x, y) dx dy = 0. (15.103)

Moreover, when it exists, the solution is not unique since any function of the form u(x, y)+c,
where c ∈ R is an arbitrary constant, is also a solution.

Forcing functions f(x, y) which do not satisfy the orthogonality constraint (15.103)
will excite the translational instability, and no equilibrium configuration is possible. For
example, if we force a free membrane, (15.103) requires that the net force in the verti-
cal direction be zero; otherwise, the membrane will start moving and cannot be in an
equilibrium.

15.5. Finite Elements.

As the reader has no doubt already surmised, explicit solutions to boundary value
problems for the Laplace and Poisson equations are few and far between. In most cases,
exact solution formulae are not available, or are so complicated as to be of scant utility.
To proceed further, one is forced to design suitable numerical approximation schemes that
can accurately evaluate the desired solution.

An especially powerful class of numerical algorithms for solving elliptic boundary value
problems are the finite element methods. We have already learned, in Section 11.6, the
key underlying idea. One begins with a minimization principle, prescribed by a quadratic
functional defined on a suitable vector space of functions U that serves to incorporate
the (homogeneous) boundary conditions. The desired solution is characterized as the
unique minimizer u? ∈ U . One then restricts the functional to a suitably chosen finite-
dimensional subspace W ⊂ U , and seeks a minimizer w? ∈ W . Finite-dimensionality of
W has the effect of reducing the infinite-dimensional minimization problem to a finite-
dimensional problem, which can then be solved by numerical linear algebra. The resulting
minimizer w? will — provided the subspace W has been cleverly chosen — provide a good
approximation to the true minimizer u? on the entire domain. Here we concentrate on the
practical design of the finite element procedure, and refer the reader to a more advanced
text, e.g., [168], for the analytical details and proofs of convergence. Most of the multi-
dimensional complications are not in the underlying theory, but rather in the realms of
data management and organizational details.
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In this section, we first concentrate on applying these ideas to the two-dimensional
Poisson equation. For specificity, we concentrate on the homogeneous Dirichlet boundary
value problem

−∆u = f in Ω u = 0 on ∂Ω. (15.104)

According to Theorem 15.14, the solution u = u? is characterized as the unique minimizing
function for the Dirichlet functional (15.100) among all smooth functions u(x, y) that
satisfy the prescribed boundary conditions. In the finite element approximation, we restrict
the Dirichlet functional to a suitably chosen finite-dimensional subspace. As in the one-
dimensional situation, the most convenient finite-dimensional subspaces consist of functions
that may lack the requisite degree of smoothness that qualifies them as possible solutions
to the partial differential equation. Nevertheless, they do provide good approximations
to the actual solution. An important practical consideration, impacting the speed of the
calculation, is to employ functions with small support, as in Definition 13.5. The resulting
finite element matrix will then be sparse and the solution to the linear system can be
relatively rapidly calculate, usually by application of an iterative numerical scheme such
as the Gauss–Seidel or SOR methods discussed in Chapter 10.

Finite Elements and Triangulation

For one-dimensional boundary value problems, the finite element construction rests on
the introduction of a mesh a = x0 < x1 < · · · < xn = b on the interval of definition. The
mesh nodes xk break the interval into a collection of small subintervals. In two-dimensional
problems, a mesh consists of a finite number of points xk = (xk, yk), k = 1, . . . ,m, known
as nodes, usually lying inside the domain Ω ⊂ R

2. As such, there is considerable freedom
in the choice of mesh nodes, and completely uniform spacing is often not possible. We
regard the nodes as forming the vertices of a triangulation of the domain Ω, consisting of
a finite number of small triangles, which we denote by T1, . . . , TN . The nodes are split
into two categories — interior nodes and boundary nodes, the latter lying on or close to
the boundary of the domain. A curved boundary is approximated by the polygon through
the boundary nodes formed by the sides of the triangles lying on the edge of the domain;
see Figure 15.10 for a typical example. Thus, in computer implementations of the finite
element method, the first module is a routine that will automatically triangulate a specified
domain in some reasonable manner; see below for details on what “reasonable” entails.

As in our one-dimensional finite element construction, the functions w(x, y) in the
finite-dimensional subspace W will be continuous and piecewise affine. “Piecewise affine”
means that, on each triangle, the graph of w is flat, and so has the formula†

w(x, y) = αν + βν x+ γν y, for (x, y) ∈ Tν . (15.105)

Continuity of w requires that its values on a common edge between two triangles must
agree, and this will impose certain compatibility conditions on the coefficients αµ, βµ, γµ

and αν , βν , γν associated with adjacent pairs of triangles Tµ, Tν . The graph of z = w(x, y)

† Here and subsequently, the index ν is a superscript, not a power!
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Figure 15.10. Triangulation of a Planar Domain.

Figure 15.11. Piecewise Affine Function.

forms a connected polyhedral surface whose triangular faces lie above the triangles in the
domain; see Figure 15.10 for an illustration.

The next step is to choose a basis of the subspace of piecewise affine functions for the
given triangulation. As in the one-dimensional version, the most convenient basis consists
of pyramid functions ϕk(x, y) which assume the value 1 at a single node xk, and are zero
at all the other nodes; thus

ϕk(xi, yi) =

{
1, i = k,

0, i 6= k.
(15.106)
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Figure 15.12. Finite Element Pyramid Function.

Note that ϕk will be nonzero only on those triangles which have the node xk as one of
their vertices, and hence the graph of ϕk looks like a pyramid of unit height sitting on a
flat plane, as illustrated in Figure 15.12.

The pyramid functions ϕk(x, y) corresponding to the interior nodes xk automatically
satisfy the homogeneous Dirichlet boundary conditions on the boundary of the domain
— or, more correctly, on the polygonal boundary of the triangulated domain, which is
supposed to be a good approximation to the curved boundary of the original domain Ω.
Thus, the finite-dimensional finite element subspace W is the span of the interior node
pyramid functions, and so general element w ∈W is a linear combination thereof:

w(x, y) =

n∑

k=1

ck ϕk(x, y), (15.107)

where the sum ranges over the n interior nodes of the triangulation. Owing to the original
specification (15.106) of the pyramid functions, the coefficients

ck = w(xk, yk) ≈ u(xk, yk), k = 1, . . . , n, (15.108)

are the same as the values of the finite element approximation w(x, y) at the interior
nodes. This immediately implies linear independence of the pyramid functions, since the
only linear combination that vanishes at all nodes is the trivial one c1 = · · · = cn = 0.
Thus, the interior node pyramid functions ϕ1, . . . ϕn form a basis for finite element subspace
W , which therefore has dimension equal to n, the number of interior nodes.

Determining the explicit formulae for the finite element basis functions is not difficult.
On one of the triangles Tν that has xk as a vertex, ϕk(x, y) will be the unique affine
function (15.105) that takes the value 1 at the vertex xk and 0 at its other two vertices xl

and xm. Thus, we are in need of a formula for an affine function or element

ων
k(x, y) = αν

k + βν
k x+ γν

k y, (x, y) ∈ Tν , (15.109)
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that takes the prescribed values

ων
k(xi, yi) = ων

k(xj , yj) = 0, ων
k(xk, yk) = 1,

at three distinct points. These three conditions lead to the linear system

ων
k(xi, yi) = αν

k + βν
k xi + γν

k yi = 0,

ων
k(xj , yj) = αν

k + βν
k xj + γν

k yj = 0,

ων
k(xk, yk) = αν

k + βν
k xk + γν

k yk = 1.

(15.110)

The solution† produces the explicit formulae

αν
k =

xi yj − xj yi

∆ν

, βν
k =

yi − yj

∆ν

, γν
k =

xj − xi

∆ν

, (15.111)

for the coefficients; the denominator

∆ν = det




1 xi yi

1 xj yj

1 xk yk


 = ±2 area Tν (15.112)

is, up to sign, twice the area of the triangle Tν ; see Exercise .

Example 15.17. Consider an isoceles right triangle T with vertices

x1 = (0, 0), x2 = (1, 0), x3 = (0, 1).

Using (15.111–112) (or solving the linear systems (15.110) directly), we immediately pro-
duce the three affine elements

ω1(x, y) = 1− x− y, ω2(x, y) = x, ω3(x, y) = y. (15.113)

As required, each ωk equals 1 at the vertex xk and is zero at the other two vertices.

The finite element pyramid function is then obtained by piecing together the individual
affine elements, whence

ϕk(x, y) =

{
ων

k(x, y), if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise.
(15.114)

Continuity of ϕk(x, y) is assured since the constituent affine elements have the same values
at common vertices. The support of the pyramid function (15.114) is the polygon

suppϕk = Pk =
[

ν

Tν (15.115)

consisting of all the triangles Tν that have the node xk as a vertex. In other words,
ϕk(x, y) = 0 whenever (x, y) 6∈ Pk. We will call Pk the kth vertex polygon. The node xk

lies on the interior of its vertex polygon Pk, while the vertices of Pk are all those that are

† Cramer’s Rule (1.88) comes in handy here
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Figure 15.13. Vertex Polygons.

Figure 15.14. Square Mesh Triangulations.

connected to xk by a single edge of the triangulation. In Figure 15.13 the shaded regions
indicate two of the vertex polygons for the triangulation in Figure 15.10.

Example 15.18. The simplest, and most common triangulations are based on
regular meshes. Suppose that the nodes lie on a square grid, and so are of the form
xi,j = (ih+ a, j h+ b) where h > 0 is the inter-node spacing, and (a, b) represents an over-
all offset. If we choose the triangles to all have the same orientation, as in the first picture
in Figure 15.14, then the vertex polygons all have the same shape, consisting of 6 triangles
of total area 3h2 — the shaded region. On the other hand, if we choose an alternating,
perhaps more æsthetically pleasing triangulation as in the second picture, then there are
two types of vertex polygons. The first, consisting of four triangles, has area 2h2, while
the second, containing 8 triangles, has twice the area, 4h2. In practice, there are good
reasons to prefer the former triangulation.

In general, in order to ensure convergence of the finite element solution to the true
minimizer, one should choose a triangulation with the following properties:
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(a) The triangles are not too long and skinny. In other words, their sides should have
comparable lengths. In particular, obtuse triangles should be avoided.

(b) The areas of nearby triangles Tν should not vary too much.

(c) The areas of nearby vertex polygons Pk should also not vary too much.

For adaptive or variable meshes, one might very well have wide variations in area over the
entire grid, with small triangles in regions of rapid change in the solution, and large ones in
less interesting regions. But, overall, the sizes of the triangles and vertex polygons should
not dramatically vary as one moves across the domain.

The Finite Element Equations

We now seek to approximate the solution to the homogeneous Dirichlet boundary value
problem by restricting the Dirichlet functional to the selected finite element subspace W .
Substituting the formula (15.107) for a general element of W into the quadratic Dirichlet
functional (15.100) and expanding, we find

P[w ] = P

[
n∑

i=1

ci ϕi

]
=

∫ ∫

Ω



(

n∑

i=1

ci∇ϕi

)2

− f(x, y)

(
n∑

i=1

ci ϕi

)
 dx dy

=
1

2

n∑

i,j =1

kij ci cj −
n∑

i=1

bi ci = 1
2 cTKc− bT c.

Here, K = (kij) is the symmetric n × n matrix, while b = ( b1, b2, . . . , bn )
T

is the vector
that have the respective entries

kij = 〈∇ϕi ,∇ϕj 〉 =

∫ ∫

Ω

∇ϕi · ∇ϕj dx dy,

bi = 〈 f , ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy.

(15.116)

Thus, to determine the finite element approximation, we need to minimize the quadratic
function

P (c) = 1
2 cTKc− bT c (15.117)

over all possible choices of coefficients c = ( c1, c2, . . . , cn )
T
∈ R

n, i.e., over all possible
function values at the interior nodes. Restricting to the finite element subspace has reduced
us to a standard finite-dimensional quadratic minimization problem. First, the coefficient
matrix K > 0 is positive definite due to the positive definiteness of the original functional;
the proof in Section 11.6 is easily adapted to the present situation. Theorem 4.1 tells us
that the minimizer is obtained by solving the associated linear system

Kc = b. (15.118)

The solution to (15.118) can be effected by either Gaussian elimination or an iterative
technique.
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To find explicit formulae for the matrix coefficients kij in (15.116), we begin by noting
that the gradient of the affine element (15.109) is equal to

∇ων
k(x, y) = aν

k =

(
βν

k

γν
k

)
=

1

∆ν

(
yi − yj

xj − xi

)
, (x, y) ∈ Tν , (15.119)

which is a constant vector inside the triangle Tν , while outside ∇ων
k = 0. Therefore,

∇ϕk(x, y) =

{
∇ων

k = aν
k, if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise,
(15.120)

reduces to a piecewise constant function on the triangulation. Actually, (15.120) is not
quite correct since if (x, y) lies on the boundary of a triangle Tν , then the gradient does
not exist. However, this technicality will not cause any difficulty in evaluating the ensuing
integral.

We will approximate integrals over the domain Ω by integrals over the triangles, which
relies on our assumption that the polygonal boundary of the triangulation is a reasonably
close approximation to the true boundary ∂Ω. In particular,

kij ≈
∑

ν

∫ ∫

Tν

∇ϕi · ∇ϕj dx dy ≡
∑

ν

kν
ij . (15.121)

Now, according to (15.120), one or the other gradient in the integrand will vanish on the
entire triangle Tν unless both xi and xj are vertices. Therefore, the only terms contributing
to the sum are those triangles Tν that have both xi and xj as vertices. If i 6= j there are only
two such triangles, while if i = j every triangle in the ith vertex polygon Pi contributes.
The individual summands are easily evaluated, since the gradients are constant on the
triangles, and so, by (15.120),

kν
ij =

∫ ∫

Tν

aν
i · a

ν
j dx dy = aν

i · a
ν
j area Tν = 1

2 aν
i · a

ν
j |∆ν | .

Let Tν have vertices xi,xj ,xk. Then, by (15.119, 120, 112),

kν
ij =

1

2

(yj − yk)(yk − yi) + (xk − xj)(xi − xk)

(∆ν)2
|∆ν | = −

(xi − xk) · (xj − xk)

2 |∆ν |
, i 6= j,

kν
ii =

1

2

(yj − yk)2 + (xk − xj)
2

(∆ν)2
|∆ν | =

‖xj − xk ‖
2

2 |∆ν |
. (15.122)

In this manner, each triangle Tν specifies a collection of 6 different coefficients, kν
ij = kν

ji,
indexed by its vertices, and known as the elemental stiffnesses of Tν . Interestingly, the
elemental stiffnesses depend only on the angles of the triangle and not on its size. Thus,
similar triangles have the same elemental stiffnesses. Indeed, if we denote the angle in Tν

at the vertex xk by θν
k , then, according to Exercise ,

kν
ii = 1

2

(
cot θν

k + cot θν
j

)
, while kν

ij = kν
ji = − 1

2 cot θν
k , i 6= j, (15.123)

depend only upon the cotangents of the angles.
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Figure 15.15. Right and Equilateral Triangles.

Example 15.19. The right triangle with vertices x1 = (0, 0), x2 = (1, 0), x3 = (0, 1)
has elemental stiffnesses

k11 = 1, k22 = k33 = 1
2 , k12 = k21 = k13 = k31 = − 1

2 , k23 = k32 = 0.
(15.124)

The same holds for any other isoceles right triangle, as long as we chose the first vertex
to be at the right angle. Similarly, an equilateral triangle has all 60◦ angles, and so its
elemental stiffnesses are

k11 = k22 = k33 = 1√
3
≈ .577350,

k12 = k21 = k13 = k31 = k23 = k32 = − 1
2
√

3
≈ −.288675.

(15.125)

Assembling the Elements

The elemental stiffnesses of each triangle will contribute, through the summation
(15.121), to the finite element coefficient matrix K. We begin by constructing a larger
matrix K∗, which we call the full finite element matrix , of size m×m where m is the total
number of nodes in our triangulation, including both interior and boundary nodes. The
rows and columns of K∗ are labeled by the nodes xi. Let Kν = (kν

ij) be the corresponding
m×mmatrix containing the elemental stiffnesses kν

ij of Tν in the rows and columns indexed
by its vertices, and all other entries equal to 0. Thus, Kν will have (at most) 9 nonzero
entries. The resulting m×m matrices are all summed together over all the triangles,

K∗ =
N∑

ν =1

Kν , (15.126)

to produce the full finite element matrix, in accordance with (15.121).

The full finite element matrix K∗ is too large, since its rows and columns include all
the nodes, whereas the finite element matrix K appearing in (15.118) only refers to the n
interior nodes. The reduced n× n finite element matrix K is simply obtained from K∗ by
deleting all rows and columns indexed by boundary nodes, retaining only the elements kij

when both xi and xj are interior nodes. (This may remind the reader of our construction of
the reduced incidence matrix for a structure in Chapter 6.) For the homogeneous boundary
value problem, this is all we require. As we shall see, inhomogeneous boundary conditions
are most easily handled by retaining (part of) the full matrix K∗.
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Figure 15.16. The Oval Plate.
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Figure 15.17. A Coarse Triangulation of the Oval Plate.

The easiest way to digest the construction is by working through a particular example.

Example 15.20. A metal plate has the shape of an oval running track, consisting
of a rectangle, with side lengths 1m by 2m, and two semicircular disks glued onto its
shorter ends, as sketched in Figure 15.16. The plate is subject to a heat source while its
edges are held at a fixed temperature. The problem is to find the equilibrium temperature
distribution within the plate. Mathematically, we must solve the Poisson equation with
Dirichlet boundary conditions, for the equilibrium temperature u(x, y).

Let us describe how to set up the finite element approximation to such a boundary
value problem. We begin with a very coarse triangulation of the plate, which will not give
particularly accurate results, but does serve to illustrate how to go about assembling the
finite element matrix. We divide the rectangular part of the plate into 8 right triangles,
while each semicircular end will be approximated by three equilateral triangles. The tri-
angles are numbered from 1 to 14 as indicated in Figure 15.17. There are 13 nodes in all,
numbered as in the second figure. Only nodes 1, 2, 3 are interior, while the boundary nodes
are labeled 4 through 13, going counterclockwise around the boundary starting at the top.
The full finite element matrix K∗ will have size 13×13, its rows and columns labeled by all
the nodes, while the reduced matrix K appearing in the finite element equations (15.118)
consists of the upper left 3× 3 submatrix of K∗ corresponding to the three interior nodes.
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Each triangle Tν will contribute the summand Kν whose values are its elemental
stiffnesses, as indexed by its vertices. For example, the first triangle T1 is equilateral, and
so has elemental stiffnesses (15.125). Its vertices are labeled 1, 5, and 6, and therefore
we place the stiffnesses (15.125) in the rows and columns numbered 1, 5, 6 to form the
summand

K1 =




.577350 0 0 0 −.288675 −.288675 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 .577350 −.288675 0 0 . . .
−.288675 0 0 0 −.288675 .577350 0 0 . . .

0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




,

where all the undisplayed entries in the full 13 × 13 matrix are 0. The next triangle T2

has the same equilateral elemental stiffness matrix (15.125), but now its vertices are 1, 6, 7,
and so it will contribute

K2 =




.577350 0 0 0 0 −.288675 −.288675 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .

−.288675 0 0 0 0 .577350 −.2886750 0 . . .
−.288675 0 0 0 0 −.288675 .5773500 0 . . .

0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




.

Similarly for K3, with vertices 1, 7, 8. On the other hand, triangle T4 is an isoceles right
triangle, and so has elemental stiffnesses (15.124). Its vertices are labeled 1, 4, and 5, with
vertex 5 at the right angle. Therefore, its contribution is

K4 =




.5 0 0 0 −.5 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 .5 −.5 0 0 0 . . .
−.5 0 0 −.5 1.0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .




.
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Figure 15.18. A Square Mesh for the Oval Plate.

Continuing in this manner, we assemble 14 contributions K1, . . . ,K14, each with (at most)
9 nonzero entries. The full finite element matrix is the sum

K∗ = K1 + K2 + · · · + K14

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

3.732 −1 0 0 −.7887 −.5774 −.5774
−1 4 −1 −1 0 0 0
0 −1 3.732 0 0 0 0
0 −1 0 2 −.5 0 0

−.7887 0 0 −.5 1.577 −.2887 0
−.5774 0 0 0 −.2887 1.155 −.2887
−.5774 0 0 0 0 −.2887 1.155
−.7887 0 0 0 0 0 −.2887

0 −1 0 0 0 0 0
0 0 −.7887 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.5774 0 0 0 0
0 0 −.7887 −.5 0 0 0

(15.127)

−.7887 0 0 0 0 0
0 −1 0 0 0 0
0 0 −.7887 −.5774 −.5774 −.7887
0 0 0 0 0 −.5
0 0 0 0 0 0
0 0 0 0 0 0

−.2887 0 0 0 0 0
1.577 −.5 0 0 0 0
−.5 2 −.5 0 0 0
0 −.5 1.577 −.2887 0 0
0 0 −.2887 1.155 −.2887 0
0 0 0 −.2887 1.155 −.2887
0 0 0 0 −.2887 1.577

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

.

Since only nodes 1, 2, 3 are interior nodes, the reduced finite element matrix only uses the
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upper left 3× 3 block of K∗, so

K =




3.732 −1 0
−1 4 −1

0 −1 3.732


. (15.128)

It is not difficult to directly construct K, bypassing K∗ entirely.

For a finer triangulation, the construction is similar, but the matrices become much
larger. The procedure can, of course, be automated. Fortunately, if we choose a very
regular triangulation, then we do not need to be nearly as meticulous in assembling the
stiffness matrices, since many of the entries are the same. The simplest case is when we
use a uniform square mesh, and so triangulate the domain into isoceles right triangles.
This is accomplished by laying out a relatively dense square grid over the domain Ω ⊂ R

2.
The interior nodes are the grid points that fall inside the oval domain, while the boundary
nodes are all those grid points lying adjacent to one or more of the interior nodes, and
are near but not necessarily precisely on the boundary ∂Ω. Figure 15.18 shows the nodes
in a square grid with intermesh spacing h = .2. While a bit crude in its approximation
of the boundary of the domain, this procedure does have the advantage of making the
construction of the associated finite element matrix relatively painless.

For such a mesh, all the triangles are isoceles right triangles, with elemental stiffnesses
(15.124). Summing the corresponding matrices Kν over all the triangles, as in (15.126),
the rows and columns of K∗ corresponding to the interior nodes are seen to all have the
same form. Namely, if i labels an interior node, then the corresponding diagonal entry is
kii = 4, while the off-diagonal entries kij = kji, i 6= j, are equal to either −1 when node i
is adjacent to node j on the grid, and is equal to 0 in all other cases. Node j is allowed to
be a boundary node. (Interestingly, the result does not depend on how one orients the pair
of triangles making up each square of the grid, which only plays a role in the computation
of the right hand side of the finite element equation.) Observe that the same computation
applies even to our coarse triangulation. The interior node 2 belongs to all right isoceles
triangles, and the corresponding entries in (15.127) are k22 = 4, and k2j = −1 for the four
adjacent nodes j = 1, 3, 4, 9.

Remark : Interestingly, the coefficient matrix arising from the finite element method
on a square (or even rectangular) grid is the same as the coefficient matrix arising from a
finite difference solution to the Laplace or Poisson equation, as described in Exercise . The
finite element approach has the advantage of applying to much more general triangulations.

In general, while the finite element matrix K for a two-dimensional boundary value
problem is not as nice as the tridiagonal matrices we obtained in our one-dimensional
problems, it is still very sparse and, on regular grids, highly structured. This makes
solution of the resulting linear system particularly amenable to an iterative matrix solver
such as Gauss–Seidel, Jacobi, or, for even faster convergence, successive over-relaxation
(SOR).

The Coefficient Vector and the Boundary Conditions

So far, we have been concentrating on assembling the finite element coefficient matrix
K. We also need to compute the forcing vector b = ( b1, b2, . . . , bn )

T
appearing on the right
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Figure 15.19. Finite Element Tetrahedron.

hand side of the fundamental linear equation (15.118). According to (15.116), the entries
bi are found by integrating the product of the forcing function and the finite element basis
function. As before, we will approximate the integral over the domain Ω by an integral
over the triangles, and so

bi =

∫ ∫

Ω

f ϕi dx dy ≈
∑

ν

∫ ∫

Tν

f ων
i dx dy ≡

∑

ν

bνi . (15.129)

Typically, the exact computation of the various triangular integrals is not convenient,
and so we resort to a numerical approximation. Since we are assuming that the individual
triangles are small, we can adopt a very crude numerical integration scheme. If the function
f(x, y) does not vary much over the triangle Tν — which will certainly be the case if Tν is
sufficiently small — we may approximate f(x, y) ≈ cνi for (x, y) ∈ Tν by a constant. The
integral (15.129) is then approximated by

bνi =

∫ ∫

Tν

f ων
i dx dy ≈ cνi

∫ ∫

Tν

ων
i (x, y) dx dy = 1

3 c
ν
i area Tν = 1

6 c
ν
i |∆ν |. (15.130)

The formula for the integral of the affine element ων
i (x, y) follows from solid geometry.

Indeed, it equals the volume under its graph, a tetrahedron of height 1 and base Tν , as
illustrated in Figure 15.19.

How to choose the constant cνi ? In practice, the simplest choice is to let cνi = f(xi, yi)
be the value of the function at the ith vertex. With this choice, the sum in (15.129) becomes

bi ≈
∑

ν

1
3 f(xi, yi) area Tν = 1

3 f(xi, yi) area Pi, (15.131)

where Pi is the vertex polygon (15.115) corresponding to the node xi. In particular, for
the square mesh with the uniform choice of triangles, as in Example 15.18,

area Pi = 3h2 for all i, and so bi ≈ f(xi, yi) h
2 (15.132)

is well approximated by just h2 times the value of the forcing function at the node. This
is the underlying reason to choose the uniform triangulation for the square mesh; the
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Figure 15.20. Finite Element Solutions to Poisson’s Equation for an Oval Plate.

alternating version would give unequal values for the bi over adjacent nodes, and this
would introduce unnecessary errors into the final approximation.

Example 15.21. For the coarsely triangulated oval plate, the reduced stiffness ma-
trix is (15.128). The Poisson equation

−∆u = 4

models a constant external heat source of magnitude 4◦ over the entire plate. If we keep
the edges of the plate fixed at 0◦, then we need to solve the finite element equation Kc = b,
where K is the coefficient matrix (15.128), while

b = 4
3

(
2 + 3

√
3

4 , 2, 2 + 3
√

3
4

)T

= ( 4.39872, 2.66667, 4.39872 )
T
.

The entries of b are, by (15.131), equal to 4 = f(xi, yi) times one third the area of the
corresponding vertex polygon, which for node 2 is the square consisting of 4 right triangles,
each of area 1

2 , whereas for nodes 1 and 3 it consists of 4 right triangles of area 1
2 plus

three equilateral triangles, each of area
√

3
4 ; see Figure 15.17.

The solution to the final linear system is easily found:

c = ( 1.56724, 1.45028, 1.56724 )
T
.

Its entries are the values of the finite element approximation at the three interior nodes.
The finite element solution is plotted in the first illustration in Figure 15.20. A more
accurate solution, based on a square grid triangulation of size h = .1 is plotted in the
second figure.

Inhomogeneous Boundary Conditions

So far, we have restricted our attention to problems with homogeneous Dirichlet
boundary conditions. According to Theorem 15.15, the solution to the inhomogeneous
Dirichlet problem

−∆u = f in Ω, u = h on ∂Ω,
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is also obtained by minimizing the Dirichlet functional (15.100). However, now the min-
imization takes place over the affine subspace consisting of all functions that satisfy the
inhomogeneous boundary conditions. It is not difficult to fit this problem into the finite
element scheme.

The elements corresponding to the interior nodes of our triangulation remain as before,
but now we need to include additional elements to ensure that our approximation satisfies
the boundary conditions. Note that if xk is a boundary node, then the corresponding
boundary element ϕk(x, y) satisfies the interpolation condition (15.106), and so has the
same piecewise affine form (15.114). The corresponding finite element approximation

w(x, y) =

m∑

i=1

ci ϕi(x, y), (15.133)

has the same form as before, (15.107), but now the sum is over all nodes, both interior
and boundary. As before, the coefficients ci = w(xi, yi) ≈ u(xi, yi) are the values of the
finite element approximation at the nodes. Therefore, in order to satisfy the boundary
conditions, we require

cj = h(xj , yj) whenever xj = (xj , yj) is a boundary node. (15.134)

Remark : If the boundary node xj does not lie precisely on the boundary ∂Ω, we need
to approximate the value h(xj , yj) appropriately, e.g., by using the value of h(x, y) at the
nearest boundary point (x, y) ∈ ∂Ω.

The derivation of the finite element equations proceeds as before, but now there are
additional terms arising from the nonzero boundary values. Leaving the intervening details
to the reader, the final outcome can be written as follows. Let K∗ denote the full m×m
finite element matrix constructed as above. The reduced coefficient matrix K is obtained
by retaining the rows and columns corresponding to only interior nodes, and so will have
size n × n , where n is the number of interior nodes. The boundary coefficient matrix K̃
is the n× (m− n) matrix consisting of the entries of the interior rows that do not appear
in K, i.e., those lying in the columns indexed by the boundary nodes. For instance, in the
the coarse triangulation of the oval plate, the full finite element matrix is given in (15.127),
and the upper 3× 3 subblock is the reduced matrix (15.128). The remaining entries of the
first three rows form the boundary coefficient matrix

K̃ =




0 −.7887 −.5774 −.5774 −.7887 0 0 0 0 0
−1 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −.7887 −.5774 −.5774 −.7887


.

(15.135)
We similarly split the coefficients ci of the finite element function (15.133) into two groups.
We let c ∈ R

n denote the as yet unknown coefficients ci corresponding to the values of the
approximation at the interior nodes xi, while h ∈ R

m−n will be the vector of boundary
values (15.134). The solution to the finite element approximation (15.133) is obtained by
solving the associated linear system

Kc + K̃ h = b, or Kc = f = b− K̃ h. (15.136)
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Figure 15.21. Solution to the Dirichlet Problem for the Oval Plate.

Example 15.22. For the oval plate discussed in Example 15.20, suppose the right
hand semicircular edge is held at 10◦, the left hand semicircular edge at −10◦, while the two
straight edges have a linearly varying temperature distribution ranging from −10◦ at the
left to 10◦ at the right, as illustrated in Figure 15.21. Our task is to compute its equilibrium
temperature, assuming no internal heat source. Thus, for the coarse triangulation we have
the boundary nodes values

h = (h4, . . . , h13 )
T

= ( 0,−1,−1,−1,−1, 0, 1, 1, 1, 1, 0 )
T
.

Using the previously computed formulae (15.128, 135) for the interior coefficient matrix K

and boundary coefficient matrix K̃, we approximate the solution to the Laplace equation
by solving (15.136). We are assuming that there is no external forcing function, f(x, y) ≡

0, and so the right hand side is b = 0, and so we must solve Kc = f = − K̃ h =
( 2.18564, 3.6, 7.64974 )

T
. The finite element function corresponding to the solution c =

( 1.06795, 1.8, 2.53205 )
T

is plotted in the first illustration in Figure 15.21. Even on such
a coarse mesh, the approximation is not too bad, as evidenced by the second illustration,
which plots the finite element solution for a square mesh with spacing h = .2 between
nodes.

Second Order Elliptic Boundary Value Problems

While the Laplace and Poisson equations are by far the most important elliptic partial
differential equations, they only model homogeneous media, e.g., membranes made out of
a uniform material, or heated plates with uniform (constant) heat capacity. Inhomoge-
neous media lead to more general self-adjoint differential operators, leading to variable
coefficient second order elliptic boundary value problems. Even more generally, elastic

shells, meaning bendable plates, lead to fourth order two-dimensional elliptic boundary
value problems similar to the one-dimensional beam equation (11.115). And, these are in
turn only linear approximations to the fully nonlinear elliptic boundary value problems
occurring in elasticity theory, [85]. The latter are beyond the scope of this text, although
some of the required mathematical tools appear in Chapter 21.
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The most important class of linear, self-adjoint, second order, elliptic partial differen-
tial equations in two space variables take the form

−
∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂y

(
q(x, y)

∂u

∂x

)
+ r(x, y)u = f(x, y), (x, y) ∈ Ω, (15.137)

where p(x, y), q(x, y) > 0 are strictly positive functions, while r(x, y) ≥ 0 is non-negative.
For simplicity, we also impose homogeneous Dirichlet boundary conditions u = 0 on ∂Ω.
Note that the positivity conditions ensure that the partial differential equation is elliptic

in accordance with the classification of Definition 15.1.

The reader may notice that (15.137) is a two-dimensional version of the Sturm–
Liouville ordinary differential equation (11.143). The self-adjoint formulation (11.155)
of a Sturm–Liouville boundary value problem serves to inspire the self-adjoint form

L∗ ◦L[u ] = f, by setting L[u ] =



ux

uy

u


, (15.138)

of the boundary value problem for (15.137). Note that the linear operator L:U → V maps
the vector space U consisting of all smooth functions u(x, y) satisfying the homogeneous
Dirichlet boundary conditions to the vector space V consisting of all vector-valued functions
v = ( v1(x, y), v2(x, y), v3(x, y) )

T
. We adopt the usual L2 inner product (15.83) on U , but

introduce a weighted inner product†

〈〈v , ṽ 〉〉 =

∫ ∫

Ω

(
p v1 ṽ1 + q v2 ṽ2 + r v3 ṽ3

)
dx dy

on the vector space V . A straightforward computation based on Green’s formula (15.87)
produces the “weighted adjoint”

L∗[v ] = −
∂

∂x

[
p(x, y) v1(x, y)

]
−

∂

∂y

[
q(x, y) v2(x, y)

]
+ r(x, y) v3(x, y) (15.139)

of the operator L. Therefore, the formula for the self-adjoint product

L∗ ◦L[u ] = L∗



ux

uy

u


 = −

∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂y

(
q(x, y)

∂u

∂y

)
+ r(x, y)u(x, y)

proves the identification of (15.138) and (15.137). Positive definiteness follows from the
observation that kerL = {0}. The minimization principle associated with the operator L
is, as usual,

P[u ] = 1
2 ‖L[u ] ‖2 − 〈 f , u 〉 =

∫ ∫

Ω

[
1
2 p u

2
x + 1

2 q u
2
y + 1

2 r u
2 − f u

]
dx dy. (15.140)

As always, the solution to our boundary value problem is the unique minimizing function
for P[u ] among all u ∈ U satisfying the homogeneous boundary conditions.

† Technically, we should require that r(x, y) 6≡ 0 not vanish on any open subdomain in order
that this define a nondegenerate inner product.
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Remark : Interestingly, in contrast to the Poisson equation, if r > 0 the boundary
value problem for (15.137) is positive definite with minimization principle (15.140) even
in the case of pure Neumann boundary conditions. This is because the operator L always
has trivial kernel.

The finite element approximation is constructed as before — by restricting the min-
imization principle to the finite-dimensional subspace spanned by the finite element basis
functions (11.161). This requires the solution of a linear system of the same form (15.136),
in which

kij = 〈L[ϕi ] , L[ϕj ] 〉 =

∫ ∫

Ω

(
p
∂ϕi

∂x

∂ϕj

∂x
+ q

∂ϕi

∂y

∂ϕj

∂y
+ r ϕi ϕj

)
dx dy,

bi = 〈 f , ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy. (15.141)

As before, the double integrals are approximated by a sum of integrals over the triangles
Tν . The only triangles that contribute to the final result for kij are the ones that have both
xi and xj as vertices. When the triangles are small, the integrals can be approximated
by fairly crude numerical integration formulae. This completes our brief outline of the
method; full details are left to the reader.

Example 15.23. The Helmholtz equation

∆u+ λu = 0, (15.142)

governs the eigenvalues of the Laplacian, and as such forms the fundamental modes of vi-
bration of a wide variety of mechanical system, including the vibration of plates, scattering
of acoustic and electromagnetic waves, and many others.

If λ < 0, then the Helmholtz equation fits into the positive definite framework (15.137),
with p = q = 1 and r = −λ. To solve the problem by finite elements, we restrict the
minimization principle

P[u ] =

∫ ∫

Ω

(
1
2 ‖∇u ‖

2 − 1
2 λu

2 − f u
)
dx dy. (15.143)

to the finite-dimensional finite element subspace determined by a triangulation of the
underlying domain. The resulting coefficient matrix has the form

kij =

∫ ∫

Ω

(
∇ϕi · ∇ϕj −

1
2 λϕiϕj

)
dx dy

≈
∑

ν

∫ ∫

Tν

(
∇ων

i · ∇ω
ν
j − λω

ν
i ω

ν
j

)
dx dy ≡

∑

ν

kν
ij .

(15.144)

Determination of the explicit formulae for the kν
ij is left as an exercise for the reader. On

the other hand, the forcing vector b has exactly the same form (15.116) as in the Poisson
example.

Unfortunately, the most interesting cases are when λ > 0 and the boundary value
problem is not positive definite; nevertheless, the finite element approach can will still ive
quite respectable approximations to the actual solution, but is more challenging to justify
here.
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Chapter 16

Complex Analysis

The term “complex analysis” refers to the calculus of complex-valued functions f(z)
depending on a complex variable z. On the surface, it may seem that this subject should
merely be a simple reworking of standard real variable theory that you learned in first year
calculus. However, this näıve first impression could not be further from the truth! Com-
plex analysis is the culmination of a deep and far-ranging study of the fundamental notions
of complex differentiation and complex integration, and has an elegance and beauty not
found in the more familiar real arena. For instance, complex functions are always ana-

lytic, meaning that they can be represented as convergent power series. As an immediate
consequence, a complex function automatically has an infinite number of derivatives, and
difficulties with degree of smoothness, strange discontinuities, delta functions, and other
forms of pathological behavior of real functions never arise in the complex realm.

The driving force behind many applications of complex analysis is the remarkable,
profound connection between harmonic functions (solutions of the Laplace equation) of
two variables and complex functions. Namely, the real and imaginary parts of a complex
analytic function are automatically harmonic. In this manner, complex functions provide a
rich lode of new solutions to the two-dimensional Laplace equation to help solve boundary
value problems. One of the most useful practical consequences arises from the elementary
observation that the composition of two complex functions is also a complex function. We
interpret this operation as a complex changes of variables, also known as a conformal map-

ping since it preserves angles. Conformal mappings can be effectively used for constructing
solutions to the Laplace equation on complicated planar domains, and play a particularly
important role in the solution of physical problems.

Complex integration also enjoys many remarkable properties not found in its real
sibling. Integrals of complex functions are similar to the line integrals of planar multi-
variable calculus. The remarkable theorem due to Cauchy implies that complex integrals
are generally path-independent — provided one pays proper attention to the complex
singularities of the integrand. In particular, an integral of a complex function around a
closed curve can be directly evaluated through the “calculus of residues”, which effectively
bypasses the Fundamental Theorem of Calculus. Surprisingly, the method of residues can
even be applied to evaluate certain types of definite real integrals.

In this chapter, we shall introduce the basic techniques and theorems in complex
analysis, paying particular attention to those aspects which are required to solve boundary
value problems associated with the planar Laplace and Poisson equations. Complex anal-
ysis is an essential tool in a surprisingly broad range of applications, including fluid flow,
elasticity, thermostatics, electrostatics, and, in mathematics, geometry, and even number
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theory. Indeed, the most famous unsolved problem in all of mathematics, the Riemann hy-
pothesis, is a conjecture about a specific complex function that has profound consequences
for the distribution of prime numbers†.

16.1. Complex Variables.

In this section we shall develop the basics of complex analysis — the calculus of
complex functions f(z). Here z = x + i y is a single complex variable and f : Ω → C is
a complex-valued function defined on a domain z ∈ Ω ⊂ C in the complex plane. Before
diving into this material, you should first make sure you are familiar with the basics of
complex numbers, as discussed in Section 3.6.

Any complex function can be written as a complex combination

f(z) = f(x+ i y) = u(x, y) + i v(x, y), (16.1)

of two real functions u, v depending on two real variables x, y, called, respectively, its real

and imaginary parts, and written

u(x, y) = Re f(z), and v(x, y) = Im f(z). (16.2)

For example, the monomial function f(z) = z3 is written as

z3 = (x+ i y)3 = (x3 − 3xy2) + i (3x2y − y3),

and so

Re z3 = x3 − 3xy2, Im z3 = 3x2y − y3.

We can identify C with the real, two-dimensional plane R
2, so that the complex

number z = x + i y ∈ C is identified with the real vector (x, y )
T
∈ R

2. Based on this
identification, we shall employ the standard terminology of planar vector calculus, e.g.,
domain, curve, etc., without alteration; see Appendix A for details. In this manner, we
may regard a complex function as particular type of real vector field that maps

(
x
y

)
∈ Ω ⊂ R

2 to the vector v(x, y) =

(
u(x, y)
v(x, y)

)
∈ R

2. (16.3)

Not every real vector field qualifies as a complex function; the components u(x, y), v(x, y)
must satisfy certain fairly stringent requirements, which can be found in Theorem 16.3
below.

Many of the well-known functions appearing in real-variable calculus — polynomials,
rational functions, exponentials, trigonometric functions, logarithms, and many others —
have natural complex extensions. For example, complex polynomials

p(z) = an z
n + an−1 z

n−1 + · · ·+ a1 z + a0 (16.4)

† Not to mention that a solution will net you a cool $1,000,000.00. For details on how to claim
your prize, check out the web site http://www.claymath.org.
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are complex linear combinations (meaning that the coefficients ak are allowed to be complex
numbers) of the basic monomial functions zk = (x+ i y)k. Similarly, we have already made
sporadic use of complex exponentials such as

ez = ex+ i y = ex cos y + i ex sin y

for solving differential equations. Other examples will appear shortly.

There are several ways to motivate† the link between harmonic functions u(x, y),
meaning solutions of the two-dimensional Laplace equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0, (16.5)

and complex functions. One natural starting point is to return to the d’Alembert solution
(14.121) of the one-dimensional wave equation, which was based on the factorization

¤ = ∂2
t − c

2 ∂2
x = (∂t − c ∂x) (∂t + c ∂x)

of the linear wave operator (14.110). The two-dimensional Laplace operator ∆ = ∂2
x + ∂2

y

has essentially the same form, except for a “minor” change in sign‡. We cannot produce a
real factorization of the Laplace operator, but there is a complex factorization,

∆ = ∂2
x + ∂2

y = (∂x − i ∂y) (∂x + i ∂y),

into a product of two complex first order differential operators, having complex “wave
speed” c = i . Mimicking the solution formula (14.118) for the wave equation, we expect
that the solutions to the Laplace equation (16.5) should be expressed in the form

u(x, y) = f(x+ i y) + g(x− i y), (16.6)

i.e., a linear combination of functions of the complex variable z = x+ i y and its complex
conjugate z = x− i y. The functions f(x+ i y) and g(x− i y) satisfy the first order complex
partial differential equations

∂f

∂x
= − i

∂f

∂y
,

∂g

∂x
= i

∂g

∂y
, (16.7)

and hence (16.6) does indeed define a complex-valued solution to the Laplace equation.

In most applications, we are searching for a real solution to the Laplace equation, and
so our d’Alembert-type formula (16.6) is not entirely satisfactory. As we know, a complex
number z = x + i y is real if and only if it equals its own conjugate, z = z. Thus, the
solution (16.6) will be real if and only if

f(x+ i y) + g(x− i y) = u(x, y) = u(x, y) = f(x+ i y) + g(x− i y).

† A reader uninterested in the motivation can skip ahead to Proposition 16.1 at this point.

‡ However, the change in sign has serious ramifications for the analytical properties of solutions
to the two equations. As noted in Section 15.1, there is a profound difference between the elliptic
Laplace equation and the hyperbolic wave equation.
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Now, the complex conjugation operation switches x+ i y and x− i y, and so we expect the
first term f(x+ i y) to be a function of x− i y, while the second term g(x− i y) will be a
function of x+ i y. Therefore§, to equate the two sides of this equation, we should require

g(x− i y) = f(x+ i y),

and so
u(x, y) = f(x+ i y) + f(x+ i y) = 2 Re f(x+ i y).

Dropping the inessential factor of 2, we conclude that a real solution to the two-dimensional
Laplace equation can be written as the real part of a complex function. A direct proof of
the following key result will appear below.

Proposition 16.1. If f(z) is a complex function, then its real part

u(x, y) = Re f(x+ i y) (16.8)

is a harmonic function.

The imaginary part of a complex function is also harmonic. This is because

Im f(z) = Re (− i f(z))

is the real part of the complex function

− i f(z) = − i [u(x, y) + i v(x, y) ] = v(x, y)− iu(x, y).

Therefore, if f(z) is any complex function, we can write it as a complex combination

f(z) = f(x+ i y) = u(x, y) + i v(x, y),

of two real harmonic functions: u(x, y) = Re f(z) and v(x, y) = Im f(z).

Before delving into the many remarkable properties of complex functions, let us look
at some of the most basic examples. In each case, the reader can directly check that
the harmonic functions given as the real and imaginary parts of the complex function are
indeed solutions to the Laplace equation.

Examples of Complex Functions

(a) Harmonic Polynomials: The simplest examples of complex functions are polynomi-
als. Any polynomial is a complex linear combinations, as in (16.4), of the basic complex
monomials

zn = (x+ i y)n = un(x, y) + i vn(x, y). (16.9)

The real and imaginary parts of a complex polynomial are known as harmonic polynomials,
and we list the first few below. The general formula for the basic harmonic polynomials

§ We are ignoring the fact that f and g are not quite uniquely determined since one can add
and subtract a constant from them. This does not affect the argument in any significant way.
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Re z2 Re z3

Im z2 Im z3

Figure 16.1. Real and Imaginary Parts of z2 and z3.

un(x, y) and vn(x, y) is easily found by applying the binomial theorem to expand (16.9),
as in Exercise .

Harmonic Polynomials

n zn un(x, y) vn(x, y)

0 1 1 0

1 x+ i y x y

2 (x2 − y2) + 2 ixy x2 − y2 2xy

3 (x3 − 3xy2) + i (3x2y − y3) x3 − 3xy2 3x2y − y3

4 (x4 − 6x2y2 + y4) + i (4x3y − 4xy3) x4 − 6x2y2 + y4 4x3y − 4xy3

...
...

...
...

We have, in fact, already encountered these polynomial solutions to the Laplace equa-
tion. If we write

z = r e i θ, (16.10)

where

r = | z | =
√
x2 + y2, θ = ph z = tan−1 y

x
,

5/1/06 876 c© 2006 Peter J. Olver



Re
1
z Im

1
z

Figure 16.2. Real and Imaginary Parts of f(z) =
1
z .

are the usual polar coordinates (modulus and phase) of z = x + i y, then Euler’s for-
mula (3.84) yields

zn = rn e i nθ = rn cosnθ + i rn sinnθ,

and so

un = rn cosnθ, vn = rn sinnθ.

Therefore, the harmonic polynomials are just the polar coordinate separablesolutions
(15.38) to the Laplace equation. In Figure 16.1 we plot† the real and imaginary parts
of the monomials z2 and z3.

(b) Rational Functions: Ratios

f(z) =
p(z)

q(z)
(16.11)

of complex polynomials provide a large variety of harmonic functions. The simplest case
is

1

z
=

z

z z
=

z

| z |2
=

x

x2 + y2
− i

y

x2 + y2
. (16.12)

Its real and imaginary parts are graphed in Figure 16.2. Note that these functions have
an interesting singularity at the origin x = y = 0, but are harmonic everywhere else.

A slightly more complicated example is the function

f(z) =
z − 1

z + 1
. (16.13)

† Graphing a complex function f : C → C is problematic. The identification (16.3) of f with

a real vector-valued function f : R2 → R2 implies that four real dimensions are needed to display
its complete graph.
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To write out (16.13) in real form, we multiply and divide by the complex conjugate of the
denominator, leading to

f(z) =
z − 1

z + 1
=

(z − 1)(z + 1)

(z + 1)(z + 1)
=
| z |2 + z − z − 1

| z + 1 |2
=

x2 + y2 − 1

(x+ 1)2 + y2
+ i

2y

(x+ 1)2 + y2
.

(16.14)
This manipulation can always be used to find the real and imaginary parts of general
rational functions.

If we assume that the rational function (16.11) is written in lowest terms, with p and
q having no common factors, then f(z) will have a singularity, known as a pole, wherever
the denominator vanishes: q(z0) = 0. The order† of the root z0 of q(z) tells us the order

of the pole of f(z). For example, the rational function

f(z) =
z + 2

z5 + z3
=

z + 2

(z + i )(z − i )z3

has three poles: a simple (of order 1) pole at z = + i , another simple pole at z = − i and
a triple (order 3) pole at z = 0.

(c) Complex Exponentials: Euler’s formula

ez = ex cos y + i ex sin y (16.15)

for the complex exponential, cf. (3.84), yields two important harmonic functions: ex cos y
and ex sin y, which are graphed in Figure 3.8. More generally, writing out ecz for a complex
constant c = a+ i b produces the complex exponential function

ecz = eax−by cos(bx+ ay) + i eax−by sin(bx+ ay). (16.16)

Its real and imaginary parts are harmonic functions for arbitrary a, b ∈ R. Some of these
were found by applying the separation of variables method in Cartesian coordinates; see
the table in Section 15.2.

(d) Complex Trigonometric Functions: The complex trigonometric functions are de-
fined in terms of the complex exponential by adapting our earlier formulae (3.86):

cos z =
e i z + e− i z

2
= cosx cosh y − i sinx sinh y,

sin z =
e i z − e− i z

2 i
= sinx cosh y + i cosx sinh y.

(16.17)

The resulting harmonic functions are products of trigonometric and hyperbolic functions.
They can all be written as linear combinations of the harmonic functions (16.16) derived
from the complex exponential. Note that when z = x is real, so y = 0, these functions
reduce to the usual real trigonometric functions cosx and sinx.

† Recall that the order of a root z0 of a polynomial q(z) is the number of times z − z0 occurs
as a factor of q(z).
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Re (log z) = log | z | Im (log z) = ph z

Figure 16.3. Real and Imaginary Parts of log z.

(e) Complex Logarithm: In a similar fashion, the complex logarithm log z is a complex
extension of the usual real natural (i.e., base e) logarithm. In terms of polar coordinates
(16.10), the complex logarithm has the form

log z = log(r e i θ) = log r + log e i θ = log r + i θ, (16.18)

Thus, the logarithm of a complex number has real part

Re (log z) = log r = log | z | = 1
2 log(x2 + y2),

which is a well-defined harmonic function on all of R
2 except for a logarithmic singularity

at the origin x = y = 0. It is, in fact, the logarithmic potential corresponding to a delta
function forcing concentrated at the origin that played a key role in our construction of
the Green’s function for the Poisson equation in Section 15.3.

The imaginary part
Im (log z) = θ = ph z

of the complex logarithm is the phase (argument) or polar angle of z. The phase is also
not defined at the origin x = y = 0. Moreover, it is a multi-valued harmonic function
elsewhere, since it is only specified up to integer multiples of 2π. Thus, a given nonzero
complex number z 6= 0 has an infinite number of possible values for its phase, and hence an
infinite number of possible complex logarithms log z, each differing by an integer multiple
of 2π i , reflecting the fact that e2π i = 1. In particular, if z = x > 0 is real and positive,
then log z = log x agrees with the real logarithm, provided we choose the angle ph z = 0.
Alternative choices for the phase include an integer multiple of 2π i , and so ordinary real,
positive numbers x > 0 also have complex logarithms! On the other hand, if z = x < 0 is
real and negative, then log z = log |x |+ (2k + 1)π i is complex no matter which value of
ph z is chosen. (This explains why we didn’t attempt to define the logarithm of a negative
number in first year calculus!) As the point z circles around the origin in a counter-
clockwise direction, Im log z = ph z = θ increases by 2π. Thus, its graph can be likened to
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Figure 16.4. Square Roots of a Complex Number.

a parking ramp with infinitely many levels, spiraling ever upwards as one circumabulates
the origin; Figure 16.3 attempts to sketch it. For the complex logarithm, the origin is
a type of singularity known as a logarithmic branch point , indicating that there are an
infinite number of possible “branches” meaning values that can be assigned to log z at any
nonzero point.

(f ) Roots and Fractional Powers: A similar branching phenomenon occurs with the
fractional powers and roots of complex numbers. The simplest case is the square root
function

√
z. Every nonzero complex number z 6= 0 has two different possible square

roots:
√
z and −

√
z. As illustrated in Figure 16.4, the two square roots lie on opposite

sides of the origin, and are obtained by multiplying by −1. Writing z = r e i θ in polar
coordinates, we see that

√
z =
√
r e i θ =

√
r e i θ/2 =

√
r

(
cos

θ

2
+ i sin

θ

2

)
, (16.19)

i.e., we take the square root of the modulus and halve the phase:

∣∣√z
∣∣ =

√
| z | =

√
r , ph

√
z = 1

2 ph z = 1
2 θ.

Since θ = ph z is only defined up to an integer multiple of 2π, the angle 1
2 θ is only defined

up to an integer multiple of π. The even and odd multiples yield different values for
(16.19), which accounts for the two possible values of the square root. For instance, since
ph 4 i = 1

2 π or 5
2 π, we find

√
4 i = 2

√
i = ± 2 eπ i /4 = ± 2

(
cos

π i

4
+ i sin

π i

4

)
= ±

(√
2 + i

√
2
)
.

If we start at some z 6= 0 and circle once around the origin, we increase phz by 2π, but
ph
√
z only increases by π. Thus, at the end of our circuit, we arrive at the other square

root −
√
z. Circling the origin again increases ph z by a further 2π, and hence brings us

back to the original square root
√
z. Therefore, the graph of the multiply-valued square
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Figure 16.5. Real and Imaginary Parts of
√
z .

root function will look like a weirdly interconnected parking ramp with only two levels, as
shown in† Figure 16.5.

Similar remarks apply to the nth root

n
√
z = n

√
r e i θ/n = n

√
r

(
cos

θ

n
+ i sin

θ

n

)
, (16.20)

which, except for z = 0, has n possible values, depending upon which multiple of 2π is
used in the assignment of ph z = θ. The n different nth roots are obtained by multiplying
any one of them by the different nth roots of unity, ζk

n = e2 k π i /n for k = 0, . . . , n− 1, as
defined in (13.11). In this case, the origin z = 0 is called a branch point of order n since
there are n different branches for the function n

√
z. Circling around the origin a total of n

times leads to the n branches in succession, returning in the end to the original.

The preceding list of elementary examples is far from exhausting the range and va-
riety of complex functions. Lack of space will preclude us from studying the remarkable
properties of complex versions of the gamma function, Airy functions, Bessel functions,
and Legendre functions that appear in Appendix C, as well as elliptic functions, the Rie-
mann zeta function, modular functions, and many, many other important and fascinating
functions arising in complex analysis and its manifold applications; see [173, 184].

16.2. Complex Differentiation.

The bedrock of complex function theory is the notion of the complex derivative. Com-
plex differentiation is defined in the same manner as the usual calculus limit definition of

† These graphs are best appreciated in an interactive three-dimensional graphics viewer.
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z z + h

z + i k

Figure 16.6. Complex Derivative Directions.

the derivative of a real function. Yet, despite a superficial similarity, complex differenti-
ation is profoundly different, and displays an elegance and depth not shared by its real
progenitor.

Definition 16.2. A complex function f(z) is differentiable at a point z ∈ C if and
only if the limiting difference quotient exists:

f ′(z) = lim
w → z

f(w)− f(z)

w − z
. (16.21)

The key feature of this definition is that the limiting value f ′(z) of the difference
quotient must be independent of how w converges to z. On the real line, there are only
two directions to approach a limiting point — either from the left or from the right. These
lead to the concepts of left and right handed derivatives and their equality is required for
the existence of the usual derivative of a real function. In the complex plane, there are
an infinite variety of directions to approach the point z, and the definition requires that
all of these “directional derivatives” must agree. This is the reason for the more severe
restrictions on complex derivatives, and, in consequence, the source of their remarkable
properties.

Let us first see what happens when we approach z along the two simplest directions
— horizontal and vertical. If we set

w = z + h = (x+ h) + i y, where h is real,

then w → z along a horizontal line as h→ 0, as sketched in Figure 16.6. If we write out

f(z) = u(x, y) + i v(x, y)

in terms of its real and imaginary parts, then we must have

f ′(z) = lim
h→ 0

f(z + h)− f(z)

h
= lim

h→ 0

f(x+ h+ i y)− f(x+ i y)

h

= lim
h→ 0

[
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

]
=
∂u

∂x
+ i

∂v

∂x
=
∂f

∂x
,
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which follows from the usual definition of the (real) partial derivative. On the other hand,
if we set

w = z + i k = x+ i (y + k), where k is real,

then w → z along a vertical line as k → 0. Therefore, we must also have

f ′(z) = lim
k → 0

f(z + i k)− f(z)

i k
= lim

k → 0

[
− i

f(x+ i (y + k))− f(x+ i y)

k

]

= lim
h→ 0

[
v(x, y + k)− v(x, y)

k
− i

u(x, y + k)− u(x, y)

k

]
=
∂v

∂y
− i

∂u

∂y
= − i

∂f

∂y
.

When we equate the real and imaginary parts of these two distinct formulae for the complex
derivative f ′(z), we discover that the real and imaginary components of f(z) must satisfy a
certain homogeneous linear system of partial differential equations, named after Augustin–
Louis Cauchy and Bernhard Riemann†, two of the principal founders of modern complex
analysis.

Theorem 16.3. A function f(z) = u(x, y) + i v(x, y), where z = x + i y, has a

complex derivative f ′(z) if and only if its real and imaginary parts are continuously differ-

entiable and satisfy the Cauchy–Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −

∂v

∂x
. (16.22)

In this case, the complex derivative of f(z) is equal to any of the following expressions:

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= − i

∂f

∂y
=
∂v

∂y
− i

∂u

∂y
. (16.23)

The proof of the converse — that any function whose real and imaginary components
satisfy the Cauchy–Riemann equations is differentiable — will be omitted, but can be
found in any basic text on complex analysis, e.g., [4, 154].

Remark : It is worth pointing out that equation (16.23) tells us that f satisfies ∂f/∂x =
− i ∂f/∂y, which, reassuringly, agrees with the first equation in (16.7).

Example 16.4. Consider the elementary function

z3 = (x3 − 3xy2) + i (3x2y − y3).

Its real part u = x3−3xy2 and imaginary part v = 3x2y−y3 satisfy the Cauchy–Riemann
equations (16.22), since

∂u

∂x
= 3x2 − 3y2 =

∂v

∂y
,

∂u

∂y
= −6xy = −

∂v

∂x
.

† In addition to his contributions to complex analysis, partial differential equations and number
theory, Bernhard Riemann also was the inventor of Riemannian geometry, which turned out to
be absolutely essential for Einstein’s theory of general relativity some 70 years later!
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Theorem 16.3 implies that f(z) = z3 is complex differentiable. Not surprisingly, its deriva-
tive turns out to be

f ′(z) = 3z2 = (3x2 − 3y2) + i (6xy) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
.

Fortunately, the complex derivative obeys all of the usual rules that you learned in
real-variable calculus. For example,

d

dz
zn = n zn−1,

d

dz
ecz = c ecz,

d

dz
log z =

1

z
, (16.24)

and so on. The power n can even be non-integral or, in view of the identity zn = en log z,
complex, while c is any complex constant. The exponential formulae (16.17) for the com-
plex trigonometric functions implies that they also satisfy the standard rules

d

dz
cos z = − sin z,

d

dz
sin z = cos z. (16.25)

The formulae for differentiating sums, products, ratios, inverses, and compositions of com-
plex functions are all identical to their real counterparts. Thus, thankfully, you don’t need
to learn any new rules for performing complex differentiation!

Remark : There are many examples of seemingly reasonable functions which do not

have a complex derivative. The simplest is the complex conjugate function

f(z) = z = x− i y.

Its real and imaginary parts do not satisfy the Cauchy–Riemann equations, and hence z
does not have a complex derivative. More generally, any function f(x, y) = h(z, z) that
explicitly depends on the complex conjugate variable z is not complex-differentiable.

Power Series and Analyticity

The most remarkable feature of complex analysis, which distinguishes it from real
function theory, is that the existence of one complex derivative automatically implies the
existence of infinitely many! All complex functions f(z) are infinitely differentiable and, in
fact, analytic where defined. The reason for this surprising and profound fact will, however,
not become evident until we learn the basics of complex integration in Section 16.5. In
this section, we shall take analyticity as a given, and investigate some of its principal
consequences.

Definition 16.5. A complex function f(z) is called analytic at a point z0 if it has a
power series expansion

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · · =
∞∑

n=0

an (z − z0)
n , (16.26)

which converges for all z sufficiently close to z0.
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Typically, the standard ratio or root tests for convergence of (real) series that you
learned in ordinary calculus, [9, 165], can be applied to determine where a given (complex)
power series converges. We note that if f(z) and g(z) are analytic at a point z0, so is their
sum f(z) + g(z), product f(z) g(z) and, provided g(z0) 6= 0, ratio f(z)/g(z).

Example 16.6. All of the real power series found in elementary calculus carry over
to the complex versions of the functions. For example,

ez = 1 + z + 1
2 z

2 + 1
6 z

3 + · · · =

∞∑

n=0

zn

n!
(16.27)

is the Taylor series for the exponential function based at z0 = 0. A simple application
of the ratio test proves that the series converges for all z. On the other hand, the power
series

1

z2 + 1
= 1− z2 + z4 − z6 + · · · =

∞∑

k=0

(−1)k z2k , (16.28)

converges inside the unit disk, where | z | < 1, and diverges outside, where | z | > 1. Again,
convergence is established through the ratio test. The ratio test is inconclusive when
| z | = 1, and we shall leave the more delicate question of precisely where on the unit disk
this complex series converges to a more advanced treatment, e.g., [4].

In general, there are three possible options for the domain of convergence of a complex
power series (16.26):

(a) The series converges for all z.

(b) The series converges inside a disk | z − z0 | < ρ of radius ρ > 0 centered at z0 and
diverges for all | z − z0 | > ρ outside the disk. The series may converge at some
(but not all) of the points on the boundary of the disk where | z − z0 | = ρ.

(c) The series only converges, trivially, at z = z0.

The number ρ is known as the radius of convergence of the series. In case (a), we say
ρ =∞, while in case (c), ρ = 0, and the series does not represent an analytic function. An
example with ρ = 0 is the power series

∑
n! zn. In the intermediate case (b), determining

precisely where on the boundary of the convergence disk the power series converges is quite
delicate, and will not be pursued here. The proof of this result can be found in Exercise
; see also [4, 93] for further details.

Remarkably, the radius of convergence for the power series of a known analytic function
f(z) can be determined by inspection, without recourse to any fancy convergence tests!
Namely, ρ is equal to the distance from z0 to the nearest singularity of f(z), meaning a
point where the function fails to be analytic. This explains why the Taylor series of ez

converges everywhere, while that of (z2 + 1)−1 only converges inside the unit disk. Indeed
ez is analytic for all z and has no singularities; therefore the radius of convergence of its
power series — centered at any point z0 — is equal to ρ = ∞. On the other hand, the
function

f(z) =
1

z2 + 1
=

1

(z + i )(z − i )
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has singularities (poles) at z = ± i , and so the series (16.28) has radius of convergence
ρ = 1, which is the distance from z0 = 0 to the singularities. Thus, the extension of the
theory of power series to the complex plane serves to explain the apparent mystery of
why, as a real function, (1 + x2)−1 is well-defined and analytic for all real x, but its power
series only converges on the interval (−1, 1). It is the complex singularities that prevent
its convergence when |x | > 1. If we expand (z2 + 1)−1 in a power series at some other
point, say z0 = 1+2 i , then we need to determine which singularity is closest. We compute
| i − z0 | = | −1− i | =

√
2, while | − i − z0 | = | −1− 3 i | =

√
10, and so the radius of

convergence ρ =
√

2 is the smaller. Thus we can determine the radius of convergence
without any explicit formula for its (rather complicated) Taylor expansion at z0 = 1 + 2 i .

There are, in fact, only three possible types of singularities of a complex function f(z):

(i) Pole. A singular point z = z0 is called a pole of order n > 0 if and only if the function

h(z) = (z − z0)
n f(z) (16.29)

is analytic and nonzero, h(z0) 6= 0, at z = z0. The simplest example of such a
function is f(z) = a (z − z0)

−n for a 6= 0 a complex constant. and

(ii) Branch point . We have already encountered the two basic types: algebraic branch

points, such as the function n
√
z at z0 = 0, and logarithmic branch points such as

log z at z0 = 0. The degree of the branch point is n in the first case and ∞ in the
second.

(iii) Essential singularity . By definition, a singularity is essential if it is not a pole or a
branch point. The simplest example is the essential singularity at z0 = 0 of the
function e1/z. Details are left as an Exercise .

Example 16.7. For example, the function

f(z) =
ez

z3 − z2 − 5z − 3

has a simple (order 1) pole at z = 3 and a double (order 2) pole at z = −1. Indeed,
factorizing the denominator z3 − z2 − 5z − 3 = (z + 1)2(z − 3), we see that the functions

h1(z) = (z − 3) f(z) =
ez

(z + 1)2
, h2(z) = (z + 1)2 f(z) =

ez

z − 3
,

are analytic and non-zero at, respectively, z = 3 and z = −1.

A complicated complex function can have a variety of singularities. For example, the
function

f(z) =
3
√
z + 2 e−1/z

z2 + 1
(16.30)

has simple poles at z = ± i , a branch point of degree 3 at z = −2, and an essential
singularity at z = 0.

As in the real case, and unlike Fourier series, convergent power series can always be
repeatedly term-wise differentiated. Therefore, given the convergent series (16.26), we have
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ρ

z0

Ω

Figure 16.7. Radius of Convergence.

the corresponding series

f ′(z) = a1 + 2a2(z − z0) + 3a3(z − z0)
2 + 4a4(z − z0)

3 + · · · =
∞∑

n=0

(n+ 1)an+1(z − z0)
n,

f ′′(z) = 2a2 + 6a3(z − z0) + 12a4(z − z0)
2 + 20a5(z − z0)

3 + · · ·

=
∞∑

n=0

(n+ 1)(n+ 2)an+2(z − z0)
n, (16.31)

and so on, for its derivatives. The proof that the differentiated series have the same
radius of convergence can be found in [4, 154]. As a consequence, we deduce the following
important result.

Theorem 16.8. Any analytic function is infinitely differentiable.

In particular, when we substitute z = z0 into the successively differentiated series, we
discover that

a0 = f(z0), a1 = f ′(z0), a2 = 1
2 f

′′(z0),

and, in general,

an =
f (n)(z)

n!
. (16.32)

Therefore, a convergent power series (16.26) is, inevitably, the usual Taylor series

f(z) =

∞∑

n=0

f (n)(z0)

n!
(z − z0)

n , (16.33)

for the function f(z) at the point z0.

Let us conclude this section by summarizing the fundamental theorem that character-
izes complex functions. A complete, rigorous proof relies on complex integration theory,
which is the topic of Section 16.5.
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Theorem 16.9. Let Ω ⊂ C be an open set. The following properties are equivalent:

(a) The function f(z) has a continuous complex derivative f ′(z) for all z ∈ Ω.

(b) The real and imaginary parts of f(z) have continuous partial derivatives and satisfy

the Cauchy–Riemann equations (16.22) in Ω.

(c) The function f(z) is analytic for all z ∈ Ω, and so is infinitely differentiable and has a

convergent power series expansion at each point z0 ∈ Ω. The radius of convergence

ρ is at least as large as the distance from z0 to the boundary ∂Ω; see Figure 16.7.

From now on, we reserve the term complex function to signifiy one that satisfies the
conditions of Theorem 16.9. Sometimes one of the equivalent adjectives “analytic” or
“holomorphic”, is added for emphasis. From now on, all complex functions are assumed to
be analytic everywhere on their domain of definition, except, possibly, at certain isolated
singularities.

Remark : Since an analytic function is uniquely prescribed by its power series at a
point, two analytic function which are the same on any common open set (e.g., a small
disk) in their domain of definition must agree everywhere in the connected component of
the intersection of their domains. However, they may not agree elsewhere. Analytic
continuation.

16.3. Harmonic Functions.

We began this section by motivating the analysis of complex functions through appli-
cations to the solution of the two-dimensional Laplace equation. Let us now formalize the
precise relationship between the two subjects.

Theorem 16.10. If f(z) = u(x, y) + i v(x, y) is any complex analytic function, then

its real and imaginary parts, u(x, y), v(x, y), are both harmonic functions.

Proof : Differentiating† the Cauchy–Riemann equations (16.22), and invoking the
equality of mixed partial derivatives, we find that

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x ∂y
=

∂

∂y

(
∂v

∂x

)
=

∂

∂y

(
−
∂u

∂y

)
= −

∂2u

∂y2
.

Therefore, u is a solution to the Laplace equation uxx + uyy = 0. The proof for v is
similar. Q.E.D.

Thus, every complex function gives rise to two harmonic functions. It is, of course, of
interest to know whether we can invert this procedure. Given a harmonic function u(x, y),
does there exist a harmonic function v(x, y) such that f = u + i v is a complex analytic
function? If so, the harmonic function v(x, y) is known as a harmonic conjugate to u. The
harmonic conjugate is found by solving the Cauchy–Riemann equations

∂v

∂x
= −

∂u

∂y
,

∂v

∂y
=
∂u

∂x
, (16.34)

† Theorem 16.9 allows us to differentiate u and v as often as desired.
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which, for a prescribed function u(x, y), constitutes an inhomogeneous linear system of
partial differential equations for v(x, y). As such, it is usually not hard to solve, as the
following example illustrates.

Example 16.11. As the reader can verify, the harmonic polynomial

u(x, y) = x3 − 3x2y − 3xy2 + y3

satisfies the Laplace equation everywhere. To find a harmonic conjugate, we solve the
Cauchy–Riemann equations (16.34). First of all,

∂v

∂x
= −

∂u

∂y
= 3x2 + 6xy − 3y2,

and hence, by direct integration with respect to x,

v(x, y) = x3 + 3x2y − 3xy2 + h(y),

where h(y) — the “constant of integration” — is a function of y alone. To determine h we
substitute our formula into the second Cauchy–Riemann equation:

3x2 − 6xy + h′(y) =
∂v

∂y
=
∂u

∂x
= 3x2 − 6xy − 3y2.

Therefore, h′(y) = −3y2, and so h(y) = −y3 + c, where c is a real constant. We conclude
that every harmonic conjugate to u(x, y) has the form

v(x, y) = x3 + 3x2y − 3xy2 − y3 + c.

Note that the corresponding complex function

u(x, y) + i v(x, y) = (x3 − 3x2y − 3xy2 + y3) + i (x3 + 3x2y − 3xy2 − y3 + c)

= (1− i )z3 + c

turns out to be a complex cubic polynomial.

Remark : On a connected domain, all harmonic conjugates to a given function u(x, y)
only differ by a constant: ṽ(x, y) = v(x, y) + c; see Exercise .

Although most harmonic functions have harmonic conjugates, unfortunately this is
not always the case. Interestingly, the existence or non-existence of a harmonic conjugate
can depend on the underlying geometry of the domain of definition of the function. If the
domain is simply-connected, and so contains no holes, then one can always find a harmonic
conjugate. Otherwise, if the domain of definition Ω of our harmonic function u(x, y) is not
simply-connected, then there may not exist a single-valued harmonic conjugate v(x, y) to
serve as the imaginary part of a complex function f(z).

Example 16.12. The simplest example where the latter possibility occurs is the
logarithmic potential

u(x, y) = log r = 1
2 log(x2 + y2).
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This function is harmonic on the non-simply-connected domain Ω = C \ {0}, but it is
not the real part of any single-valued complex function. Indeed, according to (16.18), the
logarithmic potential is the real part of the multiply-valued complex logarithm log z, and
so its harmonic conjugate† is ph z = θ, which cannot be consistently and continuously
defined on all of Ω. On the other hand, restricting z to a simply connected subdomain
Ω̃ 63 0 allows us to select a continuous, single-valued branch of the angle θ = ph z, and so
log r does have a genuine harmonic conjugate on Ω̃.

The harmonic function

u(x, y) =
x

x2 + y2

is also defined on the same non-simply-connected domain Ω = C \ {0} with a singularity
at x = y = 0. In this case, there is a single valued harmonic conjugate, namely

v(x, y) = −
y

x2 + y2
,

which is defined on all of Ω. Indeed, according to (16.12), these functions define the real
and imaginary parts of the complex function u+ i v = 1/z. Alternatively, one can directly
check that they satisfy the Cauchy–Riemann equations (16.22).

Remark : On the “punctured” plane Ω = C \ {0}, the logarithmic potential is, in a
sense, the only counterexample that prevents a harmonic conjugate from being constructed.
It can be shown, [XC], that if u(x, y) is a harmonic function defined on a punctured
disk ΩR =

{
0 < | z | < R

}
, where 0 < R ≤ ∞, then there exists a constant c such

that ũ(x, y) = u(x, y) − c log r is also harmonic and possess a single-valued harmonic

conjugate ṽ(x, y). As a result, the function f̃ = ũ + i ṽ is analytic on all of ΩR, and
so our original function u(x, y) is the real part of the multiply-valued analytic function

f(z) = f̃(z) + c log z. We shall use this fact in our later analysis of airfoils.

Theorem 16.13. Every harmonic function u(x, y) defined on a simply-connected

domain Ω is the real part of a complex valued function f(z) = u(x, y) + i v(x, y) which is

defined for all z = x+ i y ∈ Ω.

Proof : We first rewrite the Cauchy–Riemann equations (16.34) in vectorial form as
an equation for the gradient of v:

∇v = ∇⊥u, where ∇⊥u =

(
−uy

ux

)
(16.35)

is the vector field that is everywhere orthogonal to the gradient of u and of the same length:

∇u · ∇⊥u = 0, ‖∇⊥u ‖ = ‖∇u ‖.

† We can, by a previous remark, add in any constant to the harmonic conjugate, but this does
not affect the subsequent argument.
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These properties along with the right hand rule serve to uniquely characterize ∇u⊥. Thus,
the gradient of a harmonic function and that of its harmonic conjugate are mutually
orthogonal vector fields having the same Euclidean lengths:

∇u · ∇v ≡ 0, |‖∇u ‖| ≡ ‖∇v ‖. (16.36)

Now, according to Theorem A.8, provided we work on a simply-connected domain,
the gradient equation

∇v = f =

(
f1
f2

)

has a solution if and only if the vector field f satisfies the curl-free constraint

∇∧ f =
∂f2
∂x
−
∂f1
∂y
≡ 0.

In our specific case, the curl of the perpendicular vector field ∇u⊥ coincides with the
divergence of ∇u, which, in turn, coincides with the Laplacian:

∇∧∇u⊥ = ∇ · ∇u = ∆u = 0, i.e.,
∂

∂x

(
∂u

∂x

)
−

∂

∂y

(
−
∂u

∂y

)
=
∂2u

∂x2
+
∂2u

∂y2
= 0.

The result is zero because we are assuming that u is harmonic. Equation (A.41) permits us
to reconstruct the harmonic conjugate v(x, y) from its gradient ∇v through line integration

v(x, y) =

∫

C

∇v · dx =

∫

C

∇u⊥ · dx =

∫

C

∇u · n ds, (16.37)

where C is any curve connecting a fixed point (x0, y0) to (x, y). Therefore, the har-
monic conjugate to a given potential function u can be obtained by evaluating its (path-
independent) flux integral (16.37). Q.E.D.

Remark : As a consequence of (16.23) and the Cauchy–Riemann equations (16.34),

f ′(z) =
∂u

∂x
− i

∂u

∂y
=
∂v

∂y
+ i

∂v

∂x
. (16.38)

Thus, the individual components of the gradients ∇u and ∇v appear as the real and
imaginary parts of the complex derivative f ′(z).

The orthogonality (16.35) of the gradient of a function and of its harmonic conjugate
has the following important geometric consequence. Recall, Theorem A.14, that the gradi-
ent ∇u of a function u(x, y) points in the normal direction to its level curves, that is, the
sets {u(x, y) = c} where it assumes a fixed constant value. Since ∇v is orthogonal to ∇u,
this must mean that ∇v is tangent to the level curves of u. Vice versa, ∇v is normal to its
level curves, and so ∇u is tangent to the level curves of its harmonic conjugate v. Since
their tangent directions ∇u and ∇v are orthogonal, the level curves of the real and imagi-
nary parts of a complex function form a mutually orthogonal system of plane curves — but
with one key exception. If we are at a critical point , where ∇u = 0, then ∇v = ∇u⊥ = 0,
and the vectors do not define tangent directions. Therefore, the orthogonality of the level
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Figure 16.8. Level Curves of the Real and Imaginary Parts of z2 and z3.

curves does not necessarily hold at critical points. It is worth pointing out that, in view of
(16.38), the critical points of u are the same as those of v and also the same as the critical
points of the corresponding complex function f(z), i.e., those points where its complex
derivative vanishes: f ′(z) = 0.

In Figure 16.8, we illustrate the preceding discussion by plotting the level curves of
the real and imaginary parts of the monomials z2 and z3. Note that, except at the origin,
where the derivative vanishes, the level curves intersect everywhere at right angles.

Applications to Fluid Mechanics

Consider a planar† steady state fluid flow, with velocity vector field

v(x) =

(
u(x, y)
v(x, y)

)
at the point x = (x, y) ∈ Ω.

Here Ω ⊂ R
2 is the domain occupied by the fluid, while the vector v(x) represents the

instantaneous velocity of the fluid at the point x. Recall that the flow is incompressible if
and only if it has vanishing divergence:

∇ · v =
∂u

∂x
+
∂v

∂y
= 0. (16.39)

Incompressibility means that the fluid volume does not change as it flows. Most liquids,
including water, are, for all practical purposes, incompressible. On the other hand, the
flow is irrotational if and only if it has vanishing curl:

∇∧ v =
∂v

∂x
−
∂u

∂y
= 0. (16.40)

† See the remarks in Appendix A on the interpretation of a planar fluid flow as the cross-section
of a fully three-dimensional fluid motion that does not depend upon the vertical coordinate.
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Irrotational flows has no vorticity or circulation and model fluids in non-turbulent condi-
tions. In many physical situations, the flow of liquids (and, although less often, gases) is
both incompressible and irrotational, which for short, is designated an ideal fluid flow .

The two constraints (16.39–40) are almost identical to the Cauchy–Riemann equations
(16.22)! The only difference is the change in sign in front of the derivatives of v, but this
can be easily remedied by replacing v by its negative −v. As a result, we deduce a profound
connection between ideal planar fluid flows and complex functions.

Theorem 16.14. The vector field v = (u(x, y), v(x, y) )
T

is the velocity vector of

an ideal fluid flow if and only if

f(z) = u(x, y)− i v(x, y) (16.41)

is a complex analytic function of z = x+ i y.

Thus, the components u(x, y) and −v(x, y) of the velocity vector field for an ideal fluid
are harmonic conjugates. The complex function (16.41) is known as the complex velocity

of the fluid flow. When applying this result, do not forget the minus sign that appears in
front of the imaginary part of f(z).

As discussed in Example A.7, the fluid particles will follow the trajectories z(t) =
x(t) + i y(t) obtained by integrating the differential equations

dx

dt
= u(x, y),

dy

dt
= v(x, y). (16.42)

In view of the representation (16.41), we can rewrite the system in complex form

dz

dt
= f(z) . (16.43)

In fluid mechanics, the curves† parametrized by z(t) are known as the streamlines. Each
fluid particle’s motion z(t) is uniquely prescribed by its position z(t0) = z0 = x0+ i y0 at an
initial time t0. In particular, if the complex velocity vanishes, f(z0) = 0, then the solution
z(t) ≡ z0 to (16.43) is constant, and hence z0 is a stagnation point of the flow. Our steady
state assumption, which is reflected in the fact that the ordinary differential equations
(16.42) are autonomous, i.e., there is no explicit t dependence, means that, although the
fluid is in motion, the stream lines and stagnation point do not change over time. This is
a consequence of the standard existence and uniqueness theorems for solutions to ordinary
differential equations, to be discussed in detail in Chapter 20.

Example 16.15. The simplest example is when the velocity is constant, correspond-
ing to a uniform, steady flow. Consider first the case

f(z) = 1,

† See below for more details on complex curves.
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f(z) = 1 f(z) = 4 + 3 i f(z) = z

Figure 16.9. Complex Fluid Flows.

which corresponds to the horizontal velocity vector field v = ( 1, 0 )
T
. The actual fluid flow

is found by integrating the system

¦

z = 1, or
¦

x = 1,
¦

y = 0.

Thus, the solution z(t) = t+z0 represents a uniform horizontal fluid motion whose stream-
lines are straight lines parallel to the real axis; see Figure 16.9.

Consider next a more general constant velocity

f(z) = c = a+ i b.

The fluid particles will solve the ordinary differential equation

¦

z = c = a− i b, so that z(t) = c t+ z0.

The streamlines remain parallel straight lines, but now at an angle θ = ph c = −ph c with
the horizontal. The fluid particles move along the streamlines at constant speed | c | = | c |.

The next simplest complex velocity function is

f(z) = z = x+ i y. (16.44)

The corresponding fluid flow is found by integrating the system

¦

z = z, or, in real form,
¦

x = x,
¦

y = − y.

The origin x = y = 0 is a stagnation point. The trajectories of the nonstationary solutions

z(t) = x0 e
t + i y0 e

−t (16.45)

are the hyperbolas xy = c, and the positive and negative coordinate semi-axes, as illus-
trated in Figure 16.9.

On the other hand, if we choose

f(z) = − i z = y − ix,

then the flow is the solution to

¦

z = i z, or, in real form,
¦

x = y,
¦

y = x.
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Figure 16.10. Flow Inside a Corner.

The solutions

z(t) = (x0 cosh t+ y0 sinh t) + i (x0 sinh t+ y0 cosh t),

move along the hyperbolas (and rays) x2−y2 = c2. Observe that this flow can be obtained
by rotating the preceding example by 45◦.

In general, a solid object in a fluid flow is characterized by the no-flux condition that
the fluid velocity v is everywhere tangent to the boundary, and hence no fluid flows into
or out of the object. As a result, the boundary will consist of streamlines and stagnation
points of the idealized fluid flow. For example, the boundary of the upper right quadrant
Q = {x > 0, y > 0} ⊂ C consists of the positive x and y axes (along with the origin).
Since these are streamlines of the flow with complex velocity (16.44), its restriction to Q
represents the flow past a 90◦ interior corner, which appears in Figure 16.10. The fluid
particles move along hyperbolas as they flow past the corner.

Remark : We could also restrict this flow to the domain Ω = C \ {x < 0, y < 0}
consisting of three quadrants, corresponding to a 90◦ exterior corner. However, this flow is
not as physically relevant since it has an unrealistic asymptotic behavior at large distances.
See Exercise for the “correct” physical flow around an exterior corner.

Now, suppose that the complex velocity f(z) admits a complex anti-derivative, i.e., a
complex analytic function

χ(z) = ϕ(x, y) + iψ(x, y) that satisfies
dχ

dz
= f(z). (16.46)

Using the formula (16.23) for the complex derivative,

dχ

dz
=
∂ϕ

∂x
− i

∂ϕ

∂y
= u− i v, so

∂ϕ

∂x
= u,

∂ϕ

∂y
= v.
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Thus, ∇ϕ = v, and hence the real part ϕ(x, y) of the complex function χ(z) defines a
velocity potential for the fluid flow. For this reason, the anti-derivative χ(z) is known as a
complex potential function for the given fluid velocity field.

Since the complex potential is analytic, its real part — the potential function — is
harmonic, and therefore satisfies the Laplace equation ∆ϕ = 0. Conversely, any harmonic
function can be viewed as the potential function for some fluid flow. The real fluid velocity
is its gradient v = ∇ϕ. The harmonic conjugate ψ(x, y) to the velocity potential also plays
an important role, and, in fluid mechanics, is known as the stream function. It also satisfies
the Laplace equation ∆ψ = 0, and the potential and stream function are related by the
Cauchy–Riemann equations (16.22). Thus, the potential and stream function satisfy

∂ϕ

∂x
= u =

∂ψ

∂y
,

∂ϕ

∂y
= v = −

∂ψ

∂x
. (16.47)

The level sets of the velocity potential, {ϕ(x, y) = c} where c ∈ R is fixed, are known
as equipotential curves. The velocity vector v = ∇ϕ points in the normal direction to the
equipotentials. On the other hand, as we noted above, v = ∇ϕ is tangent to the level
curves {ψ(x, y) = d} of its harmonic conjugate stream function. But v is the velocity
field, and so tangent to the streamlines followed by the fluid particles. Thus, these two
systems of curves must coincide, and we infer that the level curves of the stream function

are the streamlines of the flow , whence its name! Summarizing, for an ideal fluid flow,
the equipotentials {ϕ = c} and streamlines {ψ = d} form mutually orthogonal systems
of plane curves. The fluid velocity v = ∇ϕ is tangent to the stream lines and normal
to the equipotentials, whereas the gradient of the stream function ∇ψ is tangent to the
equipotentials and normal to the streamlines.

The discussion in the preceding paragraph implicitly relied on the fact that the velocity
is nonzero, v = ∇ϕ 6= 0, which means we are not at a stagnation point , where the fluid
is not moving. While streamlines and equipotentials might begin or end at a stagnation
point, there is no guarantee, and, indeed, in general it is not the case that they meet at
mutually orthogonal directions there.

Example 16.16. The simplest example of a complex potential function is

χ(z) = z = x+ i y.

Thus, the velocity potential is ϕ(x, y) = x, while its harmonic conjugate stream function
is ψ(x, y) = y. The complex derivative of the potential is the complex velocity,

f(z) =
dχ

dz
= 1,

which corresponds to the uniform horizontal fluid motion considered first in Example 16.15.
Note that the horizontal stream lines coincide with the level sets {y = d} of the stream
function, whereas the equipotentials {x = c} are the orthogonal system of vertical lines;
see Figure 16.11.

Next, consider the complex potential function

χ(z) = 1
2 z

2 = 1
2 (x2 − y2) + ixy.
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Figure 16.11. Equipotentials and Streamlines for χ(z) = z.

Figure 16.12. Equipotentials and Streamlines for χ(z) = 1
2 z

2.

The associated complex velocity

f(z) = χ′(z) = z = x+ i y

leads to the hyperbolic flow (16.45). The hyperbolic streamlines xy = d are the level
curves of the stream function ψ(x, y) = xy. The equipotential lines 1

2 (x2− y2) = c form a
system of orthogonal hyperbolas. Figure 16.12 shows (some of) the equipotentials in the
first plot, the stream lines in the second, and combines them together in the third picture.

Example 16.17. Flow Around a Disk . Consider the complex potential function

χ(z) = z +
1

z
=

(
x+

x

x2 + y2

)
+ i

(
y −

y

x2 + y2

)
. (16.48)

The corresponding complex fluid velocity is

f(z) =
dχ

dz
= 1−

1

z2
= 1−

x2 − y2

(x2 + y2)2
+ i

2xy

(x2 + y2)2
. (16.49)

The equipotential curves and streamlines are plotted in Figure 16.13. The points z = ± 1
are stagnation points of the flow, while z = 0 is a singularity. In particular, fluid particles
that move along the positive x axis approach the leading stagnation point z = 1 as t→∞.
Note that the streamlines

ψ(x, y) = y −
y

x2 + y2
= d

are asymptotically horizontal at large distances, and hence, far away from the origin, the
flow is indistinguishable from uniform horizontal motion with complex velocity f(z) ≡ 1.
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Figure 16.13. Equipotentials and Streamlines for z +
1

z
.

The level curve for the particular value d = 0 consists of the unit circle | z | = 1 and
the real axis y = 0. In particular, the unit circle | z | = 1 consists of semicircular two
stream lines and the two stagnation points. The flow velocity vector field v = ∇ϕ is
everywhere tangent to the unit circle, and hence satisfies the no flux condition along the
boundary of the unit disk. Thus, we can interpret (16.49), when restricted to the domain
Ω =

{
| z | > 1

}
, as the complex velocity of a uniformly moving fluid around the outside of

a solid circular disk of radius 1. In three dimensions, this would correspond to the steady
flow of a fluid around a solid cylinder; see Figure fcyl .

In this section, we have focused on the fluid mechanical roles of a harmonic function
and its conjugate. An analogous interpretation applies when ϕ(x, y) represents an elec-
tromagnetic potential function; the level curves of its harmonic conjugate ψ(x, y) are the
paths followed by charged particles under the electromotive force field v = ∇ϕ. Similarly,
if ϕ(x, y) represents the equilibrium temperature distribution in a planar domain, its level
lines represent the isotherms or curves of constant temperature, while the level lines of its
harmonic conjugate are the curves of heat flow, whose mutual orthogonality was already
noted in Appendix A. Finally, if ϕ(x, y) represents the height of a deformed membrane,
then its level curves are the contour lines of elevation. The level curves of its harmonic
conjugate are the curves of steepest descent along the membrane, i.e., the routes followed
by, say, water flowing down the membrane.

16.4. Conformal Mapping.

As we now know, complex functions provide an almost inexhaustible supply of har-
monic functions, i.e., solutions to the Laplace equation. Thus, to solve a boundary value
problem for Laplace’s equation we “merely” need to find the complex function whose real
part matches the prescribed boundary conditions. Unfortunately, even for relatively simple
domains, this remains a daunting task.

The one case where we do have an explicit solution is that of a circular disk, where the
Poisson integral formula (15.48) provides a complete solution to the Dirichlet boundary
value problem. (See Exercise for the Neumann problem.) Thus, one evident strategy
for solving the corresponding boundary value problem on a more complicated domain is
to convert it into the solved case by an inspired change of variables.

The intimate connections between complex analysis and solutions to the Laplace equa-
tion inspires us to look at changes of variables defined by complex functions. Thus, we
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Figure 16.14. Mapping to the Unit Disk.

will now interpret a complex analytic function

ζ = g(z) or ξ + i η = p(x, y) + i q(x, y) (16.50)

as a mapping that takes a point z = x + i y belonging to a prescribed domain Ω ⊂ C to
a point ζ = ξ + i η belonging to the image domain D = g(Ω) ⊂ C, as in Figure 16.14.
In many cases, D is the unit disk, but may be something else in more general examples.
In order unambigouously relate functions on Ω to functions on D, we require that the
analytic mapping (16.50) be one-to-one so that each point ζ ∈ D comes from a unique
point z ∈ Ω. As a result, the inverse function z = g−1(ζ) is a well-defined map from D
back to Ω, which we assume is also analytic on all of D. The calculus formula for the
derivative of the inverse function

d

dζ
g−1(ζ) =

1

g′(z)
at ζ = g(z), (16.51)

which remains valid for complex functions, implies that the derivative of g(z) must be
nonzero everywhere in order that g−1(ζ) be differentiable. This condition,

g′(z) 6= 0 at every point z ∈ Ω, (16.52)

will play a crucial role in the development of the method. Finally, ijn order to match
the boundary conditions, we will assume that the mapping extends continuously to the
boundary ∂Ω and maps it to the boundary ∂D of the image domain.

Before trying to apply this idea to solve boundary value problems for the Laplace
equation, we introduce some of the most important examples of analytic mappings.

Example 16.18. The simplest nontrivial analytic maps are the translations

ζ = z + c = (x+ a) + i (y + b), (16.53)

where c = a + i b is a fixed cokmplex constant. The effect of (16.53) is to translate the

entire complex plane in the direction given by the vector ( a, b )
T
, a special case of (7.31).

In particular, it maps a disk Ω = {| z + c | < 1} of radius 1 and center at −c to the unit
disk D = {| ζ | < 1}.

There are two types of linear analytic transformations. First are the scaling maps

ζ = ρ z = ρ x+ i ρ y, (16.54)
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where ρ 6= 0 is a fixed nonzero real number. These map the disk | z | < 1/| ρ | to the unit
disk | ζ | < 1. Second are the rotations

ζ = e i ϕ z = (x cosϕ− y sinϕ) + i (x sinϕ+ y cosϕ) (16.55)

around the origin by a fixed (real) angle ϕ. These map the unit disk to itself.

Any non-constant affine transformation

ζ = α z + β, α 6= 0, (16.56)

defines an invertible analytic map on all of C, whose inverse z = α−1(ζ − β) is also affine.
Writing α = ρ e i ϕ in polar coordinates, we see that the affine map (16.56) can be built up
from a rotation followed by a scaling followed by a translation. As such, it takes the disk
|α z + β | < 1 of radius 1/|α | = 1/| ρ | and center −β/α to the unit disk | ζ | < 1.

Example 16.19. A more interesting example is the complex function

ζ = g(z) =
1

z
, or ξ =

x

x2 + y2
, η = −

y

x2 + y2
, (16.57)

which defines an inversion† of the complex plane. The inversion is a one-to-one analytic
map everywhere except at the origin z = 0; indeed g(z) is its own inverse: g−1(ζ) = 1/ζ.
Note that g′(z) = −1/z2 is never zero, and so the derivative condition (16.52) is satisfied
everywhere. Note that | ζ | = 1/| z |, while ph ζ = −ph z. Thus, if Ω =

{
| z | > ρ

}
denotes

the exterior of the circle of radius ρ, then the image points ζ = 1/z satisfy | ζ | = 1/| z |,
and hence the image domain is the punctured disk D =

{
0 < | ζ | < 1/ρ

}
. In particular,

the inversion maps the outside of the unit disk to its inside, but with the origin removed,
and vice versa. The reader may enjoy seeing what the inversion does to other domains,
e.g., the unit square 0 < x, y < 1.

Example 16.20. The complex exponential

ζ = g(z) = ez , or ξ = ex cos y, η = ex sin y, (16.58)

satisfies the condition
g′(z) = ez 6= 0

everywhere. Nevertheless, it is not one-to-one because ez+2π i = ez, and so all points
differing by an integer multiple of 2π i are mapped to the same point.

Under the exponential map, the horizontal line Im z = b is mapped to the curve
ζ = ex+ i b = ex(cos b+ i sin b), which, as x varies from −∞ to ∞, traces out the ray
emanating from the origin that makes an angle ph ζ = b with the real axis. Therefore, the
exponential map will map a horizontal strip

Sa,b =
{
a < Im z < b

}

† This is slightly different than the real inversion (15.75); see Exercise .
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Figure 16.15. The mapping ζ = ez.

to a wedge-shaped domain

Ωa,b =
{
a < ph ζ < b

}
,

and is one-to-one provided | b− a | < 2π. In particular, the horizontal strip

S−π/2,π/2 =
{
− 1

2 π < Im z < 1
2 π
}

of width π centered around the real axis is mapped, in a one-to-one manner, to the right
half plane

R = Ω−π/2,π/2 =
{
− 1

2 π < ph ζ < 1
2 π
}

=
{

Im ζ > 0
}
,

while the horizontal strip S−π,π =
{
−π < Im z < π

}
of width 2π is mapped onto the

domain

Ω∗ = Ω−π,π =
{
−π < ph ζ < π

}
= C \ { Im z = 0, Re z ≤ 0}

obtained by cutting the complex plane along the negative real axis.

On the other hand, vertical lines Re z = a are mapped to circles | ζ | = ea. Thus,
a vertical strip a < Re z < b is mapped to an annulus ea < | ζ | < eb, albeit many-to-
one, since the strip is effectively wrapped around and around the annulus. The rectangle
R =

{
a < x < b,−π < y < π

}
of height 2π is mapped in a one-to-one fashion on an

annulus that has been cut along the negative real axis. See Figure 16.15.

Example 16.21. The squaring map

ζ = g(z) = z2, or ξ = x2 − y2, η = 2xy, (16.59)

is analytic on all of C, but is not one-to-one. Its inverse is the square root function
z =

√
ζ , which, as we noted in Section 16.1, is doubly-valued, except at the origin z =

0. Furthermore, the derivative g′(z) = 2z vanishes at z = 0, violating the invertibility
condition (16.52). However, once we restrict to a simply connected subdomain Ω that
does not contain 0, the function g(z) = z2 does define a one-to-one mapping, whose
inverse z = g−1(ζ) =

√
ζ is a well-defined, analytic and single-valued branch of the square

root function.

The effect of the squaring map on a point z is to square its modulus, | ζ | = | z |2, while
doubling its angle, ph ζ = ph z2 = 2 ph z. Thus, for example, the upper right quadrant

Q =
{
x > 0, y > 0

}
=
{

0 < ph z < 1
2 π
}
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Figure 16.16. The Effect of ζ = z2 on Various Domains.

is mapped onto the upper half plane

U = g(Q) =
{
η = Im ζ > 0

}
=
{

0 < ph ζ < π
}
.

The inverse function maps a point ζ ∈ U back to its unique square root z =
√
ζ that lies

in the quadrant Q. Similarly, a quarter disk

Qρ =
{

0 < | z | < ρ, 0 < ph z < 1
2 π
}

of radius ρ is mapped to a half disk

Uρ2 = g(Ω) =
{

0 < | ζ | < ρ2, Im ζ > 0
}

of radius ρ2. On the other hand, the unit square Ω =
{

0 < x < 1, 0 < y < 1
}

is mapped
to a curvilinear triangular domain, as indicated in Figure 16.16; the edges of the square
on the real and imaginary axes map to the two halves of the straight base of the triangle,
while the other two edges become its curved sides.

Example 16.22. A particularly important example is the analytic map

ζ =
z − 1

z + 1
=

x2 + y2 − 1

(x+ 1)2 + y2
+ i

2y

(x+ 1)2 + y2
, (16.60)

where we used (16.14) to derive the formulae for its real and imaginary parts. The map is
one-to-one with analytic inverse

z =
1 + ζ

1− ζ
=

1− ξ2 − η2

(1− ξ)2 + η2
+ i

2η

(1− ξ)2 + η2
, (16.61)

provided z 6= −1 and ζ 6= 1. This particular analytic map has the important property
of mapping the right half plane R =

{
x = Re z > 0

}
to the unit disk D =

{
| ζ |2 < 1

}
.

Indeed, by (16.61)

| ζ |2 = ξ2 + η2 < 1 if and only if x =
1− ξ2 − η2

(1− ξ)2 + η2
> 0.

Note that the denominator does not vanish on the interior of the disk.

The complex functions (16.56, 57, 60) are particular examples of linear fractional trans-

formations

ζ =
α z + β

γ z + δ
, (16.62)
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which form one of the most important classes of analytic maps. Here α, β, γ, δ are arbitrary
complex constants, subject to the restriction

α δ − β γ 6= 0,

since otherwise (16.62) reduces to a trivial constant (and non-invertible) map. (Why?)

Example 16.23. The linear fractional transformation

ζ =
z − α

α z − 1
where |α | < 1, (16.63)

maps the unit disk to itself, moving the origin z = 0 to the point ζ = α. To prove this, we
note that

| z − α |2 = (z − α)(z − α) = | z |2 − α z − α z + |α |2,

|α z − 1 |2 = (α z − 1)(α z − 1) = |α |2 | z |2 − α z − α z + 1.

Subtracting these two formulae,

| z − α |2 − |α z − 1 |2 =
(
1− |α |2

) (
| z |2 − 1

)
< 0, whenever | z | < 1, |α | < 1.

Thus, | z − α | < |α z − 1 |, which implies that

| ζ | =
| z − α |

|α z − 1 |
< 1 provided | z | < 1, |α | < 1,

and hence ζ lies within the unit disk.

The rotations (16.55) also map the unit disk to itself, while preserving the origin. It
can be proved, [4], that the only invertible analytic mappings that take the unit disk to
itself are obtained by composing such a linear fractional transformation with a rotation.

Proposition 16.24. If ζ = g(z) is a one-to-one analytic map that takes the unit

disk to itself, then

g(z) = e i ϕ z − α

α z − 1
for some |α | < 1, 0 ≤ ϕ < 2π. (16.64)

Additional specific properties of linear fractional transformations are outlined in the
exercises. The most important is that they map circles to circles; see Exercise for details.

Conformality

A remarkable geometrical characterization of complex analytic functions is that, at
non-critical points, they preserve angles. The mathematical term for this property is
conformal mapping . Conformality makes sense for any inner product space, although in
practice one usually deals with Euclidean space equipped with the standard dot product.

Definition 16.25. A function g: Rn → R
n is called conformal if it preserves angles.
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Figure 16.17. A Conformal Map.

But what does it mean to “preserve angles”? In the Euclidean norm, the angle between
two vectors is defined by their dot product, as in (3.20). However, most analytic maps are
nonlinear, and so will not map vectors to vectors since they will typically map straight
lines to curves. However, if we interpret “angle” to mean the angle between two curves,
as illustrated in Figure 16.17, then we can make sense of the conformality requirement.
Consequently, in order to realize complex functions as conformal maps, we first need to
understand their effect on curves.

In general, a curve C ∈ C in the complex plane is parametrized by a complex-valued
function

z(t) = x(t) + i y(t), a < t < b, (16.65)

that depends on a real parameter t. Note that there is no essential difference between a
complex plane curve (16.65) and a real plane curve, as in (A.1); we have merely switched

from vector notation x(t) = (x(t), y(t) )
T

to complex notation z(t) = x(t) + i y(t). All the
usual vectorial curve terminology (closed, simple, piecewise smooth, etc.), as summarized
in Appendix A, is used without any modification here. In particular, the tangent vector

to the curve can be identified as the complex number
¦

z(t) =
¦

x(t) + i
¦

y(t). Smoothness of
the curve is guaranteed by the requirement that

¦

z(t) 6= 0.

Example 16.26. (a) The curve

z(t) = e i t = cos t+ i sin t, for 0 ≤ t ≤ 2π,

parametrizes the unit circle | z | = 1 in the complex plane, which is a simple closed
curve. Its complex tangent

¦

z(t) = i e i t = i z(t) is obtained by rotating z through
90◦.

(b) The complex curve

z(t) = cosh t+ i sinh t =
1 + i

2
et +

1− i

2
e− t, −∞ < t <∞,

parametrizes the right hand branch of the hyperbola

Re z2 = x2 − y2 = 1.

The complex tangent vector is
¦

z(t) = sinh t+ i cosh t = i z(t).
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Figure 16.18. Complex Curve and Tangent.

In order to better understand curve geometry, it will help to rewrite the tangent
¦

z in
polar coordinates. We interpret the curve as the motion of a particle in the complex plane,
so that z(t) is the position of the particle at time t, and the tangent

¦

z(t) its instantaneous

velocity. The modulus of the tangent, |
¦

z | =
√

¦

x2 +
¦

y2, indicates the particle’s speed,
while its phase ph

¦

z measures the direction of motion, as measured by the angle that the
curve makes with the horizontal; see Figure 16.18.

The (signed) angle between two curves is defined as the angle between their tangents
at the point of intersection. If the curve C1 makes an angle θ1 = ph

¦

z1(t1) while the curve
C2 has angle θ2 = ph

¦

z2(t2) at the common point z = z1(t1) = z2(t2), then the angle θ
between C1 and C2 at z is their difference

θ = θ2 − θ1 = ph
¦

z2 − ph
¦

z1 = ph

(
¦

z2
¦

z1

)
. (16.66)

Now, suppose we are given an analytic map ζ = g(z). A curve C parametrized by z(t)
will be mapped to a new curve Γ = g(C) parametrized by the composition ζ(t) = g(z(t)).
The tangent to the image curve is related to that of the original curve by the chain rule:

dζ

dt
=
dg

dz

dz

dt
, or

¦

ζ(t) = g′(z(t))
¦

z(t). (16.67)

Therefore, the effect of the analytic map on the tangent vector
¦

z is to multiply it by the
complex number g′(z). If the analytic map satisfies our key assumption g′(z) 6= 0, then
¦

ζ 6= 0, and so the image curve is guaranteed to be smooth.

According to equation (16.67),

|
¦

ζ | = | g′(z)
¦

z | = | g′(z) | |
¦

z |. (16.68)

Thus, the speed of motion along the new curve ζ(t) is multiplied by a factor ρ = | g ′(z) | > 0.
The magnification factor ρ depends only upon the point z and not how the curve passes
through it. All curves passing through the point z are speeded up (or slowed down if ρ < 1)
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Figure 16.19. Conformality of z2.

by the same factor! Similarly, the angle that the new curve makes with the horizontal is
given by

ph
¦

ζ = ph
(
g′(z)

¦

z
)

= ph g′(z) + ph
¦

z, (16.69)

since the phase of the product of two complex numbers is the sum of their individual phases,
(3.82). Therefore, the tangent angle of the curve is increased by an amount φ = ph g ′(z),
which means that the tangent is been rotated through an angle φ. Again, the increase in
tangent angle only depends on the point z, and all curves passing through z are rotated
by the same amount φ. As a result, the angle between any two curves is preserved. More
precisely, if C1 is at angle θ1 and C2 at angle θ2 at a point of intersection, then their images
Γ1 = g(C1) and Γ2 = g(C2) are at angles ψ1 = θ1 +φ and ψ2 = θ2 +φ. The angle between
the two image curves is the difference

ψ2 − ψ1 = (θ2 + φ)− (θ1 + φ) = θ2 − θ1,

which is the same as the angle between the original curves. This establishes the confor-
mality or angle-preservation property of analytic maps.

Theorem 16.27. If ζ = g(z) is an analytic function and g′(z) 6= 0, then g defines a

conformal map.

Remark : The converse is also valid: Every planar conformal map comes from a com-
plex analytic function with nonvanishing derivative. A proof is outlined in Exercise .

The conformality of analytic functions is all the more surprising when one revisits
elementary examples. In Example 16.21, we discovered that the function w = z2 maps
a quarter plane to a half plane, and therefore doubles the angle between the coordinate
axes at the origin! Thus g(z) = z2 is most definitely not conformal at z = 0. The
explanation is, of course, that z = 0 is a critical point, g′(0) = 0, and Theorem 16.27 only
guarantees conformality when the derivative is nonzero. Amazingly, the map preserves
angles everywhere else! Somehow, the angle at the origin is doubled, while angles at all
nearby points are preserved. Figure 16.19 illustrates this remarkable and counter-intuitive
feat. The left hand figure shows the coordinate grid, while on the right are the images of
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Figure 16.20. The Joukowski Map.

the horizontal and vertical lines under the map z2. Note that, except at the origin, the
image curves continue to meet at 90◦ angles, in accordance with conformality.

Example 16.28. A particularly interesting conformal transformation is given by the
Joukowski map

ζ =
1

2

(
z +

1

z

)
. (16.70)

It is used in the study of flows around airplane wings, and named after the pioneering
Russian aero- and hydro-dynamics researcher Nikolai Zhukovskii (Joukowski). Since

dζ

dz
=

1

2

(
1−

1

z2

)
= 0 if and only if z = ±1,

the Joukowski map is conformal except at the critical points z = ±1, as well as at the
singularity z = 0 where it is not defined.

If z = e i θ lies on the unit circle, then

ζ = 1
2

(
e i θ + e− i θ

)
= cos θ,

lies on the real axis, with −1 ≤ ζ ≤ 1. Thus, the Joukowski map squashes the unit circle
down to the real line segment [−1, 1]. The images of points outside the unit circle fill the
rest of the ζ plane, as do the images of the (nonzero) points inside the unit circle. Indeed,
if we solve (16.70) for

z = ζ ±
√
ζ2 − 1 , (16.71)

we see that every ζ except ±1 comes from two different points z; for ζ not on the critical
line segment [−1, 1], one point lies inside and and one lies outside the unit circle, whereas
if −1 < ζ < 1, the points are situated directly above and below it on the circle. Therefore,
(16.70) defines a one-to-one conformal map from the exterior of the unit circle

{
| z | > 1

}

onto the exterior of the unit line segment C \ [−1, 1].

Under the Joukowski map, the concentric circles | z | = r 6= 1 are mapped to ellipses
with foci at ±1 in the ζ plane; see Figure 16.20. The effect on circles not centered at

5/1/06 907 c© 2006 Peter J. Olver



the origin is quite interesting. The image curves take on a wide variety of shapes; several
examples are plotted in Figure airfoil . If the circle passes through the singular point
z = 1, then its image is no longer smooth, but has a cusp at ζ = 1. Some of the image
curves have the shape of the cross-section through an airplane wing or airfoil . Later we
will see how to construct the physical fluid flow around such an airfoil, which proved to be
a critical step in early airplane design.

Composition and The Riemann Mapping Theorem

One of the strengths of the method of conformal mapping is that one can build up lots
of complicated examples by simply composing elementary mappings. The method rests
on the simple fact that the composition of two complex analytic functions is also complex
analytic. This is the complex counterpart of the result, learned in first year calculus, that
the composition of two differentiable functions is itself differentiable.

Proposition 16.29. If w = f(z) is an analytic function of the complex variable

z = x+ i y, and ζ = g(w) is an analytic function of the complex variable w = u+ i v, then

the composition† ζ = h(z) ≡ g ◦f(z) = g(f(z)) is an analytic function of z.

Proof : The proof that the composition of two differentiable functions is differentiable
is identical to the real variable version, [9, 165], and need not be reproduced here. The
derivative of the composition is explicitly given by the usual chain rule:

d

dz
g ◦f(z) = g′(f(z)) f ′(z), or, in Leibnizian notation,

dζ

dz
=
dζ

dw

dw

dz
. (16.72)

If both f and g are one-to-one, so is the composition h = g ◦f . Moreover, the compo-
sition of two conformal maps is also conformal, a fact that is immediate from the definition,
or by using the chain rule (16.72) to show that

h′(z) = g′(f(z)) f ′(z) 6= 0 provided g′(f(z)) 6= 0 and f ′(z) 6= 0.

Thus, if f and g satisfy the conformality condition (16.52), so does h = g ◦f . Q.E.D.

Example 16.30. As we learned in Example 16.20, the exponential function

w = ez

maps the horizontal strip S = {− 1
2 π < Im z < 1

2 π} conformally onto the right half plane
R = {Re w > 0}. On the other hand, Example 16.22 tells us that the linear fractional
transformation

ζ =
w − 1

w + 1

maps the right half plane R conformally to the unit disk D = {| ζ | < 1}. Therefore, the
composition

ζ =
ez − 1

ez + 1
(16.73)

† Of course, to properly define the composition, we need to ensure that the range of the function
w = f(z) is contained in the domain of the function ζ = g(w).
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w = ez ζ =
w − 1

w + 1

Figure 16.21. Composition of Conformal Maps.

is a one-to-one conformal map from the horizontal strip S to the unit disk D, as illustrated
in Figure 16.21.

Recall that our motivating goal is to use analytic functions/conformal maps to solve
boundary value problems for the Laplace equation on a complicated domain Ω by trans-
forming them to boundary value problems on the unit disk. Of course, the key question
the student should be asking at this point is: Is there, in fact, a conformal map ζ = g(z)
from a given domain Ω to the unit disk D = g(Ω)? The theoretical answer is the celebrated
Riemann Mapping Theorem.

Theorem 16.31. If Ω ( C is any simply connected open subset, not equal to the

entire complex plane, then there exists a one-to-one complex analytic map ζ = g(z),
satisfying the conformality condition g′(z) 6= 0 for all z ∈ Ω, that maps Ω to the unit disk

D = {| ζ | < 1}.

Thus, any simply connected domain — with one exception, the entire complex plane —
can be conformally mapped the unit disk. (Exercise provides a reason for this exception.)
Note that Ω need not be bounded for this to hold. Indeed, the conformal map (16.60)
takes the unbounded right half plane R = {Re z > 0} to the unit disk. The proof of
this important theorem relies some more advanced results in complex analysis, and can be
found, for instance, in [4].

The Riemann Mapping Theorem guarantees the existence of a conformal map from any
simply connected domain to the unit disk, but its proof is not constructive, and so provides
no clue as to how to actually construct the desired mapping. And, in general, this is not
an easy task. In practice, one assembles a repertoire of useful conformal maps that apply
to particular domains of interest. An extensive catalog can be found in [Cmap]. More
complicated maps can then be built up by composition of the basic examples. Ultimately,
though, the determination of a suitable conformal map is more an art than a systematic
science. Numerical methods for constructing conformal maps can be found in [TH].

Let us consider a few additional examples beyond those already encountered:

Example 16.32. Suppose we are asked to conformally map the upper half plane
U =

{
Im z > 0

}
to the unit disk D =

{
| ζ | < 1

}
. We already know that the linear

fractional transformation

ζ = g(w) =
w − 1

w + 1

maps the right half plane R =
{

Re z > 0
}

toD = g(R). On the other hand, multiplication

by i = e i π/2, with z = h(w) = iw, rotates the complex plane by 90◦ and so maps the
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right half plane R to the upper half plane U = h(R). Its inverse h−1(z) = − i z will
therefore map U to R = h−1(U). Therefore, to map the upper half plane to the unit disk,
we compose these two maps, leading to the conformal map

ζ = g ◦h−1(z) =
− i z − 1

− i z + 1
=

i z + 1

i z − 1
(16.74)

from U to D.

In a similar vein, we already know that the squaring map w = z2 maps the upper
right quadrant Q =

{
0 < ph z < 1

2 π
}

to the upper half plane U . Composing this with
our previously constructed map — which requires using w instead of z in the previous
formula (16.74) — leads to the conformal map

ζ =
i z2 + 1

i z2 − 1
(16.75)

that maps the quadrant Q to the unit disk D.

Example 16.33. The goal of this example is to construct an conformal map that
takes a half disk

D+ =
{
| z | < 1, y = Im z > 0

}
(16.76)

to the full unit disk D =
{
‖ ζ ‖ < 1

}
. The answer is not ζ = z2 because the im-

age of D+ omits the positive real axis, resulting in a disk with a slit cut out of it:{
‖ ζ ‖ < 1, 0 < ph ζ < 2π

}
. To obtain the entire disk as the image of the conformal map,

we must think a little harder. The first observation is that the map z = (w − 1)/(w + 1)
that we analyzed in Example 16.22 takes the right half plane R =

{
Re w > 0

}
to the unit

disk. Moreover, it maps the upper right quadrant Q =
{

0 < ph w < 1
2 π
}

to the half disk
(16.76). Its inverse,

w =
z + 1

z − 1
(16.77)

will therefore map the half disk, z ∈ D+, to the upper right quadrant w ∈ Q.

On the other hand, we just constructed a conformal map (16.75) that takes the upper
right quadrant Q to the unit disk D. Therefore, if compose the two maps (replacing z by
w in (16.75) and then using (16.77)), we obtain the desired conformal map:

ζ =
iw2 + 1

iw2 − 1
=

i

(
z + 1

z − 1

)2

+ 1

i

(
z + 1

z − 1

)2

− 1

=
( i + 1)(z2 + 1) + 2( i − 1)z

( i − 1)(z2 + 1) + 2( i + 1)z
.

The formula can be further simplified by multiplying numerator and denominator by i +1,
and so

ζ = − i
z2 + 2 i z + 1

z2 − 2 i z + 1
.
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The leading factor − i is unimportant and can be omitted, since it merely rotates the disk
by −90◦, and so

ζ =
z2 + 2 i z + 1

z2 − 2 i z + 1
(16.78)

is an equally valid solution to our problem.

Finally, as noted in the preceding example, the conformal map guaranteed by the
Riemann Mapping Theorem is not unique. Since the linear fractional transformations
(16.63) map the unit disk to itself, we can compose them with any conformal Riemann
mapping to produce additional conformal maps from a simply-connected domain to the
unit disk. For example, composing (16.63) with (16.73) produces a family of mappings

ζ =
1 + ez − α(1− ez)

α (1 + ez)− 1 + ez
, (16.79)

which, for any |α | < 1, maps the strip S =
{
− 1

2 π < Im z < 1
2 π
}

onto the unit disk. With
a little more work, it can be shown that this is the only ambiguity, and so, for instance,
(16.79) forms a complete list of one-to-ne conformal maps from S to D.

Annular Domains

The Riemann Mapping Theorem does not apply to non-simply connected domains.
For purely topological reasons, a hole cannot be made to disappear under a one-to-one
continuous mapping — much less a conformal map — and so a non-simply connected
domain cannot be mapped in a on-to-one manner onto the unit disk. So we must look
elsewhere for a simple model domain.

The simplest non-simply connected domain is an annulus consisting of the points
between two concentric circles

Ar,R =
{
r < | ζ | < R

}
, (16.80)

which, for simplicity, is centered around the origin; see Figure 16.22. The case r = 0
corresponds to a punctured disk, while R = ∞ gives the exterior of a disk or radius r. It
can be proved, [Cmap], that any other domain with a single hole can be mapped to an
annulus. The annular radii r,R are not uniquely specified; indeed the linear map ζ = α z
maps the annulus (16.80) to a rescaled annulus Aρr,ρR whose inner and outer radii have

both been scaled by the factor ρ = |α |. But the ratio† r/R of the inner to outer radius of
the annulus is uniquely specified; annuli with different ratios cannot be mapped to each
other by a conformal map.

Example 16.34. Let c > 0. Consider the domain

Ω =
{
| z | < 1 and | z − c | > c

}

† If r = 0 or R = ∞, but not both, then r/R = 0 by convention. The punctured plane, where
r = 0 and R = ∞ remains a separate case.
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Figure 16.22. An Annulus.

contained between two nonconcentric circles. To keep the computations simple, we take
the outer circle to have radius 1 (which can always be arranged by scaling, anyway) while
the inner circle has center at the point z = c on the real axis and radius c, which means
that it passes through the origin. We must restrict c < 1

2 in order that the inner circle not
overlap with the outer circle. Our goal is to conformally map this non-concentric annular
domain to a concentric annulus of the form

Ar,1 =
{
r < | ζ | < 1

}

by a conformal map ζ = g(z).

Now, according, to Example 16.23, a linear fractional transformation of the form

ζ = g(z) =
z − α

α z − 1
with |α | < 1 (16.81)

maps the unit disk to itself. Moreover, as remarked earlier, and demonstrated in Exercise
, linear fractional transformations always map circles to circles. Therefore, we seek a

particular value of α that maps the inner circle | z − c | = c to a circle of the form | ζ | = r
centered at the origin. We choose α real and try to map the points 0 and 2c on the inner
circle to the points r and −r on the circle | ζ | = r. This requires

g(0) = α = r, g(2c) =
2c− α

2cα− 1
= −r. (16.82)

Substituting the first into the second leads to the quadratic equation

cα2 − α+ c = 0.

There are two real solutions:

α =
1−
√

1− 4c2

2c
and α =

1 +
√

1− 4c2

2c
. (16.83)
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Figure 16.23. Conformal Map for Non-concentric Annulus.

Since 0 < c < 1
2 , the second solution has α > 1, and hence is inadmissible. Therefore, the

first solution yields the required conformal map

ζ =
z − 1 +

√
1− 4c2

(1−
√

1− 4c2 ) z − 2c
.

Note in particular that the radius r = α of the inner circle in Ar,1 is not the same as the
radius c of the inner circle in Ω.

For example, taking c = 2
5 , equation (16.83) implies α = 1

2 , and hence the linear frac-

tional transformation ζ =
2z − 1

z − 2
maps the annular domain Ω =

{
| z | < 1,

∣∣ z − 2
5

∣∣ > 2
5

}

to the concentric annulus A = A1/2,1 =
{

1
2 < | ζ | < 1

}
. In Figure 16.23, we plot the

non-concentric circles in Ω that map to concentric circles in the annulus A. In Exercise
the reader is asked to adapt this construction to a general non-concentric annular domain.

Applications to Harmonic Functions and Laplace’s Equation

Let us now apply our newly developed expertise in conformal mapping to the study
of harmonic functions and boundary value problems for the Laplace equation. Our goal
was to change a boundary value problem on a domain Ω into a boundary value problem
on the unit disk D that we know how to solve. To this end, suppose we know a conformal
map ζ = g(z) that takes z ∈ Ω to ζ ∈ D. As we know, the real and imaginary parts of
an analytic function F (ζ) defined on D define harmonic functions. Moreover, according
to Proposition 16.29, the composition f(z) = F (g(z)) defines an analytic function whose
real and imaginary parts are harmonic functions on Ω. Thus, the conformal mapping can
be regarded as a change of variables between their harmonic real and imaginary parts. In
fact, this property does not even require the harmonic function to be the real part of an
analytic function, i.e., we are not required to assume the existence of a harmonic conjugate.

Proposition 16.35. If U(ξ, η) is a harmonic function of ξ, η, and

ζ = ξ + i η = p(x, y) + i q(x, y) = g(z) (16.84)

5/1/06 913 c© 2006 Peter J. Olver



is any analytic function, then the composition

u(x, y) = U(p(x, y), q(x, y)) (16.85)

is a harmonic function of x, y.

Proof : This is a straightforward application of the chain rule:

∂u

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
,

∂u

∂y
=
∂U

∂ξ

∂ξ

∂y
+
∂U

∂η

∂η

∂y
,

∂2u

∂x2
=
∂2U

∂ξ2

(
∂ξ

∂x

)2

+ 2
∂2U

∂ξ ∂η

∂ξ

∂x

∂η

∂x
+
∂2U

∂η2

(
∂η

∂x

)2

+
∂U

∂ξ

∂2ξ

∂x2
+
∂U

∂η

∂2η

∂x2
,

∂2u

∂y2
=
∂2U

∂ξ2

(
∂ξ

∂y

)2

+ 2
∂2U

∂ξ ∂η

∂ξ

∂y

∂η

∂y
+
∂2U

∂η2

(
∂η

∂y

)2

+
∂U

∂ξ

∂2ξ

∂y2
+
∂U

∂η

∂2η

∂y2
.

Using the Cauchy–Riemann equations

∂ξ

∂x
= −

∂η

∂y
,

∂ξ

∂y
=
∂η

∂x
,

for the analytic function ζ = ξ + i η, we find, after some algebra,

∆u =
∂2u

∂x2
+
∂2u

∂y2
=

[(
∂ξ

∂x

)2

+

(
∂η

∂x

)2
] [

∂2U

∂ξ2
+
∂2U

∂η2

]
= | g′(z) |2 ∆U,

where | g′(z) |2 = ( ∂ξ/∂x )
2

+ ( ∂η/∂x )
2
. We conclude that whenever U(ξ, η) is any har-

monic function, and so solves the Laplace equation ∆U = 0 (in the ξ, η variables), then
u(x, y) is a solution to the Laplace equation ∆u = 0 in the x, y variables, and is thus also
harmonic. Q.E.D.

This observation has profound consequences for boundary value problems arising in
physical applications. Suppose we wish to solve the Dirichlet problem

∆u = 0 in Ω, u = h on ∂Ω, (16.86)

on a simply connected domain† Ω ( C. Let ζ = g(z) = p(x, y) + i q(x, y) be a one-to-one
conformal mapping from the domain Ω to the unit disk D, whose existence is guaranteed
by the Riemann Mapping Theorem 16.31. (Although its explicit construction may be much
more problematic.) Then the change of variables formula (16.85) will map the harmonic
function u(x, y) on Ω to a harmonic function U(ξ, η) on D. Moreover, the boundary values
of U = H on the unit circle ∂D correspond to those of u = h on ∂Ω by the same change
of variables formula:

h(x, y) = H(p(x, y), q(x, y)), for (x, y) ∈ ∂Ω. (16.87)

† The Riemann Mapping Theorem 16.31 tells us to exclude the case Ω = C. Indeed, this case
is devoid of boundary conditions, and so the problem does not admit a unique solution.
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We conclude that U(ξ, η) solves the Dirichlet problem

∆U = 0 in D, U = H on ∂D.

But we already know how to solve the Dirichlet problem on the unit disk by the Poisson
integral formula (15.48)! Then the solution to the original boundary value problem is
given by the composition formula u(x, y) = U

(
p(x, y), q(x, y)

)
. Thus, the solution to

the Dirichlet problem on a unit disk can be used to solve the Dirichlet problem on more
complicated planar domains — provided we know the appropriate conformal map.

Example 16.36. According to Example 16.22, the analytic function

ξ + i η = ζ =
z − 1

z + 1
=

x2 + y2 − 1

(x+ 1)2 + y2
+ i

2y

(x+ 1)2 + y2
(16.88)

maps the right half plane R =
{
x = Re z > 0

}
to the unit disk D =

{
| ζ | < 1

}
. Propo-

sition 16.35 implies that if U(ξ, η) is a harmonic function in the unit disk, then

u(x, y) = U

(
x2 + y2 − 1

(x+ 1)2 + y2
,

2y

(x+ 1)2 + y2

)
(16.89)

is a harmonic function on the right half plane. (This can, of courtse, be checked directly
by a rather unpleasant chain rule computation.)

To solve the Dirichlet boundary value problem

∆u = 0, x > 0, u(0, y) = h(y), (16.90)

on the right half plane, we adopt the change of variables (16.88) and use the Poisson
integral formula to construct the solution to the transformed Dirichlet problem

∆U = 0, ξ2 + η2 < 1, U(cosϕ, sinϕ) = H(ϕ), (16.91)

on the unit disk. The relevant boundary conditions are found as follows. Using the explicit
form

x+ i y = z =
1 + ζ

1− ζ
=

(1 + ζ)(1− ζ)

| 1− ζ |2
=

1 + ζ − ζ − | ζ |2

| 1− ζ |2
=

1− ξ2 − η2 + 2 i η

(ξ − 1)2 + η2

for the inverse map, we see that the boundary point ζ = ξ + i η = e i ϕ on the unit circle
∂D will correspond to the boundary point

i y =
2 η

(ξ − 1)2 + η2
=

2 i sinϕ

(cosϕ− 1)2 + sin2 ϕ
= i cot

ϕ

2
(16.92)

on the imaginary axis ∂R =
{

Re z = 0
}
. Thus, the boundary data h(y) on ∂R corresponds

to the boundary data
H(ϕ) = h

(
cot 1

2 ϕ
)

on the unit circle. The Poisson integral formula (15.48) can then be applied to solve
(16.91), from which we are able to reconstruct the solution (16.89) to the boundary value
problem (16.89) on the half plane.
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Figure 16.24. Non–Coaxial Cable.

Let’s look at an explicit example. If the boundary data on the imaginary axis is
provided by the step function

u(0, y) = h(y) ≡

{
1, y > 0,

0, y < 0,

then the corresponding boundary data on the unit disk is a (periodic) step function

H(ϕ) =

{
1, 0 < ϕ < π,

0, π < ϕ < 2π,

that has values +1 on the upper semicircle, −1 on the lower semicircle, and jump discon-
tinuities at ζ = ±1. According to the Poisson formula (15.48), the solution to the latter
boundary value problem is given by

U(ξ, η) =
1

2π

∫ π

0

1− ρ2

1 + ρ2 − 2ρ cos(ϕ− φ)
dφ

=
1

π

[
tan−1

(
1 + ρ

1− ρ
cot

ϕ

2

)
+ tan−1

(
1 + ρ

1− ρ
tan

ϕ

2

)] where
ξ = ρ cosϕ,

η = ρ sinϕ.

Finally, we use (16.89) to construct the solution on the upper half plane, although we
shall spare the reader the messy details of the final formula. The result is depicted in
Figure zpm1h .

Remark : The solution to the preceding Dirichlet boundary value problem is not, in
fact, unique, owing to the unboundedness of the domain. The solution that we pick out by
using the conformal map to the unit disk is the one that remains bounded at∞. There are
other solutions, but they are unbounded as | z | → ∞ and would correspond to solutions
on the unit disk that have some form of delta function singularity in their boundary data
at the point −1; see Exercise .

Example 16.37. A non-coaxial cable. The goal of this example is to determine
the electrostatic potential inside a non-coaxial cylindrical cable with prescribed constant
potential values on the two bounding cylinders, as illustrated in Figure 16.24. Assume
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for definiteness that the larger cylinder has radius 1, and centered at the origin, while
the smaller cylinder has radius 2

5 , and is centered at z = 2
5 . The resulting electrostatic

potential will be independent of the longitudinal coordinate, and so can be viewed as a
planar potential in the annular domain contained between two circles representing the
cross-sections of our cylinders. The desired potential must satisfy the Dirichlet boundary
value problem

∆u = 0 when | z | < 1 and
∣∣ z − 2

5

∣∣ > 2
5 ,

u = a, when | z | = 1, and u = b when
∣∣ z − 2

5

∣∣ = 2
5 .

According to Example 16.34, the linear fractional transformation

ζ =
2z − 1

z − 2
(16.93)

will map this non-concentric annular domain to the annulus A1/2,1 =
{

1
2 < | ζ | < 1

}
,

which is the cross-section of a coaxial cable. The corresponding transformed potential
U(ξ, η) has the constant Dirichlet boundary conditions

U = a, when | ζ | = 1
2 , and U = b when | ζ | = 1. (16.94)

Clearly the coaxial potential U must be a radially symmetric solution to the Laplace
equation, and hence, according to (15.64), of the form

U(ξ, η) = α log | ζ |+ β,

for constants α, β. A short computation shows that the particular potential function

U(ξ, η) =
b− a

log 2
log | ζ |+ b =

b− a

2 log 2
log(ξ2 + η2) + b

satisfies the prescribed boundary conditions (16.94). Therefore, the desired non-coaxial
electrostatic potential

u(x, y) =
b− a

log 2
log

∣∣∣∣
2z − 1

z − 2

∣∣∣∣+ b =
b− a

2 log 2
log

(
(2x− 1)2 + y2

(x− 2)2 + y2

)
+ b (16.95)

is obtained by composition with the conformal map (16.93). The particular case a = 0, b =
1 is plotted in Figure ncoaxep .

Remark : The same harmonic function solves the problem of determining the equi-
librium temperature in an annular plate whose inner boundary is kept at a temperature
u = a while the outer boundary is kept at temperature u = b. One could also interpret
this solution as the equilibrium temperature of a three-dimensional cylindrical body con-
tained between two non-coaxial cylinders that are held at fixed temperatures. The body’s
temperature (16.95) will only depend upon the transverse coordinates x, y and not upon
the longitudinal coordinate z.
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Applications to Fluid Flow

Conformal mappings are particularly useful in the analysis of planar ideal fluid flow.
Recall that if Θ(ζ) = Φ(ξ, η)+ iΨ(ξ, η) is an analytic function that represents the complex
potential function for a steady state fluid flow in a planar domain ζ ∈ D, then we can
interpret its real part Φ(ξ, η) as the velocity potential, while the imaginary part Ψ(ξ, η) is
the harmonic conjugate stream function. The level curves of Φ are the equipotential lines,
and, except at stagnation points where Θ′(ζ) = 0, are orthogonal to the level curves of Ψ,
which are the streamlines followed by the individual fluid particles.

Composing the complex potential with a conformal map ζ = g(z) leads to a trans-
formed complex potential Θ(g(z)) = χ(z) = ϕ(x, y)+ iψ(x, y) on the corresponding domain
z ∈ Ω. A key fact is that the conformal map will take isopotential lines of ϕ to isopo-
tential lines of Φ and streamlines of ψ to streamlines of Ψ. Conformality implies that the
orthogonality relations among isopotentials and streamlines away from stagnation points
is maintained.

Let us concentrate on the case of flow past a solid object. In three dimensions, the
object is assumed to have a uniform shape in the axial direction, and so we can restrict our
attention to a planar fluid flow around a closed, bounded subset D ⊂ R

2 ' C representing
the cross-section of our cylindrical object, as in Figure crss . The (complex) velocity and
potential are defined on the complementary domain Ω = C \D occupied by the fluid. The
ideal flow assumptions of incompressibility and irrotationality are reasonably accurate if
the flow is laminar, meaning far away from turbulent. The velocity potential ϕ(x, y) will
satisfy the Laplace equation ∆ϕ = 0 in the exterior domain Ω. For a solid object, we
should impose the homogeneous Neumann boundary conditions

∂ϕ

∂n
= 0 on the boundary ∂Ω = ∂D, (16.96)

indicating that there no fluid flux into the object. We note that, according to Exercise ,
a conformal map will automatically preserve the Neumann boundary conditions.

In addition, since the flow is taking place on an unbounded domain, we need to specify
the fluid motion at large distances. We shall assume our object is placed in a uniform
horizontal flow, as in Figure hflow . Thus, far away, the object will not affect the flow,
and so the velocity should approximate the uniform velocity field v = ( 1, 0 )

T
, where, for

simplicity, we choose our physical units so that the asymptotic speed of the fluid is equal
to 1. Equivalently, the velocity potential should satisfy

ϕ(x, y) ≈ x, so ∇ϕ ≈

(
1
0

)
when x2 + y2 À 0.

Remark : An alternative physical interpretation is that the fluid is at rest, while the
object moves through the fluid at unit speed 1 in a horizontal direction. For example, think
of an airplane flying through the air at constant speed. If we adopt a moving coordinate
system by sitting inside the airplane, then the effect is as if the object is sitting still while
the air is moving towards us at unit speed.
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Example 16.38. The simplest example is a flat plate moving through the fluid
in a horizontal direction. The plate’s cross-section is a horizontal line segment, and, for
simplicity, we take it to be the segment D = [−1, 1] lying on the real axis. If the plate is
very thin, it will have absolutely no effect on the horizontal flow of the fluid, and, indeed,
the velocity potential is given by

ϕ(x, y) = x, for x+ i y ∈ Ω = C \ [−1, 1].

Note that ∇ϕ = ( 1, 0 )
T
, and hence this flow satisfies the Neumann boundary conditions

(16.96) on the horizontal segment D = ∂Ω. The corresponding complex potential is χ(z) =
z, with complex velocity f(z) = χ′(z) = 1.

Example 16.39. Recall that the Joukowski conformal map defined by the analytic
function

ζ = g(z) =
1

2

(
z +

1

z

)
(16.97)

squashes the unit circle | z | = 1 down to the real line segment [−1, 1] in the ζ plane.
Therefore, it will map the fluid flow outside the unit disk (which is the cross-section of a
circular cylinder) to the fluid flow past the line segment, which, according to the previous
example, has complex potential Θ(ζ) = ζ. As a result, the complex potential for the flow
past a disk is the Joukowski function

χ(z) = Θ ◦g(z) = g(z) =
1

2

(
z +

1

z

)
. (16.98)

Except for a factor of 1
2 , this agrees with the flow potential we derived in Example 16.17.

The difference is that, at large distances, the potential

χ(z) ≈ 1
2 z for | z | À 1.

corresponds to uniform horizontal flow whose velocity
(

1
2 , 0

)T
is half as fast. The discrep-

ancy between the two flows can easily be rectified by multiplying (16.98) by 2, whose only
effect is to speed up the flow.

Example 16.40. Let us next consider the case of a tilted plate in a uniformly
horizontal fluid flow. Thus, the cross-section is the line segment

z(t) = t e i θ, −1 ≤ t ≤ 1,

obtained by rotating the horizontal line segment [−1, 1] through an angle θ, as in Fig-
ure tilt . The goal is to construct a fluid flow past the tilted segment that is asymptotically
horizontal at large distance.

The critical observation is that, while the effect of rotating a plate in a fluid flow is
not so evident, rotating a circularly symmetric disk has no effect on in the flow around
it. Thus, the rotation w = e− i θ z maps the Joukowski potential (16.98) to the complex
potential

Υ(w) = χ(e i θw) =
1

2

(
e i θw +

e− i θ

w

)
.
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The streamlines of the induced flow are no longer asymptotically horizontal, but rather at
an angle −θ. If we now apply the original Joukowski map (16.97) to the rotated flow, the
circle is again squashed down to the horizontal line segment, but the flow lines continue
to be at angle −θ at large distances. Thus, if we then rotate the resulting flow through
an angle θ, the net effect will be to tilt the segment to the desired angle θ while rotating
the streamlines to be asymptotically horizontal. Putting the pieces together, we have the
final complex potential in the form

χ(z) = e i θ
(
z cos θ − i sin θ

√
z2 − e−2 i θ

)
. (16.99)

Sample streamlines for the flow at several attack angles are plotted in Figure tilt .

Example 16.41. As we discovered in Example 16.28, applying the Joukowski map
to off-center disks will, in favorable configurations, produce airfoil-shaped objects. The
fluid motion around such airfoils can thus be obtained by applying the Joukowski map to
the flow past such an off-center circle.

First, an affine map
w = α z + β

has the effect of moving the unit disk | z | ≤ 1 to the disk |w − β | ≤ |α | with center
β and radius |α |. In particular, the boundary circle will continue to pass through the
point w = 1 provided |α | = | 1− β |. Moreover, as noted in Example 16.18, the angular
component of α has the effect of a rotation, and so the streamlines around the new disk
will, asymptotically, be at an angle ϕ = ph α with the horizontal. We then apply the
Joukowski transformation

ζ =
1

2

(
w +

1

w

)
=

1

2

(
α z + β +

1

α z + β

)
(16.100)

to map the disk to the airfoil shape. The resulting complex potential for the flow past the
airfoil is obtained by substituting the inverse map

z =
w − β

α
=
ζ − β +

√
ζ2 − 1

α
,

into the original potential (16.98), whereby

Θ(ζ) =
1

2

(
ζ − β +

√
ζ2 − 1

α
+
α
(
ζ − β −

√
ζ2 − 1

)

β2 + 1− 2β ζ

)
.

Since the streamlines have been rotated through an angle ϕ = ph α, we then rotate the
final result back by multiplying by e i ϕ in order to see the effect of the airfoil tiled at an
angle −ϕ in a horizontal flow. Sample streamlines are graphed in Figure airfoilnolift .

We can interpret all these examples as planar cross-sections of three-dimensional fluid
flows past an airplane wing oriented in the longitudinal z direction. The wing is assumed to
have a uniform cross-section shape, and the flow not dependent upon the axial z coordinate.
For sufficiently long wings flying in laminar (non-turbulent) flows, this model will be valid
away from the wing tips. Underestanding the dynamics of more complicated airfoils with
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varying cross-section and/or faster motion requires a fully three-dimensional fluid model.
For such problems, complex analysis is no longer applicable, and, for the most part, one
must rely on large scale numerical integration. Only in recent years have computers become
sufficiently powerful to compute realistic three-dimensional fluid motions — and then only
in reasonably “mild” scenarios†. The two-dimensional versions that have been analyzed
here still provide important clues to the behavior of a three-dimensional flow, as well as
useful initial approximations to the three-dimensional airplane wing design problem.

Unfortunately, there is a major flaw with the airfoils that we have just designed. As
we will see, potential flows do not produce any lift, and hence such airplanes would not
fly. Fortunately for us, the physical flow is not of this nature! In order to understand how
lift enters into the picture, we need to study complex integration, and so we will return to
this example later. In Example 16.56, we shall construct an alternative flow past an airfoil
that continues to have the correct asymptotic behavior at large distances, while inducing
a nonzero lift on the wing. This is the secret to flight.

Poisson’s Equation and the Green’s Function

Although designed for solving the homogeneous Laplace equation, the method of con-
formal mapping can also be used to solve its inhomogeneous counterpart — the Poisson
equation. As we learned in Chapter 15, to solve an inhomogeneous boundary value problem
it suffices to solve the problem when the right hand side is a delta function concentrated
at a point in the domain:

−∆u = δζ(x, y) = δ(x− ξ) δ(y − η), ζ = ξ + i η ∈ Ω,

sucject to homogeneous boundary conditions (Dirichlet or mixed) on ∂Ω. (As usual, we
exclude pure Neumann boundary conditions due to lack of existence/uniqueness.) The
solution

u(x, y) = Gζ(x, y) = G(x, y; ξ, η)

is the Green’s function for the given boundary value problem. With the Green’s function
in hand, the solution to the homogeneous boundary value problem under a general external
forcing,

−∆u = f(x, y),

is then provided by the superposition principle

u(x, y) =

∫ ∫

Ω

G(x, y; ξ, η) f(ξ, η) dξ dη. (16.101)

For the planar Poisson equation, the starting point is the logarithmic potential func-
tion

u(x, y) = Re
1

2π
log z =

1

2π
log | z | =

1

4π
log(x2 + y2), (16.102)

† The definition of mild relies on the magnitude of the Reynolds number, [14], an overall
measure of the flow’s complexity.
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which solves the Dirichlet problem

−∆u = δ0(x, y), (x, y) ∈ D, u = 0 on ∂D,

on the unit disk D for an impulse concentrated at the origin; see Section 15.3 for details.
How do we obtain the corresponding solution when the unit impulse is concentrated at
another point ζ = ξ + i η ∈ D instead of the origin? According to Example 16.23, the
linear fractional transformation

w = g(z) =
z − ζ

ζ z − 1
, where | ζ | < 1, (16.103)

maps the unit disk to itself, moving the point z = ζ to the origin w = g(ζ) = 0. The

logarithmic potential U =
1

2π
log |w | will thus be mapped to the Green’s function

G(x, y; ξ, η) =
1

2π
log

∣∣∣∣∣
z − ζ

ζ z − 1

∣∣∣∣∣ (16.104)

at the point ζ = ξ + i η. Indeed, by the properties of conformal mapping, since U is
harmonic except at the singularity w = 0, the function (16.104) will also be harmonic
except at the image point z = ζ. The fact that the mapping does not affect the delta
function singularity is not hard to check; the details are relegated to Exercise . Moreover,
since the conformal map does not alter the boundary | z | = 1, the function (16.104)
continues to satisfy the homogeneous Dirichlet boundary conditions.

Formula (16.104) reproduces the Poisson formula (15.78) for the Green’s function
that we previously derived by the method of images. This identification can be verified
by substituting z = r e i θ, ζ = ρ e i ϕ, or, more simply, by noting that the numerator in
the logarithmic fraction gives the potential due to a unit impulse at z = ζ, while the
denominator represents the image potential at z = 1/ ζ required to cancel out the effect of
the interior potential on the boundary of the unit disk.

Now that we know the Green’s function on the unit disk, we can use the methods
of conformal mapping to produce the Green’s function for any other simply connected
domain Ω ( C.

Proposition 16.42. Let w = g(z) denote the conformal map that takes the domain

z ∈ Ω to the unit disk w ∈ D, guaranteed by the Riemann Mapping Theorem 16.31. Then

the Green’s function associated with homogeneous Dirichlet boundary conditions on Ω is

explicitly given by

G(z; ζ) =
1

2π
log

∣∣∣∣∣
g(z)− g(ζ)

g(ζ) g(z)− 1

∣∣∣∣∣ . (16.105)

Example 16.43. According to Example 16.22, the analytic function

w =
z − 1

z + 1
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maps the right half plane x = Re z > 0 to the unit disk | ζ | < 1. Therefore, by (16.105),
the Green’s function for the right half plane has the form

G(z; ζ) =
1

2π
log

∣∣∣∣∣∣∣∣∣

z − 1

z + 1
−
ζ − 1

ζ + 1

z − 1

z + 1

ζ − 1

ζ + 1
− 1

∣∣∣∣∣∣∣∣∣
=

1

2π
log

∣∣∣∣
(ζ + 1)(z − ζ)

(z + 1)(z − ζ)

∣∣∣∣ . (16.106)

One can then write the solution to the Poisson equation in a superposition as in (16.101).

16.5. Complex Integration.

The magic and power of calculus ultimately rests on the amazing fact that differen-
tiation and integration are mutually inverse operations. And, just as complex functions
have many remarkable differentiability properties not enjoyed by their real siblings, so the
sublime beauty and innate structure complex integration goes far beyond its more mun-
dane real counterpart. In the remaining two sections of this chapter, we shall develop the
basics of complex integration theory and present a few of its important applications.

The first step is to motivate the definition of a complex integral. As you know, the

(definite) integral of a real function,

∫ b

a

f(t) dt, is evaluated on an interval [a, b ] ⊂ R.

In complex function theory, integrals are taken along curves in the complex plane, and
thus have the flavor of the line integrals appearing in real vector calculus. Indeed, the
identification of a complex number z = x+ i y with a planar vector x = (x, y )

T
will serve

to connect the two theories.

Consider a curve C in the complex plane, parametrized, as in (16.65), by z(t) =
x(t) + i y(t) for a ≤ t ≤ b. We define the integral of the complex function f(z) along the
curve C to be the complex number

∫

C

f(z) dz =

∫ b

a

f(z(t))
dz

dt
dt. (16.107)

We shall always assume that the integrand f(z) is a well-defined complex function at each
point on the curve. Let us write out the integrand

f(z) = u(x, y) + i v(x, y)

in terms of its real and imaginary parts. Also,

dz =
dz

dt
dt =

(
dx

dt
+ i

dy

dt

)
dt = dx+ i dy.

As a result, the complex integral (16.107) splits up into a pair of real line integrals:

∫

C

f(z) dz =

∫

C

(u+ i v)(dx+ i dy) =

∫

C

(u dx− v dy) + i

∫

C

(v dx+ u dy). (16.108)
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1−1

P

C

S+

Figure 16.25. Curves for Complex Integration.

Example 16.44. Let us compute complex integrals

∫

C

zn dz, (16.109)

of the monomial function f(z) = zn, where n is an integer, along several different curves.
We begin with a straight line segment along the real axis connecting the points −1 to 1,
which we parametrize by z(t) = t for −1 ≤ t ≤ 1. The defining formula (16.107) implies
that the complex integral (16.109) reduces to a real integral:

∫

C

zn dz =

∫ 1

−1

tn dt =





0, n = 2k + 1 > 0 is odd ,
2

n+ 1
, n = 2k ≥ 0 is even.

If n ≤ −1 is negative, then the singularity of the integrand at at the origin implies that
the integral diverges, and so the complex integral is not defined.

Let us evaluate the same complex integral, but now along a parabolic arc P parame-
trized by

z(t) = t+ i (t2 − 1), −1 ≤ t ≤ 1.

Note that, as graphed in Figure 16.25, the parabola connects the same two points. We
again refer back to the basic definition (16.107) to evaluate the integral, so

∫

P

zn dz =

∫ 1

−1

[
t+ i (t2 − 1)

]n
(1 + 2 i t) dt.

We could, at this point, expand the resulting complex polynomial integrand, and then
integrate term by term. A more elegant approach is to recognize that the integrand is an
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exact derivative; namely, by the chain rule

d

dt

[
t+ i (t2 − 1)

]n+1

n+ 1
=
[
t+ i (t2 − 1)

]n
(1 + 2 i t),

as long as n 6= −1. Therefore, we can use the Fundamental Theorem of Calculus (which
works equally well for real integrals of complex-valued functions), to evaluate

∫

P

zn dz =

[
t+ i (t2 − 1)

]n+1

n+ 1

∣∣∣∣∣

1

t=−1

=





0, −1 6= n = 2k + 1 odd,
2

n+ 1
, n = 2k even.

Thus, when n ≥ 0 is a positive integer, we obtain the same result as before. Interestingly,
in this case the complex integral is well-defined even when n is a negative integer because,
unlike the real line segment, the parabolic path does not go through the singularity of zn

at z = 0. The case n = −1 needs to be done slightly differently, and integration of 1/z
along the parabolic path is left as an exercise for the reader — one that requires some
care. We recommend trying the exercise now, and then verifying your answer once we
have become a little more familiar with basic complex integration techniques.

Finally, let us try integrating around a semi-circular arc, again with the same endpoints
−1 and 1. If we parametrize the semi-circle S+ by z(t) = e i t, 0 ≤ t ≤ π, we find

∫

S+

zn dz =

∫ π

0

zn dz

dt
dt =

∫ π

0

e i nt i e i t dt =

∫ π

0

i e i (n+1)t dt

=
e i (n+1)t

n+ 1

∣∣∣∣
π

t=0

=
1− e i (n+1)π

n+ 1
=





0, −1 6= n = 2k + 1 odd,

−
2

n+ 1
, n = 2k even.

This value is the negative of the previous cases — but this can be explained by the fact
that the circular arc is oriented to go from 1 to −1 whereas the line segment and parabola
both go from −1 to 1. Just as with line integrals, the direction of the curve determines the
sign of the complex integral; if we reverse direction, replacing t by − t, we end up with the
same value as the preceding two complex integrals. Moreover — again provided n 6= −1
— it does not matter whether we use the upper semicircle or lower semicircle to go from
−1 to 1 — the result is exactly the same. However, the case n = −1 is an exception to
this “rule”. Integrating along the upper semicircle S+ from 1 to −1 yields

∫

S+

dz

z
=

∫ π

0

i dt = π i , (16.110)

whereas integrating along the lower semicircle S− from 1 to −1 yields the negative

∫

S−

dz

z
=

∫ −π

0

i dt = −π i . (16.111)

Hence, when integrating the function 1/z, it makes a difference which direction we go
around the origin.
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Integrating zn for any integer n 6= −1 around an entire circle gives zero — irrespective
of the radius. This can be seen as follows. We parametrize a circle of radius r by z(t) = re i t

for 0 ≤ t ≤ 2π. Then, by the same computation,

∮

C

zn dz =

∫ 2π

0

(rne i nt)(r i e i t) dt =

∫ 2π

0

i rn+1e i (n+1)t dt =
rn+1

n+ 1
e i (n+1)t

∣∣∣∣
2π

t=0

= 0,

(16.112)
provided n 6= −1. Here, as in Appendix A, the circle on the integral sign serves to remind
us that we are integrating around a closed curve. The case n = −1 remains special.
Integrating once around the circle in the counter-clockwise direction yields a nonzero result

∮

C

dz

z
=

∫ 2π

0

i dt = 2π i . (16.113)

Let us note that a complex integral does not depend on the particular parametrization
of the curve C. It does, however, depend upon the orientation of the curve: if we traverse
the curve in the reverse direction, then the complex integral changes its sign:

∫

−C

f(z) dz = −

∫

C

f(z) dz. (16.114)

Moreover, if we chop up the curve into two non-overlapping pieces, C = C1 ∪ C2, with a
common orientation, then the complex integral can be decomposed into a sum over the
pieces: ∫

C1∪C2

f(z) =

∫

C1

f(z) dz +

∫

C2

f(z) dz. (16.115)

For instance, the integral (16.113) of 1/z around the circle is the difference of the individual
semicircular integrals (16.110–111); the lower semicircular integral acquires a negative sign
to flip its orientation so as to agree with that of the entire circle. All these facts are
immediate consequences of the basic properties of line integrals, or can be easily proved
directly from the defining formula (16.107).

Note: In complex integration theory, a simple closed curve is often referred to as a
contour , and so complex integration is sometimes referred to as contour integration. Unless
explicitly stated, we always go around contours in the counter-clockwise direction.

Further experiments lead us to suspect that complex integrals are usually path-
independent, and hence evaluate to zero around closed contours. One must be careful,
though, as the integral (16.113) makes clear. Path independence, in fact, follows from the
complex version of the Fundamental Theorem of Calculus.

Theorem 16.45. Let f(z) = F ′(z) be the derivative of a single-valued complex

function F (z) defined on a domain Ω ⊂ C. Let C ⊂ Ω be any curve with initial point α
and final point β. Then

∫

C

f(z) dz =

∫

C

F ′(z) dz = F (β)− F (α). (16.116)
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Proof : This follows immediately from the definition (16.107) and the chain rule:

∫

C

F ′(z) dz =

∫ b

a

F ′(z(t))
dz

dt
dt =

∫ b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a)) = F (β)− F (α),

where α = z(a) and β = z(b) are the endpoints of the curve. Q.E.D.

For example, when n 6= −1, the function f(z) = zn is the derivative of the single-

valued function F (z) =
1

n+ 1
zn+1. Hence

∫

C

zn dz =
βn+1

n+ 1
−

αn+1

n+ 1

whenever C is a curve connecting α to β. When n < 0, the curve is not allowed to pass
through the origin, z = 0, as it is a singularity for zn.

In contrast, the function f(z) = 1/z is the derivative of the complex logarithm

log z = log | z |+ i ph z,

which is not single-valued on all of C \ {0}, and so Theorem 16.45 cannot be applied
directly. However, if our curve is contained within a simply connected subdomain that
does not include the origin, 0 6∈ Ω ⊂ C, then we can use any single-valued branch of the
complex logarithm to evaluate the integral

∫

C

dz

z
= log β − logα,

where α, β are the endpoints of the curve. Since the common multiples of 2π i cancel, the
answer does not depend upon which particular branch of the complex logarithm is chosen
as long as we are consistent in our choice. For example, on the upper semicircle S+ of
radius 1 going from 1 to −1,

∫

S+

dz

z
= log(−1)− log 1 = π i ,

where we use the branch of log z = log | z |+ i ph z with 0 ≤ ph z ≤ π. On the other hand,
if we integrate on the lower semi-circle S− going from 1 to −1, we need to adopt a different
branch, say that with −π ≤ ph z ≤ 0. With this choice, the integral becomes

∫

S−

dz

z
= log(−1)− log 1 = −π i ,

thus reproducing (16.110, 111). Pay particular attention to the different values of log(−1)
in the two cases!

The most important consequence of Theorem 16.45 is that, as long as the integrand
f(z) has a single-valued anti-derivative, its complex integral is independent of the path
connecting two points — the value only depends on the endpoints of the curve and not
how one gets from point α to point β.
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Figure 16.26. Orientation of Domain Boundary.

Theorem 16.46. Let f(z) = F ′(z), where F (z) is a single-valued complex function

for z ∈ Ω. If C ⊂ Ω is any closed curve, then
∮

C

f(z) dz = 0. (16.117)

Conversely, if (16.117) holds for all closed curves C ⊂ Ω contained in the domain of

definition of f(z), then f admits a single-valued complex anti-derivative with F ′(z) = f(z).

Proof : We have already demonstrated the first statement. As for the second, we
define

F (z) =

∫ z

z0

f(z) dz,

where z0 ∈ Ω is any fixed point, and we choose any convenient curve C ⊂ Ω connecting†

z0 to z. (16.117) assures us that the value does not depend on the chosen path. The proof
that this formula does define an anti-derivative of f is left as an exercise, which can be
solved in the same fashion as the case of a real line integral, cf. (22.41). Q.E.D.

The preceding considerations suggest the following fundamental theorem, due in its
general form to Cauchy. Before stating it, we introduce the convention that a complex
function f(z) is to be called analytic on a domain Ω ⊂ C provided it is analytic at every
point inside Ω and, in addition, remains (at least) continuous on the boundary ∂Ω. When
Ω is bounded, its boundary ∂Ω consists of one or more simple closed curves. In general,
as in Green’s Theorem A.26, we orient ∂Ω so that the domain is always on our left hand
side. This means that the outermost boundary curve is traversed in the counter-clockwise
direction, but any interior holes are take on a clockwise orientation. Our convention is
depicted in Figure 16.26.

Theorem 16.47. If f(z) is analytic on a bounded domain Ω ⊂ C, then
∮

∂Ω

f(z) dz = 0. (16.118)

† This assumes Ω is a connected domain; otherwise, apply the result to its individual connected
components.
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Proof : If we apply Green’s Theorem to the two real line integrals in (16.108), we find
∮

∂Ω

u dx− v dy =

∫ ∫

Ω

(
−
∂v

∂x
−
∂u

∂y

)
= 0,

∮

∂Ω

v dx+ u dy =

∫ ∫

Ω

(
∂u

∂x
−
∂v

∂y

)
= 0,

both of which vanish by virtue of the Cauchy–Riemann equations (16.22). Q.E.D.

If the domain of definition of our complex function f(z) is simply connected, then, by
definition, the interior of any closed curve C ⊂ Ω is contained in Ω, and hence Cauchy’s
Theorem 16.47 implies path independence of the complex integral within Ω.

Corollary 16.48. If f(z) is analytic on a simply connected domain Ω ⊂ C, then its

complex integral

∫

C

f(z) dz for C ⊂ Ω is independent of path. In particular,

∮

C

f(z) dz = 0 (16.119)

for any closed curve C ⊂ Ω.

Remark : Simple connectivity of the domain is an essential hypothesis — our evalua-
tion (16.113) of the integral of 1/z around thye unit circle provides a simple counterexample
to (16.119) in the non-simply connected domain Ω = C\{0}. Interestingly, this result also
admits a converse: a continuous function f(z) that satisfies (16.119) for all closed curves
is necessarily analytic; see [4] for a proof.

We will also require a slight generalization of this result.

Proposition 16.49. If f(z) is analytic in a domain that contains two simple closed

curves S and C, and the entire region lying between them, then, assuming they are oriented

in the same direction, ∮

C

f(z) dz =

∮

S

f(z) dz. (16.120)

Proof : If C and S do not cross each other, we let Ω denote the domain contained
between them, so that ∂Ω = C ∪ S; see the first plot in Figure 16.27. According to

Cauchy’s Theorem 16.47,

∮

∂Ω

f(z) = 0. Now, our orientation convention for ∂Ω means

that the outer curve, say C, is traversed in the counter-clockwise direction, while the inner
curve S has the opposite, clockwise orientation. Therefore, if we assign both curves the
same counter-clockwise orientation,

0 =

∮

∂Ω

f(z) =

∮

C

f(z) dz −

∮

S

f(z) dz,

proving (16.120).

If the two curves cross, we can construct a nearby curve K ⊂ Ω that neither crosses,
as in the second sketch in Figure 16.27. By the preceding paragraph, each integral is equal
to to that over the third curve,

∮

C

f(z) dz =

∮

K

f(z) dz =

∮

S

f(z) dz,
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Ω

C

S K

Figure 16.27. Integration Around Two Closed Curves.

and formula (16.120) remains valid. Q.E.D.

Example 16.50. Consider the function f(z) = zn where n is an integer†. In
(16.112), we already computed

∮

C

zn dz =

{
0, n 6= −1,

2π i , n = −1,
(16.121)

when C is a circle centered at z = 0. When n ≥ 0, Theorem 16.45 immediately implies
that the integral of zn is 0 over any closed curve in the plane. The same applies in the
cases n ≤ −2 provided the curve does not pass through the singular point z = 0. In
particular, the integral is zero around closed curves encircling the origin, even though zn

for n ≤ −2 has a singularity inside the curve and so Cauchy’s Theorem 16.47 does not
apply as stated.

The case n = −1 has particular significance. Here, Proposition 16.49 implies that
the integral is the same as the integral around a circle — provided the curve C also goes
once around the origin in a counter-clockwise direction. Thus (16.113) holds for any closed
curve that goes counter-clockwise once around the origin. More generally, if the curve goes
several times around the origin‡, then

∮

C

dz

z
= 2kπ i (16.122)

is an integer multiple of 2π i . The integer k is called the winding number of the curve C,
and measures the total number of times C goes around the origin. For instance, if C winds
three times around 0 in a counter-clockwise fashion, then k = 3, while k = −5 indicates

† When n is fractional or irrational, the integrals are not well-defined owing to the branch
point at the origin.

‡ Such a curve is undoubtedly not simple and must necessarily cross over itself.
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k = 0 k = 3 k = −5

Figure 16.28. Winding Numbers.

that the curve winds 5 times around 0 in a clockwise direction, as in Figure 16.28. In
particular, a winding number k = 0 indicates that C is not wrapped around the origin. If
C represents a loop of string wrapped around a pole (the pole of 1/z at 0) then a winding
number k = 0 would indicate that the string can be disentangled from the pole without
cutting; nonzero winding numbers would indicate that the string is truly entangled§.

Lemma 16.51. If C is any simple closed curve, and a is any point not lying on C,

then ∮

C

dz

z − a
=

{
2π i , a inside C

0 a outside C.
(16.123)

If a ∈ C, then the integral does not converge.

Proof : Note that the integrand f(z) = 1/(z − a) is analytic everywhere except at
z = a, where it has a simple pole. If a is outside C, then Cauchy’s Theorem 16.47 applies,
and the integral is zero. On the other hand, if a is inside C, then Proposition 16.49
implies that the integral is equal to the integral around a circle centered at z = a. The
latter integral can be computed directly by using the parametrization z(t) = a+ r e i t for
0 ≤ t ≤ 2π, as in (16.113). Q.E.D.

Example 16.52. Let D ⊂ C be a closed and connected domain. Let a, b ∈ D be
two points in D. Then

∮

C

(
1

z − a
−

1

z − b

)
dz =

∮

C

dz

z − a
−

∮

C

dz

z − b
= 0

for any closed curve C ⊂ Ω = C \ D lying outside the domain D. This is because, by
connectivity of D, either C contains both points in its interior, in which case both integrals
equal 2π i , or C contains neither point, in which case both integrals are 0. According to
Theorem 16.46, the integrand admits a single-valued anti-derivative on the domain Ω, even

§ Actually, there are more subtle three-dimensional considerations that come into play, and
even strings with zero winding number cannot be removed from the pole without cutting if they
are linked in some nontrivial manner, cf. [113]. Can you think of an example?
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though each individual term is the derivative of a multiply-valued complex logarithm. The
conclusion is that, while the individual logarithms are multiply-valued, their difference

F (z) = log(z − a)− log(z − b) (16.124)

is a consistent, single-valued complex function on all of Ω = C\D. The difference (16.124),
in fact, an infinite number of possible values, differing by integer multiples of 2π i ; the
ambiguity can be removed by choosing one of its value at a single point in Ω. These
conclusions rest on the fact that D is connected, and are not valid, say, for the twice-
punctured plane C \ {a, b}.

We are sometimes interested in estimating the size of a complex integral. The basic
inequality bounds it in terms of an arc length integral.

Proposition 16.53. The modulus of the integral of the complex function f along a

curve C is bounded by the integral of its modulus with respect to arc length:

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ ≤
∫

C

| f(z) | ds. (16.125)

Proof : We begin with a simple lemma on real integrals of complex functions.

Lemma 16.54. Let f(t) be a complex-valued function depending on the real variable

a ≤ t ≤ b. Then ∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

| f(t) | dt. (16.126)

Proof : If

∫ b

a

f(t) dt = 0, the inequality is trivial. Otherwise, let θ = ph

∫ b

a

f(t) dt.

Then, using Exercise 3.6.9,
∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ = Re

[
e− i θ

∫ b

a

f(t) dt

]
=

∫ b

a

Re
[
e− i θ f(t)

]
dt ≤

∫ b

a

| f(t) | dt,

which proves the lemma. Q.E.D.

To prove the proposition, we write out the complex integral, and use (16.126) as
follows:

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ =

∣∣∣∣∣

∫ b

a

f(z(t))
dz

dt
dt

∣∣∣∣∣ ≤
∫ b

a

| f(z(t)) |

∣∣∣∣
dz

dt

∣∣∣∣ dt =

∫

C

| f(z) | ds,

since | dz | = |
¦

z | dt =
√

¦

x2 +
¦

y2 dt = ds is the arc length integral element (A.30). Q.E.D.

Corollary 16.55. If the curve C has length L = L(C), and f(z) is an analytic

function such that | f(z) | ≤M for all points z ∈ C, then

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ ≤ M L. (16.127)
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Lift and Circulation

In fluid mechanical applications, the complex integral can be assigned an important
physical interpretation. As above, we consider the steady state flow of an incompressible,
irrotational fluid. Let f(z) = u(x, y)− i v(x, y) denote the complex velocity corresponding

to the real velocity vector v = (u(x, y), v(x, y) )
T

at the point (x, y).

As we noted in (16.108), the integral of the complex velocity f(z) along a curve C
can be written as a pair of real line integrals. In the present situation,
∫

C

f(z) dz =

∫

C

(u− i v)(dx+ i dy) =

∫

C

(u dx+ v dy)− i

∫

C

(v dx− u dy). (16.128)

According to (A.37, 42), the real part is the circulation integral
∫

C

v · dx =

∫

C

u dx+ v dy, (16.129)

while the imaginary part is minus the flux integral
∫

C

v · n ds =

∫

C

v ∧ dx =

∫

C

v dx− u dy, (16.130)

along the curve C under the associated steady state fluid flow.

If the complex velocity admits a single-valued complex potential

χ(z) = ϕ(z)− iψ(z), where χ′(z) = f(z)

— which is always the case if its domain of definition is simply connected — then the
complex integral is independent of path, and one can use the Fundamental Theorem 16.45
to evaluate it: ∫

C

f(z) dz = χ(β)− χ(α) (16.131)

for any curve C connecting α to β. Path independence of the complex integral reconfirms
the path independence of the flux and circulation integrals for irrotational, incompressible
fluid dynamics. The real part of formula (16.131) evaluates the circulation integral

∫

C

v · dx =

∫

C

∇ϕ · dx = ϕ(β)− ϕ(α), (16.132)

as the difference in the values of the (real) potential at the endpoints α, β of the curve C.
On the other hand, the imaginary part of formula (16.131) computes the flux integral

∫

C

v ∧ dx =

∫

C

∇ψ · dx = ψ(β)− ψ(α), (16.133)

as the difference in the values of the stream function at the endpoints of the curve. Thus,
the stream function acts as a “flux potential” for the flow. Thus, for ideal fluid flows, flux
is independent of path, and depends only upon the endpoints of the curve. In particular,
if C is a closed contour, ∮

C

v · dx = 0 =

∮

C

v ∧ dx, (16.134)
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and so there is no net circulation or flux along any closed curve in this situation.

In aerodynamics, lift is the result of the circulation of the fluid (air) around the body,
[14, 164]. More precisely, let D ⊂ C be a closed, bounded subset representing the cross-
section of a cylindrical body, e.g., an airplane wing. The velocity vector field v of a steady
state flow around the exterior of the body is defined on the domain Ω = C \D. According
to Blasius’ Theorem, the body will experience a net lift if and only if it has nonvanishing

circulation integral

∮

C

v · dx 6= 0, where C is any simple closed contour encircling the

body. However, if the complex velocity admits a single-valued complex potential in Ω,
then (16.134) tells us that the circulation is automatically zero, and so the body cannot
experience any lift!

Example 16.56. Let us investigate the role of lift in flow around an airfoil. Consider
first the flow around a disk, as discussed in Examples 16.17 and 16.39. The Joukowski
potential χ(z) = z + z−1 is a single-valued analytic function everywhere except at the
origin z = 0. Therefore, the circulation integral (16.132) around any contour encircling
the disk will vanish, and hence the disk experiences no net lift. This is more or less evident
from the Figure 16.13 graphing the streamlines of the flow; they are symmetric above and
below the disk, and hence there cannot be any net force in the vertical direction.

Any conformal map will maintain single-valuedness of the complex potentials, and
hence preserve the zero-circulation property. In particular, all the flows past airfoils con-
structed in Example 16.41 also admit single-valued potentials, and so also have zero cir-
culation integral. Such an airplane will not fly, because its wings experience no lift! Of
course, physical airplanes do fly, and so there must be some physical assumption we are
neglecting in our treatment of flow past a body. Abandoning incompressibility or irrota-
tionality would draw us outside the manicured gardens of complex variable theory, and into
the jungles of fully nonlinear partial differential equations of fluid mechanics. Moreover,
although air is slightly compressible, water is, for all practical purposes, incompressible,
and hydrofoils do experience lift when traveling through water.

The only way to introduce lift into the picture is through a (single-valued) complex
velocity with a non-zero circulation integral, and this requires that its complex potential be
multiply-valued. The one function that we know that has such a property is the complex
logarithm

λ(z) = log(a z + b), whose derivative λ′(z) =
1

a z + b

is single-valued away from the singularity at z = − b/a. Thus, we are naturally led to
introduce the family of complex potentials†

χk(z) =
1

2

(
z +

1

z

)
− i k log z. (16.135)

† We center the logarithmic singularity at the origin in order to maintain the no flux boundary
conditions on the unit circle. Moreover, Example 16.52 tells us that more than one logarithm in
the potential is redundant, since the difference of any two logarithms is effectively a single-valued
function, and hence contributes nothing to the circulation integral.
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According to Exercise , the coefficient k must be real in order to maintain the no flux
boundary conditions on the unit circle. By (16.128), the circulation is equal to the real
part of the integral of the complex velocity

fk(z) =
dχk

dz
=

1

2
−

1

2z2
−

i k

z
. (16.136)

By Cauchy’s Theorem 16.47 coupled with formula (16.123), if C is a curve going once
around the disk in a counter-clockwise direction, then

∮

C

fk(z) dz =

∮

C

(
1

2
−

1

2z2
−

i k

z

)
dz = 2πk.

Therefore, when Re k 6= 0, the circulation integral is non-zero, and the cylinder experiences
a net lift. In Figure liftc , the streamlines for the flow corresponding to a few representative
values of k are plotted. Note the asymmetry of the streamlines that accounts for the lift
experienced by the disk.

When we compose the modified lift potentials (16.135) with the Joukowski transfor-
mation (16.100), we obtain a complex potential

Θk(ζ) = χk(z) when ζ =
1

2

(
w +

1

w

)
=

1

2

(
a z + β +

1

a z + β

)

for flow around the corresponding airfoil — the image of the unit disk. The conformal
mapping does not affect the value of the complex integrals, and hence, for any k 6= 0, there
is a nonzero circulation around the airfoil under the modified fluid flow. This circulation
is the cause of a net lift on the airfoil, and at last our airplane will fly!

However, there is now a slight embarrassment of riches, since we have designed flows
around the airfoil with an arbitrary value 2πk for the circulation integral, and hence
having an arbitrary amount of lift! Which of these possible flows most closely realizes the
true physical version with the correct amount of lift? In his 1902 thesis, Martin Kutta
hypothesized that Nature chooses the constant k so as to keep the velocity of the flow at
the trailing edge of the airfoil, ζ = 1, to be finite. With some additional analysis, it turns
out that this condition serves to uniquely specify k, and yields a reasonably good physical
approximation to the actual lift experienced by such an airfoil in flight, provided the tilt
or attack angle of the airfoil in the flow is not too large. Further details, can be found in
several references, including [14, 124, 114, 164].

16.6. Cauchy’s Integral Formulae and the Calculus of Residues.

Cauchy’s Integral Theorem 16.47 and its consequences underlie almost all applications
of complex integration. The fact that we can move the contours of complex integrals
around freely — as long as we do not cross over singularities of the integrand — grants
us great flexibility in their evaluation. A key consequence of Cauchy’s Theorem is that
the value of a complex integral around a closed contour depends only upon the nature of
the singularities of the integrand that happen to lie inside the contour. This observation
inspires us to develop a direct method, known as the “calculus of residues”, for evaluating
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such integrals. The residue method effectively bypasses the Fundamental Theorem of
Calculus — no antiderivatives are required! Remarkably, the method of residues can even
be applied to evaluate certain types of real definite integrals, as the final examples in this
section shall demonstrate.

Cauchy’s Integral Formula

The first important consequence of Cauchy’s Theorem is the justly famous Cauchy

integral formulae. It enables us to compute the value of an analytic function at a point by
evaluating a contour integral around a closed curve encircling the point.

Theorem 16.57. Let Ω ⊂ C be a bounded domain with boundary ∂Ω, and let

a ∈ Ω. If f(z) is analytic on Ω, then

f(a) =
1

2π i

∮

∂Ω

f(z)

z − a
dz. (16.137)

Remark : As always, we traverse the boundary curve ∂Ω so that the domain Ω lies on
our left. In most applications, Ω is simply connected, and so ∂Ω is a simple closed curve
oriented in the counter-clockwise direction.

It is worth emphasizing that Cauchy’s formula (16.137) is not a form of the Funda-
mental Theorem of Calculus, since we are reconstructing the function by integration —
not its anti-derivative! Cauchy’s formula is a cornerstone of complex analysis, and has no
real counterpart, once again underscoring the profound difference between complex and
real analysis.

Proof : We first prove that the difference quotient

g(z) =
f(z)− f(a)

z − a

is an analytic function on all of Ω. The only problematic point is at z = a where the
denominator vanishes. First, by the definition of complex derivative,

g(a) = lim
z → a

f(z)− f(a)

z − a
= f ′(a)

exists and therefore g(z) is well-defined and, in fact, continuous at z = a. Secondly, we
can compute its derivative at z = a directly from the definition:

g′(a) = lim
z → a

g(z)− g(a)

z − a
= lim

z → a

f(z)− f(a)− f ′(a) (z − a)

(z − a)2
= 1

2 f
′′(a),

where we use Taylor’s Theorem C.1 (or l’Hôpital’s rule) to evaluate the final limit. Knowing
that g is differentiable at z = a suffices to establish that it is analytic on all of Ω. Thus,
we may appeal to Cauchy’s Theorem 16.47, and conclude that

0 =

∮

∂Ω

g(z) dz =

∮

∂Ω

f(z)− f(a)

z − a
dz =

∮

∂Ω

f(z)

z − a
dz − f(a)

∮

∂Ω

dz

z − a

=

∮

∂Ω

f(z)

z − a
dz − 2π i f(a).

5/1/06 936 c© 2006 Peter J. Olver



The second integral was evaluated using (16.123). Rearranging terms completes the proof
of the Cauchy formula. Q.E.D.

Remark : The proof shows that if, in contrast, a 6∈ Ω, then the Cauchy integral van-
ishes:

1

2π i

∮

∂Ω

f(z)

z − a
dz = 0.

If a ∈ ∂Ω, then the integral does not converge.

Let us see how we can apply this result to evaluate seemingly intractable complex
integrals.

Example 16.58. Suppose that you are asked to compute the contour integral
∮

C

ez dz

z2 − 2z − 3

where C is a circle of radius 2 centered at the origin. A direct evaluation is not possible,
since the integrand does not have an elementary anti-derivative†. However, we note that

ez

z2 − 2z − 3
=

ez

(z + 1)(z − 3)
=

f(z)

z + 1
where f(z) =

ez

z − 3

is analytic in the disk | z | ≤ 2 since its only singularity, at z = 3, lies outside the contour
C. Therefore, by Cauchy’s formula (16.137), we immediately obtain the integral

∮

C

ez dz

z2 − 2z − 3
=

∮

C

f(z)

z + 1
dz = 2π i f(−1) = −

π i

2 e
.

Note: Path independence implies that the integral has the same value on any other
simple closed contour, provided it is oriented in the usual counter-clockwise direction and
encircles the point z = 1 but not the point z = 3.

In this example, if the contour encloses both singularities, at z = 1 and 3, then we
cannot apply Cauchy’s formula directly. However, as we will see, Theorem 16.57 can be
adapted in a direct manner to such situations. This more general result will lead us directly
to the calculus of residues, to be discussed shortly.

Derivatives by Integration

The fact that we can recover values of complex functions by integration is noteworthy.
Even more amazing‡ is the fact that we can compute derivatives of complex functions
by integration — turning the Fundamental Theorem on its head! Let us differentiate
both sides of Cauchy’s formula (16.137) with respect to a. The integrand in the Cauchy

† At least not one listed in any integration tables, e.g., [81]. A more profound analysis, [Int],
confirms that its anti-derivative cannot be expressed in closed form using elementary functions.

‡ Readers who have successfully tackled Exercise may be less shocked by this fact.
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formula is sufficiently nice so as to allow us to bring the derivative inside the integral sign.
Moreover, the derivative of the Cauchy integrand with respect to a is easily found:

∂

∂a

(
f(z)

z − a

)
=

f(z)

(z − a)2
.

In this manner, we deduce an integral formulae for the derivative of an analytic function:

f ′(a) =
1

2π i

∮

C

f(z)

(z − a)2
dz, (16.138)

where, as before, C is any closed curve that goes once around the point z = a in a counter-
clockwise direction†. Further differentiation yields the general integral formulae

f (n)(a) =
n !

2π i

∮

C

f(z)

(z − a)n+1
dz (16.139)

that expresses the nth order derivative of a complex function in terms of a contour integral.

These remarkable formulae, which again have no counterpart in real function theory,
can be used to prove our earlier claim that an analytic function is infinitely differentiable,
and thereby complete the proof of Theorem 16.9.

Example 16.59. Let us compute the integral
∮

C

ez dz

z3 − z2 − 5z − 3
=

∮

C

ez dz

(z + 1)2(z − 3)
,

around the circle of radius 2 centered at the origin. We use (16.138) with

f(z) =
ez

z − 3
, whereby f ′(z) =

(z − 4) ez

(z − 3)2
.

Since f(z) is analytic inside C, the integral formula (16.138) that

∮

C

ez dz

z3 − z2 − 5z − 3
=

∮

C

f(z)

(z + 1)2
dz = 2π i f ′(−1) = −

5π i

8 e
.

One application is the following remarkable result due to Liouville, whom we already
met in Section 11.5. It says that the only bounded complex functions are the constants!

Theorem 16.60. If f(z) is analytic at all z ∈ C, and satisfies | f(z) | ≤M for some

fixed positive number M > 0, then f(z) ≡ c is constant.

Proof : According to Cauchy’s formula (16.137), for any point a ∈ C,

f ′(a) =
1

2π i

∮

CR

f(z)

(z − a)2
dz,

† Or, more generally, has winding number +1 around the point z = a.
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where we take CR = { z | | z − a | = R } to be a circle of radius R centered at z = a. We
then estimate the complex integral using (16.125), whence

| f ′(a) | =
1

2π

∣∣∣∣
∮

CR

f(z)

(z − a)2
dz

∣∣∣∣ ≤
1

2π

∮

CR

| f(z) |

| z − a |2
ds ≤

1

2π

∮

CR

M

R2
ds =

M

R
,

since the length of CR is 2πR. Since f(z) is analytic everywhere, we can let R → ∞
and conclude that f ′(a) = 0. Since this occurs for all possible points a, we conclude that
f ′(z) ≡ 0 is everywhere zero, which suffices to prove constancy of f(z). Q.E.D.

One outstanding application of Liouville’s Theorem 16.60 is a proof of the Fundamen-
tal Theorem of Algebra, first proved by Gauss in 1799; see [69] for an extensive discussion.
Although it is, in essence, a purely algebraic result, this proof relies in an essential way on
complex analysis and complex integration.

Theorem 16.61. Every nonconstant (complex or real) polynomial f(z) has at least

one complex root z0 ∈ C.

Proof : Suppose

f(z) = an z
n + an−1 z

n−1 + · · · + a1 z + a0 6= 0 for all z ∈ C. (16.140)

Then we claim that its reciprocal

g(z) =
1

f(z)
=

1

an z
n + an−1 z

n−1 + · · · + a1 z + a0

satisfies the hypotheses of Theorem 16.60, and hence must be constant, in contradiction
to our hypothesis. Therefore, f(z) cannot be non-zero for all z, and this establishes the
result.

To prove the claim, note first that our nonvanishing assumption (16.140) implies that
g(z) is analytic for all z ∈ C. Moreover,

| f(z) | = | z |n
∣∣∣ an +

an−1

z
+ · · · +

a1

zn−1
+
a0

zn

∣∣∣

≤ | z |n
(
| an |+ | an−1 |+ · · · + | a1 |+ | a0 |

)
,

whenever | z | ≥ 1,

which implies that | f(z) | → ∞ as | z | → ∞, and so

| g(z) | =
1

| f(z) |
−→ 0 as | z | → ∞.

This suffices to prove that | g(z) | ≤M is bounded for z ∈ C. Q.E.D.

Corollary 16.62. Every complex polynomial of degree n can be factored,

f(z) = an (z − z1) (z − z2) · · · (z − zn)

where z1, . . . , zn are the roots of f(z), listed in accordance with their multiplicity.
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C

z = a

Figure 16.29. Computing a Residue.

Proof : Theorem 16.61 guarantees that there is at least one point z1 ∈ C where f(z1) =
0. Therefore, by the rules of polynomial factorization, we can write

f(z) = (z − z1) g(z)

where g(z) is a polynomial of degree n− 1. A straightforward induction on the degree of
the polynomial completes the proof. Q.E.D.

The Calculus of Residues

Cauchy’s Theorem and Integral Formulae provide us with some amazingly versatile
tools for evaluating complicated complex integrals. The upshot is that one only needs
to understand the singularities of the integrand within the domain of integration — no
indefinite integration is required! With a little more work, we are led to a general method
for efficiently computing contour integrals, known as the Calculus of Residues. While the
residue method has no counterpart in real integration theory, it can, remarkably, be used
to evaluate a large variety of interesting definite real integrals, including many without an
explicitly known anti-derivative.

Definition 16.63. Let f(z) be an analytic function for all z near, but not equal to
a. The residue of f(z) at the point z = a is defined by the contour integral

Res
z=a

f(z) =
1

2π i

∮

C

f(z) dz, (16.141)

where C is any simple, closed curve that contains a in its interior, oriented, as always, in
a counter-clockwise direction, and such that f(z) is analytic everywhere inside C except
at the point z = a; see Figure 16.29. For example, C could be a small circle centered at a.
The residue is a complex number, and tells us important information about the singularity
of f(z) at z = a.
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The simplest example is the monomial function f(z) = czn, where c is a complex
constant and the exponent n is assumed to be an integer. (Residues are not defined at
branch points.) According to (16.112),

Res
z=0

czn =
1

2π i

∮

C

czn dz =

{
0, n 6= −1,

c, n = −1.
(16.142)

Thus, only the case n = −1 gives a nonzero residue. The residue singles out the function
1/z, which, not coincidentally, is the only one with a logarithmic, and multiply-valued,
antiderivative.

Cauchy’s Theorem 16.47, when applied to the integral in (16.141), implies that if f(z)
is analytic at z = a, then it has zero residue at a. Therefore, all the monomials, including
1/z, have zero residue at any nonzero point:

Res
z=a

czn = 0 for a 6= 0. (16.143)

Since integration is a linear operation, the residue is a linear operator, mapping com-
plex functions to complex numbers:

Res
z=a

[
f(z) + g(z)

]
= Res

z=a
f(z) + Res

z=a
g(z), Res

z=a

[
cf(z)

]
= c Res

z=a
f(z), (16.144)

for any complex constant c. Thus, by linearity, the residue of any finite linear combination
of monomials,

f(z) =
c−m

zm
+
c−m+1

zm−1
+ · · · +

c−1

z
+ c0 + c1 z + · · · + cn z

n =

n∑

k=−m

ck z
k,

is equal to

Res
z=0

f(z) = c−1.

Thus, the residue effectively picks out the coefficient of the term 1/z in such an expansion.

The easiest nontrivial residues to compute are at the poles of a function. According
to (16.29), the function f(z) has a simple pole at z = a if

h(z) = (z − a) f(z) (16.145)

is analytic at z = a and h(a) 6= 0. The next result allows us to bypass the contour integral
when evaluating such a residue.

Lemma 16.64. If f(z) =
h(z)

z − a
has a simple pole at z = a, then Res

z=a
f(z) = h(a).

Proof : We substitute the formula for f(z) into the definition (16.141), and so

Res
z=a

f(z) =
1

2π i

∮

C

f(z) dz =
1

2π i

∮

C

h(z) dz

z − a
= h(a)

by Cauchy’s formula (16.137). Q.E.D.
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Example 16.65. Consider the function

f(z) =
ez

z2 − 2z − 3
=

ez

(z + 1)(z − 3)
.

From the factorization of the denominator, we see that f(z) has simple pole singularities
at z = −1 and z = 3. The residues are given, respectively, by

Res
z=−1

ez

z2 − 2z − 3
=

ez

z − 3

∣∣∣∣
z=−1

= −
1

4 e
, Res

z=3

ez

z2 − 2z − 3
=

ez

z + 1

∣∣∣∣
z=3

=
e3

4
.

Since f(z) is analytic everywhere else, its residue at any other point is automatically 0.

Recall that a function g(z) is said to have simple zero at z = a provided

g(z) = (z − a) k(z)

where k(z) is analytic at z = a and k(a) = g′(a) 6= 0. If f(z) is analytic at z = a, then the
quotient

f(z)

g(z)
=

f(z)

(z − a) k(z)

has a simple pole at z = a, with residue

Res
z=a

f(z)

g(z)
= Res

z=a

f(z)

(z − a) k(z)
=
f(a)

k(a)
=
f(a)

g′(a)
(16.146)

by Lemma 16.64. More generally, if z = a is a zero or order m of

g(z) = (z − a)m k(z), so that k(a) =
g(m)(a)

m !
6= 0,

then

Res
z=a

f(z)

g(z)
=

1

(m− 1) !

dm−1

dzm−1

(
f(z)

k(z)

) ∣∣∣∣
z=a

. (16.147)

The proof of the latter formula is left as an exercise.

Example 16.66. As an illustration, let us compute the residue of sec z = 1/ cos z at
the point z = 1

2 π. Note that cos z has a simple zero at z = 1
2 π since its derivative, namely

− sin z, is nonzero there. Thus, according to (16.146) with f(z) ≡ 1,

Res
z=π/2

sec z = Res
z=π/2

1

cos z
=
−1

sin 1
2 π

= −1.

The direct computation of the residue using the defining contour integral (16.141) is much
harder.
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Figure 16.30. Residues Inside a Contour.

The Residue Theorem

Residues are the building blocks of a general method for computing contour integrals
of analytic functions. The Residue Theorem says that the value of the integral of a complex
function around a closed curve depends only on its residues at the enclosed singularities.
Since the residues can be computed directly from the function, the resulting formula pro-
vides an effective mechanism for painless evaluation of complex integrals, that completely
avoids the anti-derivative. Indeed, the residue method copntinues to be effective even when
the integrand does not have an anti-derivative that can be expressed in terms of elementary
functions.

Theorem 16.67. Let C be a simple, closed curve, oriented in the counter-clockwise

direction. Suppose f(z) is analytic everywhere inside C except at a finite number of

singularities, a1, . . . , an. Then

1

2π i

∮

C

f(z) dz = Res
z=a1

f(z) + · · · + Res
z=an

f(z). (16.148)

Keep in mind that only the singularities that lie inside the contour C contribute to
the residue formula (16.148).

Proof : We draw a small circle Ci around each singularity ai. We assume the circles
all lie inside the contour C and do not cross each other, so that ai is the only singularity
contained within Ci; see Figure 16.30. Definition 16.63 implies that

Res
z=ai

f(z) =
1

2π i

∮

Ci

f(z) dz, (16.149)

where the line integral is taken in the counter-clockwise direction around Ci.

Consider the domain Ω consisting of all points z which lie inside the given curve C, but
outside all the small circles C1, . . . , Cn; this is the shaded region in Figure 16.30. By our
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construction, the function f(z) is analytic on Ω, and hence by Cauchy’s Theorem 16.47,
the integral of f(z) around the boundary ∂Ω is zero. The boundary ∂Ω must be oriented
consistently, so that the domain is always lying on one’s left hand side. This means that
the outside contour C should be traversed in a counter-clockwise direction, whereas the
inside circles Ci are taken in a clockwise direction. Therefore, the integral around the
boundary of the domain Ω can be broken up into a difference

0 =
1

2π i

∮

∂Ω

f(z) dz =
1

2π i

∮

C

f(z) −
n∑

i=1

1

2π i
dz

∮

Ci

f(z) dz

=
1

2π i

∮

C

f(z) −
n∑

i=1

Res
z=ai

f(z) dz.

The minus sign converts the circular integrals to the counterclockwise orientation used in
the definition (16.149) of the residues. Rearranging the final identity leads to the residue
formula (16.148). Q.E.D.

Example 16.68. Let us use residues to evaluate the contour integral

∮

Cr

ez

z2 − 2z − 3
dz

where Cr denotes the circle of radius r centered at the origin. According to Example 16.65,
the integrand has two singularities at −1 and 3, with respective residues −1/(4 e) and e3/4.
If the radius of the circle is r > 3, then it goes around both singularities, and hence by the
residue formula (16.148)

∮

C

ez dz

z2 − 2z − 3
= 2π i

(
−

1

4e
+
e3

4

)
=

(e4 − 1)π i

2e
, r > 3.

If the circle has radius 1 < r < 3, then it only encircles the singularity at −1, and hence

∮

C

ez

z2 − 2z − 3
dz = −

π i

2e
, 1 < r < 3.

If 0 < r < 1, the function has no singularities inside the circle and hence, by Cauchy’s
Theorem 16.47, the integral is 0. Finally, when r = 1 or r = 3, the contour passes through
a singularity, and the integral does not converge.

Evaluation of Real Integrals

One important — and unexpected — application of the Residue Theorem 16.67 is to
aid in the evaluation of certain definite real integrals. Of particular note is that it even
applies to cases in which one is unable to evaluate the corresponding indefinite integral
in closed form. Nevertheless, converting the definite real integral into (part of a) complex
contour integral leads to a direct evaluation via the calculus of residues that sidesteps the
difficulties in finding the antiderivative.
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The method treats two basic types of real integral, although numerous variations ap-
pear in more extensive treatments of the subject. The first category are real trigonometric
integrals of the form

I =

∫ 2π

0

F (cos θ, sin θ) dθ. (16.150)

Such integrals can often be evaluated by converting them into complex integrals around
the unit circle C =

{
| z | = 1

}
. If we set

z = e i θ so
1

z
= e− i θ,

then

cos θ =
e i θ + e− i θ

2
=

1

2

(
z +

1

z

)
, sin θ =

e i θ − e− i θ

2 i
=

1

2 i

(
z −

1

z

)
.

(16.151)
Moreover,

dz = de i θ = i e i θ dθ = i z dθ, and so dθ =
dz

i z
. (16.152)

Therefore, the integral (16.150) can be written in the complex form

I =

∮

C

F

(
z + z−1

2
,
z + z−1

2 i

)
dz

i z
. (16.153)

If we know that the resulting complex integrand is well-defined and single-valued, except,
possibly, for a finite number of singularities inside the unit circle, then the residue for-
mula (16.148) tells us that the integral can be directly evaluated by adding together its
residues and multiplying by 2π i .

Example 16.69. We compute the relatively simple example

∫ 2π

0

dθ

2 + cos θ
.

Applying the substitution (16.153), we find

∫ 2π

0

dθ

2 + cos θ
=

∮

C

dz

i z
[
2 + 1

2 (z + z−1)
] = − i

∮

C

2 dz

z2 + 4z + 1
.

The complex integrand has singularities where its denominator vanishes:

z2 + 4z + 1 = 0, so that z = −2±
√

3 .

Only one of these singularities, namely −2 +
√

3 lies inside the unit circle. Therefore,
applying (16.146), we find

− i

∮

C

2 dz

z2 + 4z + 1
= 2π Res

z=−2+
√

3

2

z2 + 4z + 1
=

4π

2z + 4

∣∣∣∣
z=−2+

√
3

=
2π
√

3
.
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As you may recall from first year calculus, this particular integral can, in fact, be computed
directly via a trigonometric substitution. However, the integration is not particularly
pleasant, and, with a little practice, the residue method is seen to be an easier method.
Moreover, it straightforwardly applies to situations where no elementary anti-derivative
exists.

Example 16.70. The goal is to evaluate the definite integral

∫ π

0

cos 2θ

3− cos θ
dθ.

The first thing to note is that the integral omnly runs from 0 to π and so is not explicitly
of the form (16.150). However, note that the integrand is even, and so

∫ π

0

cos 2θ

3− cos θ
dθ =

1

2

∫ π

−π

cos 2θ

3− cos θ
dθ,

which will turn into a contour integral around the entire unit circle under the substitution
(16.151). Also note that

cos 2θ =
e2 i θ + e−2 i θ

2
=

1

2

(
z2 +

1

z2

)
,

and so

∫ π

−π

cos 2θ

3− cos θ
dθ =

∮

C

1
2 (z2 + z−2)

3− 1
2 (z + z−1)

dz

i z
= i

∮

C

z4 + 1

z2(z2 − 6z + 1)
dz.

The denominator has 4 roots — at 0, 3− 2
√

2, and 3 + 2
√

2 — but the last one does not
lie inside the unit circle and so cn be ignored. We use (16.146) with f(z) = (z4 + 1)/z2

and g(z) = z2 − 6z + 1 to compute

Res
z=3−2

√
2

z4 + 1

z2(z2 − 6z + 1)
=
z4 + 1

z2

∣∣∣∣
z=−2+

√
3

1

2z − 6
= 17

4

√
2 ,

whereas (16.147) is used to compute

Res
z=0

z4 + 1

z2(z2 − 6z + 1)
=

d

dz

(
z4 + 1

z2 − 6z + 1

) ∣∣∣∣
z=0

=
2(z5 − 9z4 + 2z3 − z + 3)

(z2 − 6z + 1)2

∣∣∣∣
z=0

= 6 .

Therefore,

∫ π

0

cos 2θ

3− cos θ
dθ = π

[
Res
z=0

z4 + 1

z2(z2 − 6z + 1)
+ Res

z=3−2
√

2

z4 + 1

z2(z2 − 6z + 1)

]
= −6π + 17

4

√
2 π.

A second type of real integral that can often be evaluated by complex residues are
integrals over the entire real line, from −∞ to∞. Here the technique is a little more subtle,
and we sneak up on the integral by using larger and larger closed contours that include
more and more of the real axis. The basic idea is contained in the following example.
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R−R

SR

Figure 16.31. The Semicircular Contour.

Example 16.71. The problem is to evaluate the real integral

I =

∫ ∞

0

cosx

1 + x2
dx. (16.154)

The corresponding indefinite integral cannot be evaluated in elementary terms, and so we
are forced to rely on the calculus of residues. We begin by noting that the integrand is
even, and hence the integral I = 1

2 J is one half the integral

J =

∫ ∞

−∞

cosx

1 + x2
dx

over the entire real line. Moreover, for x real, we can write

cosx

1 + x2
= Re

e i x

1 + x2
, and hence J = Re

∫ ∞

−∞

e i x

1 + x2
dx. (16.155)

Let CR be the closed contour consisting of a large semicircle of radius R À 0, which
we denote by SR, connected at its ends by the real interval −R ≤ x ≤ R, as plotted
in Figure 16.31 Figure 16.31, and having the usual counterclockwise orientation. The
corresponding contour integral

∮

CR

e i z dz

1 + z2
=

∫ R

−R

e i x dx

1 + x2
+

∫

SR

e i z dz

1 + z2
(16.156)

breaks up into two pieces: the first over the real interval, and the second over the semicircle.
As the radius R → ∞, the semicircular contour CR includes more and more of the real
axis, and so the first integral gets closer and closer to our desired integral (16.155). If
we can prove that the second, semicircular integral goes to zero, then we will be able to
evaluate the integral over the real axis by contour integration, and hence by the method
of residues. Our hope that the semicircular integral is small seems reasonable, since the
integrand (1 + z2)−1e i z gets smaller and smaller as | z | → ∞ provided Im z ≥ 0. (Why?)
A rigorous verification of this fact will appear at the end of the example.

According to the Residue Theorem 16.67, the integral (16.156) is equal to the sum of
all the residues at the singularities of f(z) lying inside the contour CR. Now ez is analytic
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everywhere, and so the singularities occur where the denominator vanishes, i.e., z2 = −1,
and so are at z = ± i . Since the semicircle lies in the upper half plane Im z > 0, only the
singularity z = + i lies inside — and then only when R > 1. To compute the residue, we
use (16.146) to evaluate

Res
z= i

e i z

1 + z2
=
e i z

2z

∣∣∣∣
z= i

=
e−1

2 i
=

1

2 i e
.

Therefore, by (16.148),

1

2π i

∮

CR

e i z dz

1 + z2
=

1

2 i e
, provided R > 1.

Thus, assuming the semicircular part of the integral does indeed become vanishingly small
as R→∞, we conclude that

∫ ∞

−∞

e i x dx

1 + x2
= lim

R→∞

∮

CR

e i z dz

1 + z2
= 2π i

1

2 i e
=
π

e
.

Incidentally, the integral is real because its imaginary part,

∫ ∞

−∞

sinx dx

1 + x2
= 0,

is the integral of an odd function which is automatically zero. Consequently,

I =

∫ ∞

0

cosx dx

1 + x2
=

1

2
Re

∫ ∞

−∞

e i x dx

1 + x2
=

π

2e
, (16.157)

which is the desired result.

To complete the argument, let us estimate the size of the semicircular integral. The
integrand is bounded by

∣∣∣∣
e i z

1 + z2

∣∣∣∣ ≤
1

1 + | z |2
=

1

1 +R2
whenever | z | = R, Im z ≥ 0,

where we are using the fact that

∣∣ e i z
∣∣ = e−y ≤ 1 whenever z = x+ i y with y ≥ 0.

According to Corollary 16.55, the size of the integral of a complex function is bounded
by its maximum modulus along the curve times the length of the semicircle, namely πR.
Thus, in our case,

∣∣∣∣
∫

SR

e i z dz

1 + z2

∣∣∣∣ ≤
πR

1 +R2
≤

π

R
−→ 0 as R −→ ∞,

as required.
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Example 16.72. Here we will use residues to evaluate the real integral
∫ ∞

−∞

dx

1 + x4
. (16.158)

The indefinite integral can, in fact, be found by the method of partial fractions, but, as
you may know, this is not a particularly pleasant task. Let us try the method of residues.
Let CR denote the same semicircular contour as in Figure 16.31. The integrand has pole
singularities where the denominator vanishes, i.e., z4 = −1, and so at the four fourth roots
of −1. These are

eπ i /4 =
1 + i
√

2
, e3π i /4 =

−1 + i
√

2
, e5π i /4 =

1− i
√

2
, e7π i /4 =

−1− i
√

2
.

Only the first two roots lie inside CR when R > 1. Their residues can be computed using
(16.146):

Res
z=eπ i /4

1

1 + z4
=

1

4z3

∣∣∣∣
z=eπ i /4

=
e−3π i /4

4
=
−1− i

4
√

2
,

Res
z=e3π i /4

1

1 + z4
=

1

4z3

∣∣∣∣
z=e3π i /4

=
e−9π i /4

4
=

1− i

4
√

2
.

Therefore, by the residue formula (16.148),

∮

CR

dz

1 + z4
= 2π i

(
−1− i

4
√

2
+

1− i

4
√

2

)
=

π
√

2
. (16.159)

On the other hand, we can break up the contour integral into an integral along the
real axis and an integral around the semicircle:

∮

CR

dz

1 + z4
=

∫ R

−R

dx

1 + x4
+

∫

SR

dz

1 + z4
.

The first integral goes to the desired real integral as the radius R → ∞. On the other
hand, on a large semicircle | z | = R, the integrand is small:

∣∣∣∣
1

1 + z4

∣∣∣∣ ≤
1

1 + | z |4
=

1

1 +R4
when | z | = R.

Thus, using Corollary 16.55, the integral around the semicircle can be bounded by
∣∣∣∣
∫

SR

dz

1 + z4

∣∣∣∣ ≤
1

1 +R4
πR ≤

π

R3
−→ 0 as R −→ ∞.

Thus, as R→∞, the complex integral (16.159) goes to the desired real integral (16.158),
and so ∫ ∞

−∞

dx

1 + x4
=

π
√

2
.

Note that the result is real and positive, as it must be.
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Chapter 17

Dynamics of Planar Media

In this chapter, we press on in our ascent of the dimensional ladder for linear systems.
In Chapter 6, we embarked on our journey with equilibrium configurations of discrete
systems — mass–spring chains, circuits, and structures — which are governed by certain
linear algebraic systems. In Chapter 9, the dynamical behavior of such discrete systems
was modeled by systems of linear ordinary differential equations. Chapter 11 began our
treatment of continuous media with the boundary value problems that describe the equi-
libria of one-dimensional bars, strings and beams. Their dynamical motions formed the
topic of Chapter 14, in the simplest case leading to two fundamental partial differential
equations: the heat equation describing thermal diffusion, and the wave equation model-
ing vibrations. In Chapters 15 and 16, we focussed our attention on the boundary value
problems describing equilibria of planar bodies — plates and membranes — with primary
emphasis on solving the ubiquitous Laplace equation, both analytically or numerically. We
now turn to the analysis of their dynamics, as governed by the two-dimensional† forms of
the heat and wave equations. The heat equation describes diffusion of, say, heat energy, or
population, or pollutants in a homogeneous two-dimensional domain. The wave equation
models small vibrations of two-dimensional membranes such as a drum.

Although the increase in dimension does challenge our analytical prowess, we have, in
fact, already mastered the key techniques: separation of variables and fundamental solu-
tions. (Disappointingly, conformal mappings are not particularly helpful in the dynamical
universe.) When applied to partial differential equation in higher dimensions, separation of
variables often leads to new ordinary differential equations, whose solutions are no longer
elementary functions. These so-called special functions, which include the Bessel functions
appearing in the present chapter, and the Legendre functions, spherical harmonics, and
spherical Bessel functions in three-dimensional problems, play a ubiquitous role in more
advanced applications in physics, engineering and mathematics. Basic series solution tech-
niques for ordinary differential equations, and key properties of the most important classes
of special functions, can be found in Appendix C

In Appendix C, we collect together the required results about the most important
classes of special functions, including a short presentation of the series approach for solving
non-elementary ordinary differential equations.

† Throughout, “dimension” refers to the number of space variables. In Newtonian dynamics,
the time “dimension” is accorded a separate status, which distinguishes dynamics from equilib-
rium. Of course, in the more complicated relativistic universe, time and space must be regarded
on an equal footing, and the dimension count modified accordinagly.
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Numerical methods for solving boundary value and initial value problems are, of
course, essential in all but the simplest situations. The two basic methods — finite element
and finite difference — have already appeared, and the only new aspect is the (substantial)
complication of working in higher dimensions. Thus, in the interests of brevity, we defer the
discussion of the numerical aspects of multi-dimensional partial differential equations to
more advanced texts, e.g., [107], and student projects outlined in the exercises. However,
the student should be assured that, without knowledge of the qualitative features based on
direct analysis and explicit solutions, the design, implementation, and testing of numerical
solution techniques would be severely hampered.

17.1. Diffusion in Planar Media.

As we learned in Chapter 15, the equilibrium temperature u(x, y) of a homogeneous
plate is governed by the two-dimensional Laplace equation

∆u = uxx + uyy = 0.

In conformity with our general framework, the dynamical diffusion of such a plate will be
modeled by the two-dimensional heat equation

ut = γ ∆u = γ
(
uxx + uyy

)
, (17.1)

where the diffusivity coefficient γ > 0 measures the relative speed of diffusion of heat
energy throughout the plate; its positivity is required on physical grounds, and also avoids
ill-posedness of the dynamical system. In this simplest model of two-dimensional diffusion,
we are assuming that there are no loss of heat or external heat sources in the plate’s interior,
which can be arranged by covering it with insulation.

The solution u(t,x) = u(t, x, y) to (17.1) measures the temperature at time t at each
point x = (x, y) ∈ Ω in the domain Ω ⊂ R

2 occupied by the plate. To uniquely specify
u(t, x, y) at each point (x, y) ∈ Ω and each positive t > 0, we must impose both initial and
boundary conditions. The most important are:

(a) Dirichlet boundary conditions:

u = h on ∂Ω, (17.2)

which fix the temperature on the boundary of the plate.

(b) Neumann boundary conditions:

∂u

∂n
=

∂u

∂n
= k on ∂Ω, (17.3)

that prescribe the heat flux along the boundary; the case k = 0 corresponds to an
insulated boundary.

(c) Mixed boundary conditions: we impose Dirichlet conditions on part of the boundary
D (∂Ω and Neumann conditions on the remainder N = ∂Ω \D. For instance, the
homogeneous mixed boundary conditions

u = 0 on D,
∂u

∂n
= 0 on N, (17.4)
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correspond to freezing part of the boundary and insulating the remainder.

The initial conditions specify the temperature of the plate

u(0, x, y) = f(x, y), (x, y) ∈ Ω, (17.5)

at an initial time, which for simplicity, we take as t0 = 0. Under reasonable assumptions,
e.g., the domain Ω is bounded, its boundary is piecewise smooth, and the boundary data
is piecewise continuous, say, a general theorem, [46], guarantees the existence of a unique
solution u(t, x, y) to any of these initial-boundary value problems for all subsequent times
t > 0. Our practical goal is to both compute and understand the behavior of the solution
in specific situations.

Derivation of the Diffusion Equation

This section is for those interested in understanding how the heat equation arises
as a model for heat flow. The physical derivation of the two-dimensional (and three-
dimensional) heat equation relies upon the same two basic thermodynamical laws that were
used, in Section 14.1, to establish the one-dimensional version. The first principle is that
heat energy flows from hot to cold as rapidly as possible. According to the multivariable
calculus Theorem 19.37, the negative temperature gradient −∇u points in the direction
of the steepest decrease in the function u at a point, and so heat energy will flow in that
direction. Therefore, the heat flux vector w, which measures the magnitude and direction
of the flow of heat energy, should be proportional to the temperature gradient:

w(t, x, y) = −κ(x, y)∇u. (17.6)

The scalar quantity κ(x, y) > 0 measures the thermal conductivity of the material, so (17.6)
is the multi-dimensional form of Fourier’s Law of Cooling (14.3). We are assuming that
the thermal conductivity depends only on the position (x, y) ∈ Ω, which means that the
material in the plate

(a) is not changing in time;

(b) is isotropic, meaning that its conductivity is the same in all directions, and, further,

(c) does not depend upon temperature.

Dropping either (b) or (c) would result in a much more complicated nonlinear diffusion
equation.

The second thermodynamical principle is that, in the absence of external heat sources,
heat can only enter any subregion D ⊂ Ω through its boundary ∂D. (Keep in mind that
the plate is insulated above and below.) In other words, the rate of change of the heat
energy in D is prescribed by the heat flux across its boundary ∂D. Let ε(t, x, y) denote

the heat energy density at each time and point in the domain, so that

∫ ∫

D

ε(t, x, y) dx dy

represents the total heat contained within the region D at time t. The amount of additional
heat energy entering D at a boundary point x ∈ ∂D is the inward normal component of
the heat flux vector: −w · n, where n denotes the outward unit normal to ∂D. Thus,

the total heat flux entering the region D is given by the flux line integral −

∮

∂D

w · n ds,
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cf. (A.42). Equating the rate of change of heat energy to the heat flux yields

∂

∂t

∫ ∫

D

ε(t, x, y) dx dy = −

∮

∂D

w · n ds = −

∫ ∫

D

∇ ·w dx dy,

where we applied the divergence form of Green’s Theorem, (A.58), to convert the flux line
integral into a double integral. We bring the time derivative inside the first integral and
collect the terms, whence

∫ ∫

D

(
∂ε

∂t
+∇ ·w

)
dx dy = 0. (17.7)

Keep in mind that this integral formula must hold for any subdomain D ⊂ Ω. Now, the
only way in which an integral of a continuous function can vanish for all subdomains is if
the integrand is identically zero, cf. Exercise , and so

∂ε

∂t
+∇ ·w = 0. (17.8)

In this way, we derive the basic conservation law relating heat energy ε and heat flux w.

As in our one-dimensional model, (14.2), the heat energy ε(t, x, y) at each time and
point in the domain is proportional to the temperature, so

ε(t, x, y) = σ(x, y)u(t, x, y), where σ(x, y) = ρ(x, y)χ(x, y) (17.9)

is the product of the density and the heat capacity of the material. Combining this with
the Fourier Law (17.6) and the energy balance equation (17.9) leads to the general two-
dimensional diffusion equation

σ
∂u

∂t
= ∇ ·

(
κ∇u

)
(17.10)

governing the temperature dynamics of an isotropic medium in the absence of external
heat sources. In full detail, this second order partial differential equation is

σ(x, y)
∂u

∂t
=

∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)
. (17.11)

In particular, if the body is homogeneous, then both σ and κ are constant, and so general
diffusion equation (17.10) reduces to the heat equation (17.1) with thermal diffusivity

γ =
κ

σ
=

κ

ρχ
. (17.12)

The heat and diffusion equations are also used to model movements of populations,
e.g., bacteria in a petri dish or wolves in the Canadian Rockies, [biol]. The solution
u(t, x, y) represents the number of individuals near position (x, y) at time t, and diffuses
over the domain due to random motions of the individuals. Similar diffusion processes
model the mixing of chemical reagents in solutions, with the diffusion induced by the
random Brownian motion from molecular collisions. Convection due to fluid motion and/or
changes due to chemical reactions lead to the more general class of reaction–diffusion and

convective–diffusion equations, [chem].
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Self-Adjoint Formulation

The general diffusion equation (17.11) can be readily fit into the self-adjoint framework
of Section 14.7, taking the form

ut = −K[u ] = −∇∗ ◦∇u. (17.13)

The gradient operator ∇ maps scalar fields u to vector fields v = ∇u; its adjoint ∇∗,
which goes in the reverse direction, is taken with respect to the weighted inner products

〈u , ũ 〉 =

∫ ∫

Ω

u(x, y) ũ(x, y)σ(x, y) dx dy, 〈〈v , ṽ 〉〉 =

∫ ∫

Ω

v(x, y) · ṽ(x, y) κ(x, y) dx dy,

(17.14)
between, respectively, scalar and vector fields. A straightforward integration by parts
argument, done in detail in Section 15.4, tells us that

∇∗v = −
1

σ
∇ · (κv) = −

1

σ

[
∂(κ v1)

∂x
+

∂(κ v2)

∂y

]
, when v =

(
v1

v2

)
. (17.15)

Therefore, the right hand side of (17.13) is equal to

−K[u ] = −∇∗ ◦∇u =
1

σ
∇ · (κ∇u), (17.16)

which recovers (17.10). As always, we need to impose suitable homogeneous boundary
conditions — Dirichlet, Neumann or mixed — to ensure the validity of the integration by
parts argument used to establish the adjoint formula (17.15).

In particular, to obtain the heat equation, we take σ and κ to be constant, and so
(17.14) reduce, up to a constant factor, to the usual L2 inner products between scalar
and vector fields. In this case, the adjoint of the gradient is, up to a scale factor, minus
the divergence: ∇∗ = − γ∇· , where γ = κ/σ. In this scenario, (17.13) reduces to the
two-dimensional heat equation (17.1).

The self-adjoint operator K = ∇∗ ◦∇ is always positive semi-definite, and is positive
definite if and only if ker∇ = {0}. As we saw in Section 15.4, positive definiteness holds
in the Dirichlet and mixed cases, whereas the Neumann boundary conditions lead to only
a positive semi-definite operator. Indeed, assuming Ω is connected, the only functions in
the kernel of the gradient operator are the constants. Moreover, only the zero constant
function satisfies the Dirichlet or mixed boundary conditions, and hence the gradient’s
kernel is trivial, ensuring positive definiteness.

The heat and diffusion equations are examples of parabolic partial differential equa-
tions, the terminology being adapted from Definition 15.1 to apply to partial differential
equations in more than two variables. As we will see, all of the basic qualitative features
we learned when studying the one-dimensional heat equation carry over to solutions to
parabolic partial differential equations in higher dimensions.

Separation of Variables

In Section 14.1, we applied the method of separation of variables to express the so-
lution to the one-dimensional heat equation as a series involving the eigenfunctions of an

5/1/06 954 c© 2006 Peter J. Olver



associated boundary value problem. Section 14.7 argued that the eigenfunction series solu-
tion method carries over, essentially unchanged, to the general class of self-adjoint diffusion
equations. In particular, the solutions to the two-dimensional heat and diffusion equations
are expressed in series form based on the eigenfunctions of an associated two-dimensional
boundary value problem.

As we know, the separable solutions to any diffusion equation (17.13) are of exponen-
tial form

u(t, x, y) = e−λt v(x, y). (17.17)

Since the linear operator K only involves differentiation with respect to the spatial variables
x, y, we find

∂u

∂t
= −λ e−λt v(x, y), while K[u ] = e−λt K[v ].

Substituting back into the diffusion equation (17.13) and canceling the exponentials, we
conclude that

K[v ] = λ v, (17.18)

Thus, v(x, y) must be an eigenfunction for the linear operator K, subject to the relevant
homogeneous boundary conditions. In the case of the heat equation (17.1),

K[u ] = −γ ∆u,

and hence the eigenvalue equation (17.18) takes the form

γ ∆v + λ v = 0, or, in detail, γ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ λ v = 0. (17.19)

This generalization of the Laplace equation is known as the Helmholtz equation, and was
briefly discussed in Example 15.23.

According to Theorem 14.18, the eigenvalues of the self-adjoint operator K = ∇∗ ◦∇
are all real and non-negative: λ ≥ 0. When K is positive definite, they are strictly positive:
λ > 0. Let us index the eigenvalues in increasing order:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . (17.20)

Under reasonable conditions on the underlying linear boundary value problem, it can be
proved, [46; Chapter V], that there are, in fact, an infinite number of eigenvalues, and,
moreover, their size increases without bound, so λk → ∞ as k → ∞. Each eigenvalue
is repeated according to the number (which is necessarily finite) of linearly independent
eigenfunctions it admits. The problem has a zero eigenvalue, λ0 = 0, corresponding to the
constant null eigenfunction v(x, y) ≡ 1, if and only if K is not positive definite, i.e., only
in the case of pure Neumann boundary conditions.

Each eigenvalue and eigenfunction pair will produce a separable solution

uk(t, x, y) = e−λk t vk(x, y)

to the diffusion equation (17.13). The solutions corresponding to positive eigenvalues are
exponentially decaying in time, while a zero eigenvalue, which only occurs in the Neumann
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problem, produces a constant solution. The general solution to the homogeneous boundary
value problem can then be built up as a linear combination of these basic solutions, in the
form of an eigenfunction series

u(t, x, y) =
∞∑

k=1

ck uk(t, x, y) =
∞∑

k=1

ck e−λk t vk(x, y), (17.21)

which is a form of generalized Fourier series. The eigenfunction coefficients ck are pre-
scribed by the initial conditions, which require

∞∑

k=1

ck vk(x, y) = f(x, y). (17.22)

Theorem 14.19 guarantees orthogonality of the eigenfunctions, and hence the coefficients
are given by our standard orthogonality formula

ck =
〈 f , vk 〉

‖ vk ‖
2

=

∫ ∫

Ω

f(x, y) vk(x, y)σ(x, y) dx dy
∫ ∫

Ω

vk(x, y)2 σ(x, y) dx dy

, (17.23)

where the weighting function σ(x, y) was defined in (17.9). In the case of the heat equation,
σ is constant and so can be canceled from both numerator and denominator, leaving the
simpler formula

ck =

∫ ∫

Ω

f(x, y) vk(x, y) dx dy
∫ ∫

Ω

vk(x, y)2 dx dy

. (17.24)

Under fairly general hypotheses, it can be shown that the eigenfunctions form a com-

plete system, which means that the eigenfunction series (17.22) will converge (at least in
norm) to the function f(x, y), provided it is not too bizarre. Moreover, the resulting series
(17.21) converges to the solution to the initial-boundary value problem for the diffusion
equation. See [46; p. 369] for a precise statement and proof of the general theorem.

Qualitative Properties

Before tackling simple examples where we are able to construct explicit formulae for
the eigenfunctions and eigenvalues, let us see what the eigenfunction series solution (17.21)
can tell us about general diffusion processes. Based on our experience with the case of
a one-dimensional bar, the final conclusions will not be especially surprising. Indeed,
they also apply, word for word, to diffusion processes in three-dimensional solid bodies. A
reader who prefers to see explicit solution formulae may wish to skip ahead to the following
section, returning here later.

Keep in mind that we are still dealing with the solution to the homogeneous boundary
value problem. The first observation is that all terms in the series solution (17.21), with
the possible exception of a null eigenfunction term that appears in the semi-definite case,
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are tending to zero exponentially fast. Since most eigenvalues are large, all the higher
order terms in the series become almost instantaneously negligible, and hence the solution
can be accurately approximated by a finite sum over the first few eigenfunction modes.
As time goes on, more and more of the modes can be neglected, and the solution decays
to thermal equilibrium at an exponentially fast rate. The rate of convergence to thermal
equilibrium is, for most initial data, governed by the smallest positive eigenvalue λ1 > 0
for the Helmholtz boundary value problem on the domain.

In the positive definite cases of homogeneous Dirichlet or mixed boundary conditions,
thermal equilibrium is u(t, x, y) → u?(x, y) ≡ 0. Thus, in these cases, the equilibrium
temperature is equal to the boundary temperature — even if this temperature is only fixed
on a small part of the boundary. The initial heat is eventually dissipated away through
the non-insulated part of the boundary. In the semi-definite Neumann case, corresponding
to a completely insulated plate, In this case, the general solution has the form

u(t, x, y) = c0 +

∞∑

k=1

ck e−λkt vk(x, y), (17.25)

where the sum is over the positive eigenmodes, λk > 0. Since all the summands are
exponentially decaying, the final equilibrium temperature u? = c0 is the same as the con-
stant term in the eigenfunction expansion. We evaluate this term using the orthogonality
formula (17.23), and so, as t→∞,

u(t, x, y) −→ c0 =
〈 f , 1 〉

‖ 1 ‖2
=

∫ ∫

Ω

f(x, y)σ(x, y) dx dy
∫ ∫

Ω

σ(x, y) dx dy

,

representing a suitably weighted average of the initial temperature over the domain. In
particular, in the case of the heat equation, the weighting function σ is constant, and so
the equilibrium temperature

u(t, x, y) −→ c0 =
1

area Ω

∫ ∫

Ω

f(x, y) dx dy (17.26)

equals the average initial temperature distribution. In this case, the heat energy is not
allowed to escape through the boundary, and thus redistributes itself in a uniform manner
over the domain.

Diffusion has a smoothing effect on the initial temperature distribution f(x, y). As-
sume that the eigenfunction coefficients are uniformly bounded, so | ck | ≤ M for some
constant M . This will certainly be the case if f(x, y) is piecewise continuous, but even
holds for quite rough initial data, including delta functions. Then, at any time t > 0 after
the initial instant, the coefficients ck e−λkt in the eigenfunction series solution (17.21) are
exponentially small as k → ∞, which is enough to ensure smoothness† of the solution
u(t, x, y) for each t > 0. Therefore, the diffusion process serves to immediately smooth out

† For a general diffusion equation, this requires that the functions σ(x, y) and κ(x, y) be smooth.
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jumps, corners and other discontinuities in the initial data. As time progresses, the local
variations in the solution become less and less pronounced, as it asymptotically reaches a
constant equilibrium state.

As a result, diffusion processes can be effectively applied to clean and denoise planar
images. The initial data f(x, y) represents the grey-scale value of the image at position
(x, y), so that 0 ≤ f(x, y) ≤ 1 with 0 representing black, and 1 representing white. As
time progresses, the solution u(t, x, y) represents a more and more smoothed version of the
image. Although this has the effect of removing unwanted noise from the image, there is
also a gradual blurring of the actual features. Thus, the “time” or “multiscale” parameter
t needs to be chosen to optimally balance between the two effects — the larger t is the
more noise is removed, but the more noticeable the blurring. A representative illustration
appears in Figure im2 . To further suppress undesirable blurring effects, recent image
processing filters are based on anisotropic (and thus nonlinear) diffusion equations. See
Sapiro, [156], for a survey of recent progress in this active field.

Since the forward heat equation effectively blurs the features in an image, we might
be tempted to try going backwards in time to sharpen the image. However, the argu-
ment presented in Section 14.1 tells us that the backwards heat equation is ill-posed, and
hence cannot be used directly for this purpose. Various “regularization” strategies have
been devised to circumvent this mathematical barrier, and thereby design effective image
enhancement algorithms, [reg].

Inhomogeneous Boundary Conditions and Forcing

Finally, let us briefly mention how to incorporate inhomogeneous boundary conditions
and external heat sources into the problem. Consider, as a specific example, the forced
heat equation

ut = γ ∆u + F (x, y), for (x, y) ∈ Ω, (17.27)

where F (x, y) represents an unvarying external heat source, subject to inhomogeneous
Dirichlet boundary conditions

u = h for (x, y) ∈ ∂Ω, (17.28)

that fixes the temperature of the plate on its boundary. When the external forcing is fixed
for all t, we expect the solution to eventually settle down to an equilibrium configuration:
u(t, x, y)→ u?(x, y) as t→∞, which will be justified below.

The time-independent equilibrium temperature u = u?(x, y) satisfies the equation
obtained by setting ut = 0 in the differential equation (17.27), namely Poisson equation

− γ ∆u? = F, for (x, y) ∈ Ω, (17.29)

and subject to the same inhomogeneous Dirichlet boundary conditions (17.28). Positive
definiteness of the Dirichlet boundary value problem implies that there is a unique equi-
librium solution.

Once we have determined the equilibrium solution — usually through a numerical
approximation — we set

v(t, x, y) = u(t, x, y)− u?(x, y),
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so that v measures the deviation of the solution u from its eventual equilibrium. By
linearity v(t, x, y) satisfies the unforced heat equation subject to homogeneous boundary
conditions:

vt = γ ∆v, (x, y) ∈ Ω, u = 0, (x, y) ∈ ∂Ω. (17.30)

Therefore, v can be expanded in an eigenfunction series (17.21), and will decay to zero,
v(t, x, y)→ 0, at a exponentially fast rate prescribed by the smallest eigenvalue λ1 of the
associated homogeneous Helmholtz boundary value problem. Consequently, the solution
to the forced, inhomogeneous problem

u(t, x, y) = v(t, x, y) + u?(x, y) −→ u?(x, y)

will approach thermal equilibrium, namely u?(x, y), at exactly the same exponential rate
as its homogeneous counterpart.

17.2. Explicit Solutions for the Heat Equation.

Thus, solving the two-dimensional heat equation in series form requires knowing the
eigenfunctions for the associated Helmholtz boundary value problem. Unfortunately, as
with any partial differential equation, explicit solution formulae are few and far between.
In this section, we discuss two specific cases where the required eigenfunctions can be found
in closed form. The calculations rely on separation of variables, which, as we know, works
in only a very limited class of domains. Nevertheless, interesting solution features can be
gleaned from these particular cases.

Heating of a Rectangle

A homogeneous rectangular plate

R =
{

0 < x < a, 0 < y < b
}

is heated to a prescribed initial temperature

u(0, x, y) = f(x, y), for (x, y) ∈ R, (17.31)

and then insulated. The sides of the plate are held at zero temperature. Our task is to
determine how fast the plate returns to thermal equilibrium.

The temperature u(t, x, y) evolves according to the two-dimensional heat equation

ut = γ(uxx + uyy), for (x, y) ∈ R, t > 0, (17.32)

subject to homogeneous Dirichlet conditions

u(0, y) = u(a, y) = 0 = u(x, 0) = u(x, b), 0 < x < a, 0 < y < b, (17.33)

along the boundary of the rectangle. As in (17.17), the eigensolutions to the heat equation
are obtained from the usual exponential ansatz u(t, x, y) = e−λt v(x, y). Substituting
this expression into the heat equation, we conclude that the function v(x, y) solves the
Helmholtz eigenvalue problem

γ(vxx + vyy) + λ v = 0, (x, y) ∈ R, (17.34)
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subject to the same homogeneous Dirichlet boundary conditions

v(x, y) = 0, (x, y) ∈ ∂R. (17.35)

To solve the rectangular Helmholtz eigenvalue problem (17.34–35), we shall, as in (15.13),
introduce a further separation of variables, writing

v(x, y) = p(x) q(y)

as the product of functions depending upon the individual Cartesian coordinates. Substi-
tuting this ansatz into the Helmholtz equation (17.34), we find

γ p′′(x) q(y) + γ p(x) q′′(y) + λ p(x) q(y) = 0.

To effect the variable separation, we collect all terms involving x on one side and all terms
involving y on the other side of the equation. This is accomplished by dividing by v = pq
and rearranging the terms; the result is

γ
p′′(x)

p(x)
= − γ

q′′(y)

q(y)
− λ ≡ −µ.

The left hand side of this equation only depends on x, whereas the right hand side only
depends on y. As argued in Section 15.2, the only way this can occur is if the two sides equal
a common separation constant , denoted by −µ. (The minus sign is for later convenience.)
In this manner, we reduce our partial differential equation to a pair of one-dimensional
eigenvalue problems

γ p′′ + µ p = 0, γ q′′ + (λ− µ) q = 0,

each of which is subject to homogeneous Dirichlet boundary conditions

p(0) = p(a) = 0, q(0) = q(b) = 0,

stemming from the boundary conditions (17.35). To obtain a nontrivial solution to the
Helmholtz equation, we seek nonzero solutions to these two supplementary eigenvalue
problems. The fact that we are dealing with a rectangular domain is critical to the success
of this procedure.

We have already solved these particular two boundary value problems many times;
see, for instance, (14.17). The eigenfunctions are, respectively,

pm(x) = sin
mπx

a
, m = 1, 2, 3, . . . , qn(y) = sin

nπy
b

, n = 1, 2, 3, . . . ,

with

µ =
m2 π2 γ

a2
, λ− µ =

n2 π2 γ

b2
, so that λ =

m2 π2 γ

a2
+

n2 π2 γ

b2
.

Therefore, the separable eigenfunction solutions to the Helmholtz boundary value problem
(17.33–34) have the doubly trigonometric form

vm,n(x, y) = sin
mπx

a
sin

nπy
b

, (17.36)
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with associated eigenvalues

λm,n =
m2 π2 γ

a2
+

n2 π2 γ

b2
=

(
m2

a2
+

n2

b2

)
π2 γ . (17.37)

Each of these corresponds to an exponentially decaying, separable solution

um,n(t, x, y) = e−λm,n t vm,n(x, y) = exp

[
−

(
m2

a2
+

n2

b2

)
π2 γ t

]
sin

mπx
a

sin
nπy

b

(17.38)
to the original rectangular boundary value problem for the heat equation.

Using the fact that the univariate sine functions form a complete system, it is not hard
to prove, [181], that the separable eigenfunction solutions (17.38) are complete, which
implies that there are no non-separable eigenfunctions. As a consequence, the general
solution to the initial-boundary value problem can be expressed as a linear combination

u(t, x, y) =
∞∑

m,n=1

cm,n um,n(t, x, y) =
∞∑

m,n=1

cm,n e−λm,n t vm,n(x, y) (17.39)

of our eigenfunction modes. The coefficients cm,n are prescribed by the initial conditions,
which take the form of a double Fourier sine series

f(x, y) = u(0, x, y) =
∞∑

m,n=1

cm,nvm,n(x, y) =
∞∑

m,n=1

cm,n sin
mπx

a
sin

nπy
b

.

Self-adjointness of the Laplacian coupled with the boundary conditions implies that
the eigenfunctions vm,n(x, y) are orthogonal with respect to the L2 inner product on the
rectangle:

〈 vk,l , vm,n 〉 =

∫ b

0

∫ a

0

vk,l(x, y) vm,n(x, y) dx dy = 0 unless k = m and l = n.

(The skeptical reader can verify the orthogonality relations directly from the eigenfunction
formulae (17.36).) Thus, we can appeal to our usual orthogonality formula (17.24) to
evaluate the coefficients

cm,n =
〈 f , vm,n 〉

‖ vm,n ‖
2

=
4

ab

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy
b

dx dy, (17.40)

where the formula for the norms of the eigenfunctions

‖ vm,n ‖
2 =

∫ b

0

∫ a

0

vm,n(x, y)2 dx dy =

∫ b

0

∫ a

0

sin2 mπx
a

sin2 nπy
b

dx dy =
1
4

ab. (17.41)

follows from a direct evaluation of the double integral. (Unfortunately, while the orthogo-
nality is automatic, the computation of the norm must inevitably be done “by hand”.)

The rectangle approaches thermal equilibrium at the rate equal to the smallest eigen-
value:

λ1,1 =

(
1

a2
+

1

b2

)
π2 γ, (17.42)
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Figure 17.1. Heat Diffusion in a Rectangle.

i.e., the sum of the reciprocals of the squared lengths of its sides multiplied by the diffusion
coefficient. The larger the rectangle, or the smaller the diffusion coefficient, the smaller
λ1,1, and hence slower the return to thermal equilibrium. The exponentially fast decay
rate of the Fourier series implies that the solution immediately smooths out any initial
discontinuites in the initial temperature profile. Indeed, the higher modes, with m and n
large, decay to zero almost instantaneously, and so the solution immediately behaves like
a finite sum over a few low order modes. Assuming that c1,1 6= 0, the slowest decaying
mode in the Fourier series (17.39) is

c1,1 u1,1(t, x, y) = c1,1 exp

[
−

(
1

a2
+

1

b2

)
π2 γ t

]
sin

πx

a
sin

πy

b
. (17.43)

Thus, in the long run, the temperature is of one sign — either positive or negative de-
pending upon the sign of c1,1 — throughout the rectangle. This observation is, in fact,
indicative of the general phenomenon that the eigenfunction associated with the smallest
positive eigenvalue of a self-adjoint elliptic operator is of one sign throughout the domain.
A typical solution is plotted in Figure 17.1.

Heating of a Disk

Let us perform a similar analysis of the thermodynamics of a circular disk. For
simplicity (or by choice of suitable physical units), we will assume that the disk

D = {x2 + y2 ≤ 1 } ⊂ R
2

has unit radius and unit diffusion coefficient γ = 1. We shall solve the heat equation on
D subject to homogeneous Dirichlet boundary values of zero temperature at the circular
edge

∂D = C = {x2 + y2 = 1 }.
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Thus, the full initial-boundary value problem is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, x2 + y2 < 1, t > 0,

u(t, x, y) = 0, x2 + y2 = 1,

u(0, x, y) = f(x, y), x2 + y2 ≤ 1.

(17.44)

We remark that a simple rescaling of space and time, as outlined in Exercise , can be
used to recover the solution for an arbitrary diffusion coefficient and a disk of arbitrary
radius from this particular case.

Since we are working in a circular domain, we instinctively pass to polar coordinates
(r, θ). In view of the polar coordinate formula (15.29) for the Laplace operator, the heat
equation and boundary conditions assume the form

∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
, 0 ≤ r < 1, t > 0,

u(t, 1, θ) = 0, u(0, r, θ) = f(r, θ), r ≤ 1,

(17.45)

where the solution u(t, r, θ) is defined for all 0 ≤ r ≤ 1 and t ≥ 0. To ensure that the
solution represents a single-valued function on the entire disk, it is required to be a 2π
periodic function of the angular variable:

u(t, r, θ + 2π) = u(t, r, θ)

To obtain the separable solutions

u(t, r, θ) = e−λt v(r, θ), (17.46)

we need to solve the polar coordinate form of the Helmholtz equation

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
+ λ v = 0,

0 ≤ r < 1,

0 ≤ θ ≤ 2π,
(17.47)

subject to the boundary conditions

v(1, θ) = 0, v(r, θ + 2π) = v(r, θ). (17.48)

We invoke a further separation of variables by writing

v(r, θ) = p(r) q(θ). (17.49)

Substituting this ansatz into the polar Helmholtz equation (17.47), and then collecting
together all terms involving r and all terms involving θ, we are led to the pair of ordinary
differential equations

r2p′′ + rp′ + (λr2 − µ) p = 0, q′′ + µ q = 0, (17.50)

where λ is the Helmholtz eigenvalue, and µ the separation constant.
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Let us start with the equation for q(θ). The periodicity condition (17.48) requires that
q(θ) be 2π periodic. Therefore, the required solutions are the elementary trigonometric
functions

q(θ) = cos mθ or sinmθ, where µ = m2, (17.51)

with m = 0, 1, 2, . . . a non-negative integer.

Substituting the formula, µ = m2, for the separation constant, the differential equation
for p(r) takes the form

r2 d2p

dr2
+ r

dp

dr
+ (λ r2 −m2) p = 0, 0 ≤ r ≤ 1. (17.52)

Ordinarily, one imposes two boundary conditions in order to pin down a solution to such a
second order ordinary differential equation. But our Dirichlet condition, namely p(1) = 0,
only specifies its value at one of the endpoints. The other endpoint is a singular point for
the ordinary differential equation, because the coefficient of the highest order derivative,
namely r2, vanishes at r = 0. This situation might remind you of our solution to the Euler
differential equation (15.35) in the context of separable solutions to the Laplace equation
on the disk. As there, we only require the solution to be bounded at r = 0:

| p(0) | <∞, p(1) = 0. (17.53)

As we now show, this pair of boundary conditions suffices to distinguish the relevant
eigenfunction solutions to (17.52).

Although the ordinary differential equation (17.52) appears in a variety of applications,
this may be the first time that you have encountered it. It is not an elementary equation;
indeed, most solutions cannot be written in terms of the elementary functions you see in
first year calculus. Nevertheless, owing to their significance in a wide range of physical
applications, the solutions have been extensively studied and tabulated, and so are, in
a sense, well-known. After some preparatory manipulations, we shall summarize their
relevant properties, relegating details and proofs to Appendix C.

To simplify the analysis, we make a preliminary rescaling of the independent variable,
replacing r by

z =
√

λ r.

Note that, by the chain rule,

dp

dr
=
√

λ
dp

dz
,

d2p

dr2
= λ

d2p

dz2
,

and hence

r
dp

dr
= z

dp

dz
, r2 d2p

dr2
= z2 d2p

dz2
.

The net effect is to eliminate the eigenvalue parameter λ (or, rather, hide it in the change
of variables), so that (17.52) assumes the slightly simpler form

z2 d2p

dz2
+ z

dp

dz
+ (z2 −m2) p = 0. (17.54)
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Figure 17.2. Bessel Functions.

The ordinary differential equation (17.54) is known as Bessel’s equation, named after the
early 19th century astronomer Wilhelm Bessel, who first used its solutions to analyze
planetary orbits. The solutions to Bessel’s equation have become an indispensable tool in
applied mathematics, physics, and engineering.

To begin, the one thing we know for sure is that, as with any second order ordinary
differential equation, there are two linearly independent solutions. However, it turns out
that, up to a constant multiple, only one solution remains bounded as z → 0. This solution
is known as the Bessel function of order m, and is denoted by Jm(z). Applying the
general systematic method for finding power series solutions to linear ordinary differential
equations presented in Appendix C, it can be shown that the Bessel function of order m
has the Taylor expansion

Jm(z) =
∞∑

k=0

(−1)k zm+2k

2m+2k k ! (m + k) !
(17.55)

=
zm

2m m !

[
1−

z2

4 (m + 1)
+

z4

32 (m + 1)(m + 2)
−

z6

384 (m + 1)(m + 2)(m + 3)
+ · · ·

]
.

A simple application of the ratio test tells us that the power series converges for all (com-
plex) values of z, and hence Jm(z) is everywhere analytic. Indeed, the convergence is
quite rapid when z is of moderate size, and so summing the series is a reasonably effective
method for computing the Bessel function Jm(z) — although in serious applications one
adopts more sophisticated numerical techniques based on asymptotic expansions and in-
tegral formulae, [3, 140]. Moreover, verification that it indeed solves the Bessel equation
(17.54) is a straightforward computation. Figure 17.2 displays graphs of the first three
Bessel functions for z > 0. Most software packages, both symbolic and numerical, include
routines for accurately evaluating and graphing Bessel functions.

Reverting back to our original radial coordinate r = z/
√

λ, we conclude that every
solution to the radial equation (17.52) which is bounded at r = 0 is a constant multiple

p(r) = Jm

(√
λ r
)

(17.56)

of the rescaled Bessel function of order m. So far, we have only dealt with the boundary
condition at the singular point r = 0. The Dirichlet condition at the other end requires

p(1) = Jm

(√
λ
)

= 0.
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Therefore, in order that λ be a legitimate eigenvalue,
√

λ must be a root of the mth order
Bessel function Jm.

Remark : We already know, thanks to the positive definiteness of the Dirichlet bound-
ary value problem, that the Helmholtz eigenvalues λ > 0 must be positive, and so there
is no problem taking the square root. Indeed, it can be proved, [180], that the Bessel
functions do not have any negative roots!

The graphs of Jm(z) strongly indicate, and, indeed, it can be rigorously proved, that
each Bessel function oscillates between positive and negative values as z increases above
0, with slowly decreasing amplitude. In fact, it can be proved that, asymptotically,

Jm(z) ∼

√
2

πz
cos

(
z −

(
1
2 m + 1

4

)
π
)

as z −→∞, (17.57)

and so the oscillations become essentially the same as a (phase-shifted) cosine whose am-
plitude decreases, relatively slowly, like z−1/2. As a consequence, there exists an infinite
sequence of Bessel roots, which we number in the order in which they appear:

Jm(ζm,n) = 0, where

0 < ζm,1 < ζm,2 < ζm,3 < · · · with ζm,n −→∞ as n −→∞.
(17.58)

It is worth noting that the Bessel functions are not periodic, and their roots are not initially
evenly spaced.

Owing to their physical importance in a wide range of problems, the Bessel roots have
been extensively tabulated in the literature, cf. [3, 58]. The accompanying table displays
all Bessel roots that are < 12 in magnitude. The columns of the table are indexed by m,
the order of the Bessel function, and the rows by n, the root number.

Table of Bessel Roots ζm,n

n

∖
m 0 1 2 3 4 5 6 7 . . .

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 9.9361 11.0860 . . .

2 5.5201 7.0156 8.4172 9.761 11.0650
...

...
...

3 8.6537 10.1730 11.6200
...

...

4 11.7920
...

...

...
...

Remark : According to (17.55),

Jm(0) = 0 for m > 0, while J0(0) = 1.

However, we do not count 0 as a bona fide Bessel root, since it does not lead to a valid
eigenfunction for the Helmholtz boundary value problem.
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Figure 17.3. Normal Modes for a Disk.

Summarizing our progress, the eigenvalues

λm,n = ζ2
m,n, n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (17.59)

of the Bessel boundary value problem (17.52–53) are the squares of the roots of the Bessel
function of order m. The corresponding eigenfunctions are

wm,n(r) = Jm(ζm,n r) , n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (17.60)

defined for 0 ≤ r ≤ 1. Combining (17.60) with the formula (17.51) for the angular compo-
nents, we conclude that the separable solutions (17.49) to the polar Helmholtz boundary
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value problem (17.47) are

v0,n(r, θ) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cos mθ,

v̂m,n(r, θ) = Jm(ζm,n r) sinmθ,

where
n = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . .
(17.61)

These solutions define the so-called normal modes for the unit disk, and Figure 17.3 plots
the first few of them. The eigenvalues λ0,n are simple, and contribute radially symmetric
eigenfunctions, whereas the eigenvalues λm,n for m > 0 are double, and produce two lin-
early independent separable eigenfunctions, with trigonometric dependence on the angular
variable.

We have at last produced the basic separable solutions

u0,n(t, r) = e− ζ2
0,nt J0(ζ0,n r),

um,n(t, r, θ) = e− ζ2
m,nt Jm(ζm,n r) cos mθ,

ûm,n(t, r, θ) = e− ζ2
m,nt Jm(ζm,n r) sinmθ,

n = 1, 2, 3, . . . ,

m = 1, 2, . . . .
(17.62)

to the homogeneous Dirichlet boundary value problem for the heat equation on the unit
disk (17.45). The general solution is a linear superposition, in the form of an infinite series

u(t, r, θ) =
1

2

∞∑

n=1

a0,n u0,n(t, r) +

∞∑

m,n=1

[
am,n um,n(t, r, θ) + bm,n ûm,n(t, r, θ)

]
, (17.63)

where the initial factor of 1
2 is included, as with ordinary Fourier series, for later con-

venience. As usual, the coefficients am,n, bm,n are determined by the initial condition,
so

u(0, r, θ) =
1

2

∞∑

n=1

a0,n v0,n(r) +

∞∑

m,n=1

[
am,n vm,n(r, θ) + bm,n v̂m,n(r, θ)

]
= f(r, θ).

(17.64)
Thus, we must expand the initial data into a Fourier–Bessel series in the eigenfunctions.
As in the rectangular case, it is possible to prove, [46], that the separable eigenfunctions
are complete — there are no other eigenfunctions — and, moreover, every (reasonable)
function defined on the unit disk can be written as a convergent series in the Bessel
eigenfunctions.

Theorem 14.19 gurantees that the eigenfunctions are orthogonal† with respect to the
standard L2 inner product

〈u , v 〉 =

∫ ∫

D

u(x, y) v(x, y) dx dy =

∫ 1

0

∫ 2π

0

u(r, θ) v(r, θ) r dθ dr

† For the two eigenfunctions corresponding to one of the double eigenvalues, orthogonality
must be verified by hand.
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Norms of the Fourier–Bessel Eigenfunctions ‖ vm,n ‖ = ‖ v̂m,n ‖

n

∖
m 0 1 2 3 4 5 6 7

1 .6507 .5048 .4257 .3738 .3363 .3076 .2847 .2658

2 .4265 .3761 .3401 .3126 .2906 .2725 .2572 .2441

3 .3402 .3130 .2913 .2736 .2586 .2458 .2347 .2249

4 .2913 .2737 .2589 .2462 .2352 .2255 .2169 .2092

5 .2589 .2462 .2353 .2257 .2171 .2095 .2025 .1962

on the unit disk. (Note the extra factor of r coming from the polar coordinate form (A.51)
of the infinitesimal element of area dx dy = r dr dθ.) The norms of the Fourier–Bessel
functions are given by the interesting formula

‖ vm,n ‖ = ‖ v̂m,n ‖ =

√
π

2

∣∣ Jm+1(ζm,n)
∣∣ (17.65)

that involves the value of the Bessel function of the next higher order at the appropriate
Bessel root; numerical values appear in the accompanying table. A proof of this formula
can be found in – .

Orthogonality of the eigenfunctions implies that the coefficients in the Fouier–Bessel series
(17.64) are given by

am,n =
〈 f , vm,n 〉

‖ vm,n ‖
2

=
2

π Jm+1(ζm,n)2

∫ 1

0

∫ 2π

0

f(r, θ) Jm(ζm,n r) r cos mθ dθ dr,

bm,n =
〈 f , v̂m,n 〉

‖ v̂m,n ‖
2

=
2

π Jm+1(ζm,n)2

∫ 1

0

∫ 2π

0

f(r, θ) Jm(ζm,n r) r sin mθ dθ dr.

(17.66)

In accordance with the general theory, each individual separable solution (17.62) to
the heat equation decays exponentially fast, at a rate λm,n = ζ2

m,n prescribed by the square
of the corresponding Bessel root. In particular, the dominant mode, meaning the one that
persists the longest, is

u0,1(t, r, θ) = e− ζ2
0,1 t J0(ζ0,1 r). (17.67)

Its decay rate

ζ2
0,1 ≈ 5.783 (17.68)

is the square of the smallest non-zero root of the Bessel function J0(z). The dominant
eigenfunction v0,1(r, θ) = J0(ζ0,1 r) > 0 is strictly positive within the entire disk and ra-
dially symmetric. Consequently, for most initial conditions (specifically those for which
a0,1 6= 0), the disk’s temperature distribution eventually becomes entirely of one sign
and radially symmetric, while decaying exponentially fast to zero at the rate given by
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Figure 17.4. Heat Diffusion in a Disk.

(17.68). See Figure 17.4 for a plot of a typical solution, displayed as successive times
t = 0, .04, .08, .12, .16, .2. Note how, in accordance with the theory, the solution almost
immediately acquires a radial symmetry, followed by a fairly rapid decay to thermal equi-
librium.

17.3. The Fundamental Solution.

As we learned in Section 14.1, the fundamental solution to the heat equation measures
the temperature distribution resulting from a concentrated initial heat source, e.g., a hot
soldering iron applied instantaneously at one pointe. The physical problem is modeled
mathematically by imposing a delta function as the initial condition for the heat equation,
along with the chosen homogeneous boundary conditions. Knowledge of the fundamental
solution enables one to use linear superposition to recover the solution for any other initial
data.

As in our one-dimensional analysis, we shall concentrate on the most tractable case,
when the domain is the entire plane: Ω = R

2. Our first goal will be to solve the initial
value problem

ut = γ ∆u, u(0, x, y) = δ(x− ξ, y − η) = δ(x− ξ) δ(y − η), (17.69)

for t > 0 and (x, y) ∈ R
2. The initial data is a delta function representing a concentrated

unit heat source placed at position (ξ, η). The resulting solution u = F (t, x, y; ξ, η) is called
the fundamental solution for the heat equation on R

2.

The quickest route to the desired solution relies on the following simple lemma that
combines solutions of the one-dimensional heat equation to produce solutions of the two-
dimensional version.

Lemma 17.1. If v(t, x) and w(t, x) are any two solutions to the one-dimensional

heat equation ut = γ uxx, then the product

u(t, x, y) = v(t, x)w(t, y) (17.70)
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is a solution to the two-dimensional heat equation ut = γ (uxx + uyy).

Proof : Our assumptions imply that that vt = γ vxx, while wt = γ wyy when we write
w(t, y) as a function of t and y. Therefore, differentiating (17.70), we find

∂u

∂t
=

∂v

∂t
w + v

∂w

∂t
= γ

∂2v

∂x2
w + γ v

∂2w

∂y2
= γ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

and hence u(t, x, y) solves the heat equation. Q.E.D.

For example, if

v(t, x) = e−γ ω2 t sin ωx, w(t, y) = e−γ ν2 t sin ν y,

are separable solutions of the one-dimensional heat equation, then

u(t, x, y) = e−γ (ω2+ν2) t sinωx sin ν y

are the separable solutions we used to solve the heat equation on a rectangle. A more
interesting case is to chose

v(t, x) =
1

2
√

πγ t
e−(x−ξ)2/4γ t, w(t, y) =

1

2
√

πγ t
e−(y−η)2/4γ t, (17.71)

to be the fundamental solutions (14.58) to the one-dimensional heat equation at respec-
tive locations x = ξ and y = η. Multiplying these two solutions together produces the
fundamental solution for the two-dimensional problem.

Proposition 17.2. The fundamental solution to the heat equation ut = γ∆u corre-

sponding to a unit delta function placed at position (ξ, η) ∈ R
2 at the initial time t0 = 0

is

F (t, x, y; ξ, η) =
1

4πγ t
e− [ (x−ξ)2+(y−η)2 ]/4γ t. (17.72)

Proof : Since we already know that both function (17.71) are solutions to the one-
dimensional heat equation, Lemma 17.1 guarantees that their product u(t, x, y) = v(t, x)w(t, y),
which equals (17.72), solves the two-dimensional heat equation for t > 0. Moreover, at the
initial time

u(0, x, y) = v(0, x)w(0, y) = δ(x− ξ) δ(y − η)

is a product of delta functions, and hence the result follows. Indeed, the total heat

∫ ∫
u(t, x, y) dx dy =

∫ ∞

−∞

v(t, x) dx

∫ ∞

−∞

w(t, y) dy = 1, t ≥ 0,

remains constant, while

lim
t→0+

u(t, x, y) =

{
∞, (x, y) = (ξ, η),

0, otherwise.

has the standard delta function limit at the initial time instant. Q.E.D.
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Figure 17.5. Fundamental Solution to the Planar Heat Equation.

Figure 17.5 depicts the evolution of the fundamental solution when γ = 1 at successive
times t = .01, .02, .05, .1. Observe that the initially concentrated heat spreads out in a
radially symmetric manner. The total amount of heat remains constant. At any individual
point (x, y) 6= (0, 0), the initially zero temperature rises slightly at first, but then decays
monotonically back to zero at a rate proportional to 1/t.

Both the one- and two-dimensional fundamental solutions have a bell-shaped profile
known as a Gaussian function. The most important difference is the initial factor. In a
one-dimensional medium, the fundamental solution decays in proportion to 1/

√
t, whereas

in the plane the decay is more rapid, being proportional to 1/t. The physical explanation
is that the energy is able to spread out in two independent directions, and hence diffuses
away from its initial source more rapidly. As we shall see, the decay in three-dimensional
space is more rapid still, being proportional to t−3/2 for similar reasons; see (18.103).

The principal purpose of the fundamental solution is to solve the general initial value
problem. We express the initial temperature distribution as a superposition of delta func-
tion sources,

u(0, x, y) = f(x, y) =

∫ ∫
f(ξ, η) δ(x− ξ, y − η) dξ dη,

where, at the point (ξ, η) ∈ R
2, the source has magnitude f(ξ, η). Linearity implies that

the solution is then given by the same superposition of fundamental solutions.

Theorem 17.3. The solution to the initial value problem

ut = γ ∆u, u(t, x, y) = f(x, y), (x, y) ∈ R
2,

for the planar heat equation is given by the linear superposition formula

u(t, x, y) =
1

4πγ t

∫ ∫
f(ξ, η) e− [ (x−ξ)2+(y−η)2 ]/4γ t dξ dη. (17.73)
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We can interpret the solution formula (17.73) as a two-dimensional convolution

u(t, x, y) = F (t, x, y) ∗ f(x, y) (17.74)

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters

F (t, x, y) = F (t, x, y; 0, 0) =
1

4πγ t
e− [x2+x2 ]/4γ t. (17.75)

As in (13.126), such a convolution can be interpreted as a weighted averaging of the
function, which has the effect of smoothing out the initial signal f(x, y).

Example 17.4. If our initial temperature distribution is constant on a circular
region, say

u(0, x, y) =

{
1 x2 + y2 < 1,

0, otherwise,

Then the solution can be evaluated using (17.73), as follows:

u(t, x, y) =
1

4π t

∫ ∫

D

e−[ (x−ξ)2+(y−η)2 ]/4 t dξ dη,

where the integral is over the unit disk D = {ξ2 + η2 ≤ 1}. Unfortunately, the integral
cannot be expressed in terms of elementary functions. On the other hand, numerical
evaluation of the integral is straightforward. A plot of the resulting radially symmetric
solution appears in Figure h2disk .

For more general configurations, when analytical formulas are no longer available,
one turns to numerical approximation methods. The most popular are based on a two-
dimensional variant of the Crank–Nicholson scheme (14.156), relying on either finite dif-
ferences or finite elements to discretize the space coordinates. We will not dwell on the
details, but refer the interested reader to [34, 148, 107].

17.4. The Planar Wave Equation.

The second important class of dynamical equations are those governing vibrational
motions. The simplest planar system of this type is the two-dimensional wave equation

∂2u

∂t2
= c2∆u = c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (17.76)

which models the free (unforced) vibrations of a uniform two-dimensional membrane, e.g.,
a drum. Here u(t, x, y) represents the displacement of the membrane at time t and position
(x, y) ∈ Ω, where the domain Ω ⊂ R

2 represents the undeformed shape of the membrane.
The constant c2 > 0 encapsulates the membrane’s physical properties — density, tension,
stiffness, etc.; its square root c is called, as in the one-dimensional case, the wave speed ,
since it is the speed at which localized signals propagate through the membrane.
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Remark : In this simplified model, we are only allowing small, transverse (vertical)
displacements of the membrane. Large elastic vibrations lead to the nonlinear partial
differential equations of elastodynamics, [8]. The bending vibrations of a flexible plate,
which can be viewed as the two-dimensional version of a beam, are governed by a more
complicated fourth order partial differential equation; see Exercise .

The solution u(t, x, y) to the wave equation will be uniquely specified once we impose
suitable boundary and initial conditions. The Dirichlet conditions

u = h on ∂Ω, (17.77)

correspond to gluing our membrane to a fixed boundary — a rim. On the other hand, the
homogeneous Neumann conditions

∂u

∂n
= 0 on ∂Ω, (17.78)

represent a free boundary where the membrane is not attached to any support. Mixed
boundary conditions attach part of the boundary and leave the remaining portion free to
vibrate:

u = h on D,
∂u

∂n
= 0 on N, (17.79)

where ∂Ω = D ∪ N with D and N non-overlapping. Since the wave equation is second
order in time, we also need to impose two initial conditions:

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = g(x, y), (x, y) ∈ Ω. (17.80)

The first specifies the initial displacement of the membrane, while the second prescribes
its initial velocity.

The wave equation is the simplest example of a general second order system of New-
tonian form

∂2u

∂t2
= −K[u ] = −∇∗ ◦∇u, (17.81)

as presented in Section 14.7. As in (17.15), adopting general weighted inner products

〈u , ũ 〉 =

∫ ∫

Ω

u(x, y) ũ(x, y) ρ(x, y) dx dy, 〈〈v , ṽ 〉〉 =

∫ ∫

Ω

v(x, y) · ṽ(x, y)κ(x, y) dx dy,

(17.82)
on, respectively, the spaces of scalar and vector fields, the adjoint to the gradient is a
rescaled version of the divergence operator

∇∗v = −
1
ρ
∇ · (κv).

Therefore, the system (17.81) assumes the self-adjoint form

utt = −K[u ] =
1
ρ
∇ · (κv),
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or, in full detail,

ρ(x, y)
∂2u

∂t2
=

∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)
. (17.83)

The resulting hyperbolic partial differential equation models the small transverse vibrations
of a nonuniform membrane, in which ρ(x, y) > 0 represents the density of the membrane at
the point (x, y) ∈ Ω, while κ(x, y) > 0 represents its stiffness — in direct analogy with the
one-dimensional version (14.189). In particular, if the material is homogeneous, then both
ρ and κ are constant, and (17.83) reduces to the two-dimensional wave equation (17.76)
with wave speed

c =

√
κ
ρ

. (17.84)

Separation of Variables

According to the general framework establisahed in Section 14.7, the separable solu-
tions to the vibration equation (17.81) have the trigonometric form

uk(t, x, y) = cos ωk t vk(x, y) and ũk(t, x, y) = cos ωk t vk(x, y), (17.85)

in which vk(x, y) is an eigenfunction of the assocaited boundary value problem

K[v ] = ω2
k v = λk v. (17.86)

The eigenvalue λk = ω2
k equals the square of the vibrational frequency. As in (17.20),

there are an infinite number of such normal modes, having progressively faster and faster
vibrational frequencies: ωk →∞ as k →∞. In addition, in the positive semi-definite case
— which occurs under homogeneous Neumann boundary conditions — there is a single
constant null eigenfunction, leading to the additional separable solutions

u0(t, x, y) = 1 and ũ0(t, x, y) = t. (17.87)

The first represents a stationary membrane that has been displaced by a fixed amount in
the vertical direction, while the second represents a membrane that is moving off in the
vertical direction with constant unit speed. (Think of the membrane moving in outer space
unaffected by any external gravitational force.) Specializing to the wave equation (17.76),
the required eigenvalue problem (17.86) reduces to the Helmholtz eigenvalue problem

c2 ∆v + λ v = c2 (vxx + vyy) + λ v = 0 (17.88)

that we analyzed earlier in this chapter.

In the stable cases (Drichlet or mixed), the general solution to the initial value problem
can be built up as a quasi-periodic eigenfunction series

u(t, x, y) =
∞∑

k=1

ak uk(t, x, y) + bk ũk(t, x, y) =
∞∑

k=1

(
ak cos ωk t + bk sinωk t

)
vk(x, y)

(17.89)
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in the fundamental vibrational modes. The coefficients ak, bk are prescribed by the initial
conditions:

∞∑

k=1

ak vk(x, y) = f(x, y),
∞∑

k=1

ωk bk vk(x, y) = g(x, y), (17.90)

whence, by orthogonality of the eigenfunctions,

ak =
〈 f , vk 〉

‖ vk ‖
2

=

∫ ∫

Ω

f vk ρ dx dy
∫ ∫

Ω

v2
k ρ dx dy

, bk =
1

ωk

〈 g , vk 〉

‖ vk ‖
2

=

∫ ∫

Ω

g vk ρ dx dy

ωk

∫ ∫

Ω

v2
k ρ dx dy

. (17.91)

In the case of the wave equation, the density ρ is constant, and hence can be canceled from
the numerator and denominator of the orthogonality formulae (17.90).

For the Neumann boundary value problem, the eigenfunction series solution takes an
amended form

u(t, x, y) = a0 + b0 t +

∞∑

k=1

(
ak cos ωk t + bk sin ωk t

)
vk(x, y). (17.92)

The coefficients ak, bk for k > 0 are given by the same orthogonality formulae (17.91). The
only unstable, non-periodic mode is the linearly growing term b0 t; its coefficient

b0 =
〈 g , 1 〉

‖ 1 ‖2
=

∫ ∫

Ω

g ρ dx dy
∫ ∫

Ω

ρ dx dy

,

is a weighted average of the initial velocity g(x, y) = ut(0, x, y) over the domain. In the
case of the wave equation, the density ρ is constant, and hence

b0 =
1

area Ω

∫ ∫

Ω

g(x, y) dx dy

equals the average initial velocity. If the (weighted) average initial velocity b0 6= 0 is
nonzero, then the membrane will move off at an average vertical speed b0 — while quasiperi-
odically vibrating in any of the normal modes that have been excited by the initial dis-
placement and/or initial velocity. Again, this is a two-dimensional formulation of our
observations of a free, vibrating bar — which in turn was the continuum version of an
unsupported mass–spring chain.

Remark : An interesting question is whether two different drums can have identical
vibrational frequencies. Or, more descriptively, can one hear the shape of a drum? The
answer turns out to be “no”, but for quite subtle reasons. See [drum] for a discussion.
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17.5. Analytical Solutions of the Wave Equation.

The previous section summarized the general, qualitative features exhibited by solu-
tions to two-dimensional vibration and wave equations. Exact analytical formulas are, of
course, harder to come by. In this section, we analyze the two most important special
cases — rectangular and circular membranes.

Vibration of a Rectangular Drum

Let us first consider the vibrations of a membrane in the shape of a rectangle

R =
{

0 < x < a, 0 < y < b
}

with side lengths a and b, whose sides are fixed to the (x, y)–plane. Thus, we seek to solve
the wave equation

utt = c2∆u = c2(uxx + uyy), 0 < x < a, 0 < y < b, (17.93)

subject to the initial and boundary conditions

u(t, 0, y) = v(t, a, y) = 0 = v(t, x, 0) = v(t, x, b),

u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

0 < x < a,

0 < y < b.
(17.94)

As we saw in Section 17.2 the eigenvalues and eigenfunctions for the associated Helmholtz
equation

c2(vxx + vyy) + λ v = 0, (x, y) ∈ R, (17.95)

on a rectangle, subject to the homogeneous Dirichlet boundary conditions

v(0, y) = v(a, y) = 0 = v(x, 0) = v(x, b), 0 < x < a, 0 < y < b, (17.96)

are

vm,n(x, y) = sin
mπx

a
sin

nπy
b

, where λm,n = π2 c2
(

m2

a2 + n2

b2

)
, (17.97)

with m,n = 1, 2, . . . . The fundamental frequencies of vibration are the square roots of the
eigenvalues, so

ωm,n =
√

λm,n = π c

√
m2

a2
+

n2

b2
. (17.98)

The frequencies will depend upon the underlying geometry — meaning the side lengths —
of the rectangle, as well as the wave speed c, which is turn is a function of the membrane’s
density and stiffness, (17.84). The higher the wave speed, or the smaller the rectangle, the
faster the vibrations. In layman’s terms, (17.98) quantifies the observation that smaller,
stiffer drums made of less dense material vibrate faster.

According to (17.85), the normal modes of vibration of our rectangle are

um,n(t, x, y) = cos π c

√
m2

a2
+

n2

b2
t sin

mπx
a

sin
nπy

b
,

ũm,n(t, x, y) = sin π c

√
m2

a2
+

n2

b2
t sin

mπx
a

sin
nπy

b
.

(17.99)

5/1/06 977 c© 2006 Peter J. Olver



Figure 17.6. Vibrations of a Square.

The general solution can then be written as a double Fourier series

u(t, x, y) =
∞∑

m,n=1

[
am,n um,n(t, x, y) + bm,n ũm,n(t, x, y)

]
.

in the normal modes. The coefficients am,n, bm,n are fixed by the initial displacement
u(0, x, y) = f(x, y) and the initial velocity ut(0, x, y) = g(x, y), as in (17.90). The usual
orthogonality relations among the eigenfunctions imply

am,n =
〈 vm,n , f 〉

‖ vm,n ‖
2

=
4

a b

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy
b

dx dy, (17.100)

bm,n =
〈 vm,n , g 〉

ωm,n ‖ vm,n ‖
2

=
4

π c
√

m2 b2 + n2 a2

∫ b

0

∫ a

0

g(x, y) sin
mπx

a
sin

nπy
b

dx dy.

Since the fundamental frequencies are not rational multiples of each other, the general
solution is a genuinely quasi-periodic superposition of the various normal modes.

In Figure 17.6, we plot the solution resulting from the initially concentrated displace-
ment†

u(0, x, y) = f(x, y) = e−100[(x−.5)2+(y−.5)2 ]

† The alert reader may object that the initial displacement f(x, y) does not exactly satisfy the
Dirichlet boundary conditions on the edges of the rectangle. But this does not prevent the exis-
tence of a well-defined solution to the initial value problem, whose initial boundary discontinuities
will subsequently propagate inside the rectagle. However, they are so tiny as to be unnoticeable
in the solution graphs.
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at the center of a unit square, so a = b = 1 and the wave speed c = 1. The plots are
at successive times 0, .02, .04, . . . , 1.6. Note that, unlike a one-dimensional string where a
concentrated displacement remains concentrated at all subsequent times and periodically
repeats, the initial displacement spreads out in a radially symmetric manner and propa-
gates to the edges of the rectangle, where it reflects and then interacts with itself. However,
owing to the quasi-periodicity of the solution, the displacement of the drum never exactly
repeats itself, and the initial concentrated signal never quite reforms in the rectangle’s
center.

Vibration of a Circular Drum

Let us next analyze the vibrations of a circular membrane. As always, we build up
the solution as a quasi-periodic linear combination of the normal modes, which, by (17.85),
are specified by the eigenfunctions for the associated Helmholtz boundary value problem.

As we saw in Section 17.2, the eigenfunctions of the Helmholtz equation on a disk
of radius 1, say, subject to homogeneous Dirichlet boundary conditions, are products of
trigonometric and Bessel functions:

vm,n(r, θ) = Jm(ζm,n r) cos mθ,

ṽm,n(r, θ) = Jm(ζm,n r) sin mθ,

m = 0, 1, 2, . . . ,

n = 1, 2, 3, . . . .
(17.101)

Here r, θ are the usual polar coordinates, while ζm,n > 0 denotes the nth (positive) root
of the mth order Bessel function Jm(z), cf. (17.58). The corresponding eigenvalue is its
square, λm,n = ζ2

m,n, and hence the natural frequencies of vibration are equal to the Bessel
roots, scaled by the wave speed:

ωm,n = c
√

λm,n = c ζm,n. (17.102)

A table of their values (for the case c = 1) can be found in the preceding section. The Bessel
roots do not follow any easily discernible pattern, and are certainly not rational multiples
of each other. Thus, the vibrations of a circular drum are also truly quasi-periodic.

The frequencies ω0,n = c ζ0,n correspond to simple eigenvalues, with a single radially
symmetric eigenfunction J0(ζ0,n r), while the “angular modes” ωm,n, for m > 0, are double,
each possessing two linearly independent eigenfunctions (17.101). According to the general
formula (17.85), each eigenfunction engenders two independent normal modes of vibration,
having the explicit forms

cos c ζm,n t cos mθ Jm(ζm,n r), cos c ζm,n t sin mθ Jm(ζm,n r),

sin c ζm,n t cos mθ Jm(ζm,n r), sin c ζm,n t sinmθ Jm(ζm,n r).
(17.103)

The general solution is written as a Fourier–Bessel series:

u(t, r, θ) =
∑

m,n

[ (
am,n cos c ζm,n t + bm,n sin c ζm,n t

)
cos mθ

+
(
cm,n cos c ζm,n t + dm,n sin c ζm,n t

)
sinmθ

]
Jm(ζm,n r),

(17.104)
whose coefficients am,n, bm,n, cm,n, dm,n are determined, as usual, by the initial displace-
ment and velocity of the membrane. In Figure vdisk , the vibrations due to an initially
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concentrated displacement are displayed. Again, the motion is only quasi-periodic and
never quite returns to the original configuration.

Remark : As we learned in Section 14.4, the natural frequencies of vibration a (homo-
geneous) one-dimensional medium, e.g., a violin string or a column of air in a flute, are
integer multiples of each other. This has the important consequence that any resulting
vibration is periodic in time. Musically, the overtones in such a one-dimensional instru-
ment are integer multiples of each other, and so the music sounds harmonic to our ear. On
the other hand, the natural frequencies of circular and rectangular drums are irrationally
related, and the vibrations are only quasi-periodic. As a result, we hear a percussive
sound! Thus, for some reason, our appreciation of music is psychologically attuned to
the differences between rationally related/periodic and irrationally related/quasi-periodic
vibrations.

Scaling and Symmetry

Symmetry methods can be effectively employed in the analysis of the wave equation.
Let us consider the simultaneous rescaling

t 7−→ α t, x 7−→ β x, y 7−→ β y, (17.105)

of time and space, whose effect is to change the function u(t, x, y) into a rescaled version

U(t, x, y) = u(α t, β x, β y). (17.106)

The chain rule is employed to relate their derivatives:

∂2U

∂t2
= α2 ∂2u

∂t2
,

∂2U

∂x2
= β2 ∂2u

∂x2
,

∂2U

∂y2
= β2 ∂2u

∂y2
.

Therefore, if u satisfies the wave equation

utt = c2 ∆u,

then U satisfies the rescaled wave equation

Utt =
α2 c2

β2
∆U = c̃2 ∆U, where the rescaled wave speed is c̃ =

α c

β
. (17.107)

In particular, rescaling only time by setting α = 1/c, β = 1, results in a unit wave speed
c̃ = 1. In other words, we are free to choose our unit of time measurement so as to fix the
wave speed equal to 1.

If we set α = β, scaling space and time in the same proportion, then the wave speed
does not change, c̃ = c, and so

t 7−→ β t, x 7−→ β x, y 7−→ β y, (17.108)

defines a symmetry transformation for the wave equation: If u(t, x, y) is any solution to
the wave equation, then so is its rescaled version

U(t, x, y) = u(β t, β x, β y) (17.109)
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for any choice of scale parameter β 6= 0. Observe that if u(t, x, y) is defined on a domain
Ω, then the rescaled solution U(t, x, y) will be defined on the rescaled domain

Ω̃ =
1

β
Ω =

{(
x

β
,
y

β

) ∣∣∣∣ (x, y) ∈ Ω

}
= { (x, y) | (βx, β y) ∈ Ω } . (17.110)

For instance, the scaling parameter β = 2 has the effect of halving the size of the domain.
The normal modes for the rescaled domain have the form

Un(t, x, y) = un(β t, β x, β y) = cos(β ωn t) vn(βx, β y),

Ũn(t, x, y) = ũn(β t, β x, β y) = sin(β ωn t) vn(βx, β y),

and hence the vibrational frequencies ω̃n = β ωn are scaled by the same overall factor.
Thus, when β < 1, the rescaled membrane is larger by a factor 1/β, and its vibrations are
slowed down by the same factor β. For instance, a drum that is twice as large will vibrate
twice as slowly, and hence have an octave lower overall tone. Musically, this means that all
drums of a similar shape have the same pattern of overtones, differing only in their overall
pitch, which is a function of their size, tautness and density.

In particular, choosing β = 1/R will rescale the unit disk into a disk of radius R. The
fundamental frequencies of the rescaled disk are

ω̃m,n = β ωm,n =
c

R
ζm,n, (17.111)

where c is the wave speed and ζm,n are the Bessel roots, defined in (17.58). Observe that
the ratios ωm,n/ωm′,n′

between vibrational frequencies remain the same, independent of
the size of the disk R and the wave speed c. We define the relative vibrational frequencies

ρm,n =
ωm,n

ω0,1

=
ζm,n

ζ0,1

, in proportion to ω0,1 =
c ζ0,1

R
≈ 2.4

c

R
, (17.112)

which is the drum’s dominant or lowest vibrational frequency. The relative frequencies
ρm,n are independent of the size, stiffness or composition of the drum membrane. In the
following table, we display a list of all relative vibrational frequencies (17.112) that are < 6.
Once the lowest frequency ω0,1 has been determined — either theoretically, numerically or
experimentally — all the higher overtones ωm,n = ρm,n ω0,1 are obtained by rescaling.

Relative Vibrational Frequencies of a Circular Disk

n

∖
m 0 1 2 3 4 5 6 7 8 9 . . .

1 1.000 1.593 2.136 2.653 3.155 3.647 4.132 4.610 5.084 5.553 . . .

2 2.295 2.917 3.500 4.059 4.601 5.131 5.651
...

...
...

3 3.598 4.230 4.832 5.412 5.977
...

...

4 4.903 5.540
...

...
...

...
...

...
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17.6. Nodal Curves.

When a membrane vibrates, the individual points move up and down in a quasi-
periodic manner. As such, correlations between the motions of different points are not
immediately evident. However, if the membrane is set to vibrate in a pure eigenmode, say

un(t, x, y) = cos(ωn t) vn(x, y),

then all points move up and down at a common frequency ωn =
√

λn , which is the square
root of the eigenvalue corresponding to the eigenfunction vn(x, y). The exceptions are the
points where the eigenfunction vanishes:

vn(x, y) = 0. (17.113)

Such points remain stationary. The set of all points (x, y) ∈ Ω that satisfy (17.113) is
known as the nth nodal set of the domain Ω. Scattering small particles (e.g., fine sand)
over the membrane performing such a pure vibration, will enable us to see the nodal set,
because the particles will, though random movement over the oscillating regions of the
membrane, tend to accumulate along the stationary nodal curves.

It can be shown that, in general, each nodal set consists of a finite system of nodal

curves. The nodal curves intersect at critical points of the eigenfunction, where ∇vn = 0,
and thereby partition the membrane into nodal regions. Points lying in a common nodal
region all vibrate in tandem, so that all points in a common nodal region are either up or
down, except, momentarily, when the entire membrane has zero displacement. Adjacent
nodal regions, lying on the opposite sides of a nodal curve, vibrate in opposing directions —
when one side is up, the other is down, and then, as the membrane becomes momentarily
flat, simultaneously switch directions.

Example 17.5. Circular Drums. Since the eigenfunctions (17.101) for a disk are
products of trigonometric functions in the angular variable and Bessel functions of the
radius, the nodal curves for the normal modes of vibrations of a circular membrane are
rays emanating from and circles centered at the origin. Thus, the nodal regions are annu-
lar sectors. Pictures of the nodal curves for the first nine normal modes indexed by their
relative frequencies are plotted in Figure 17.7. Representative displacements of the mem-
brane in each of the first twelve modes can be found in Figure 17.3. The dominant (lowest
frequency) mode is the only one that has no nodal curves; it has the form of a radially
symmetric bump where the entire membrane flexes up and down. Every other mode has
at least one nodal curve. For instance, the next lowest modes vibrate proportionally faster
at a relative frequency ρ1,1 ≈ 1.593. The most general solution with this vibrational fre-
quency is a linear combination αu1,1 + β ũ1,1 of the two eigensolutions. Each combination
has a single diameter as a nodal curve, whose slope depends upon the coefficients α, β.
Here, the two semicircular halves of the drum vibrate in opposing directions — when the
top half is up, the bottom half is down and vice versa. The next set of modes have two
perpendicular diameters as nodal curves; the four quadrants of the drum vibrate in tan-
dem, with opposite quadrants having the same displacements. Next in increasing order of
vibrational frequency is a single mode, with a circular nodal curve whose (relative) radius
ζ0,2/ζ0,1 ≈ .6276 equals the ratio of the first two roots of the order zero Bessel function;

5/1/06 982 c© 2006 Peter J. Olver



1.000 1.593 2.136

2.295 2.653 2.917

3.155 3.500 3.598

Figure 17.7. Nodal Curves and Relative Vibrational
Frequencies of a Circular Membrane.

see Exercise for a justification. In this case, the inner disk and the outer annulus vibrate
in opposing directions.

Example 17.6. Rectangular Drums. For a general rectangular drum, the nodal
curves are relatively uninteresting. Since the normal modes (17.99) are separable products
of trigonometric functions in the coordinate variables x, y, the nodal curves are regularly
equi-spaced straight lines parallel to the sides of the rectangle. The internodal regions
are small rectangles, all of the same size and shape, with adjacent rectangles vibrating in
opposite directions.

A more interesting collection of nodal curves occurs when the rectangle admits mul-
tiple eigenvalues — so-called accidental degeneracies. Two of the eigenvalues (17.97) co-
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Figure 17.8. Some Nodal Curves for a Square Membrane.

incide, λm,n = λk,l, if and only if

m2

a2
+

n2

b2
=

k2

a2
+

l2

b2
(17.114)

where (m,n) 6= (k, l) are distinct pairs of positive integers. In such situations, the distinct
eigenmodes happen to vibrate with a common frequency ω = ωm,n = ωk,l. Consequently,
any linear combination of the eigenmodes, e.g.,

cos ω t
(

α sin
mπx

a
sin

nπy
b

+ β sin kπx
a sin lπ y

b

)
, α, β ∈ R,

is a pure vibration, and hence also qualifies as a normal mode. The associated nodal curves

α sin
mπx

a
sin

nπy
b

+ β sin kπx
a sin lπ y

b = 0 (17.115)

have a more intriguing geometry, which can change dramatically as α, β vary.

For example, on a unit square R =
{

0 < x, y < 1
}
, an accidental degeneracy occurs

whenever
m2 + n2 = k2 + l2 (17.116)

for distinct pairs of positive integers (m,n) 6= (k, l). The simplest possibility arises when-
ever m 6= n, in which case we can merely reverse the order, setting k = n, l = m. In
Figure 17.8 we plot three sample nodal curves

sin 4πx sinπ y + β sinπ x sin 4πy = 0, with β = .2, .5, 1,

corresponding to the three different linear combinations of the eigenfunctions with m =
l = 4, n = k = 1. The associated vibrational frequency is ω4,1 = π c

√
17 .

Remark : Classifying such accidental degeneracies takes us into the realm of number
theory, [10, 39]. The simplest (square) case (17.116) asks one to determine all integer
points that lie on a common circle.

Remark : An interesting question is whether a circular disk has accidental degenera-
cies, which would occur if two different Bessel roots were to coincide. However, it is
known, [180; p. 129], that ζm,n 6= ζk,l whenever (m,n) 6= (k, l). Thus, a disk has no such
degeneracies, and all nodal curves are circles and rays around the origin.
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Chapter 18

Partial Differential Equations in Space

At last we have climbed the dimensional ladder to its ultimate rung (at least for those
of us living in a three-dimensional universe): partial differential equations in physical
space. As in the one and two-dimensional contexts developed in the preceding chapters,
the three key examples are the three-dimensional Laplace equation, modeling equilibrium
configurations of solid bodies, the three-dimensional wave equation, governing vibrations of
solids, liquids, gasses, and electromagnetic waves, and the three-dimensional heat equation,
modeling basic spatial diffusion processes.

Fortunately, almost everything of importance has already appeared in the one- and
two-dimensional situations, and appending a third dimension is, for the most part, simply
a matter of appropriately adapting the constructions. We have already seen the basic un-
derlying solution techniques: separation of variables and Green’s functions or fundamental
solutions. (Unfortunately, despite the best efforts of mathematicians, the most powerful
of our planar tools, conformal mapping, does not carry over to higher dimensions.) In
three-dimensional problems, separation of variables is applicable in rectangular, cylindri-
cal and spherical coordinates. The first two do not produce anything fundamentally new,
and are therefore relegated to the exercises. Separation in spherical coordinates leads to
spherical harmonics and spherical Bessel functions, whose properties are investigated in
some detail. These new special functions play important roles in a number of physical
systems, including the quantum theory of atomic structure that underlies the spectral and
chemical properties of atoms.

The Green’s function for the three-dimensional Poisson equation in space can be
identified as the classic Newtonian (and Coulomb) 1/r potential. The fundamental so-
lution for the three-dimensional heat equation can be easily guessed from its one- and
two-dimensional versions. The three-dimensional wave equation, surprisingly, has an ex-
plicit, although more intricate, solution formula of d’Alembert form, due to Poisson. Para-
doxically, the best way to treat the two-dimensional version is by “descending” from the
simpler three-dimensional formula. This result highlights a remarkable difference between
waves in planar and spacial media. In three-dimensions, Huygens’ principle states that
waves emanating from a localized initial disturbance remain localized as they propagate
through space. In contrast, in two dimensions, initially concentrated pulses leave a slowly
decaying remnant that never entirely disappears.

18.1. The Laplace and Poisson Equations.

We begin our investigations, as usual, with systems in equilibrium, deferring dynamics
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until later. The prototypical equilibrium system is the three-dimensional Laplace equation

∆u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, (18.1)

in which x = (x, y, z )
T

represents rectangular coordinates on R
3. The solutions u(x, y, z)

continue to be known as harmonic functions. The Laplace equation models unforced
equilibria; Poisson’s equation is the inhomogeneous version

−∆u = f(x, y, z), (18.2)

where the inhomogeneity f represents some form of external forcing.

The basic boundary value problem for the Laplace or the Poisson equation seeks a
solution inside a bounded domain Ω ⊂ R

3 subject to either Dirichlet boundary conditions,
prescribing the function values

u = h on ∂Ω, (18.3)

or Neumann boundary conditions prescribing its normal derivative or flux

∂u

∂n
= k on ∂Ω, (18.4)

or mixed boundary conditions in which one imposes Dirichlet conditions on part of the
boundary and Neumann conditions on the remainder. Keep in mind that the boundary of
the solid domain Ω consists of one or more piecewise smooth closed surfaces, which will be
oriented by the outwards unit normal n;

The boundary value problems for the three-dimensional Laplace and Poisson equations
govern a wide variety of physical systems, including:

(a) Heat conduction: In this application, u represents the equilibrium temperature in
a solid body. Dirichlet conditions correspond to fixing the temperature on the
bounding surface(s), whereas homogeneous Neumann conditions correspond to an
insulated boundary, i.e., one which does not allow any heat flux. The inhomogene-
ity f represents some form of internal heat source.

(b) Ideal fluid flow : Here u represents the velocity potential for an incompressible, irro-
tational steady state fluid flow inside a container, Ω, with velocity vector field
v = ∇u. Homogeneous Neumann boundary conditions correspond to a solid
boundary which the fluid cannot penetrate.

(c) Elasticity : In certain restricted situations, u represents an equilibrium deformation of
a solid body, e.g., the radial deformation of a solid ball. Fully three-dimensional
elasticity is governed by a more complicated system of partial differential equations,
which can be found in Example 21.9.

(d) Electrostatics: In applications to electromagnetism, u represents the electric potential
in a conducting medium; its gradient ∇u prescribes the electromotive force on a
charged particle. The inhomogeneity represents an electostatic force field.
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(e) Gravitation: The Newtonian gravitational potential in flat empty space is also pre-
scribed by the Laplace equation. (In contrast, general relativity requires a vastly
more complicated nonlinear system of partial differential equations, [129].)

Self–Adjoint Formulation and Minimum Principle

The Laplace and Poisson equations naturally fit into the general self-adjoint equi-
librium framework summarized in Section 14.7. The construction is a straightforward
adaptation of the planar version of Section 15.4. We introduce the L2 inner products

〈u , ũ 〉 =

∫ ∫ ∫

Ω

u(x, y, z) ũ(x, y, z) dx dy dz,

〈v , ṽ 〉 =

∫ ∫ ∫

Ω

v(x, y, z) · ṽ(x, y, z) dx dy dz,

(18.5)

between scalar fields u, ũ, and between vector fields v, ṽ defined on the domain Ω ⊂ R
3.

We assume that the functions in question are sufficiently nice that these inner products are
well-defined; if Ω is unbounded, this requires that, at large distances, they decay reasonably
rapidly to zero.

When subject to suitable homogeneous boundary conditions, the three-dimensional
Laplace equation can be placed in our standard self-adjoint form

−∆u = −∇ · ∇u = ∇∗ ◦∇u. (18.6)

This relies on the fact that the adjoint of the gradient operator with respect to the L2

inner products (18.5) is minus the divergence operator:

∇∗v = −∇ · v. (18.7)

As usual, the determination of the adjoint rests on an integration by parts formula, which,
in three-dimensional space, follows from the Divergence Theorem B.36. The first step is to
establish the three-dimensional analog of Green’s formula (15.87). We apply the divergence
identity (B.82) to the product uv of a scalar field u and a vector field v, leading to
∫ ∫ ∫

Ω

(
u∇ · v +∇u · v

)
dx dy dz =

∫ ∫ ∫

Ω

∇ · (uv) dx dy dz =

∫ ∫

∂Ω

u (v · n) dS. (18.8)

Rearranging the terms produces the desired integration by parts formula for triple integrals:
∫ ∫ ∫

Ω

(∇u · v) dx dy dz =

∫ ∫

∂Ω

u (v · n) dS −

∫ ∫ ∫

Ω

u (∇ · v) dx dy dz. (18.9)

The boundary integral will vanish provided either u = 0 or v · n = 0 at each point on ∂Ω.
When u = 0 on all of ∂Ω, we have homogeneous Dirichlet conditions. Setting v · n = 0

everywhere on ∂Ω results in the homogeneous Neumann boundary value problem; see
Section 15.4 for a detailed explanation. Finally, when u = 0 on part of ∂Ω and v ·n = 0 on
the rest leads to the mixed boundary value problem. Thus, subject to one of these choices,
the integration by parts formula (18.9) reduces to

〈∇u ,v 〉 = 〈u ,−∇ · v 〉, (18.10)

which suffices to prove the adjoint formula (18.7).
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Remark : Adopting more general weighted inner products results in a more general
elliptic boundary value problem. See Exercise for details.

According to the abstract Theorem 7.60, the self-adjoint formulation (18.6) implies
positive semi-definiteness of the boundary value problem, and positive definiteness provided
ker∇ = {0}. Since, on a connected domain, only constant functions are annihilated by
the gradient operator — see Theorem B.28 — both the Dirichlet and mixed boundary
value problems are positive definite, while the Neumann boundary value problem is only
semi-definite.

Finally, in the positive definite cases, the solution can be characterized by the three-
dimensional version of the Dirichlet minimization principle (15.100).

Theorem 18.1. The solution u(x, y, z) to the Poisson equation (18.2) subject to

homogeneous Dirichlet or mixed boundary conditions (18.3) is characterized as the unique

function that minimizes the Dirichlet integral

1
2 ‖∇u ‖2 − 〈u , f 〉 =

∫ ∫ ∫

Ω

[
1
2 (u2

x + u2
y + u2

z)− f u
]
dx dy dz (18.11)

among all C1 functions that satisfy the prescribed boundary conditions.

As in the two-dimensional version discussed in Section 15.4, he minimization principle
continues to hold without modification in the case of the inhomogeneous Dirichlet boundary
value problem. Modifications for the inhomogeneous mixed boundary value problem are
discussed in Exercise . The three-dimensional finite element method for constructing
numerical solutions to such boundary value problems rests on the associated minimization
principle; see [148, 107] for details.

18.2. Separation of Variables.

With conformal mapping no longer a viable option in three dimensional space, sep-
aration of variables reasserts its primacy for generating explicit solutions to the Laplace
equation. As always, its applicability is unfortunately restricted to rather special, but
important, geometrical configurations. In three-dimensional space, the simplest separable
cases are problems formulated on rectangular, cylindrical or spherical domains. Since the
first two are straightforward extensions of their two-dimensional counterparts, we will only
discuss spherically separable solutions in any detail. The simplest domain to which the
separation of variables method applies is a rectangular box:

B =
{

0 < x < a, 0 < y < b, 0 < z < c
}
.

For functions of three variables, one begins the separation process by splitting off one of
them, by setting u(x, y, z) = v(x)w(y, z), say. The function v(x) satisfies a simple second
order ordinary differential equation, while w(y, z) solves the two-dimensional Helmholtz
equation, which is then separated by writing w(y, z) = p(y) q(z). The resulting fully
separated solutions u(x, y, z) = v(x) p(y) q(z) are (mostly) products of trigonometric and
hyperbolic functions. Complete details of the technique and the resulting series solution
are relegated to Exercise .
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In the case when the domain is a cylinder, one passes to cylindrical coordinates r, θ, z
to effect the separation. The resulting separable solutions u(r, θ, z) = v(r, θ), w(z) =
p(r) q(θ), w(z) are products of Bessel functions of the cylindrical radius r, trigonometric
functions of the polar angle θ, and hyperbolic functions of z. Details are outlined in
Exercise .

The most interesting case is that of spherical coordinates, which we proceed to analyze
in detail in the following subsection.

Remark : Beyond these three well-known cases, there are, in fact, a total of eleven
different coordinate systems in which the three-dimensional Laplace equation separates.
See [128, 131, 133] for details on the more exotic types of separation, including ellipsoidal,
toroidal, and parabolic spheroidal coordinates. The resulting separable solutions lead to
new classes of special functions.

Laplace’s Equation in a Ball

Suppose a solid ball (e.g., the earth), is subject a specified steady temperature distri-
bution on its spherical boundary. Our task is to determine the equilibrium temperature
within the ball. To simplify matters, we assume that the body is composed of an isotropic,
homogeneous medium, and shall choose units in which its radius equals 1. Then, to find
the equilibrium temperature within the ball, we must solve the Dirichlet boundary value
problem

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, x2 + y2 + z2 < 1,

u(x, y, z) = h(x, y, z), x2 + y2 + z2 = 1.

(18.12)

Problems in spherical geometries tend to simplify when re-expressed in terms of spherical
coordinates r, ϕ, θ, as defined by the usual formulae

x = r sin ϕ cos θ, y = r sinϕ sin θ, z = r cos ϕ. (18.13)

Here 0 ≤ θ < 2π measures the azimuthal angle or longitude, while 0 ≤ ϕ ≤ π measures
the zenith angle or latitude.

Warning : We use the mathematician’s convention for spherical coordinates. Physi-
cists often interchange the notation for the azimuthal and zenith angles; see Example B.8
for a detailed discussion.

In spherical coordinates, the Laplace equation for† u(r, ϕ, θ) takes the form

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
+

cos ϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
= 0. (18.14)

This important formula is the final result of a fairly nasty chain rule computation, whose
messy details are left to the motivated reader. (Set aside lots of paper and keep an eraser
handy!)

†
Warning : See Section 15.2 for our convention on rewriting functions in new coordinates.
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To construct separable solutions to the spherical coordinate form (18.14) of the Laplace
equation, we begin by separating off the radial part of the solution, setting

u(r, ϕ, θ) = v(r)w(ϕ, θ). (18.15)

Substituting this ansatz into (18.14), multiplying the resulting equation through by
r2

v w ,
and then placing all the terms involving r on one side yields

1

v

(
r2 d2v

dr2
+ 2r

dv

dr

)
= −

1

w
∆Sw = µ, (18.16)

where µ is the separation constant, and

∆Sw =
∂2w

∂ϕ2
+

cos ϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
. (18.17)

The second order differential operator ∆S , which contains only the angular components
of the full Laplacian operator ∆, is of particular significance. It is known as the spherical

Laplacian, and governs the equilibrium and dynamics of thin spherical shells, cf. Exam-
ple 18.13.

Returning to equation (18.16), our usual separation argument applies. The left hand
side depends only on r, while the right hand side depends only on the angles ϕ, θ. This
can only occur when both sides are equal to a common separation constant, denoted by µ.
As a consequence, the radial component v(r) satisfies the ordinary differential equation

r2 v′′ + 2rv′ − µv = 0, (18.18)

which is of Euler type (7.51), and hence can be readily solved. We will put this equation
aside for the time being, and concentrate our efforts on the more complicated part.

The angular components in (18.16) assume the form

∆S [w ] + µw =
∂2w

∂ϕ2
+

cos ϕ

sin ϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0. (18.19)

This second order partial differential equation can be regarded as the eigenvalue equation
for the spherical Laplacian operator ∆S , and is known as the spherical Helmholtz equation.
To solve it, we adopt a further separation of angular variables,

w(ϕ, θ) = p(ϕ) q(θ), (18.20)

which we substitute into (18.19). Dividing the result by the product w = p q, multiplying
by sin2 ϕ, and then rearranging terms, we are led to the separated system

sin2 ϕ

p

d2p

dϕ2
+

cos ϕ sinϕ

p

dp

dϕ
+ µ sin2 ϕ = −

1

q

d2q

dθ2
= ν.

The left hand side depends only on the zenith coordinate ϕ while the right hand side
depends only on the azimuthal coordinate θ. Since these angles are independent, the only
way this could hold is when the two sides equal a common separation constant, denoted
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by ν. The spherical Helmholtz equation thereby splits into a pair of ordinary differential
equations

sin2 ϕ
d2p

dϕ2
+ cos ϕ sin ϕ

dp

dϕ
+ (µ sin2 ϕ− ν) p = 0,

d2q

dθ2
+ ν q = 0.

The equation for q(θ) is easy to solve. As one circumnavigates the sphere from west
to east, the azimuthal angle θ increases from 0 to 2π, so q(θ) must be a 2π periodic
function. Thus, q(θ) satisfies the well-studied periodic boundary value problem treated,
for instance, in (15.33). Up to constant multiple, non-zero periodic solutions occur only
when the separation constant assumes one of the values ν = m2, where m = 0, 1, 2, . . . is
an integer, with

q(θ) = cos mθ or sin mθ, m = 0, 1, 2, . . . . (18.21)

Each positive ν = m2 > 0 admits two linearly independent 2π periodic solutions, while
when ν = 0, only the constant solutions are periodic.

With this information, we endeavor to solve the zenith equation

sin2 ϕ
d2p

dϕ2
+ cos ϕ sinϕ

dp

dϕ
+ (µ sin2 ϕ−m2) p = 0. (18.22)

This is not easy, and constructing analytic formulas for its solutions requires some effort.
The motivation behind the following steps will not be immediately apparent to the reader,
since they are the result of a long, detailed study of this important differential equation
by mathematicians over the last 200 years.

As an initial simplification, we will eliminate the trigonometric functions. To this end,
we invoke the change of variables

t = cos ϕ, with p(ϕ) = P (cos ϕ) = P (t). (18.23)

Since

0 ≤ ϕ ≤ π, we have 0 ≤
√

1− t2 = sinϕ ≤ 1.

According to the chain rule,

dp

dϕ
= − sin ϕ

dP

dt
= −

√
1− t2

dP

dt
,

d2p

dϕ2
= sin2 ϕ

d2P

dt2
− cos ϕ

dP

dt
= (1− t2)

d2P

dt2
− t

dP

dt
.

Substituting these expressions into (18.22), we conclude that P (t) must satisfy

(1− t2)2
d2P

dt2
− 2 t (1− t2)

dP

dt
+
[
µ (1− t2)−m2

]
P = 0. (18.24)

Unfortunately, the resulting differential equation is still not so easy to solve, but at least
its coefficients are polynomials. Equation (18.24) is known as the Legendre differential

equation of order m, and its solutions are known as Legendre functions, having first been
employed by Legendre to study the gravitational attraction of ellipsoidal bodies.
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Power series solutions to the Legendre equation can be constructed by the standard
techniques presented in Appendix C. The most general solution is a new type of special
function, known as a Legendre function, [3, 58]. However, the solutions we are actually
interested in can all be written in terms of elementary algebraic functions. First of all,
since t = cos ϕ, the solution only needs to be defined on the interval −1 ≤ t ≤ 1. The
endpoints of this interval, t = ±1, correspond to the sphere’s north pole, ϕ = 0, and
south pole, ϕ = π. Both endpoints are singular points for the Legendre equation since the
coefficient (1 − t2)2 of the leading order derivative vanishes when t = ±1. In fact, both
are regular singular points, as shown in Exercise . Since ultimately we need the separable
solution (18.15) to be a well-defined function of x, y, z (even at points where the spherical
coordinates degenerate, i.e., on the z axis), we need p(ϕ) to be well-defined at ϕ = 0 and
π, and this requires P (t) to be bounded at the singular points:

|P (−1) | <∞, |P (+1) | <∞. (18.25)

The combined boundary value problem (18.24–25) takes the form of an eigensystem, in
which the separation constant µ is the eigenvalue and the non-zero solutions P (t) 6≡ 0 are
the associated eigenfunctions.

Mathematical justifications of the following statements can be found in Appendix C.
Consider first the case m = 0, which assumes the simpler form

(1− t2)
d2P

dt2
− 2 t

dP

dt
+ µP = 0. (18.26)

In this case, it turns out that the eigenfunctions, i.e., solutions to the Legendre boundary
value problem (18.26, 25), are the Legendre polynomials

Pn(t) =
1

2n n!

dn

dtn
(t2 − 1)n (18.27)

that first arose in Chapter 5 as our simplest example of orthogonal polynomials. Indeed, we
can now finally comprehend the reason for the orthogonality of the Legendre polynomials:
they are the common eigenfunctions of a self-adjoint boundary value problem! Explicit
formulas for the first few Legendre polynomials appear in (5.46).

When m > 0, the eigenfunctions of the Legendre boundary value problem (18.24–25)
are not always polynomials. They are known as the associated Legendre functions, and
have the explicit formula

Pm
n (t) = (−1)m(1− t2)m/2 dm

dtm
Pn(t)

= (−1)m+n (1− t2)m/2

2n n!

dn+m

dtn+m
(1− t2)n,

n = m,m + 1, . . . , (18.28)

which generalizes the Rodrigues formula (5.48) for the classical Legendre polynomials. Its
proof is similar, and done in Exercise . Here is a list of the first few Legendre polynomials
and associated Legendre functions:

P 0
0 (t) = 1, P 0

1 (t) = t, P 1
1 (t) = −

√
1− t2 ,
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Figure 18.1. Legendre Functions.

P 0
2 (t) = − 1

2 + 3
2 t2, P 1

2 (t) = −3 t
√

1− t2 , P 2
2 (t) = 3− 3 t2,

P 0
3 (t) = − 3

2 t + 5
2 t3, P 1

3 (t) =
(

3
2 −

15
2 t2

)√
1− t2, (18.29)

P 2
3 (t) = 15 t− 15 t3, P 3

3 (t) =
(
−15 + 15 t2

)√
1− t2 ,

P 0
4 (t) = 3

8 −
15
4 t2 + 35

8 t4, P 1
4 (t) =

(
15
2 −

35
2 t2

)√
1− t2, P 2

4 (t) = − 15
2 + 60 t2 − 105

2 t4,

P 3
4 (t) =

(
−105 t + 105 t3

)√
1− t2 , P 4

4 (t) = 105− 210 t2 + 105 t4.

When m = 2k ≤ n is an even integer, P m
n (t) is a polynomial function, while when m =

2k + 1 ≤ n is odd, there is a factor of
√

1− t2 . Keep in mind that the square root is real
and positive since we are restricting our attention to the interval −1 ≤ t ≤ 1. If m > n,
formula (18.28) reduces to the zero function, and is not needed in the final tally.

Warning : Even though half of the associated Legendre functions are polynomials,
only those with m = 0, i.e., Pn(t) = P 0

n(t), are called Legendre polynomials.

Graphs of the first few Legendre polynomials can be found in Figure 5.4. In addition,
Figure 18.1 displays the graphs of the associated Legendre functions P m

n (t) for 1 ≤ m ≤
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n ≤ 4. Pay particular attention to the fact that, owing to the choice of normalization
factor, their graphs have very different vertical scales.

The following result states that the Legendre polynomials and associated Legendre
functions are a complete list of solutions to the Legendre boundary value problem (18.24–
25). A proof can be found in [26].

Theorem 18.2. Let m ≥ 0 be a non-negative integer. Then the mth order Legendre

boundary value problem prescribed by (18.24–25) has eigenvalues µn = n(n + 1) for n =
0, 1, 2, . . . , and associated eigenfunctions P m

n (t) where m = 0, . . . , n.

Returning to the original variable ϕ via (18.23), Theorem 18.2 implies that our original
boundary value problem

sin2 ϕ
d2p

dϕ2
+ cos ϕ sin ϕ

dp

dϕ
+ (µ sin2 ϕ−m2) p = 0, | p(0) |, | p(π) | <∞, (18.30)

has its eigenvalues and eigenfunctions expressed in terms of the Legendre functions:

µn = n(n + 1), pm
n (ϕ) = Pm

n (cos ϕ), for 0 ≤ m ≤ n. (18.31)

The eigenfunction pm
n (ϕ) is, in fact, a trigonometric polynomial of degree n; here are the

first few, written in Fourier form:

p0
0(ϕ) = 1, p0

1(ϕ) = cos ϕ, p1
1(ϕ) = − sin ϕ,

p0
2(ϕ) = 1

4 + 3
4 cos 2ϕ, p1

2(ϕ) = − 3
2 sin 2ϕ, p2

2(ϕ) = 3
2 −

3
2 cos 2ϕ,

p0
3(ϕ) = 3

8 cosϕ + 5
8 cos 3ϕ, p1

3(ϕ) = − 3
8 sin ϕ− 15

8 sin 3ϕ,

p2
3(ϕ) = 15

4 cos ϕ− 15
4 cos 3ϕ, p3

3(ϕ) = − 45
4 sinϕ + 15

4 sin 3ϕ,

p0
4(ϕ) = 9

64 + 5
16 cos 2ϕ + 35

64 cos 4ϕ, p1
4(ϕ) = − 5

8 sin 2ϕ− 35
16 sin 4ϕ,

p2
4(ϕ) = 45

16 + 15
4 cos 2ϕ− 105

16 cos 4ϕ, p3
4(ϕ) = − 105

4 sin 2ϕ + 105
8 sin 4ϕ,

p4
4(ϕ) = 315

8 −
105
2 cos 2ϕ + 105

8 cos 4ϕ.

(18.32)

It is also instructive to plot the eigenfunctions in terms of the zenith angle ϕ; see Fig-
ure 18.2. As in Figure 18.1, the vertical scales are not the same.

At this stage, we have determined both angular components of our separable solutions
(18.20). Multiplying the two parts together results in the spherical angle functions

Y m
n (ϕ, θ) = Pm

n (cosϕ) cos mθ,

Ỹ m
n (ϕ, θ) = Pm

n (cosϕ) sinmθ,

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n,
(18.33)

known as spherical harmonics. They satisfy the spherical Helmholtz equation

∆S Y m
n + n(n + 1)Y m

n = 0 = ∆S Ỹ m
n + n(n + 1) Ỹ m

n , (18.34)

and so are eigenfunctions for the spherical Laplacian operator, (18.17), with associated
eigenvalues µn = n(n + 1) for n = 0, 1, 2, . . . . The nth eigenvalue µn admits a (2n + 1)–
dimensional eigenspace, spanned by the spherical harmonics

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . Ỹ n
n (ϕ, θ).
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Figure 18.2. Trigonometric Legendre Functions.

(The omitted function Ỹ 0
n (ϕ, θ) ≡ 0 is trivial, and so does not contribute.) In Figure 18.3

we plot the first few spherical harmonic surfaces r = Y m
n (ϕ, θ). In these graphs, in view of

the spherical coordinate formula (18.13), points with a negative value of r appear on the
opposite side of the origin from the point on the unit sphere with angles ϕ, θ. Incidentally,
the graphs of their counterparts r = Ỹ m

n (ϕ, θ), when m 6= 0, are obtained by rotation
around the z axis by 90◦. On the other hand, the graphs of Y 0

n are cylindrically symmetric
(why?), and hence unaffected by such a rotation.

Self-adjointness of the spherical Laplacian, cf. Exercise , implies that the spherical
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Figure 18.3. Spherical Harmonics.
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harmonics are orthogonal with respect to the L2 inner product

〈 f , g 〉 =

∫ ∫

S1

f g dS =

∫ π

0

∫ 2π

0

f(ϕ, θ) g(ϕ, θ) sinϕ dθ dϕ (18.35)

given by integrating the product of the functions with respect to surface area over the
unit sphere S1 = {‖x ‖ = 1}, cf. (B.40). More correctly, self-adjointness only guaran-
tees orthogonality for the harmonics corresponding to distinct eigenvalues. However, the
orthogonality relations

〈Y m
n , Y k

l 〉 =

∫ ∫

S1

Y m
n Y k

l dS = 0, (m,n) 6= (k, l),

〈Y m
n , Ỹ k

l 〉 =

∫ ∫

S1

Y m
n Ỹ k

l dS = 0, for all (m,n), (k, l),

〈 Ỹ m
n , Ỹ k

l 〉 =

∫ ∫

S1

Ỹ m
n Ỹ k

l dS = 0 (m,n) 6= (k, l),

(18.36)

do, in fact, hold in full generality; Exercise contains the details. Their norms can be
explicitly computed:

‖Y 0
n ‖

2 =
4π

2n + 1
, ‖Y m

n ‖
2 = ‖ Ỹ m

n ‖
2 =

2π(n + m)!

(2n + 1)(n−m)!
. (18.37)

A proof of this formula appears in Exercise .

With some further work, it can be shown that the spherical harmonics form a complete
orthogonal system of functions on the unit sphere. This means that any reasonable function
h:S1 → R, e.g., piecewise C1, can be expanded into a convergent spherical Fourier series

h(ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
Y 0

n (ϕ) +
n∑

m=1

[
cm,nY m

n (ϕ, θ) + c̃m,nỸ m
n (ϕ, θ)

])
(18.38)

in the spherical harmonics. Applying the orthogonality relations (18.36), we find that the
spherical Fourier coefficients are given by the inner products

c0,n =
2 〈h , Y 0

n 〉

‖Y 0
n ‖

2
, cm,n =

〈h , Y m
n 〉

‖Y m
n ‖

2
, c̃m,n =

〈h , Ỹ m
n 〉

‖ Ỹ m
n ‖

2
,

0 ≤ n,

1 ≤ m ≤ n,

or, explicitly, using (18.35) and the formulae (18.37) for the norms,

cm,n =
(2n + 1)(n−m)!

2π (n + m)!

∫ 2π

0

∫ π

0

h(ϕ, θ) P m
n (cos ϕ) cos mθ sinϕ dϕ dθ,

c̃m,n =
(2n + 1)(n−m)!

2π (n + m)!

∫ 2π

0

∫ π

0

h(ϕ, θ) P m
n (cos ϕ) sinmθ sin ϕ dϕ dθ.

(18.39)

As with an ordinary Fourier series, the extra 1
2 was appended to the c0,n terms in the series

(18.38) so that the formulae (18.39) are valid for all m,n. In particular, the constant term
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in the spherical harmonic series is the mean of the function h over the unit sphere:

c0,0

2
=

1

4π

∫ ∫

S1

h dS =
1

4π

∫ 2π

0

∫ π

0

h(ϕ, θ) sinϕdϕ dθ (18.40)

Remark : An alternative approach is to replace the real trigonometric functions by
complex exponentials, and work with the complex spherical harmonics

Ym
n (θ, ϕ) = Y m

n (θ, ϕ) + i Ỹ m
n (θ, ϕ) = Pm

n (cos ϕ) e i m θ,
n = 0, 1, 2, . . . ,

m = −n,−n + 1, . . . , n.
(18.41)

The complex orthogonality and expansion formulas are relegated to the exercises.

To complete our solution to the Laplace equation on the solid ball, we still need to
analyze the ordinary differential equation (18.18) for the radial component v(r). In view
of our analysis of the spherical Helmholtz equation, the original separation constant is
µ = n(n + 1) for some non-negative integer n ≥ 0, and so the radial equation takes the
form

r2 v′′ + 2rv′ − n(n + 1)v = 0. (18.42)

As noted earlier, to solve such a second order linear equation of Euler type (3.84), we
substitute the power ansatz v(r) = rα. The exponent α must satisfy the quadratic equation

α2 + α− n(n + 1) = 0, and hence α = n or α = −(n + 1).

Therefore, the two linearly independent solutions are

v1(r) = rn and v2(r) = r−n−1. (18.43)

Since here we are only interested in solutions that remain bounded at r = 0 — the center
of the ball — we should just retain the first solution v(r) = rn in our subsequent analysis.

At this stage, we have solved all three ordinary differential equations for the sepa-
rable solutions. We combine the results (18.21, 33, 43) together to produce the following
spherically separable solutions to the Laplace equation:

Hm
n = rn Y m

n (ϕ, θ) = rn Pm
n (cosϕ) cos mθ

H̃m
n = rn Ỹ m

n (ϕ, θ) = rn Pm
n (cosϕ) sin mθ

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n.
(18.44)

Although apparently complicated, these solutions are, surprisingly, elementary polynomial
functions of the rectangular coordinates x, y, z, and hence harmonic polynomials. The first
few are

H0
0 = 1, H0

1 = z, H0
2 = z2 − 1

2 x2 − 1
2 y2 H0

3 = z3 − 3
2 x2z − 3

2 y2z

H1
1 = x, H1

2 = 3xz, H1
3 = 6xz2 − 3

2 x3 − 3
2 xy2

H̃1
1 = y, H̃1

2 = 3y z, H̃1
3 = 6y z2 − 3

2 x2y − 3
2 y3

H2
2 = 3x2 − 3y2, H2

3 = 15x2z − 15y2z

H̃2
2 = 6xy, H̃2

3 = 30xyz

H3
3 = 15x3 − 45xy2

H̃3
3 = 45x2y − 15y3.

(18.45)
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The polynomials

H0
n, H1

n, . . . , Hn
n , H̃1

n, . . . H̃n
n

form a basis for the vector space H(n) of all homogeneous harmonic polynomials of degree
n, which therefore has dimension 2n + 1.

The harmonic polynomials form a complete orthogonal system, and therefore the
general solution to the Laplace equation inside the unit ball can be written as a harmonic
polynomial series:

u(x, y, z) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
H0

n(x, y, z) +

n∑

m=1

[
cm,nHm

n (x, y, z) + c̃m,nH̃m
n (x, y, z)

])
,

(18.46)
or, equivalently in spherical coordinates,

u(r, ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
rn Y 0

n (ϕ) +
n∑

m=1

[
cm,n rn Y m

n (ϕ, θ) + c̃m,n rn Ỹ m
n (ϕ, θ)

])
.

(18.47)
The coefficients cm,n, c̃m,n are uniquely prescribed by the boundary conditions. Indeed,
substituting (18.47) into the Dirichlet boundary conditions on the unit sphere r = 1 yields

u(1, ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
Y 0

n (ϕ) +
n∑

m=1

[
cm,nY m

n (ϕ, θ) + c̃m,nỸ m
n (ϕ, θ)

])
= h(ϕ, θ).

(18.48)
Thus, the coefficients cm,n, c̃m,n are given by the orthogonality formulae (18.39). If the
terms in the resulting series are uniformly bounded — which occurs for all integrable
functions h, as well as also certain generalized functions including the delta function —
then the harmonic polynomial series (18.47) converges everywhere, and, in fact, uniformly
on any smaller ball ‖x ‖ = r ≤ r0 < 1.

In rectangular coordinates, the nth summand of the series (18.46) is a homogeneous
polynomial of degree n. Therefore, repeating the argument used on the two-dimensional
polar coordinate solution (15.39), we conclude that the harmonic polynomial series is,
in fact, a power series, and hence hence provides the Taylor expansion for the harmonic

function u(x, y, z) at the origin! In particular, this implies that the harmonic function
u(x, y, z) is analytic at 0.

The constant term in such a Taylor series can be identified with the value of the
function at the origin: u(0, 0, 0) = 1

2 c0,0. On the other hand, since u = h on S1 = ∂Ω, the
coefficient formula (18.40) tells us that

u(0, 0, 0) =
c0,0

2
=

1

4π

∫ ∫

S1

u dS. (18.49)

Therefore, we have established the three-dimensional counterpart of Theorem 15.8: the
value of the harmonic function at the center of the sphere is equal to the average of its
values on the sphere’s surface. In addition, the higher order coefficients cm,n, c̃m,n serve
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to prescribe the partial derivatives
∂i+j+ku

∂xi∂yj∂zk
(0, 0, 0). In this way, the orthogonality

formulae (18.39) can be re-interpreted as three-dimensional counterparts of the Cauchy
formulae (16.139) for the derivatives of the real and imaginary parts of a complex analytic
function; see Exercise for details.

So far, we have restricted our attention to the sphere of unit radius. A simple scaling
argument serves to establish the general result.

Theorem 18.3. If u(x) is a harmonic function defined on a domain Ω ⊂ R
3, then u

is analytic inside Ω. Moreover, its value at any point x0 ∈ Ω is obtained by averaging its

values on any sphere centered at x0, so

u(x0) =
1

4πa2

∫ ∫

‖x−x0 ‖=a

u dS, (18.50)

provided the enclosed ball {‖x− x0 ‖ ≤ a} ⊂ Ω lies entirely within the domain of defini-

tion.

Proof : It is easily checked that, under the hypothesis of the theorem, the rescaled and
translated function

U(y) = u(ay + x0) = u(x), where y =
x− x0

a
, (18.51)

is harmonic on the unit ball ‖y ‖ ≤ 1, and hence solves the boundary value problem (18.12)
with boundary values h(y) = U(y) = u(ay + x0) on ‖y ‖ = 1. By the preceding remarks,

U(y) is analytic at y = 0, and so u(x) = U
(

x− x0
a

)
is analytic at x = x0. Since x0 can

be any point inside Ω, this proves analyticity of u everywhere in Ω. Moreover, according
to the integral formula (18.49),

u(x0) = U(0) =
1

4π

∫ ∫

‖y ‖=1

U dS =
1

4πa2

∫ ∫

‖x−x0 ‖=a

u dS,

since the change of variables (18.51) has the effect of rescaling the spherical surface inte-
gral. Q.E.D.

Arguing as in the planar case of Theorem 15.9, we readily establish the corresponding
Maximum Principle for harmonic functions of three variables.

Theorem 18.4. A non-constant harmonic function cannot have a local maximum or

minimum at any interior point of its domain of definition. Moreover, its global maximum

or minimum (if any) can only occur on the boundary of the domain.

For instance, the Maximum Principle implies that the maximum and minimum tem-
peratures in a solid body in thermal equilibrium are to be found only on its boundary. In
physical terms, since heat energy must flow away from any internal maximum and towards
any internal minimum, any local temperature extremum inside the body would preclude
it from being in thermal equilibrium.
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Example 18.5. In this example, we shall determine the electrostatic potential inside
a hollow sphere when the upper and lower hemispheres are held at different constant
potentials. This device is called a spherical capacitor and is realized experimentally by
separating the two charged conducting hemispherical shells by a thin insulating ring at
the equator. A straightforward scaling argument allows us to choose our units so that the
sphere has radius 1, while the potential is set equal to 1 on the upper hemisphere and
equal to 0, i.e., grounded, on the lower hemisphere. The resulting electrostatic potential
ssatisfies the Laplace equation

∆u = 0 inside a solid ball ‖x ‖ < 1,

and is subject to Dirichlet boundary conditions

u(x, y, z) =

{
1, z > 0,

0, z < 0,
on the unit sphere ‖x ‖ = 1. (18.52)

The solution will be prescribed by a harmonic polynomial series (18.46) whose coeffi-
cients are fixed by the boundary values (18.52). Before taking on the required computation,
let us first note that since the boundary data does not depend upon the azimuthal angle
θ, the solution u = u(r, ϕ) will also be independent of θ. Therefore, we need only consider
the θ-independent spherical harmonic polynomials (18.33), which are those with m = 0,
and hence

u(r, ϕ) =
1

2

∞∑

n=0

cn H0
n(x, y, z) =

1

2

∞∑

n=0

cn rn Pn(cos ϕ),

where we abbreviate cn = 1
2 c0,n. The boundary conditions (18.52) require

u(1, ϕ) =
1

2

∞∑

n=0

cnPn(cos ϕ) = h(ϕ) =

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π.

The coefficients are given by (18.39), which, in the case m = 0, reduce to

cn =
2n + 1

2π

∫ ∫

S

f Y 0
n dS = (2n + 1)

∫ π/2

0

Pn(cos ϕ) sinϕ dϕ = (2n + 1)

∫ 1

0

Pn(t) dt,

(18.53)
since f = 0 when 1

2 π < ϕ ≤ π. The first few are

c0 = 1
4 , c1 = 3

8 , c2 = 0, c3 = − 7
32 , c4 = 0, . . . .

Therefore, the solution has the explicit Taylor expansion

u = 1
2 + 3

4 r cos ϕ− 21
128 r3 cosϕ− 35

128 r3 cos 3ϕ + · · ·

= 1
2 + 3

4 z − 7
16 z3 + 21

32 (x2 + y2) z + · · · .
(18.54)

Note in particular that the value u(0, 0, 0) = 1
2 at the center of the sphere is the average

of its boundary values, in accordance with Theorem 18.3.

Remark : The same solution u(x, y, z) describes the thermal equilibrium in a solid
sphere whose upper hemisphere is held at temperature 1◦ and lower hemisphere at 0◦.
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Example 18.6. A closely related problem is to determine the electrostatic potential
outside a spherical capacitor. As in the preceding example, we take our capacitor of radius
1, with electrostatic charge of 1 on the upper hemisphere and 0 on the lower hemisphere.
Here, we need to solve the Laplace equation ∆u = 0 in the unbounded domain Ω =
{‖x ‖ > 1} — the exterior of the unit sphere — subject to same Dirichlet boundary
conditions (18.52). We anticipate that the potential will be vanishingly small at large
distances away from the capacitor: r = ‖x ‖ À 1. Therefore, the harmonic polynomial
solutions (18.44) will not help us solve this problem, since (except for the constant case)
they become unboundedly large far away from the origin.

However, reconsideration of our original separation of variables argument will produce
a different class of solutions having the desired decay properties. When we solved the radial
equation (18.42), we discarded the solution v2(r) = r−n−1 because it had a singularity at
the origin. In the present situation, the behavior of the function at r = 0 is irrelevant; our
requirement is that the solution decays as r →∞, and v2(r) has this property. Therefore,
we will utilize the complementary harmonic functions

Km
n (x, y, z) = r−2n−1 Hm

n (x, y, z) = r−n−1 Y m
n (ϕ, θ) = r−n−1Pm

n (cos ϕ) cos mθ,

K̃m
n (x, y, z) = r−2n−1 H̃m

n (x, y, z) = r−n−1 Ỹ m
n (ϕ, θ) = r−n−1Pm

n (cos ϕ) sin mθ,
(18.55)

for solving such exterior problems. For the capacitor problem, we need only those that are
independent of θ, which have m = 0. We write the resulting solution as a series

u(r, ϕ) =
1

2

∞∑

n=0

cn K0
n(x, y, z) =

1

2

∞∑

n=0

cn r−n−1 Pn(cosϕ).

The boundary conditions

u(1, ϕ) =
1

2

∞∑

n=0

cn Pn(cos ϕ) = f(ϕ) =

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π,

are identical with those in the previous example. Therefore, the coefficients are given by
(18.53), leading to the series expansion

u =
1

2r
+

3 cos ϕ

4r2
−

21 cos ϕ + 35 cos 3ϕ

128r4
+ · · · =

1

2r
+

3z

4r3
−

14z3 − 21(x2 + y2)z

32r7
+ · · · ,

(18.56)

where r =
√

x2 + y2 + z2 . Interestingly, at large distances, the higher order terms become
negligible, and the potential looks like that associated with a point charge of magnitude 1

2
— the average of the potential over the sphere — that is concentrated at the origin. This
is indicative of a general fact: see Exercise .

18.3. The Green’s Function.

We now turn to the inhomogeneous form of the three-dimensional Laplace equation:
the Poisson equation

−∆u = f for all x ∈ Ω (18.57)
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on a solid domain Ω ⊂ R
3. In order to uniquely specify the solution, we must impose

appropriate boundary conditions: Dirichlet or mixed. We only need to discuss the case of
homogeneous boundary conditions, since, by linearity, an inhomogeneous boundary value
problem can be split up into a homogeneous boundary value problem for the inhomogeneous
Poisson equation and an inhomogeneous boundary value problem for the homogeneous
Laplace equation.

As in Chapters 11 and 15, we begin by analyzing the case of a delta function inhomo-
geneity that is concentrated at a single point in the domain. Thus, for each ξ = (ξ, η, ζ) ∈
Ω, the Green’s function G(x; ξ) = G(x, y, z; ξ, η, ζ) is the unique solution to the Poisson
equation

−∆u = δ(x− ξ) = δ(x− ξ) δ(y − η) δ(z − ζ) for all x ∈ Ω, (18.58)

subject to the chosen homogeneous boundary conditions. The solution to the general
Poisson equation (18.57) is then obtained by superposition: We write the forcing function

f(x, y, z) =

∫ ∫ ∫

Ω

f(ξ, η, ζ) δ(x− ξ) δ(y − η) δ(z − ζ) dξ dη dζ

as a linear superposition of delta functions. By linearity, the solution

u(x, y, z) =

∫ ∫ ∫

Ω

f(ξ, η, ζ)G(x, y, z; ξ, η, ζ) dξ dη dζ (18.59)

to the homogeneous boundary value problem for the Poisson equation (18.57) is then given
as the corresponding superposition of the Green’s function solutions.

The Green’s Function in Space

Only in a few specific instances is the explicit formula for the Green’s function known.
Nevertheless, certain general guiding features can be readily established. The starting
point is to investigate the Poisson equation (18.58) when the domain Ω = R

3 is all of
three-dimensional space. We impose boundary constraints by seeking a solution that goes
to zero, u(x) → 0, at large distances ‖x ‖ → ∞. Since the Laplacian is invariant under
translations we can, without loss of generality, place our delta impulse at the origin, and
concentrate on solving the particular case

−∆u = δ(x) , x ∈ R
3.

Since δ(x) = 0 for all x 6= 0, the desired solution will, in fact, be a solution to the
homogeneous Laplace equation

∆u = 0, x 6= 0,

save, possibly, for a singularity at the origin.

The Laplace equation models the equilibria of a homogeneous, isotropic medium, and
so is also invariant under three-dimensional rotations; details can be found in Exercise
. This suggests that, in any radially symmetric configuration, the solution should only

depend upon the distance r = ‖x ‖ from the origin. Referring to the spherical coordinate
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form (18.14) of the Laplacian operator, if u only depends upon r, its derivatives with
respect to the angular coordinates ϕ, θ are zero, and so u(r) solves the ordinary differential
equation

d2u

dr2
+

2

r

du

dr
= 0. (18.60)

This equation is, in effect, a first order linear ordinary differential equation for v = du/dr
and hence is particularly easy to solve:

du

dr
= v(r) = −

b

r2
, and hence u(r) = a +

b

r
,

where a, b are arbitrary constants. The constant solution u(r) = a does not die away at
large distances, nor does it have a singularity at the origin. Therefore, if our intuition is
valid, the desired solution should be of the form

u =
b

r
=

b

‖x ‖
=

b√
x2 + y2 + z2

. (18.61)

Indeed, this function is harmonic — solves Laplace’s equation — everywhere away from
the origin, and has a singularity at x = 0.

The solution (18.61) is, up to constant multiple, the three-dimensional Newtonian
gravitational potential due to a point mass at the origin. Its gradient

g(x) = ∇

(
b

‖x ‖

)
= −

bx

‖x ‖3
. (18.62)

defines the gravitational force vector at the point x. When b > 0, the force g(x) points
towards the mass at the origin. Its magnitude

‖g ‖ =
b

‖x ‖2
=

b

r2

is proportional to one over the squared distance, which is the well-known inverse square
law of three-dimensional Newtonian gravity. Thus, (18.61) can also be interpreted as the
electrostatic Coulomb potential on a charged mass at position x due to a concentrated
electric charge at the origin, with (18.62) the corresponding electrostatic force. The con-
stant b is positive when the charges are of opposite signs, leading to an attractive force,
and negative in the repulsive case of like charges.

Returning to our problem, the remaining task is to fix the multiple b such that the
Laplacian of our candidate solution (18.61) has a delta function singularity at the origin;
equivalently, we must determine c = 1/b such that

−∆ r−1 = c δ(x). (18.63)

This equation is certainly valid away from the origin, since δ(x) = 0 when x 6= 0. To
investigate near the singularity, we integrate both sides of (18.63) over a small solid ball
Bε = {‖x ‖ ≤ ε} of radius ε :

−

∫ ∫ ∫

Bε

∆ r−1 dx dy dz =

∫ ∫ ∫

Bε

c δ(x) dx dy dz = c, (18.64)
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where we used the definition of the delta function to evaluate the right hand side. On the
other hand, since ∆ r−1 = ∇·∇ r−1, we can use the divergence theorem (B.82) to evaluate
the left hand integral, whence

∫ ∫ ∫

Bε

∆ r−1 dx dy dz =

∫ ∫ ∫

Bε

∇ · ∇ r−1 dx dy dz =

∫ ∫

Sε

∂

∂n

(
1

r

)
dS,

where the surface integral is over the bounding sphere Sε = ∂Bε = {‖x ‖ = ε}. The
sphere’s unit normal n points in the radial direction, and hence the normal derivative
coincides with differentiation with respect to r; in particular,

∂

∂n

(
1

r

)
=

∂

∂r

(
1

r

)
= −

1

r2
.

The surface integral can now be explicitly evaluated:
∫ ∫

Sε

∂

∂n

(
1

r

)
dS = −

∫ ∫

Sε

1

r2
dS = −

∫ ∫

Sε

1

ε2
dS = − 4π,

since Sε has surface area 4πε2. Substituting this result back into (18.64), we conclude
that

c = 4π, and hence − ∆ r−1 = 4π δ(x). (18.65)

This is our desired formula! We conclude that the solution to Poisson’s equation for a
delta function impulse at the origin is

G(x, y, z) =
1

4π r
=

1

4π ‖x ‖
=

1

4π
√

x2 + y2 + z2
, (18.66)

which is the three-dimensional Newtonian potential due to a unit point mass situated at
the origin.

If the singularity is concentrated at some other point ξ = (ξ, η, ζ), then we merely
translate the preceding solution. This leads immediately to the Green’s function

G(x; ξ) = G(x− ξ) =
1

4π ‖x− ξ ‖
=

1

4π
√

(x− ξ)2 + (y − η)2 + (z − ζ)2
. (18.67)

The superposition principle (18.59) implies the following integral formula for the solutions
to the Poisson equation on all of three-dimensional space.

Theorem 18.7. A particular solution to the Poisson equation

−∆u = f for x ∈ R
3 (18.68)

is given by

u?(x) =
1

4π

∫ ∫ ∫

R3

f(ξ)

‖x− ξ ‖
dξ =

1

4π

∫ ∫ ∫

R3

f(ξ, η, ζ) dξ dη dζ√
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (18.69)

The general solution is u(x, y, z) = u?(x, y, z) + w(x, y, z), where w(x, y, z) is an arbitrary

harmonic function.
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Figure 18.4. Solution to Poisson’s Equation in a Solid Ball.

Example 18.8. In this example, we compute the gravitational (or electrostatic)
potential in three-dimensional space due to a uniform solid ball, e.g., a spherical planet
such as the earth. By rescaling, it suffices to consider the case when the forcing function

f(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1,

is equal to 1 inside a solid ball of radius 1 and zero outside. The particular solution to the
resulting Poisson equation (18.68) is given by the integral

u(x) =
1

4π

∫ ∫ ∫

‖ ξ ‖<1

1

‖x− ξ ‖
dξ dη dζ. (18.70)

Clearly, since the forcing function is radially symmetric, the solution u = u(r) is also
radially symmetric. To evaluate the integral, then, we can take x = (0, 0, z) to lie on the
z axis, so that r = ‖x ‖ = | z |. We use cylindrical coordinates ξ = (ρ cos θ, ρ sin θ, ζ), so
that

‖x− ξ ‖ =
√

ρ2 + (z − ζ)2 .

The integral in (18.70) can then be explicitly computed:

1

4π

∫ 1

−1

∫ √1−ζ2

0

∫ 2π

0

ρ dθ dρ dζ√
ρ2 + (z − ζ)2

=

=
1

2

∫ 1

−1

(√
1 + z2 − 2z ζ − | z − ζ |

)
dζ =





1

3 | z |
, | z | ≥ 1,

1

2
−

z2

6
, | z | ≤ 1.

Therefore, by radial symmetry, the solution is

u(x) =





1

3r
, r = ‖x ‖ ≥ 1,

1

2
−

r2

6
, r = ‖x ‖ ≤ 1,

(18.71)

plotted, as a function of r = ‖x ‖ in Figure 18.4. Note that, outside the solid ball, the
solution is a Newtonian potential corresponding to a concentrated point mass of magnitude
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4
3 π — the total mass of the planet. We have thus demonstrated a well-known result in
gravitation and electrostatics: the exterior potential due to a spherically symmetric mass
(or electric charge) is the same as if all the mass (charge) were concentrated at its center.
In outer space if you can’t see a spherical planet, you can only determine its mass, not its
size, by measuring its external gravitational force.

Bounded Domains and the Method of Images

Suppose we now wish to solve the inhomogeneous Poisson equation (18.57) on a
bounded domain Ω ⊂ R

3. To construct the desired Green’s function, we proceed as follows.
The Newtonian potential (18.67) is a particular solution to the underlying inhomogeneous
equation

−∆u = δ(x− ξ), x ∈ Ω, (18.72)

but it almost surely does not have the proper boundary values on ∂Ω. By linearity, the
general solution to such an inhomogeneous linear equation is of the form

u(x) =
1

4π ‖x− ξ ‖
− v(x), (18.73)

where the first summand is a particular solution, which we now know, while† v(x) is
an arbitrary solution to the homogeneous equation ∆v = 0, i.e., an arbitrary harmonic
function. The solution (18.73) satisfies the homogeneous boundary conditions provided
the boundary values of v(x) match those of the Green’s function. Let us explicitly state
the result in the Dirichlet case.

Theorem 18.9. The Green’s function for the homogeneous Dirichlet boundary value

problem

−∆u = f, x ∈ Ω, u = 0, x ∈ ∂Ω,

for the Poisson equation in a domain Ω ⊂ R
3 has the form

G(x; ξ) =
1

4π ‖x− ξ ‖
− v(x; ξ), x, ξ ∈ Ω, (18.74)

where v(x; ξ) is the harmonic function of x that satisfies

v(x; ξ) =
1

4π ‖x− ξ ‖
for all x ∈ ∂Ω.

In this manner, we have reduced the determination of the Green’s function to the
solution to a particular family of Laplace boundary value problems, which are parametrized
by the point ξ ∈ Ω.

In certain domains with simple geometry, the Method of Images can be used to produce
an explicit formula for the Green’s function. As in Section 15.3, the idea is to match the
boundary values of the free space Green’s function due to a delta impulse at a point inside

† The minus sign is for later convenience.
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Figure 18.5. Method of Images for the Unit Ball.

the domain with one or more additional Green’s functions corresponding to impulses at
points outside the domain — the “image points”.

The case of a solid ball of radius 1 with Dirichlet boundary conditions is the easiest to
handle. Indeed, the same geometrical construction that we used for a planar disk, redrawn
in in Figure 18.5, applies here. Although the same as Figure 15.8, we are re-interpreting
it as a three-dimensional diagram, with the circle representing the unit sphere, while the
lines remain lines. The required image point is given by inversion:

η =
ξ

‖ ξ ‖2
, whereby ‖ ξ ‖ =

1

‖η ‖
.

By the similar triangles argument used before, we find

‖ ξ ‖

‖x ‖
=
‖x ‖

‖η ‖
=
‖x− ξ ‖

‖x− η ‖
, and therefore ‖x ‖ = 1.

As a result, the function

v(x, ξ) =
1

4π

‖η ‖

‖x− η ‖
=

1

4π

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

has the same boundary values on the unit sphere as the Newtonian potential:

1

4π

‖η ‖

‖x− η ‖
=

1

4π‖x− ξ ‖
whenever ‖x ‖ = 1.

We conclude that their difference

G(x; ξ) =
1

4π

(
1

‖x− ξ ‖
−

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

)
(18.75)

has the required properties of the Green’s function: it satisfies the Laplace equation inside
the unit ball except at the delta function singularity x = ξ, and, moreover, G(x; ξ) = 0
has homogeneous Dirichlet conditions on the spherical boundary ‖x ‖ = 1.

With the Green’s function in hand, we can apply the general superposition for-
mula (18.59) to arrive at a solution to the Dirichlet boundary value problem for the Poisson
equation in the unit ball.
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Theorem 18.10. The solution to the homogeneous Dirichlet boundary value prob-

lem

−∆u = f, for ‖x ‖ < 1, u = 0, for ‖x ‖ = 1

is

u(x) =
1

4π

∫ ∫ ∫

‖ ξ ‖≤1

(
1

‖x− ξ ‖
−

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

)
f(ξ) dξ dη dζ. (18.76)

The Green’s function can also be used to solve the inhomogeneous boundary value
problem

−∆u = 0, x ∈ Ω, u = h, x ∈ ∂Ω. (18.77)

The same argument used in the two-dimensional situation produces the solution

u(x) = −

∫ ∫

∂Ω

∂G(x; ξ)

∂n
h(ξ) dS. (18.78)

In the case when Ω is a solid ball, this integral formula effectively sums the spherical
harmonic series (18.46).

18.4. The Heat Equation in Three-Dimensional Media.

Thermal diffusion in a homogeneous, isotropic solid body Ω ⊂ R
3 is governed by the

three-dimensional heat equation

∂u

∂t
= γ ∆u = γ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (x, y, z) ∈ Ω. (18.79)

The positivity of the body’s thermal diffusivity γ > 0 is reaquired on both physical and
mathematical grounds. The physical derivation is exactly the same as the two-dimensional
version (17.1), and does not need to be repeated in detail. Briefly, the heat flux vector is
proportional to the temperature gradient, w = −κ∇u, while its divergence is proportional
to the rate of change of temperature: ∇ ·w = −σut. Combining these two physical laws
and assuming homogeneity, whereby κ and σ are constant, produces (18.79) with γ = κ/σ.

As always, we must impose suitable boundary conditions: Dirichlet conditions u = h
that specify the boundary temperature; (homogeneous) Neumann conditions ∂u/∂n =
0 corresponding to an insulated boundary; or a mixture of the two. Given the initial
temperature of the body

u(t0, x, y, z) = f(x, y, z) (18.80)

at the initial time t0, it can be proved, [47], that the resulting initial-boundary value
problem is well-posed, and so there is a unique solution u(t, x, y, z) that is defined for all
subsequent times t ≥ t0 and depends continuously on the initial data.

As in the one- and two-dimensional versions, we do not lose generality by restricting
our attention to homogeneous boundary conditions. Separation of variables method works
as usual, and we quickly review the basic ideas. One begins by imposing an exponential
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ansatz u(t,x) = e−λt v(x). Substituting into the differential equation and canceling the
exponentials, it follows that v satisfies the Helmholtz eigenvalue problem

γ ∆v + λ v = 0,

subject to the relevant boundary conditions. For Dirichlet and mixed boundary conditions,
the Laplacian is a positive definite operator, and hence the eigenvalues are all strictly
positive,

0 < λ1 ≤ λ2 ≤ · · · , with λn −→∞, as n→∞.

Moreover, on a bounded domain, the Helmholtz eigenfunctions are complete, and so linear
superposition implies that the solution can be written as an eigenfunction series

u(t,x) =
∞∑

n=1

cn e−λn t vn(x). (18.81)

The coefficients cn are uniquely prescribed by the initial condition (18.80):

u(t0,x) =

∞∑

n=1

cn e−λn t0 vn(x) = f(x). (18.82)

Self-adjointness of the boundary value problem implies orthogonality of the eigenfunctions,
and hence the coefficients are given by the usual orthogonality formulae

cn = eλn t0
〈 f , vn 〉

‖ vn ‖
2

= e−λn t0

∫ ∫ ∫

Ω

f(x) vn(x) dx dy dz
∫ ∫ ∫

Ω

vn(x)
2
dx dy dz

. (18.83)

The resulting solution u(t,x) → 0 decays exponentially fast to thermal equilibrium,
at a rate equal to the smallest positive eigenvalue λ1 > 0. Since the higher modes — the
terms with n À 0 — go to zero extremely rapidly with increasing t, the solution can be
well approximated by the first few terms in its Fourier expansion. As a consequence, the
heat equation rapidly smoothes out discontinuities and eliminates high frequency noise
in the initial data, and so can be used to process three-dimensional images and video —
although better nonlinear techniques are now available, [156].

Unfortunately, the explicit formulae for the eigenfunctions and eigenvalues few and
far between, [131]. Most explicit eigensolutions of the Helmholtz boundary value problem
require a further separation of variables. In a rectangular box, one separates into a product
of functions depending upon the individual Cartesian coordinates, and the eigenfunctions
are written as products of trigonometric and hyperbolic functions; see Exercise for details.
In a cylindrical domain, the separation is effected in cylindrical coordinates, and leads to
eigensolutions involving trigonometric and Bessel functions, as outlined in Exercise . The
most interesting and enlightening case is a spherical domain, and we treat this particular
problem in complete detail.
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Heating of a Ball

Our goal is to study heat propagation in a solid spherical body, e.g., the earth†. For
simplicity, we take the diffusivity γ = 1, and consider the heat equation on a solid spherical
ball B1 = {‖x ‖ < 1} of radius 1, subject to homogeneous Dirichlet boundary conditions.
Once we know how to solve this particular case, an easy scaling argument, as outlined
in Exercise , will allow us to find the solution for a ball of arbitrary radius and with a
general diffusion coefficient.

As usual, when dealing with a spherical geometry, we adopt spherical coordinates
r, ϕ, θ as in (18.13), in terms of which the heat equation takes the form

∂u

∂t
= ∆u =

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
+

cos ϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
, (18.84)

where we have used our handy formula (18.14) for the Laplacian in spherical coordinates.
The standard diffusive separation of variables ansatz

u(t, r, ϕ, θ) = e−λt v(r, ϕ, θ)

requires us to analyze the spherical coordinate form of the Helmholtz equation

∆v + λ v =
∂2v

∂r2
+

2

r

∂v

∂r
+

1

r2

∂2v

∂ϕ2
+

cos ϕ

r2 sinϕ

∂v

∂ϕ
+

1

r2 sin2 ϕ

∂2v

∂θ2
+ λ v = 0 (18.85)

on the unit ball Ω = {r < 1} with homogeneous Dirichlet boundary conditions. To make
further progress, we invoke a second variable separation, splitting off the radial coordinate
by setting

v(r, ϕ, θ) = p(r)w(ϕ, θ).

The function w must be 2π periodic in θ and well-defined at the poles ϕ = 0, π. Substi-
tuting our ansatz into (18.85), and separating all the r-dependent terms from those terms
depending upon the angular variables ϕ, θ leads to a pair of differential equations: The
first is an ordinary differential equation

r2 d2p

dr2
+ 2r

dp

dr
+ (λ r2 − µ)p = 0, (18.86)

for the radial component p(r), while the second is a familiar partial differential equation

∆S w + µw =
∂2w

∂ϕ2
+

cos ϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0, (18.87)

for its angular counterpart w(ϕ, θ). The operator ∆S is the spherical Laplacian from
(18.17). In Section 18.2, we showed that its eigenvalues are

µm = m(m + 1) for m = 0, 1, 2, 3, . . . .

† In this simplified model, we are assuming that the earth is composed of a completely homo-
geneous and isotropic solid material.
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The mth eigenvalue admits 2m + 1 linearly independent eigenfunctions — the spherical
harmonics Y 0

m, . . . , Y m
m , Ỹ 1

m, . . . , Ỹ m
m defined in (18.33).

The radial ordinary differential equation (18.86) can be solved by setting

p(r) =
√

r q(r).

We use the product rule to relate their derivatives

p =
1
√

r
q,

dp

dr
=

1
√

r

dq

dr
−

1

2r3/2
q,

d2p

dr2
=

1
√

r

d2q

dr2
−

1

r3/2

dq

dr
+

3

4r5/2
q.

Substituting these expressions back into (18.86) with µ = µm = m(m+1), and multiplying
the resulting equation by

√
r, we discover that q(r) must solve the differential equation

r2 d2q

dr2
+ r

dq

dr
+
[
λ r2 −

(
m + 1

2

)2 ]
q = 0, (18.88)

which turns out to be the rescaled Bessel equation (17.52) of half integer order m + 1
2 . As

a result, the solution to (18.88) that remains bounded at r = 0 is (up to scalar multiple)
the rescaled Bessel function

q(r) = Jm+1/2

(√
λ r.

)

The corresponding solution

p(r) = r−1/2 Jm+1/2

(√
λ r
)

(18.89)

to (18.86) is important enough to warrant a special name.

Definition 18.11. The spherical Bessel function of order m ≥ 0 is defined by the
formula

Sm(x) =

√
π

2x
Jm+1/2(x). (18.90)

Remark : The multiplicative factor
√

π/2 is included in the definition so as to avoid

annoying factors of
√

π and
√

2 in subsequent formulae.

Surprisingly, unlike the Bessel functions of integer order, the spherical Bessel functions
are elementary functions! According to formula (C.64), the spherical Bessel function of
order 0 is

S0(x) =
sinx

x
. (18.91)

The higher order spherical Bessel functions can be obtained by use of the general recurrence
relation

Sm+1(x) = −
dSm

dx
+

m

x
Sm(x), (18.92)

which is a consequence of Proposition C.13. The next few are, therefore,

S1(x) = −
dS0

dx
= −

cos x

x
+

sinx

x2
,

S2(x) = −
dS1

dx
+

S1

x
= −

sin x

x
−

3 cos x

x2
+

3 sin x

x3
,

S3(x) = −
dS2

dx
+

2S1

x
=

cos x

x
−

6 sin x

x2
−

15 cos x

x3
+

15 sin x

x4
,

(18.93)
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Figure 18.6. Spherical Bessel Function.

and so on. Graphs can be found in Figure 18.6. Our radial solution (18.89) is, apart from
an inessential constant multiple, a rescaled spherical Bessel function of order m:

vm(r) = Sm

(√
λ r
)
.

So far, we have not taken into account the (homogeneous) Dirichlet boundary condi-
tion at r = 1. This requires

p(1) = 0, and hence Sm

(√
λ
)

= 0.

Therefore,
√

λ must be a root of the mth order spherical Bessel function. We introduce
the notation

0 < σm,1 < σm,2 < σm,e < · · ·

to denote the successive (positive) spherical Bessel roots, satisfying

Sm(σm,n) = 0 for n = 1, 2, . . . . (18.94)

In particular the roots of the zeroth order spherical Bessel function S0(x) = x−1 sinx are
just the integer multiples of π:

σ0,n = nπ for n = 1, 2, . . . .

A table of all spherical Bessel roots that are < 13 appears above. The columns of the table
are indexed by m, the order, while the rows are indexed by n, the root number.

Re-assembling the individual constituents, we have now demonstrated that the sep-
arable eigenfunctions of the Helmholtz equation on a solid ball of radius 1, when subject
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Spherical Bessel Roots σm,n

n

∖
m 0 1 2 3 4 5 6 7

1 3.1416 4.4934 5.7635 8.1826 9.3558 10.5128 11.6570 12.7908 . . .

2 6.2832 7.7253 9.0950 11.7049 12.9665
...

...
...

3 9.4248 10.9041 12.3229
...

...

4 12.5664
...

...

...
...

to homogeneous Dirichlet boundary conditions, are products of spherical Bessel functions
and spherical harmonics,

vk,m,n(r, ϕ, θ) = Sm(σm,n r) Y k
m(ϕ, θ), ṽk,m,n(r, ϕ, θ) = Sm(σm,n r) Ỹ k

m(ϕ, θ). (18.95)

The corresponding eigenvalues

λm,n = σ2
m,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , (18.96)

are given by the squared spherical Bessel roots. Since there are 2m + 1 independent
spherical harmonics of order m, the eigenvalue λm,n admits 2m + 1 linearly independent
eigenfunctions, namely v0,m,n, . . . , vm,m,n, ṽ1,m,n, . . . , ṽm,m,n. In particular, the radially
symmetric solutions are the eigenfunctions with k = m = 0, namely

vn(r) = v0,0,n(r) = S0(σn,0 r) =
sinnπ r

nπ r
, n = 1, 2, . . . . (18.97)

Further analysis demonstrates that the separable solutions (18.95) form a complete system
of eigenfunctions for the Helmholtz equation on the unit ball subject ot homogeneous
Dirichlet boundary conditions, cf. [46].

We have thus completely determined the basic separable solutions to the heat equation
on a solid unit ball subject to homogeneous Dirichlet boundary conditions. They are
products of exponential functions of time, spherical Bessel functions of the radius and
spherical harmonics:

uk,m,n(t, r, ϕ, θ) = e−σ2
m,n t Sm(σm,n r) Y k

m(ϕ, θ),

ũk,m,n(t, r, ϕ, θ) = e−σ2
m,n t Sm(σm,n r) Ỹ k

m(ϕ, θ).
(18.98)

The general solution can be written as an infinite “Fourier–Bessel–spherical harmonic”
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series in these fundamental modes

u(t, r, θ, ϕ) =
∞∑

m=0

∞∑

n=1

e−σ2
m,n t Sm(σm,n r)

(
c0,m,n

2
Y 0

m(ϕ, θ) +

+
m∑

k=1

[
ck,m,nY k

m(ϕ, θ) + c̃k,m,nỸ k
m(ϕ, θ)

])
.

(18.99)

The series’ coefficients ck,m,n, c̃k,m,n are uniquely prescribed by the initial data; explicit
formulae follow from the usual orthogonality relations among the eigenfunctions. Detailed
formulae are relegated to the exercises. In particular, the slowest decaying mode is the
spherically symmetric function

u0,0,1(t, r) =
e−π2 t sinπr

r
(18.100)

corresponding to the smallest eigenvalue λ0,1 = σ2
0,1 = π2. Therefore, typically, the decay

to thermal equilibrium of a unit sphere is at an exponential rate of π2 ≈ 9.8696, or, to a
very rough approximation, 10.

The Fundamental Solution to the Heat Equation

For the heat equation (as well as more general diffusion equations), the fundamental
solution measures the response of the body to a concentrated unit heat source. Thus, given
a point ξ = (ξ, η, ζ) ∈ Ω within the body, the fundamental solution

u(t,x) = F (t,x; ξ) = F (t, x, y, z; ξ, η, ζ)

solves the initial-boundary value problem

ut = ∆u, u(0,x) = δ(x− ξ), for x ∈ Ω, t > 0, (18.101)

subject to the selected homogeneous boundary conditions — Dirichlet, Neumann or mixed.

In general, the fundamental solution has no explicit formula, although in certain
domains it is possible to construct it as an eigenfunction series. The one case amenable
to a complete analysis is when the heat is distributed over all of three-dimensional space,
so Ω = R

3. We recall that Lemma 17.1 showed how to construct solutions of the two-
dimensional heat equation as products of one-dimensional solutions. In a similar manner,
if v(t, x), w(t, x) and q(t, x) are any three solutions to the one-dimensional heat equation
ut = γ uxx, then their product

u(t, x, y, z) = p(t, x) q(t, y) r(t, z) (18.102)

is a solution to the three-dimensional heat equation

ut = γ (uxx + uyy + uzz).

In particular, choosing

p(t, x) =
e−(x−ξ)2/4γ t

2
√

πγ t
, q(t, y) =

e−(y−η)2/4γ t

2
√

πγ t
, r(t, z) =

e−(z−ζ)2/4γ t

2
√

πγ t
,
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to all be one-dimensional fundamental solutions, we are immediately led to the fundamental
solution in the form of a three-dimensional Gaussian kernel.

Theorem 18.12. The fundamental solution

F (t,x; ξ) = F (t,x− ξ) =
e−‖x−ξ ‖2/4γ t

8 (πγ t)3/2
(18.103)

solves the three-dimensional heat equation ut = γ ∆u on R
3 with an initial temperature

equal to a delta function concentrated at the point x = ξ.

Thus, the initially concentrated heat energy immediately begins to spread out in a
radially symmetric manner, with a minuscule, but nonzero effect felt at arbitrarily large
distances away from the initial concentration. At each individual point x ∈ R

3, after an
initial warm-up, the temperature decays back to zero at a rate proportional to t−3/2 —
even more rapidly than in two dimensions because, intuitively, there are more directions
for the heat energy to disperse.

To solve a more general initial value problem with the initial temperature u(0, x, y, z) =
f(x, y, z) distributed over all of space, we first write

f(x, y, z) =

∫ ∫ ∫
f(ξ) δ(x− ξ) dξ dη dζ

as a linear superposition of delta functions. By linearity, the solution to the initial value
problem is given by the corresponding superposition

u(t,x) =
1

8 (πγ t)3/2

∫ ∫ ∫
f(ξ) e−‖x−ξ ‖2/4γ t dξ dη dζ. (18.104)

of the fundamental solutions. Since the fundamental solution has exponential decay as
‖x ‖ → ∞, the superposition formula is valid even for initial temperature distributions
which are moderately increasing at large distances. We remark that the integral (18.104)
has the form of a three-dimensional convolution

u(t,x) = F (t,x) ∗ f(x) =

∫ ∫ ∫
f(ξ)F (t,x− ξ) dξ dη dζ (18.105)

of the initial data with a one-parameter family of increasingly spread out Gaussian filters.
Consequently, convolution with the Gaussian kernel has a smoothing effect on the initial
temperature distribution.

18.5. The Wave Equation in Three-Dimensional Media.

The three-dimensional wave equation

utt = c2∆u = c2(uxx + uyy + uzz), (18.106)

in which c denotes the velocity of light, governs the propagation of electromagnetic waves
(light, radio, X-rays, etc.) in a homogeneous medium, including (in the absence of gravita-
tional effects) empty space. While the electric and magnetic vector fields E,B are intrin-
sically coupled by the more complicated system of Maxwell’s equations, each individual
component satisfies the wave equation; see Exercise for details.
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The wave equation also models certain classes† of vibrations of a uniform solid body.
The solution u(t,x) = u(t, x, y, z) represents a scalar-valued displacement of the body
at time t and position x = (x, y, z) ∈ Ω ⊂ R

3. For example, u(t,x) might represent the
radial displacement of the body. One imposes suitable boundary conditions, e.g., Dirichlet,
Neumann or mixed, on ∂Ω, along with a pair of initial conditions

u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ Ω, (18.107)

that specify the body’s initial displacement and initial velocity. As long as the initial and
boundary data are reasonably nice, there exists a unique solution to the initial-boundary
value problem for all −∞ < t < ∞, cf. [46]. Thus, in contrast to the heat equation, one
can follow solutions to the wave equation both forwards and backwards in time; see also
Exercise .

Let us fix our attnetion on the homogeneous boundary value problem. The funda-
mental vibrational modes are found by imposing our usual trigonometric ansatz

u(t, x, y, z) = cos(ω t) v(x, y, z).

Substituting into the wave equation (18.106), we discover (yet again) that v(x, y, z) must
be an eigenfunction solving the associated Helmholtz eigenvalue problem

∆v + λ v = 0, where λ =
ω2

c2
, (18.108)

coupled to the relevant boundary conditions. In the positive definite cases, i.e., Dirichlet
and mixed boundary conditions, the eigenvalues λk = ω2

k/c2 > 0 are all positive; each
eigenfunction vk(x, y, z) yields two normal vibrational modes

uk(t, x, y, z) = cos(ωk t) vk(x, y, z), ũk(t, x, y, z) = sin(ωk t) vk(x, y, z),

of frequency ωk = c
√

λk equal to the square root of the corresponding eigenvalue multiplied
by the wave speed. The general solution is a quasi-periodic linear combination

u(t, x, y, z) =
∞∑

k=1

(
ak cos ωk t + bk sinωk t

)
vk(x, y, z) (18.109)

of these fundamental vibrational modes. The coefficients ak, bk are uniquely prescribed by
the initial conditions (18.107). Thus,

u(0, x, y, z) =
∞∑

k=1

ak vk(x, y, z) = f(x, y, z),

∂u

∂t
(0, x, y, z) =

∞∑

k=1

ωk bk vk(x, y, z) = g(x, y, z).

† Since the solution u(t,x) to the wave equation is scalar-valued, it cannot measure the full
range of possible three-dimensional motions of a solid body. The more complicated dynamical
systems governing the elastic motions of solids are discussed in Exercise .
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The explicit formulas follow immediately from the orthogonality of the eigenfunctions:

ak =
〈 f , vk 〉

‖ vk ‖
2

=

∫ ∫ ∫

Ω

f vk dx dy dz
∫ ∫ ∫

Ω

v2
k dx dy dz

, bk =
1

ωk

〈 g , vk 〉

‖ vk ‖
2

=

∫ ∫ ∫

Ω

g vk dx dy dz

ωk

∫ ∫ ∫

Ω

v2
k dx dy dz

.

(18.110)

In the positive semi-definite Neumann boundary value problem, there is an additional
zero eigenvalue λ0 = 0 corresponding to the constant null eigenfunction v0(x, y, z) ≡ 1.
This results in two additional terms in the eigenfunction expansion — a constant term

a0 =
1

volΩ

∫ ∫ ∫

Ω

f(x, y, z) dx dy dz

that equals the average initial displacement, and an unstable mode b0 t that grows linearly
in time, whose speed

b0 =
1

volΩ

∫ ∫ ∫

Ω

g(x, y, z) dx dy dz

is the average of the initial velocity over the entire body. The unstable mode will be excited
if and only if there is a non-zero net initial velocity: b0 6= 0.

Most of the basic solution techniques we learned in the two-dimensional case apply
here, and we will not dwell on the details. The case of a rectangular box is a particularly
straightforward application of the method of separation of variables, and is outlined in the
exercises. A similar analysis, now in cylindrical coordinates, can be applied to the case of
a vibrating cylinder. The most interesting case is that of a solid spherical ball, which is
the subject of the next subsection.

Vibrations of a Ball

Let us focus on the radial vibrations of a solid ball, as modeled by the three-dimensional
wave equation (18.106). The solution u(t, x, y, z) represents the radial displacement of the
“atom” that is situated at position (x, y, z) when the ball is at rest.

For simplicity, we look at the Dirichlet boundary value problem on the unit ball
B1 = {‖x ‖ < 1}. The normal modes of vibration are governed by the Helmholtz equation
(18.108) subject to homogeneous Dirichlet boundary conditions. According to (18.95), the
eigenfunctions are

vk,m,n(r, ϕ, θ) = Sn(σn,m r) Y k
m(ϕ, θ),

ṽk,m,n(r, ϕ, θ) = Sm(σm,n r) Ỹ k
m(ϕ, θ),

for

n = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

k = 0, 1, . . . ,m.

(18.111)

Here Sm denotes the mth order spherical Bessel function (18.90), σm,n is its nth root, while

Y m
n , Ỹ m

n are the spherical harmonics (18.33). Each eigenvalue

λm,n = σ2
m,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . ,
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corresponds to 2m + 1 independent eigenfunctions, namely

vk,m,0(r, ϕ, θ), vk,m,1(r, ϕ, θ), . . . vk,m,m(r, ϕ, θ), ṽk,m,1(r, ϕ, θ), . . . ṽk,m,m(r, ϕ, θ).

Consequently, the fundamental vibrational frequencies of a solid ball

ωm,n = c
√

λm,n = c σm,n, m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , (18.112)

are equal to the spherical Bessel roots σm,n multiplied by the wave speed. There are a
total of 2(2m + 1) independent vibrational modes associated with each distinct frequency
(18.112), namely

uk,m,n(t, r, ϕ, θ) = cos(c σm,n t) Sm(σm,n r) Y k
m(ϕ, θ),

ûk,m,n(t, r, ϕ, θ) = sin(c σm,n t) Sm(σm,n r) Y k
m(ϕ, θ),

ũk,m,n(t, r, ϕ, θ) = cos(c σm,n t) Sm(σm,n r) Ỹ k
m(ϕ, θ),

̂̃uk,m,n(t, r, ϕ, θ) = sin(c σm,n t) Sm(σm,n r) Ỹ k
m(ϕ, θ).

n = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

k = 0, 1, . . . ,m.

(18.113)

In particular, the radially symmetric modes of vibration have, according to (18.91), the
elementary form

u0,0,n(r, ϕ, θ) = cos(c nπ t) S0(nπr) =
cos c nπ t sinnπr

r
,

û0,0,n(r, ϕ, θ) = sin(c nπ t) S0(nπr) =
sin c nπ t sinnπr

r
,

k = 1, 2, 3, . . . . (18.114)

Their vibrational frequencies, ω0,n = c nπ, are integral multiples of the lowest frequency
ω0,1 = π. Therefore, interestingly, if you only excite the radially symmetric modes, the
resulting motion of the ball is periodic.

More generally, adopting the same scaling argument as in (17.111), we conclude that
the fundamental frequencies for a solid ball of radius R and wave speed c are given by
ωm,n = c σm,n/R. The relative vibrational frequencies

ωm,n

ω1,0

=
σm,n

σ1,0

=
σm,n

π
(18.115)

are independent of the size of the ball R or the wave speed c. In the accompanying table,
we display all relative vibrational frequencies that are less than 4 in magnitude.

The purely radial modes of vibration (18.114) have individual frequencies

ω0,n =
nπ c

R
, so

ω0,n

ω0,1

= n,

and appear in the first column of the table. The lowest frequency is ω0,1 = π c/R, cor-
responding to a vibration with period 2π/ω0,1 = 2R/c. In particular, for the earth, the
radius R ≈ 6, 000 km and the wave speed in rock is, on average, c ≈ 5 km/sec, so that the
fundamental mode of vibration has period 2R/c ≈ 2400 seconds, or 40 minutes. Vibra-
tions of the earth are also known as seismic waves and, of course, earthquakes are their
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Relative Spherical Bessel Roots σk,m/σ1,0

n

∖
m 0 1 2 3 4 6 7 8 . . .

1 1.0000 1.4303 1.8346 2.2243 2.6046 2.9780 3.3463 3.7105 . . .

2 2.0000 2.4590 2.8950 3.3159 3.7258
...

...
...

3 3.0000 3.4709 3.9225
...

...

4 4.0000
...

...

...
...

most severe manifestation. Understanding the modes of vibration is an issue of critical im-
portance in geophysics and civil engineering, including the design of structures, buildings
and bridges and the avoidance of resonant frequencies.

Of course, we have suppressed almost all interesting terrestrial geology in this very
crude approximation, which has been based on the assumption that the earth is a uniform
body, vibrating only in its radial direction. A more realistic modeling of the vibrations
of the earth requires an understanding of the basic partial differential equations of linear
and nonlinear elasticity, [85]. Nonuniformities in the earth lead to scattering of the vi-
brational waves, which are then used to locate subterranean geological structures, e.g., oil
and gas deposits. We refer the interested reader to [6] for a comprehensive introduction
to mathematical seismology.

Example 18.13. The radial vibrations of a hollow spherical shell (e.g., an elastic
balloon) are governed by the differential equation

utt = c2 ∆S [u ] = c2

(
∂2u

∂ϕ2
+

cos ϕ

sinϕ

∂u

∂ϕ
+

1

sin2 ϕ

∂2u

∂θ2

)
, (18.116)

where ∆S denotes the spherical Laplacian (18.17). The radial displacement u(t, ϕ, θ) of a
point on the sphere only depends on time t and the angular coordinates ϕ, θ. The solution
u(t, ϕ, θ) is required to be 2π periodic in the azimuthal angle θ and bounded at the poles
ϕ = 0, π.

According to (18.33), the nth eigenvalue λn = n(n + 1) of the spherical Laplacian
possesses 2n + 1 linearly independent eigenfunctions, namely, the spherical harmonics

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . , Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . , Ỹ n
n (ϕ, θ).

As a consequence, the fundamental frequencies of vibration for a spherical shell are

ωn = c
√

λn = c
√

n(n + 1) , n = 1, 2, . . . . (18.117)

The vibrational solutions are quasi-periodic combinations of the fundamental spherical
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harmonic modes

cos
(√

n(n + 1) t
)

Y m
n (ϕ, θ), sin

(√
n(n + 1) t

)
Y m

n (ϕ, θ),

cos
(√

n(n + 1) t
)

Ỹ m
n (ϕ, θ), sin

(√
n(n + 1) t

)
Ỹ m

n (ϕ, θ).
(18.118)

Representative graphs can be seen in Figure 18.3. The smallest positive eigenvalue is
λ1 = 2, yielding a lowest tone of frequency ω1 = c

√
2. The higher order frequencies are

irrational multiples of the fundamental frequency, implying that a vibrating spherical bell
sounds percussive to our ears.

One further remark is in order. The spherical Laplacian operator is only positive semi-
definite, since the lowest mode has eigenvalue λ0 = 0, which corresponds to the constant
null eigenfunction v0(ϕ, θ) = Y 0

0 (ϕ, θ) ≡ 1. Therefore, the wave equation (18.116) admits
an unstable mode b0,0 t, corresponding to a uniform radial inflation; its coefficient

b0,0 =
3

4π

∫ ∫

S1

∂u

∂t
(0, ϕ, θ) dS

represents the sphere’s average initial velocity. The existence of such an unstable mode is
an artifact of the simplified linear model we are using, that fails to account for nonlinearly
elastic effects that serve to constrain the inflation of a spherical balloon.

18.6. Spherical Waves and Huygens’ Principle.

For any dynamical (time-varying) partial differential equation, the fundamental solu-
tion measures the effect of applying an instantaneous concentrated unit impulse at a single
point. Two representative physical effects to keep in mind are the light waves emanat-
ing from a sudden concentrated blast, e.g., a lightning bolt or a stellar supernova, and the
sound waves due to an explosion or thunderclap, propagating in air at a much slower speed.
Linear superposition utilizes the fundamental solution to build up more general solutions
to initial value problems. For the wave and other second order vibrational equations, the
impulse can be applied either to the initial displacement or to the initial velocity, resulting
in two types of fundamental solution.

In a uniform isotropic medium, an initial concentrated blast results in a spherically
expanding wave, moving away at the speed of light (or sound) in all directions. Invoking
translation invariance, we will assume that the source of the disturbance is at the origin,
and so the solution u(t,x) should only depend on the distance r = ‖x ‖ from the source. We
adopt spherical coordinates and look for a solution u = u(t, r) to the three-dimensional
wave equation with no angular dependence. Substituting the formula (18.14) for the
spherical Laplacian and setting both angular derivatives to 0, we are led to the following
partial differential equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+

2

r

∂u

∂r

)
, (18.119)

that governs the propagation of spherically symmetric waves in three-dimensional space.
Surprisingly, we can explicitly solve this partial differential equation. The secret is to
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multiply both sides of the equation by r:

∂2(ru)

∂t2
= r

∂2u

∂t2
= c2

(
r

∂2u

∂r2
+ 2

∂u

∂r

)
= c2 ∂2

∂r2
(r u),

Thus, the function
w(t, r) = r u(t, r)

solves the one-dimensional wave equation

∂2w

∂t2
= c2 ∂2w

∂r2
. (18.120)

According to Theorem 14.9, the general solution to (18.120) can be written in d’Alembert
form

w(t, r) = p(r − c t) + q(r + c t),

where p(ξ) and q(η) are arbitrary functions of a single characteristic variable. Therefore,
spherically symmetric solutions to the three-dimensional wave equation assume the form

u(t, r) =
p(r − c t)

r
+

q(r + c t)

r
. (18.121)

The first term

u(t, r) =
p(r − c t)

r
(18.122)

represents a wave moving at speed c in the direction of increasing r, and so describes the
effect of a variable light source that is concentrated at the origin, e.g., a pulsating quasar
in interstellar space. To highlight this interpretation, let us concentrate on the case when
p(ξ) = δ(ξ − a) is a delta function, keeping in mind that more general solutions can then
be assembled by linear superposition. The induced solution

u(t, r) =
δ(r − c t− a)

r
=

δ
(
r − c(t− t0)

)

r
, where t0 = −

a

c
. (18.123)

represents a spherical wave propagating through space. At the instant t = t0, the light is
entirely concentrated at the origin r = 0. The signal then moves away from the origin in
all directions at speed c. At each later time t > t0, the wave is concentrated on the surface
of a sphere of radius r = c (t− t0). Its intensity at each point on the sphere, however, has
decreased by a factor 1/r, and so, the farther from the source, the dimmer the light. A
stationary observer sitting at a fixed point in space will only see an instantaneous flash of
light of intensity 1/r as the spherical wave passes by at time t = t0 + r/c, where r is the
observer’s distance from the light source. A similar statement holds for sound waves —
the sound of the explosion will only last momentarily. Thunder and lightning are the most
familiar examples of this everyday phenomenon.

On the other hand, for t < t0, the impulse is concentrated at a negative radius
r = c (t − t0) < 0. To interpret this, note that, for a given value of the spherical angles
ϕ, θ, the point

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cos ϕ,
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for r < 0 lies on the antipodal point of the sphere of radius | r |, so that replacing r by
−r has the same effect as changing x to −x. Thus, the solution (18.123) represents a
concentrated spherically symmetric light wave arriving from the edges of the universe at
speed c, that strengthens in intensity as it collapses into the origin at t = t0. After collapse,
it immediately reappears and expands back out into the universe.

The second solution in the d’Alembert formula (18.121) has, in fact, exactly the same
physical form. Indeed, if we set

r̃ = −r, p̃(ξ) = − q(−ξ), then
q(r + c t)

r
=

p̃(r̃ − c t)

r̂
.

Thus, the second d’Alembert solution is redundant, and we only need to consider solutions
of the form (18.122) from now on.

To effectively utilize such spherical wave solutions, we need to understand the nature
of their originating singularity. For simplicity, we set a = 0 in (18.123) and concentrate on
the particular solution

u(t, r) =
δ(r − c t)

r
, (18.124)

which has a singularity at the origin r = 0 when t = 0. We need to pin down precisely
which sort of distribution this solution represents. Invoking the limiting definition is tricky,
and it will be easier to work with the dual characterization of a distribution as a linear
functional. Thus, at a fixed time t ≥ 0, we must evaluate the inner product

〈u , f 〉 =

∫ ∫ ∫
u(t, x, y, z) f(x, y, z) dx dy dz.

of the solution with a smooth test function f(x) = f(x, y, z). We rewrite the triple integral
in spherical coordinates using the change of variables formula (B.66), whereby

〈u , f 〉 =

∫ 2π

0

∫ π

0

∫ ∞

0

δ(r − c t)

r
f(r, ϕ, θ) r2 sin ϕ dr dϕ dθ

When t 6= 0, the r integration can be immediately computed, and so

〈u , f 〉 = c t

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕdθ = 4πc t M0

ct [ f ] , (18.125)

where, according to (B.41),

M0

ct [ f ] =
1

4π

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕdθ =
1

4πc2 t2

∫ ∫

Sct

f dS (18.126)

is the mean or average value of the function f on the sphere Sct =
{
‖x ‖ = c t

}
of radius

r = c t. In particular, the mean over the limiting sphere of radius r = 0 reduces to the
value of the function at the origin:

M0

0 [ f ] = f(0). (18.127)
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Thus, in the limit as t→ 0, (18.125) implies that

〈u , f 〉 = 0 for all functions f ,

and hence u(0, r) ≡ 0 represents a zero initial displacement.

In the absense of any intial diplacement, how, then, can the solution (18.124) be non-
zero? Clearly, this must be the result of a nonzero initial velocity. To find ut(0, r), we
differentiate (18.125) with respect to t, whereby

〈
∂u

∂t
, f

〉
=

∂

∂t
〈u , f 〉 =

∂

∂t

(
c t

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕ dθ

)

= c

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕdθ + c2 t

∫ 2π

0

∫ π

0

∂f

∂r
(c t, ϕ, θ) sinϕ dϕ dθ

= 4πc M0

ct [ f ] + 4πc2 t M0

ct

[
∂f

∂r

]
. (18.128)

The result is a linear combination of the mean of f and of its radial derivative fr over the
sphere of radius ct. In particular,

lim
t→ 0
〈ut , f 〉 = 4πc M0

0 [ f ] = 4πc f(0).

Since this holds for all test functions, we conclude that the initial velocity

ut(0, r) = 4πc δ(x)

is a multiple of a delta function at the origin! Dividing through by 4πc, we conclude that
the spherical expanding wave

u(t, r) =
δ(r − c t)

4πc r
(18.129)

solves the initial value problem

u(0,x) ≡ 0,
∂u

∂t
(0,x) = δ(x),

corresponding to an initial unit velocity impulse concentrated at the origin. This solution
can be viewed as the three-dimensional version of the hammer-blow solution (14.125) to
the one-dimensional wave equation. A significant difference is that, in three dimensions,
there is no residual effect after the wave passes by.

More generally, if the unit impulse is concentrated at the point ξ, we invoke transla-
tional symmetry to conclude that the function

G(t,x; ξ) =
δ
(
‖x− ξ ‖ − c t

)

4πc ‖x− ξ ‖
, t ≥ 0, (18.130)

is the fundamental solution to the wave equation resulting from a concentrated unit velocity
at the initial time t = 0:

G(0,x; ξ) = 0,
∂G

∂t
(0,x; ξ) = δ(x− ξ). (18.131)
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Figure 18.7. A Sphere Intersecting a Ball.

We can then apply linear superposition to solve the initial value problem

u(0, x, y, z) = 0,
∂u

∂t
(0, x, y, z) = g(x, y, z), (18.132)

with zero initial displacement. Namely, we write the initial velocity

g(x) =

∫ ∫ ∫
g(ξ) δ(x− ξ) dξ dη dζ

as a superposition of impulses, and immediately conclude that the relevant solution is the
self-same superposition of spherical waves:

u(t,x) =
1

4πc

∫ ∫ ∫
g(ξ)

δ
(
‖x− ξ ‖ − c t

)

‖x− ξ ‖
dξ dη dζ =

1

4πc2 t

∫ ∫

‖ ξ−x ‖=c t

g(ξ) dS.

(18.133)
Its value

u(t,x) = t Mx

ct [ g ] , (18.134)

at a point x and time t ≥ 0, is t times the average of the initial velocity function g on a
sphere of radius r = c t centered at the point x.

Example 18.14. Let us set the wave speed c = 1 for simplicity. Suppose that the
initial velocity

g(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1

is 1 inside the unit ball B1 centered at the origin, and 0 outside. To solve the initial value
problem, we must compute the average value of g over a sphere Sx

t of radius t > 0 centered
at a point x ∈ R

3. Since g = 0 outside the unit ball, its average will be equal to the surface
area of that part of the sphere that is contained inside the unit ball, Sx

t ∩ B1, divided by
the total surface area of Sx

t , namely 4π t2.

To compute this quantity, let r = ‖x ‖. If t > r + 1 or 0 < t < r − 1, then the sphere
of radius t lies entirely outside the unit ball, and so the average is 0; if 0 < t < 1− r, then
the sphere lies entirely within the unit ball and so the average is 1. Otherwise, referring to
Figure 18.7, and referring to Exercise , we see that the area of the spherical cap Sx

t ∩B1
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is, by the Law of Cosines,

2π t2(1− cos α) = 2π t2
(

1−
r2 + t2 − 1

2 r t

)
=

π t

r
[1− (t− r)2 ] ,

where α denotes the angle between the line joining the centers of the two spheres and the
circle formed by their intersection. Assembling the different subcases, we conclude that

Mx

ct [ g ] =





1, 0 ≤ t ≤ 1− r,

1− (t− r)2

4 r t
, | r − 1 | ≤ t ≤ r + 1,

0, 0 ≤ t ≤ r − 1 or t ≥ r + 1.

(18.135)

The solution (18.134) is obtained by multiplying by t, and hence for t ≥ 0,

u(t,x) =





t, 0 ≤ t ≤ 1− ‖x ‖,

1−
(
t− ‖x ‖

)2

4 ‖x ‖
,

∣∣ ‖x ‖ − 1
∣∣ ≤ t ≤ ‖x ‖+ 1,

0, 0 ≤ t ≤ ‖x ‖ − 1 or t ≥ ‖x ‖+ 1.

(18.136)

Figure 18.8 plots the solution as a function of time for several fixed values of r = ‖x ‖.
An observer sitting at the origin will see a linearly increasing light intensity followed by a
sudden decrease to 0. At other points inside the sphere, the decrease follows a parabolic
arc; if the observer is closer to the edge than the center, the parabolic portion will continue
to increase for a while before eventually tapering off. On the other hand, an observer sitting
outside the sphere will experience, after an initially dark period, a symmetrical, parabolic
increase to a maximal intensity and then decrease back to dark after a total time lapse
of 2. We also show a plot of u as a function of r for various fixed times in Figure 18.9.
Note that, up until time t = 1, the light spreads out while increasing in intensity near the
origin, after which the solution is of gradually decreasing magnitude, supported within the
domain lying between two concentric spheres of respective radii t− 1 and t + 1.

The solution described by formula (18.133) only handles initial velocities. What about
solutions reuslting from a nonzero initial displacement? Surprisingly, the answer is differ-
entiation! The key observation is that if u(t,x) is any (sufficiently smooth) solution to the
wave equation, so is its time derivative

v(t,x) =
∂u

∂t
(t,x).

This follows at once from differentiating both sides of the wave equation with respect to t
and using the equality of mixed partial derivatives. Physically, this implies that the velocity
of a wave obeys the same evolutionary principle as the wave itself, which is a manifestation
of the linearity and time-independence (autonomy) of the equation. Suppose u has initial
conditions

u(0,x) = f(x), ut(0,x) = g(x).

What are the initial conditions for its derivative v = ut? Clearly, its initial displacement

v(0,x) = ut(0,x) = g(x)
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Figure 18.8. Solution to the Wave Equation Solution due to
an Initial Concentrated Velocity.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = 0

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = .5

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = .9

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = 1.0

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = 1.1

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

t = 1.5

Figure 18.9. Solution to the Wave Equation Solution due to
an Initial Concentrated Velocity.

equals the initial velocity of u. As for its initial velocity, we have

∂v

∂t
=

∂2u

∂t2
= c2 ∆u

because we are assuming that u solves the wave equation. Thus, at the initial time

∂v

∂t
(0,x) = c2 ∆u(0,x) = c2 ∆f(x)
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equals c2 times the Laplacian of the initial displacement†. In particular, if u satisfies the
initial conditions

u(0,x) = 0, ut(0,x) = g(x), (18.137)

then v = ut satisfies the initial conditions

v(0,x) = g(x), vt(0,x) = 0. (18.138)

Thus, paradoxically, to solve the initial displacement problem we differentiate the initial
velocity solution (18.133) with respect to t, and hence

v(t,x) =
∂u

∂t
(t,x) =

∂

∂t

(
tMx

ct [ g ]
)

= Mx

ct [ g ] + c tMx

ct

[
∂g

∂n

]
, (18.139)

using our computation in (18.128). Therefore, v(t,x) is a linear combination of the mean
of the function g and the mean of its normal or radial derivative ∂g/∂n = ∂g/∂r, taken
over a sphere of radius c t centered at the point x. In particular, to obtain the solution
corresponding to a concentrated initial displacement,

F (0,x; ξ) = δ(x− ξ),
∂F

∂t
(0,x; ξ) = 0, (18.140)

we differentiate the solution (18.130), resulting in

F (t,x; ξ) =
∂G

∂t
(t,x; ξ) = −

δ ′
(
‖x− ξ ‖ − c t

)

4π ‖ ξ − x ‖
, (18.141)

which represents a spherically expanding doublet, cf. Figure 11.10. Thus, interestingly, a
concentrated initial displacement spawns an expanding spherical doublet wave, whereas a
concentrated initial velocity spawns a spherical singlet or delta wave.

Example 18.15. Let c = 1 for simplicity. Consider the initial displacement

u(0,x) = f(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1

along with zero initial velocity, modeling the effect of an instantaneously illuminated solid
ball. To obtain the solution, we differentiate (18.136) with respect to t, leading to

u(t,x) =





1, 0 ≤ t < 1− ‖x ‖,

‖x ‖ − t

2 ‖x ‖
,

∣∣ ‖x ‖ − 1
∣∣ ≤ t ≤ ‖x ‖+ 1,

0, 0 ≤ t < ‖x ‖ − 1 or t > 1 + ‖x ‖.

(18.142)

As illustrated in Figure 18.10, an observer sitting at the center of the ball will see a
constant light intensity until t = 1, at which time the solution suddenly goes dark. At

† A similar device is used to initiate the numerical solution method for the wave equation; see
Section 14.6.
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Figure 18.10. Solution to the Wave Equation due to
an Initial Concentrated Displacement.
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Figure 18.11. Solution to the Wave Equation due to
other points inside the ball, 0 < r < 1, the downwards jump in intensity arrives sooner,
and even goes below 0, followed by a further linear decrease, and finally a jump back
to quiescent. An observer placed outside the ball will experience, after an initially dark
period, a sudden increase in the light intensity, followed by a linear decrease to negative,
followed by a jump back up to darkness. The farther away from the source, the fainter
the light. In Figure 18.11 we plot the same solution as a function of r for different values
of t. Note the sudden appearnace of a 1/r singularity at the origin at time t = 1, due to
the focussing of the initial discontinuities in u over the entire unit sphere. Afterwards, the
residual disturbance moves off to ∞ while gradually decreasing in intensity.

Linearly combining the two solutions (18.134, 139) establishes Kirchhoff’s formula —
although it was first discovered by Poisson — which is the three-dimensional counterpart
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an Initial Concentrated Displacement.

to the d’Alembert’s solution formula for the wave equation.

Theorem 18.16. The solution to the initial value problem

utt = c2 ∆u, u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ R

3, (18.143)

for the wave equation in three-dimensional space is given by

u(t,x) =
∂

∂t

(
t Mx

ct [ f ]
)

+ t Mx

ct [ g ] = Mx

ct [ f ] + c tMx

ct

[
∂f

∂n

]
+ t Mx

ct [ g ] . (18.144)

Here, Mx

ct [ f ] denotes the average of the function f over a sphere of radius c t centered at

position x.

A crucially important consequence of the Kirchhoff solution formula is the cele-
brated Huygens’ Principle, which was first highlighted the pioneering seventeenth cen-
tury Dutch scientist Christiaan Huygens. Roughly, Huygens’ Principle states that, in
three-dimensional space, localized solutions to. the wave equation remain localized. More
concretely, (18.144) implis that the value of the solution at a point x and time t only
depends upon the values of the initial displacements and velocities at a distance c t away.
Thus, all signals propagate along the light cone

c2t2 = x2 + y2 + z2

in four-dimensional Minkowski space-time. For electromagnetic waves, this fact lies at the
foundation of special relativity. Physically, Huygens’ Principle means that the light that we
see at a given time t arrived from points at a distance exactly d = c t away at time t = 0.
In particular, a sharp, localized initial signal — whether initial displacement or initial
velocity — that is concentrated near a point produces a sharp, localized response that
remains concentrated on an ever expanding sphere surrounding the point. In our three-
dimensional universe, we only witness the light from an explosion for a brief moment, after
which if there is no subsequent light source, the view returns to darkness. Similarly, a
sharp sound remains sharply concentrated, with diminishing magnitude, as it propagates
through space. Remarkably, as we will show next, Huygens’ Principle does not hold in a
two dimensional universe! In the plane, concentrated impulses will be spread out as time
progresses.

Descent to Two Dimensions

So far, we have explicitly determined the solution to the wave equation in one- and
three-dimensional space. The two-dimensional case

utt = c2∆u = c2(uxx + uyy). (18.145)

is, counter-intuitively, more complicated! For instance, seeking a radially symmetric solu-
tion u(t, r) requires solving the partial differential equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r

)
(18.146)
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which, unlike its three-dimensional cousin (18.119), is not so easily integrated.

However, our solution to the three-dimensional problem can be easily adapted to
construct a solution using the so-called Method of Descent . Any solution u(t, x, y) to
the two-dimensional wave equation (18.145) can be viewed as a solution to the three-
dimensional wave equation (18.106) that does not depend upon the vertical z coordinate,
whence ∂u/∂z = 0. Clearly, if the three-dimensional initial data does not depend on z,
then the resulting solution u(t, x, y) will also be independent of z.

Consider first the zero initial displacement initial conditions

u(0, x, y) = 0,
∂u

∂t
(0, x, y) = g(x, y). (18.147)

We rewrite the solution formula (18.133) in the form of a surface integral over the sphere
Sct =

{
‖ ξ ‖ = c t

}
centered at the origin:

u(t,x) =
1

4πc2 t

∫ ∫

Sct

g(ξ) dS =
1

4πc2 t

∫ ∫

‖ ξ ‖=c t

g(x + ξ) dS. (18.148)

Imposing the condition that g(x, y) does not depend upon the z coordinate, we see that
the integrals over the upper and lower hemispheres

S+
ct =

{
‖ ξ ‖ = c t, ζ ≥ 0

}
, S−

ct =
{
‖ ξ ‖ = c t, ζ ≤ 0

}
,

are identical. As in (B.45), to evaluate the upper hemispherical integral, we parametrize
the upper hemisphere as the graph of

ζ =
√

c2 t2 − ξ2 − η2 over the disk Dct =
{

ξ2 + η2 ≤ c2 t2
}
,

We conclude that

u(t, x, y) =
1

2πc2 t

∫ ∫

S+

ct

g(x + ξ) dS =
1

2πc

∫ ∫

Dct

g(x + ξ, y + η)√
c2 t2 − ξ2 − η2

dξ dη (18.149)

solves the initial value problem (18.147). In particular, if we take the initial velocity

g(x, y) = δ(x− ξ) δ(y − η)

to be a concentrated impulse, then the resulting solution is

G(t, x, y; ξ, η) =





1

2πc
√

c2 t2 − (x− ξ)2 − (y − η)2
, (x− ξ)2 + (y − η)2 < c t,

0, (x− ξ)2 + (y − η)2 > c2 t2.
(18.150)

An observer placed at position x will first experience a concentrated displacement singu-
larity at time t = ‖x− ξ ‖/c. However, in contrast to the three-dimensional solution, even
after the impulse passes by, the observer will continue to experience a decreasing, but non-
zero signal of magnitude roughly proportional to 1/t. In Figure 18.12, we plot the solution
corresponding to a concentrated impulse at the origin, with unit wave speed c = 1. The
first line shows the displacement at three different times as a function of r = ‖x ‖; note the
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Figure 18.12. Solution to the Two-Dimensional Wave Equation
for a Concentrated Impulse.

initial singularity, indicated by a spike in the graph, is followed by a progressively smaller
residual displacement. The second line plots intensity as a function of t at three different
radii; the further away from the initial impulse, the faster the residual displacement decays
back to 0 — although it never entirely disappears.

Similarly, the solution to the initial displacement conditions

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = 0, (18.151)

can be obtained by differentiation with respect to t, and so

u(t, x, y) =
∂

∂t

(
1

2πc

∫ ∫

Dct

f(x + ξ, y + η)√
c2 t2 − ξ2 − η2

dξ dη

)
. (18.152)

Again, for a concentrated impulse in the initial displacement, an observer will witness,
after a certain time lapse, an abrupt impulse passing by that is followed by a progressively
decaying residual effect. The general solution to the two-dimensional wave equation on all
of R

2 is a linear combination of these two types of solutions (18.149, 152).

Thus, Huygens’ Principle is not valid in a two-dimensional universe. The solution
to the two-dimensional wave equation at a point x at time t depends upon the initial
displacement and velocity on the entire disk of radius r t centered at the point, and not
just on the points a distance c t away. So a two-dimensional creature would experience
not only a initial effect of any sound or light wave but also an “afterglow” with slowly
diminishing magnitude. It would be like living in a permanent echo chamber, and so
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understanding and acting upon sensory phenomena would more challenging. In general,
Huygens’ principle is only valid in odd-dimensional spaces; see also [17] for recent advances
in the classification of partial differential equations that admit a Huygens’ principle.

Remark : Since the solutions to the two-dimensional wave equation can be interpreted
as three-dimensional solutions with no z dependence, a concentrated delta impulse in the
two-dimensional wave equation would correspond to a concentrated impulse along an entire
verical line in three dimensions. If light starts propagating from the line at t = 0, after the
initial signal reaches us, we will continue to receive light from points that lie progressively
farther away along the line, and this accounts for the two-dimensional afterglow.

18.7. The Schrödinger Equation and the Hydrogen Atom.

A hydrogen atom consists of a single electron, of mass m and charge e, circling an
atomic nucleus in three-dimensional space. As a result of quantization, the Schrödinger
equation governing the dynamical behavior of the electron around the nucleus takes the
explicit form

i ~
∂u

∂t
= −

~
2

2m
∆u−

e2

r
u = −

~
2

2m

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂y2

)
−

e2

√
x2 + y2 + z2

u, (18.153)

corresponding to the (attractive) potential V (x, y, z) = e2/r. (This assumes the nucleus
consists of a single proton; otherwise, one needs to multiply the potential V (r) by Z, the
atomic number of the nucleus, but with a silngloe electon. Incidentally, the Hamiltonians
for multi-electron atoms are not hard to write down, but solving the associated Schrödinger
equation is much more complicated, and still today a challenge for numerical algorithms
on supercomputers.

According to the preceding analysis, the normal mode solutions have the form

u(t, x, y, z) = e i λ t/~v(x),

where v is an eigenfunction of the Hamiltonian operator with eigenvalue λ, and hence

~
2

2m
∆u +

(
λ +

e2

r

)
u = 0. (18.154)

The bound states of th atom correspond to the non-zero solutions to the eigenvalue problem
with bounded L2 norm:

‖u ‖2 =<∞.

The eigenvalue λ specifies the energy of the bound states, and it can be shown that these
only occur at negative energy levels: λ < 0. The bound states or eigenfunctions are not

complete; we will leave the discussion of the continuous spectrum or scattering states to a
more advanced treatment, [127, 149]. This is related to the fact that the Hamiltonian is
not positive definite!

We begin by rewriting the eigenvalue problem (18.154) in spherical coordinates:

~
2

2m

(
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂ϕ2
+

cos ϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2

)
+

(
λ +

e2

r

)
u = 0.

(18.155)
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We then separate off the radial coordinate, setting

u(r, ϕ, θ) = p(r)w(ϕ, θ).

The angular component satisfies the spherical Helmholtz equation

∆S w + µw =
∂2w

∂ϕ2
+

cos ϕ

sinϕ

∂w

∂ϕ
+

1

sin2 ϕ

∂2w

∂θ2
+ µw = 0,

that we already solved. The eigensolutions are spherical harmopnics which, because the
quantum mechanical solutions are intrinsically complex-valued, we take in the complex
form (18.41). Thus, the eigenvalue

µ = l (l + 1), where the integer l = 0, 1, 2, . . . (18.156)

is known as the angular quantum number , has a total of 2 l + 1 linearly independent
eigenfunctions

Ym
l (θ, ϕ) = Pm

l (cosϕ) e i m θ,
n = 0, 1, 2, . . . ,

m = −l,−l + 1, . . . , l.
(18.157)

The radial eqaution corresponding to the separation constant (18.156) is

~
2

2m

(
d2p

dr2
+

2

r

dp

dr

)
+

(
λ +

e2

r
−

l (l + 1)

r2

)
p = 0. (18.158)

To eliminate the physical parameters, let’s rescale the radial coordinate by setting

s = α r, where α =

√
−

8mλ

~2
, (18.159)

where we use the fact that λ < 0. The resulting ordinary differential equation for

q(s) = p
( s

α

)

is
d2q

ds2
+

2

s

dq

ds
−

(
1

4
−

n

s
+

l (l + 1)

s2

)
q = 0, (18.160)

where

n =
2me2

α ~2
=

2me2

α ~2

√
−

m

2λ
. (18.161)

Since we are searching for bound states, the solutions are define on 0 ≤ s <∞, and must
be bounded at s = 0 and go to zero as s → ∞. The proof of the following resulot is
outlined in the exercises in Chapter C.
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Theorem 18.17. The bound state solutions of (18.160) only occur when n ≥ l + 1
is an ilnteger, and are given by

q(s) = sl e−s/2 L2 l+1
n−l−1(s), (18.162)

where

Lk
j (s) =

k∑

i=0

(−1)i

i !

(
j + k

j − i

)
xi, j, k = 0, 1, 2, . . . , (18.163)

are the associated Laguerre polynomials.

The resulting integer n, whose physical value was given in (18.161), is known as the
principle quantum number . We further note that the scaling factor in (18.159) can be
written as

α =
2me2

n ~2
=

2

na
where a =

~
2

me2
≈ .529× 10−10meter

is called the Bohr radius, in honor of the pioneering Danish quantum physicist Niels Bohr.
Reverting to physical coordinates, the bound states (18.162) become, up to an inessential
constant multiple, the radial wave functions

pn
l (r) =

(
2r

na

)l

e−r/(na) L2 l+1
n−l−1

(
2r

na

)
. (18.164)

Comining them with the spherical harmonics (18.157) results in

Ulmn(r, ϕ, θ) = pn
l (r)Ym

l (θ, ϕ) (18.165)

that serve to span the eigenstates of the atom. These eigenstates depend upon three
integers:

• l = 0, 1, 2, 3, . . . : the angular quantum number;

• n = l + 1, l + 2, l + 3, . . . : the principle quantum number;

• m = − l,− l + 1, . . . , l − 1, l: the magnetic quantum number.

The energy is the eigenvalue

λn = −
e4 m

2 ~2

1

n2
, n = 1, 2, 3, . . . .

The fact that the ratios between the higher energy levels and the lowest level are inverse
squares of integers, λn/λ1 = 1/n2, was first established by Bohr. The nth energy level has
a total of

n−1∑

l=0

(2 l + 1) = n2

bound states with that energy.

The number of spherical harmonics governs the energy levels or orbital shells occupied
by electrons in the hydrogen atom. In chemistry, the electron levels are indexed by the
angular quantum number, i.e., the order l of the spherical harmonic, and traditionally

5/1/06 1035 c© 2006 Peter J. Olver



labeled by a letter in the sequence p, s, d, f, . . . . Thus, the two order l = 0 spherical
harmonics correspond to the p shells; the six harmonics of order l = 1 are the s shells, and
so on. Since electrons are allowed to have one of two possible spins, the Pauli exclusion
principle tells us that each energy shell can be occupied by at most two electrons. Thus,
the number of electrons that can reside in the nth energy level of an atom is 2(2 l + 1),
the same as the number of linearly independent solutions to the wave equation associated
with a given energy level. The configuration of energy shells and electrons in atoms are
responsible for the periodic table. Thus, hydrogen has a single electron in the p shell.
Helium has two electrons in the p shell. Lithium has 3 electrons, with two of them filling
the first p shell and the third in the second p shell. Neon has 10 electrons filling the two p
and first three s shells. And so on. The chemical properties of the elements are, to a very
large extent, determined by the placement of the electrons within the different shells. See
[Chem] for further details.

Continuous spectrum and scattering states.
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Chapter 19

Nonlinear Systems

Nonlinearity is ubiquitous in physical phenomena. Fluid and plasma mechanics, gas
dynamics, elasticity, relativity, chemical reactions, combustion, ecology, biomechanics, and
many, many other phenomena are all governed by inherently nonlinear equations. (The one
notable exception is quantum mechanics, which is a fundamentally linear theory. Recent
attempts at grand unification of all fundamental physical theories, such as string theory
and conformal field theory, [83], do venture into the nonlinear wilderness.) For this reason,
an ever increasing proportion of modern mathematical research is devoted to the analysis
of nonlinear systems.

Why, then, have we devoted the overwhelming majority of this text to linear mathe-
matics? The facile answer is that nonlinear systems are vastly more difficult to analyze. In
the nonlinear regime, many of the most basic questions remain unanswered: existence and
uniqueness of solutions are not guaranteed; explicit formulae are difficult to come by; linear
superposition is no longer available; numerical approximations are not always sufficiently
accurate; etc., etc. A more intelligent answer is that a thorough understanding of linear
phenomena and linear mathematics is an essential prerequisite for progress in the nonlinear
arena. Therefore, in this introductory text on applied mathematics, we have no choice but
to first develop the proper linear foundations in sufficient depth before we can realistically
confront the untamed nonlinear wilderness. Moreover, many important physical systems
are “weakly nonlinear”, in the sense that, while nonlinear effects do play an essential role,
the linear terms tend to dominate the physics, and so, to a first approximation, the system
is essentially linear. As a result, such nonlinear phenomena are best understood as some
form of perturbation of their linear approximations. The truly nonlinear regime is, even
today, only sporadically modeled and even less well understood.

The advent of powerful computers has fomented a veritable revolution in our under-
standing of nonlinear mathematics. Indeed, many of the most important modern analytical
techniques drew their inspiration from early computer forays into the uncharted nonlinear
wilderness. However, despite dramatic advances in both hardware capabilities and so-
phisticated mathematical algorithms, many nonlinear systems — for instance, Einsteinian
gravitation — still remain beyond the capabilities of today’s computers.

Space limitations restrict us to providing just a brief overview of some of the most
important ideas, mathematical techniques, and new physical phenomena that arise when
venturing into the nonlinear realm. In this chapter, we start with iteration of nonlinear
functions. Building on our experience with iterative linear systems, as developed in Chap-
ter 10, we will discover that functional iteration, when it converges, provides a powerful
mechanism for solving equations and for optimization. On the other hand, even very
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simple nonconvergent nonlinear iterative systems may admit remarkably complex, chaotic
behavior. The second section is devoted to basic solution techniques for nonlinear systems,
and includes bisection, general iteration, and the very powerful Newton Method. The third
section is devoted to finite-dimensional optimization principles, i.e., the minimization or
maximization of nonlinear functions. Numerical optimization procedures rely on iterative
procedures, and we concentrate on those associated with gradient descent.

19.1. Iteration of Functions.

As first noted in Chapter 10, iteration, meaning repeated application of a function, can
be viewed as a discrete dynamical system in which the continuous time variable has been
“quantized” to assume integer values. Even iterating a very simple quadratic scalar func-
tion can lead to an amazing variety of dynamical phenomena, including multiply-periodic
solutions and genuine chaos. Nonlinear iterative systems arise not just in mathematics,
but also underlie the growth and decay of biological populations, predator-prey interac-
tions, spread of communicable diseases such as Aids, and host of other natural phenomena.
Moreover, many numerical solution methods — for systems of algebraic equations, ordi-
nary differential equations, partial differential equations, and so on — rely on iteration,
and so the theory underlies the analysis of convergence and efficiency of such numerical
approximation schemes.

In general, an iterative system has the form

u(k+1) = g(u(k)), (19.1)

where g: Rn → R
n is a real vector-valued function. (One can similarly treat iteration of

complex-valued functions g: Cn → C
n, but, for simplicity, we only deal with real systems

here.) A solution is a discrete collection of points† u(k) ∈ R
n, in which the index k =

0, 1, 2, 3, . . . takes on non-negative integer values. Chapter 10 dealt with the case when
g(u) = Au is a linear function, necessarily given by multiplication by an n× n matrix A.
In this chapter, we enlarge our scope to the nonlinear case.

Once we specify the initial iterate,

u(0) = c, (19.2)

then the resulting solution to the discrete dynamical system (19.1) is easily computed:

u(1) = g(u(0)) = g(c), u(2) = g(u(1)) = g(g(c)), u(3) = g(u(2)) = g(g(g(c))), . . .

and so on. Thus, unlike continuous dynamical systems, the existence and uniqueness of
solutions is not an issue. As long as each successive iterate u(k) lies in the domain of
definition of g one merely repeats the process to produce the solution,

u(k) =

k times︷ ︸︸ ︷
g ◦ · · · ◦g (c), k = 0, 1, 2, . . . ,

(19.3)

† The superscripts on u
(k) refer to the iteration number, and do not denote derivatives.
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which is obtained by composing the function g with itself a total of k times. In other
words, the solution to a discrete dynamical system corresponds to repeatedly pushing the
g key on your calculator. For example, entering 0 and then repeatedly hitting the cos key
corresponds to solving the iterative system

u(k+1) = cosu(k), u(0) = 0. (19.4)

The first 10 iterates are displayed in the following table:

k 0 1 2 3 4 5 6 7 8 9

u(k) 0 1 .540302 .857553 .65429 .79348 .701369 .76396 .722102 .750418

For simplicity, we shall always assume that the vector-valued function g: Rn → R
n is

defined on all of R
n; otherwise, we must always be careful that the successive iterates u(k)

never leave its domain of definition, thereby causing the iteration to break down. To avoid
technical complications, we will also assume that g is at least continuous; later results rely
on additional smoothness requirements, e.g., continuity of its first and second order partial
derivatives.

While the solution to a discrete dynamical system is essentially trivial, understanding
its behavior is definitely not. Sometimes the solution converges to a particular value —
the key requirement for numerical solution methods. Sometimes it goes off to ∞, or, more
precisely, the norms† of the iterates are unbounded: ‖u(k) ‖ → ∞ as k → ∞. Sometimes
the solution repeats itself after a while. And sometimes the iterates behave in a seemingly
random, chaotic manner — all depending on the function g and, at times, the initial
condition c. Although all of these cases may arise in real-world applications, we shall
mostly concentrate upon understanding convergence.

Definition 19.1. A fixed point or equilibrium of a discrete dynamical system (19.1)
is a vector u? ∈ R

n such that
g(u?) = u?. (19.5)

We easily see that every fixed point provides a constant solution to the discrete dy-
namical system, namely u(k) = u? for all k. Moreover, it is not hard to prove that any
convergent solution necessarily converges to a fixed point.

Proposition 19.2. If a solution to a discrete dynamical system converges,

lim
k→∞

u(k) = u?,

then the limit u? is a fixed point.

Proof : This is a simple consequence of the continuity of g. We have

u? = lim
k→∞

u(k+1) = lim
k→∞

g(u(k)) = g

(
lim

k→∞
u(k)

)
= g(u?),

the last two equalities following from the continuity of g. Q.E.D.

† In view of the equivalence of norms on finite-dimensional vector spaces, cf. Theorem 3.17,
any norm will do here.
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For example, continuing the cosine iteration (19.4), we find that the iterates gradually
converge to the value u? ≈ .739085, which is the unique solution to the fixed point equation

cosu = u.

Later we will see how to rigorously prove this observed behavior.

Of course, not every solution to a discrete dynamical system will necessarily converge,
but Proposition 19.2 says that if it does, then it must converge to a fixed point. Thus, a
key goal is to understand when a solution converges, and, if so, to which fixed point —
if there is more than one. (In the linear case, only the actual convergence is a significant
issues since most linear systems admit exactly one fixed point, namely u? = 0.)

Fixed points are roughly divided into three classes:

• asymptotically stable, with the property that all nearby solutions converge to it,

• stable, with the property that all nearby solutions stay nearby, and

• unstable, almost all of whose nearby solutions diverge away from the fixed point.

Thus, from a practical standpoint, convergence of the iterates of a discrete dynamical
system requires asymptotic stability of the fixed point. Examples will appear in abundance
in the following sections.

Scalar Functions

As always, the first step is to thoroughly understand the scalar case, and so we begin
with a discrete dynamical system

u(k+1) = g(u(k)), u(0) = c, (19.6)

in which g: R→ R is a continuous, scalar-valued function. As noted above, we will assume,
for simplicity, that g is defined everywhere, and so we do not need to worry about whether
the iterates u(0), u(1), u(2), . . . are all well-defined.

The linear case g(u) = au was treated in Section 10.1 — following equation (10.2).
The simplest “nonlinear” case is that of an affine function

g(u) = au + b, (19.7)

leading to an affine discrete dynamical system

u(k+1) = au(k) + b. (19.8)

The only fixed point is the solution to

u? = g(u?) = au? + b, namely, u? =
b

1− a
. (19.9)

The formula for u? requires that a 6= 1, and, indeed, the case a = 1 has no fixed point, as
the reader can easily confirm; see Exercise .

Since we already know the value of u?, we can readily analyze the differences

e(k) = u(k) − u?, (19.10)
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Figure 19.1. Fixed Points.

between successive iterates and the fixed point. Observe that, the smaller e(k) is, the closer
u(k) is to the desired fixed point. In many applications, the iterate u(k) is viewed as an
approximation to the fixed point u?, and so e(k) is interpreted as the error in the kth

iterate. Subtracting the fixed point equation (19.9) from the iteration equation (19.8), we
find

u(k+1) − u? = a(u(k) − u?).

Therefore the errors e(k) are related by a linear iteration

e(k+1) = ae(k), and hence e(k) = ake(0). (19.11)

Therefore, as we already demonstrated in Section 10.1, the solutions to this scalar linear
iteration converge:

e(k) −→ 0 and hence u(k) −→ u?, if and only if | a | < 1.

This is the criterion for asymptotic stability of the fixed point, or, equivalently, convergence
of the affine iterative system (19.8). The magnitude of a determines the rate of convergence,
and the closer it is to 0, the faster the iterates approach the fixed point.

Example 19.3. The affine function

g(u) = 1
4 u + 2

leads to the iterative scheme
u(k+1) = 1

4 u(k) + 2.

Starting with the initial condition u(0) = 0, the ensuing values are

k 1 2 3 4 5 6 7 8

u(k) 2.0 2.5 2.625 2.6562 2.6641 2.6660 2.6665 2.6666
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Figure 19.2. Tangent Line Approximation.

Thus, after 8 iterations, the iterates have produced the fixed point u? = 8
3 to 4 decimal

places. The rate of convergence is 1
4 , and indeed

| e(k) | = |u(k) − u? | =
(

1
4

)k
|u(0) − u? | = 8

3

(
1
4

)k
−→ 0 as k −→ ∞.

Let us now turn to the fully nonlinear case. First note that the fixed points of g(u)
correspond to the intersections of its graph with the graph of the function i(u) = u. For
instance Figure 19.1 shows the graph of a function that has 3 fixed points, labeled u?

1, u
?
2, u

?
3.

In general, near any point in its domain, a (smooth) nonlinear function can be well
approximated by its tangent line, which repre4sents the graph of an affine function; see
Figure 19.2. Therefore, if we are close to a fixed point u?, then we might expect the
iterative system based on the nonlinear function g(u) to behave very much like that of its
affine tangent line approximation. And, indeed, this intuition turns out to be essentially
correct. This result forms our first concrete example of linearization, in which the analysis
of a nonlinear system is based on its linear (or, more precisely, affine) approximation.

The explicit formula for the tangent line to g(u) near the fixed point u = u? = g(u?)
is

g(u) ≈ g(u?) + g′(u?)(u− u?) ≡ au + b, (19.12)

where
a = g′(u?), b = g(u?)− g′(u?)u? =

(
1− g′(u?)

)
u?.

Note that u? = b /(1 − a) remains a fixed point for the affine approximation: au? + b =
u?. According to the preceding discussion, the convergence of the iterates for the affine
approximation is governed by the size of the coefficient a = g′(u?). This observation
inspires the basic stability criterion for fixed points of scalar iterative systems.

Theorem 19.4. Let g(u) be a continuously differentiable scalar function. Suppose

u? = g(u?) is a fixed point. If | g′(u?) | < 1, then u? is an asymptotically stable fixed

point, and hence any sequence of iterates u(k) which starts out sufficiently close to u? will

converge to u?. On the other hand, if | g′(u?) | > 1, then u? is an unstable fixed point, and
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the only iterates which converge to it are those that land exactly on it, i.e., u(k) = u? for

some k ≥ 0.

Proof : The goal is to prove that the errors e(k) = u(k) − u? between the iterates and
the fixed point tend to 0 as k → ∞. To this end, we try to estimate e(k+1) in terms of
e(k). According to (19.6) and the Mean Value Theorem C.2 from calculus,

e(k+1) = u(k+1) − u? = g(u(k))− g(u?) = g′(v) (u(k) − u?) = g′(v) e(k), (19.13)

for some v lying between u(k) and u?. By continuity, if | g′(u?) | < 1 at the fixed point,
then we can choose δ > 0 and | g′(u?) | < σ < 1 such that the estimate

| g′(v) | ≤ σ < 1 whenever | v − u? | < δ (19.14)

holds in a (perhaps small) interval surrounding the fixed point. Suppose

| e(k) | = |u(k) − u? | < δ.

Then the point v in (19.13), which is closer to u? than u(k), satisfies (19.14). Therefore,

|u(k+1) − u? | ≤ σ |u(k) − u? |, and hence | e(k+1) | ≤ σ | e(k) |. (19.15)

In particular, since σ < 1, we have |u(k+1) − u? | < δ, and hence the subsequent iterate
u(k+1) also lies in the interval where (19.14) holds. Repeating the argument, we conclude
that, provided the initial iterate satisfies

| e(0) | = |u(0) − u? | < δ,

the subsequent errors are bounded by

e(k) ≤ σk e(0), and hence e(k) = |u(k) − u? | −→ 0 as k →∞,

which completes the proof of the theorem in the stable case.

The proof in unstable case is left as Exercise for the reader. Q.E.D.

Remark : The constant σ governs the rate of convergence of the iterates to the fixed
point. The closer the iterates are to the fixed point, the smaller we can choose δ in (19.14),
and hence the closer we can choose σ to | g′(u?) |. Thus, roughly speaking, | g′(u?) | governs
the speed of convergence, once the iterates get close to the fixed point. This observation
will be developed more fully in the following subsection.

Remark : The cases when g′(u?) = ±1 are not covered by the theorem. For a linear
system, such fixed points are stable, but not asymptotically stable. For nonlinear systems,
more detailed knowledge of the nonlinear terms is required in order to resolve the status —
stable or unstable — of the fixed point. Despite their importance in certain applications,
we will not try to analyze such borderline cases any further here.
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Figure 19.3. Planetary Orbit.

Example 19.5. Given constants ε,m, the trigonometric equation

u = m + ε sin u (19.16)

is known as Kepler’s equation. It arises in the study of planetary motion, in which 0 < ε < 1
represents the eccentricity of an elliptical planetary orbit, u is the eccentric anomaly ,
defined as the angle formed at the center of the ellipse by the planet and the major axis,
and m = 2π t /T is its mean anomaly , which is the time, measured in units of T/(2π)
where T is the period of the orbit, i.e., the length of the planet’s year, since perihelion or
point of closest approach to the sun; see Figure 19.3.

The solutions to Kepler’s equation are the fixed points of the discrete dynamical
system based on the function

g(u) = m + ε sin u.

Note that
| g′(u) | = | ε cos u | = | ε | < 1, (19.17)

which automatically implies that the as yet unknown fixed point is stable. Indeed, Exercise
implies that condition (19.17) is enough to prove the existence of a unique stable fixed

point. In the particular case m = ε = 1
2 , the result of iterating u(k+1) = 1

2 + 1
2 sin u(k)

starting with u(0) = 0 is

k 1 2 3 4 5 6 7 8 9

u(k) .5 .7397 .8370 .8713 .8826 .8862 .8873 .8877 .8878

After 13 iterations, we have converged sufficiently close to the solution (fixed point) u? =
.887862 to have computed its value to 6 decimal places. Remark : In Exercise , we outline
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Figure 19.4. Graph of a Contraction.

Bessel’s explicit Fourier series solution to Kepler’s equation that led him to the original
definition of Bessel functions.

Inspection of the proof of Theorem 19.4 reveals that we never really used the differ-
entiability of g, except to verify the inequality

| g(u)− g(u?) | ≤ σ |u− u? | for some fixed σ < 1. (19.18)

A function that satisfies (19.18) for all nearby u is called a contraction at the point u?.
Any function g(u) whose graph lies between the two lines

L±(u) = g(u?)± σ (u− u?) for some σ < 1,

for all u sufficiently close to u?, i.e., such that |u− u? | < δ for some δ > 0, defines a
contraction, and hence fixed point iteration starting with |u(0) − u? | < δ will converge to
u?; see Figure 19.4. In particular, Exercise asks you to prove that any function that is
differentiable at u? with | g′(u?) | < 1 defines a contraction at u?.

Example 19.6. The simplest truly nonlinear example is a quadratic polynomial.
The most important case is the so-called logistic map

g(u) = λu(1− u), (19.19)

where λ 6= 0 is a fixed non-zero parameter. (The case λ = 0 is completely trivial. Why?)
In fact, an elementary change of variables can make any quadratic iterative system into
one involving a logistic map; see Exercise .

The fixed points of the logistic map are the solutions to the quadratic equation

u = λu(1− u), or λu2 − λu + 1 = 0.
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Using the quadratic formula, we conclude that g(u) has two fixed points:

u?
1 = 0, u?

2 = 1−
1

λ
.

Let us apply Theorem 19.4 to determine their stability. The derivative is

g′(u) = λ− 2λu, and so g′(u?
1) = λ, g′(u?

2) = 2− λ.

Therefore, if |λ | < 1, the first fixed point is stable, while if 1 < λ < 3, the second fixed
point is stable. For λ < −1 or λ > 3 neither fixed point is stable, and we expect the
iterates to not converge at all.

Numerical experiments with this example show that it is the source of an amazingly
diverse range of behavior, depending upon the value of the parameter λ. In the accompa-
nying Figure 19.5, we display the results of iteration starting with initial point u(0) = .5
for several different values of λ; in each plot, the horizontal axis indicates the iterate num-
ber k and the vertical axis the iterate valoue u(k) for k = 0, . . . , 100. As expected from
Theorem 19.4, the iterates converge to one of the fixed points in the range −1 < λ < 3,
except when λ = 1. For λ a little bit larger than λ1 = 3, the iterates do not converge to
a fixed point. But it does not take long for them to settle down, switching back and forth
between two particular values. This behavior indicates the exitence of a (stable) period 2
orbit for the discrete dynamical system, in accordance with the following definition.

Definition 19.7. A period k orbit of a discrete dynamical system is a solution that
satisfies u(n+k) = u(n) for all n = 0, 1, 2, . . . . The (minimal) period is the smallest positive
value of k for which this condition holds.

Thus, a fixed point
u(0) = u(1) = u(2) = · · ·

is a period 1 orbit. A period 2 orbit satisfies

u(0) = u(2) = u(4) = · · · and u(1) = u(3) = u(5) = · · · ,

but u(0) 6= u(1), as otherwise the minimal period would be 1. Similarly, a period 3 orbit
has

u(0) = u(3) = u(6) = · · · , u(1) = u(4) = u(7) = · · · , u(2) = u(5) = u(8) = · · · ,

with u(0), u(1), u(2) distinct. Stability of a period k orbit implies that nearby iterates
converge to this periodic solution.

For the logistic map, the period 2 orbit persists until λ = λ2 ≈ 3.4495, after which
the iterates alternate between four values — a period 4 orbit. This again changes at
λ = λ3 ≈ 3.5441, after which the iterates end up alternating between eight values. In fact,
there is an increasing sequence of values

3 = λ1 < λ2 < λ3 < λ4 < · · · ,

where, for any λn < λ ≤ λn+1, the iterates eventually follow a period 2n orbit. Thus, as λ
passes through each value λn the period of the orbit goes from 2n to 2 ·2n = 2n+1, and the
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Figure 19.5. Logistic Iterates.

discrete dynamical system experiences a bifurcation. The bifurcation values λn are packed
closer and closer together as n increases, piling up on an eventual limiting value

λ? = lim
n→∞

λn ≈ 3.5699,

at which point the orbit’s period has, so to speak, become infinitely large. The entire
phenomena is known as a period doubling cascade.

Interestingly, the ratios of the distances between successive bifurcation points ap-
proaches a well-defined limit,

λn+2 − λn+1

λn+1 − λn

−→ 4.6692 . . . , (19.20)

known as Feigenbaum’s constant . In the 1970’s, the American physicist Mitchell Feigen-
baum, [64], discovered that similar period doubling cascades appear in a broad range of
discrete dynamical systems. Even more remarkably, in almost all cases, the corresponding
ratios of distances between bifurcation points has the same limiting value. Feigenbaum’s
experimental observations were rigorously proved by Oscar Lanford in 1982, [123].
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After λ passes the limiting value λ?, all hell breaks loose. The iterates become com-
pletely chaotic†, moving at random over the interval [0, 1]. But this is not the end of
the story. Embedded within this chaotic regime are certain small ranges of λ where the
system settles down to a stable orbit, whose period is no longer necessarily a power of
2. In fact, there exist values of λ for which the iterates settle down to a stable orbit of
period k for any positive integer k. For instance, as λ increases past λ3,? ≈ 3.83, a period
3 orbit appears over a small range of values, after which, as λ increses slightly further,
there is a period doubling cascade where period 6, 12, 24, . . . orbits successively appear,
each persisting on a shorter and shorter range of parameter values, until λ passes yet an-
other critical value where chaos breaks out yet again. There is a well-prescribed order in
which the periodic orbits make their successive appearance, and each odd period k orbit
is followed by a very closely spaced sequence of period doubling bifurcations, of periods
2n k for n = 1, 2, 3, . . . , after which the iterates revert to completely chaotic behavior until
the next periodic case emerges. The ratios of distances between bifurcation points always
have the same Feigenbaum limit (19.20). Finally, these periodic and chaotic windows all
pile up on the ultimate parameter value λ?

? = 4. And then, when λ > 4, all the iterates go
off to ∞, and the system ceases to be interesting.

The reader is encouraged to write a simple computer program and perform some
numerical experiments. In particular, Figure 19.6 shows the asymptotic behavior of the
iterates for values of the parameter in the interesting range 2 < λ < 4. The horizontal
axis is λ, and the marked points show the ultimate fate of the iteration for the given
value of λ. For instance, each point the single curve lying above the smaller values of
λ represents a stable fixed point; this bifurcates into a pair of curves representing stable

† The term “chaotic” does have a precise mathematical definition, but the reader can take it
more figuratively for the purposes of this elementary exposition.
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period 2 orbits, which then bifurcates into 4 curves representing period 4 orbits, and so
on. Chaotic behavior is indicated by a somewhat random pattern of points lying above the
value of λ. To plot this figure, we ran the logistic iteration u(n) for 0 ≤ n ≤ 100, discarded
the first 50 points, and then plotted the next 50 iterates u(51), . . . , u(100). Investigation of
the fine detailed structure of the logistic map requires yet more iterations with increased
numerical accuracy. In addition one should discard more of the initial iterates so as to give
the system enough time to settle down to a stable periodic orbit or, alternatively, continue
in a chaotic manner.

Remark : So far, we have only looked at real scalar iterative systems. Complex discrete
dynamical systems display yet more remarkable and fascinating behavior. The complex
version of the logistic iteration equation leads to the justly famous Julia and Mandelbrot
sets, [125], with their stunning, psychedelic fractal structure, [147].

The rich range of phenomena in evidence, even in such extremely simple nonlinear
iterative systems, is astounding. While intimations first appeared in the late nineteenth
century research of the influential French mathematician Henri Poincaré, serious investi-
gations were delayed until the advent of the computer era, which precipitated an explosion
of research activity in the area of dynamical systems. Similar period doubling cascades
and chaos are found in a broad range of nonlinear systems, [7], and are often encountered
in physical applications, [130]. A modern explanation of fluid turbulence is that it is a
(very complicated) form of chaos, [7].

Quadratic Convergence

Let us now return to the more mundane case when the iterates converge to a stable
fixed point of the discrete dynamical system. In applications, we use the iterates to compute
a precise† numerical value for the fixed point, and hence the efficiency of the algorithm
depends on the speed of convergence of the iterates.

According to the remark following the proof Theorem 19.4, the convergence rate of
an iterative system is essentially governed by the magnitude of the derivative | g ′(u?) | at
the fixed point. The basic inequality (19.15) for the errors e(k) = u(k) − u?, namely

| e(k+1) | ≤ σ | e(k) |,

is known as a linear convergence estimate. It means that, once the iterates are close to
the fixed point, the error decreases by a factor of (at least) σ ≈ | g′(u?) | at each step. If
the kth iterate u(k) approximates the fixed point u? correctly to m decimal places, so its
error is bounded by

| e(k) | < .5× 10−m,

then the (k + 1)st iterate satisfies the error bound

| e(k+1) | ≤ σ | e(k) | < .5× 10−m σ = .5× 10−m+log10 σ.

† The degree of precision is to be specified by the user and the application.
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More generally, for any j > 0,

| e(k+j) | ≤ σj | e(k) | < .5× 10−m σj = .5× 10−m+j log10 σ,

which means that the (k + j)th iterate u(k+j) has at least‡

m− j log10 σ = m + j log10 σ−1

correct decimal places. For instance, if σ = .1 then each new iterate produces one new
decimal place of accuracy (at least), while if σ = .9 then it typically takes 22 ≈ −1/ log10 .9
iterates to produce just one additional accurate digit!

This means that there is a huge advantage — particularly in the application of iterative
methods to the numerical solution of equations — to arrange that | g′(u?) | be as small as
possible. The fastest convergence rate of all will occur when g′(u?) = 0. In fact, in such a
happy situation, the rate of convergence is not just slightly, but dramatically faster than
linear.

Theorem 19.8. Suppose that g ∈ C2, and u? = g(u?) is a fixed point such that

g′(u?) = 0. Then, for all iterates u(k) sufficiently close to u?, the errors e(k) = u(k) − u?

satisfy the quadratic convergence estimate

| e(k+1) | ≤ τ | e(k) |2 (19.21)

for some constant τ > 0.

Proof : Just as that of the linear convergence estimate (19.15), the proof relies on
approximating g(u) by a simpler function near the fixed point. For linear convergence, an
affine approximation sufficed, but here we require a higher order approximation. Thus, we
replace the mean value formula (19.13) by the first order Taylor expansion

g(u) = g(u?) + g′(u?) (u− u?) + 1
2 g′′(w) (u− u?)2, (19.22)

where the final error term depends on an (unknown) point w that lies between u and u?;
see (C.10) for details. At a fixed point, the constant term is g(u?) = u?. Furthermore,
under our hypothesis g′(u?) = 0, and so (19.22) reduces to

g(u)− u? = 1
2 g′′(w) (u− u?)2.

Therefore,
| g(u)− u? | ≤ τ |u− u? |2, (19.23)

where τ is chosen so that
1
2 | g

′′(w) | ≤ τ (19.24)

for all w sufficiently close to u?. Therefore, the magnitude of τ is governed by the size
of the second derivative of the iterative function g(u) near the fixed point. We use the
inequality (19.23) to estimate the error

| e(k+1) | = |u(k+1) − u? | = | g(u(k))− g(u?) | ≤ τ |u(k) − u? |2 = τ | e(k) |2,

which establishes the quadratic convergence estimate (19.21). Q.E.D.

‡ Note that since σ < 1, the logarithm log10 σ−1 = − log10 σ > 0 is positive.
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Let us see how the quadratic estimate (19.21) speeds up the convergence rate. Fol-
lowing our earlier argument, suppose u(k) is correct to m decimal places, so

| e(k) | < .5× 10−m.

Then (19.21) implies that

| e(k+1) | < .5× (10−m)2 τ = .5× 10−2m+log10 τ ,

and so u(k+1) has 2m − log10 τ accurate decimal places. If τ ≈ | g′′(u?) | is of moderate
size, we have essentially doubled the number of accurate decimal places in just a single
iterate! A second iteration will double the number of accurate digits yet again. Thus,
the convergence of a quadratic iteration scheme is extremely rapid, and, barring round-off
errors, one can produce any desired number of digits of accuracy in a very short time. For
example, if we start with an initial guess that is accurate in the first decimal digit, then a
linear iteration with σ = .1 will require 49 iterations to obtain 50 decimal place accuracy,
whereas a quadratic iteration (with τ = 1) will only require 6 iterations to obtain 26 = 64
decimal places of accuracy!

Example 19.9. Consider the function

g(u) =
2u3 + 3

3u2 + 3
.

There is a unique (real) fixed point u? = g(u?), which is the real solution to the cubic
equation

1
3 u3 + u− 1 = 0.

Note that

g′(u) =
2u4 + 6u2 − 6u

3(u2 + 1)2
=

6u
(

1
3 u3 + u− 1

)

3(u2 + 1)2
,

and hence g′(u?) = 0 vanishes at the fixed point. Theorem 19.8 implies that the iterations
will exhibit quadratic convergence to the root. Indeed, we find, starting with u(0) = 0, the
following values:

k 1 2 3

u(k) 1.00000000000000 .833333333333333 .817850637522769

4 5 6

.817731680821982 .817731673886824 .817731673886824

The convergence rate is dramatic: after only 5 iterations, we have produced the first 15
decimal places of the fixed point. In contrast, the linearly convergent scheme based on
g̃(u) = 1 − 1

3 u3 takes 29 iterations just to produce the first 5 decimal places of the same
solution.
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In practice, the appearance of a quadratically convergent fixed point is a matter of
luck. The construction of quadratically convergent iterative methods for solving equations
will be the focus of the following Section 19.2.

Vector–Valued Iteration

Extending the preceding analysis to vector-valued iterative systems is not especially
difficult. We will build on our experience with linear iterative systems, and so the reader
is advised to review the basic concepts and results from Chapter 10 before proceeding to
the nonlinear systems presented here.

We begin by fixing a norm ‖ · ‖ on R
n. Since we will also be computing the asso-

ciated matrix norm ‖A ‖, as defined in Theorem 10.20, it may be more convenient for
computations to adopt either the 1 or the ∞ norms rather than the standard Euclidean
norm.

We begin by defining the vector-valued counterpart of the basic linear convergence
condition (19.18).

Definition 19.10. A function g: Rn → R
n is a contraction at a point u? ∈ R

n if
there exists a constant 0 ≤ σ < 1 such that

‖g(u)− g(u?) ‖ ≤ σ ‖u− u? ‖ (19.25)

for all u sufficiently close to u?, i.e., ‖u− u? ‖ < δ for some fixed δ > 0.

Remark : The notion of a contraction depends on the underlying choice of matrix
norm. Indeed, the linear function g(u) = Au if and only if ‖A ‖ < 1, which implies
that A is a convergent matrix. While every convergent matrix satisfies ‖A ‖ < 1 in some

matrix norm, and hence defines a contraction relative to that norm, it may very well have
‖A ‖ > 1 in a particular norm, violating the contaction condition; see (rowsumexA ) for
an explicit example.

Theorem 19.11. If u? = g(u?) is a fixed point for the discrete dynamical system

(19.1) and g is a contraction at u?, then u? is an asymptotically stable fixed point.

Proof : The proof is a copy of the last part of the proof of Theorem 19.4. We write

‖u(k+1) − u? ‖ = ‖g(u(k))− g(u?) ‖ ≤ σ ‖u(k) − u? ‖,

using the assumed estimate (19.25). Iterating this basic inequality immediately demon-
strates that

‖u(k) − u? ‖ ≤ σk ‖u(0) − u? ‖ for k = 0, 1, 2, 3, . . . . (19.26)

Since σ < 1, the right hand side tends to 0 as k →∞, and hence u(k) → u?. Q.E.D.

In most interesting situations, the function g is differentiable, and so can be approxi-
mated by its first order Taylor polynomial (C.14):

g(u) ≈ g(u?) + g ′(u?) (u− u?) = u? + g ′(u?) (u− u?). (19.27)
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Here

g ′(u) =




∂g1

∂u1

∂g1

∂u2

. . .
∂g1

∂un

∂g2

∂u1

∂g2

∂u2

. . .
∂g2

∂un

...
...

. . .
...

∂gn

∂u1

∂gn

∂u2

. . .
∂gn

∂un




, (19.28)

denotes the n × n Jacobian matrix of the vector-valued function g, whose entries are the
partial derivatives of its individual components. Since u? is fixed, the the right hand side
of (19.27) is an affine function of u. Moreover, u? remains a fixed point of the affine
approximation. Proposition 10.44 tells us that iteration of the affine function will converge
to the fixed point if and only if its coefficient matrix, namely g ′(u?), is a convergent matrix,
meaning that its spectral radius ρ(g ′(u?)) < 1. This observation motivates the following
theorem and corollary.

Theorem 19.12. Let u? be a fixed point for the discrete dynamical system u(k+1) =
g(u(k)). If the Jacobian matrix norm ‖g ′(u?) ‖ < 1, then g is a contraction at u?, and

hence the fixed point u? is asymptotically stable.

Proof : The first order Taylor expansion (C.14) of g(u) at the fixed point u? takes the
form

g(u) = g(u?) + g ′(u?) (u− u?) + R(u− u?), (19.29)

where the remainder term satisfies

lim
u→u?

R(u− u?)

‖u− u? ‖
= 0.

Let ε > 0 be such that
σ = ‖g ′(u?) ‖+ ε < 1.

Choose 0 < δ < 1 such that ‖R(u− u?) ‖ ≤ ε ‖u− u? ‖ whenever ‖u− u? ‖ ≤ δ. For
such u, we have, by the Triangle Inequality,

‖g(u)− g(u?) ‖ ≤ ‖g ′(u?) (u− u?) ‖+ ‖R(u− u?) ‖

≤
(
‖g ′(u?) ‖+ ε

)
‖u− u? ‖ = σ ‖u− u? ‖,

which establishes the contraction inequality (19.25). Q.E.D.

Corollary 19.13. If the Jacobian matrix g ′(u?) is a convergent matrix, meaning

that its spectral radius satisfies ρ
(
g ′(u?)

)
< 1, then u? is an asymptotically stable fixed

point.

Proof : Corollary 10.32 assures us that ‖g ′(u?) ‖ < 1 in some matrix norm. Using
this norm, the result immediately follows from the theorem. Q.E.D.
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Figure 19.7. Basins of Attraction.

Example 19.14. Consider the function

g(u, v) =

(
− 1

4 u3 + 9
8 u + 1

4 v3

3
4 v − 1

2 uv

)
.

There are four (real) fixed points; stability is determined by the size of the eigenvalues of
the Jacobian matrix

g′(u, v) =

(
9
8 −

3
4 u2 − 1

2 v
3
4 v2 3

4 −
1
2 u

)

at each of the fixed points. The results are summarized in the following table:

fixed point u?
1 =

(
0
0

)
u?

2 =

(
1√
2

0

)
u?

3 =

(
− 1√

2

0

)
u?

4 =

(
− 1

2
1
2

)

Jacobian matrix

(
9
8 0

0 3
4

) (
3
4 0

0 3
4 −

1
2
√

2

) (
3
4 0

0 3
4 + 1

2
√

2

) (
15
16 − 1

4
3
16 1

)

eigenvalues 1.125, .75 .75, .396447 1.10355, .75 .96875± .214239 i

spectral radius 1.125 .75 1.10355 .992157

Thus, u?
2 and u?

4 are stable fixed points, whereas u?
1 and u?

3 are both unstable. Indeed,

starting with u(0) = ( .5, .5 )
T
, it takes 24 iterates to converge to u?

2 with 4 significant

decimal digits, whereas starting with u(0) = (−.7, .7 )
T
, it takes 1049 iterates to converge

to within 4 digits of u?
4; the slower convergence rate is predicted by the larger Jacobian

spectral radius. The two basins of attraction are plotted in Figure 19.7. The stable fixed
points are indicated by black dots. The light gray region contains u?

2 and indicates all the
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points that converge to it; the darker gray indicates points converging, more slowly, to u?
4.

All other initial points, except u?
1 and u?

3, have rapidly unbounded iterates: ‖u(k) ‖ → ∞.

Theorem 19.12 tells us that initial values u(0) that are sufficiently near a stable fixed
point u? are guaranteed to converge to it. In the linear case, closeness of the initial data
to the fixed point was not, in fact, an issue; all stable fixed points are, in fact, globally
stable. For nonlinear iteration, it is of critical importance, and one does not typically
expect iteration starting with far away initial data to converge to the desired fixed point.
An interesting (and difficult) problem is to determine the so-called basin of attraction of a
stable fixed point, defined as the set of all initial data that ends up converging to it. As in
the elementary logistic map (19.19), initial values that lie outside a basin of attraction can
lead to divergent iterates, periodic orbits, or even exhibit chaotic behavior. The full range
of possible phenomena is a topic of contemporary research in dynamical systems theory,
[DDSY], and in numerical analysis, [7].

The smaller the spectral radius or matrix norm of the Jacobian matrix at the fixed
point, the faster the nearby iterates will converge to it. As in the scalar case, quadratic
convergence will occur when the Jacobian matrix g ′(u?) = O is the zero matrix†, i.e.,
all first order partial derivatives of the components of g vanish at the fixed point. The
quadratic convergence estimate

‖u(k+1) − u? ‖ ≤ τ ‖u(k) − u? ‖2 (19.30)

is a consequence of the second order Taylor expansion at the fixed point. Details of the
proof are left as an exercise.

Of course, in practice we don’t know the norm or spectral radius of the Jacobian
matrix g ′(u?) because we don’t know where the fixed point is. This apparent difficulty
can be easily circumvented by requiring that ‖g ′(u) ‖ < 1 for all u — or, at least, for all
u in a domain Ω containing the fixed point. In fact, this hypothesis can be used to prove
the exitence and uniqueness of asymptotically stable fixed points. Rather than work with
the Jacobian matrix, let us return to the contraction condition (19.25), but now imposed
uniformly on an entire domain.

Definition 19.15. A function g: Rn → R
n is called a contraction mapping on a

domain Ω ⊂ R
n if

(a) it maps Ω to itself, so g(u) ∈ Ω whenever u ∈ Ω, and

(b) there exists a constant 0 ≤ σ < 1 such that

‖g(u)− g(v) ‖ ≤ σ ‖u− v ‖ for all u,v ∈ Ω. (19.31)

In other words, applying a contraction mapping reduces the mutual distance between
points. So, as its name indicates, a contraction mapping effectively shrinks the size of its
domain; see Figure 19.8. As the iterations proceed, the successive image domains become
smaller and smaller. If the original domain is closed and bounded, then it is forced to
shrink down to a single point, which is the unique fixed point of the iterative system. See
[X] for the full proof of the following Contraction Mapping Theorem

† Having zero spectral radius is not sufficient for quadratic convergence; see Exercise .
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Figure 19.8. A Contraction Mapping.

Theorem 19.16. If g is a contraction mapping on a closed bounded domain Ω ⊂ R
n,

then g admits a unique fixed point u? ∈ Ω. Moreover, starting with any initial point

u(0) ∈ Ω, the iterates u(k+1) = g(u(k)) necessarily converge to the fixed point: u(k) → u?.

In particular, if ‖g ′(u) ‖ < 1 for all u ∈ Ω, then the conclusions of the Contraction
Mapping Theorem 19.16 hold.

19.2. Solution of Equations and Systems.

Solving nonlinear equations and systems of equations is, of course, a problem of utmost
importance in mathematics and its manifold applications. It can also be extremely difficult.
Indeed, finding a complete set of (numerical) solutions to a complicated nonlinear system
can be an almost insurmountable challlenge. In its most general version, we are given a
collection of m functions f1, . . . , fm depending upon n variables u1, . . . , un, and are asked

to determine all possible solutions u = (u1, u2, . . . , un )
T

to the system

f1(u1, . . . , un) = 0, . . . fm(u1, . . . , un) = 0. (19.32)

In many applications, the number of equations equals the number of unknowns, m = n,
in which case one expects both existence and uniqueness of solutions. This point will be
discussed in further detail below.

Here are some prototypical examples:

(a) Find the roots of the quintic polynomial equation

u5 + u + 1 = 0. (19.33)

Graphing the left hand side of the equation, as in Figure 19.9, convinces us that there is
just one real root, lying somewhere between −1 and −.5. While there are explicit algebraic
formulas for the roots of quadratic, cubic, and quartic polynomials, a famous theorem† due
to the Norwegian mathematician Nils Henrik Abel in the early 1800’s states that there is
no such formula for generic fifth order polynomial equations.

(b) Any fixed point equation u = g(u) has the form (19.35) where f(u) = u − g(u).
For example, the trigonometric Kepler equation

u− ε sinu = m

† A modern proof of this fact relies on Galois theory, [74].
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Figure 19.9. Graph of u5 + u + 1.

arises in the study of planetary motion, cf. Example 19.5. Here ε,m are fixed constants,
and we seek a corresponding solution u.

(c) Suppose we are given chemical compounds A,B,C that react to produce a fourth
compound D according to

2A + B ←→ D, A + 3C ←→ D.

Let a, b, c be the initial concentrations of the reagents A,B,C injected into the reaction
chamber. If u denotes the concentration of D produced by the first reaction, and v that
by the second reaction, then the final equilibrium concentrations

a? = a− 2u− v, b? = b− u, c? = c− 3v, d? = u + v,

of the reagents will be determined by solving the nonlinear system

(a− 2u− v)2(b− u) = α(u + v), (a− 2u− v)(c− 3v)3 = β (u + v), (19.34)

where α, β are the known equilibrium constants of the two reactions.

Our immediate goal is to develop numerical algorithms for solving such nonlinear
equations. Unfortunately, there is no direct universal solution method for nonlinear sys-
tems comparable to Gaussian elimination. As a result, numerical solution techniques rely
almost exclusively on iterative algorithms. This section presents the principal methods for
numerically approximating the solution(s) to a nonlinear system. We shall only discuss
general purpose algorithms; specialized methods for solving particular classes of equations,
e.g., polynomial equations, can be found in numerical analysis texts, e.g., [27, 34, 148].
Of course, the most important specialized methods — those designed for solving linear
systems — will continue to play a critical role, even in the nonlinear regime.

The Bisection Method

We begin, as always, with the scalar case. Thus, we are given a real-valued function
f : R→ R, and seek its roots, i.e., the real† solution(s) to the scalar equation

f(u) = 0. (19.35)

† Complex roots to complex equations will be discussed later.
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Figure 19.10. Intermediate Value Theorem.
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Figure 19.11. Roots of Quadratic Functions.

Our immediate goal is to develop numerical algorithms for solving such nonlinear scalar
equations. The most primitive algorithm, and the only one that is guaranteed to work in

all cases, is the Bisection Method. While it has an iterative flavor, it cannot be properly
classed as a method governed by functional iteration as defined in the preceding section,
and so must be studied directly in its own right.

The starting point is the Intermediate Value Theorem, which we state in simplified
form. See Figure 19.10 for an illustration, and [9] for a proof.

Lemma 19.17. Let f(u) be a continuous scalar function. Suppose we can find two

points a < b where the values of f(a) and f(b) take opposite signs, so either f(a) < 0 and

f(b) > 0, or f(a) > 0 and f(b) < 0. Then there exists at least one point a < u? < b where

f(u?) = 0.

Note that if f(a) = 0 or f(b) = 0, then finding a root is trivial. If f(a) and f(b) have
the same sign, then there may or may not be a root in between. Figure 19.11 plots the
functions u2 + 1, u2 and u2 − 1, on the interval −2 ≤ u ≤ 2. The first has two simple
roots; the second has a single double root, while the third has no root. We also note
that continuity of the function on the entire interval [a, b ] is an essential hypothesis. For
example, the function f(u) = 1/u satisfies f(−1) = −1 and f(1) = 1, but there is no root
to the equation 1/u = 0.

Note carefully that the Lemma 19.17 does not say there is a unique root between a
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k u(k) v(k) w(k) = 1
2 (u(k) + v(k)) f(w(k))

0 1 2 1.5 .75

1 1 1.5 1.25 −.1875

2 1.25 1.5 1.375 .2656

3 1.25 1.375 1.3125 .0352

4 1.25 1.3125 1.2813 −.0771

5 1.2813 1.3125 1.2969 −.0212

6 1.2969 1.3125 1.3047 .0069

7 1.2969 1.3047 1.3008 −.0072

8 1.3008 1.3047 1.3027 −.0002

9 1.3027 1.3047 1.3037 .0034

10 1.3027 1.3037 1.3032 .0016

11 1.3027 1.3032 1.3030 .0007

12 1.3027 1.3030 1.3029 .0003

13 1.3027 1.3029 1.3028 .0001

14 1.3027 1.3028 1.3028 −.0000

and b. There may be many roots, or even, in pathological examples, infinitely many. All
the theorem guarantees is that, under the stated hypotheses, there is at least one root.

Once we are assured that a root exists, bisection relies on a “divide and conquer”
strategy. The goal is to locate a root a < u? < b between the endpoints. Lacking any
additional evidence, one tactic would be to try the midpoint c = 1

2 (a + b) as a first guess for
the root. If, by some miracle, f(c) = 0, then we are done, since we have found a solution!
Otherwise (and typically) we look at the sign of f(c). There are two possibilities. If f(a)
and f(c) are of opposite signs, then the Intermediate Value Theorem tells us that there is a
root u? lying between a < u? < c. Otherwise, f(c) and f(b) must have opposite signs, and
so there is a root c < u? < b. In either event, we apply the same method to the interval
in which we are assured a root lies, and repeat the procedure. Each iteration halves the
length of the interval, and chooses the half in which a root is sure to lie. (There may, of
course, be a root in the other half interval, but as we cannot be sure, we discard it from
further consideration.) The root we home in on lies trapped in intervals of smaller and
smaller width, and so convergence of the method is guaranteed. Figure bisect illustrates
the steps in a particular example.

Example 19.18. The roots of the quadratic equation

f(u) = u2 + u− 3 = 0
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can be computed exactly by the quadratic formula:

u?
1 =
−1 +

√
13

2
≈ 1.302775 . . . , u?

2 =
−1−

√
13

2
≈ −2.302775 . . . .

Let us see how one might approximate them by applying the Bisection Algorithm. We start
the procedure by choosing the points a = u(0) = 1, b = v(0) = 2, noting that f(1) = −1
and f(2) = 3 have opposite signs and hence we are guaranteed that there is at least one
root between 1 and 2. In the first step we look at the midpoint of the interval [1, 2],
which is 1.5, and evaluate f(1.5) = .75. Since f(1) = −1 and f(1.5) = .75 have opposite
signs, we know that there is a root lying between 1 and 1.5. Thus, we take u(1) = 1 and
v(1) = 1.5 as the endpoints of the next interval, and continue. The next midpoint is at
1.25, where f(1.25) = −.1875 has the opposite sign to f(1.5) = .75, and so a root lies
between u(2) = 1.25 and v(2) = 1.5. The process is then iterated as long as desired — or,
more practically, as long as your computer’s precision does not become an issue.

The table displays the result of the algorithm, rounded off to four decimal places.
After 14 iterations, the Bisection Method has correctly computed the first four decimal
digits of the positive root u?

1. A similar bisection starting with the interval from u(1) = −3
to v(1) = −2 will produce the negative root.

A formal implementation of the Bisection Algorithm appears in the accompanying
pseudocode program. The endpoints of the kth interval are denoted by u(k) and v(k). The
midpoint is w(k) = 1

2

(
u(k) + v(k)

)
, and the key decision is whether w(k) should be the

right or left hand endpoint of the next interval. The integer n, governing the number of
iterations, is to be prescribed in accordance with how accurately we wish to approximate
the root u?.

The algorithm produces two sequences of approximations u(k) and v(k) that both
converge monotonically to u?, one from below and the other from above:

a = u(0) ≤ u(1) ≤ u(2) ≤ · · · ≤ u(k) −→ u? ←− v(k) ≤ · · · ≤ v(2) ≤ v(1) ≤ v(0) = b.

and u? is trapped between the two. Thus, the root is trapped inside a sequence of intervals
[u(k), v(k) ] of progressively shorter and shorter length. Indeed, the length of each interval
is exactly half that of its predecessor:

v(k) − u(k) = 1
2 (v(k−1) − u(k−1)).

Iterating this formula, we conclude that

v(n) − u(n) =
(

1
2

)n
(v(0) − u(0)) =

(
1
2

)n
(b− a) −→ 0 as n −→ ∞.

The midpoint

w(n) = 1
2 (u(n) + v(n))

lies within a distance

|w(n) − u? | ≤ 1
2 (v(n) − u(n)) =

(
1
2

)n+1
(b− a)
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The Bisection Method

start

if f(a) f(b) < 0 set u(0) = a, v(0) = b

else print “Bisection Method not applicable”

for k = 0 to n− 1

set w(k) = 1
2 (u(k) + v(k))

if f(w(k)) = 0, stop; print u? = w(k)

if f(u(k)) f(w(k)) < 0, set u(k+1) = u(k), v(k+1) = w(k)

else set u(k+1) = w(k), v(k+1) = v(k)

next k

print u? = w(n) = 1
2 (u(n) + v(n))

end

of the root. Consequently, if we desire to approximate the root within a prescribed tolerance
ε, we should choose the number of iterations n so that

(
1
2

)n+1
(b− a) < ε, or n > log2

b− a

ε
− 1 . (19.36)

Summarizing:

Theorem 19.19. If f(u) is a continuous function, with f(a) f(b) < 0, then the

Bisection Method starting with u(0) = a, v(0) = b, will converge to a solution u? to the

equation f(u) = 0 lying between a and b. After n steps, the midpoint w(n) = 1
2 (u(n) + v(n))

will be within a distance of ε = 2−n−1(b− a) from the solution.

For example, in the case of the quadratic equation in Example 19.18, after 14 itera-
tions, we have approximated the positive root to within

ε =
(

1
2

)15
(2− 1) ≈ 3.052× 10−5,

reconfirming our observation that we have accurately computed its first four decimal places.
If we are in need of 10 decimal places, we set our tolerance to ε = .5 × 10−10, and
so, according to (19.36), must perform n = 34 > 33.22 ≈ log2 2× 1010 − 1 successive
bisections†.

Example 19.20. As noted at the beginning of this section, the quintic equation

f(u) = u5 + u + 1 = 0

† This assumes we have sufficient precision on the computer to avoid round-off errors.
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has one real root, whose value can be readily computed by bisection. We start the algorithm
with the initial points u(0) = −1, v(0) = 0, noting that f(−1) = −1 < 0 while f(0) = 1 > 0
are of opposite signs. In order to compute the root to 6 decimal places, we set ε = .5×10−6

in (19.36), and so need to perform n = 20 > 19.93 ≈ log2 2× 106 − 1 bisections. Indeed,
the algorithm produces the approximation u? ≈ − .754878 to the root, and the displayed
digits are guaranteed to be accurate.

Fixed Point Methods

The Bisection Method has an ironclad guarantee to converge to a root of the function
— provided it can be properly started by locating two points where the function takes
opposite signs. This may be tricky if the function has two very closely spaced roots and
is, say, negative only for a very small interval between them, and may be impossible
for multiple roots, e.g., the root u? = 0 of the quadratic function f(u) = u2. When
applicable, its convergence rate is completely predictable, but not especially fast. Worse,
it has no immediately apparent extension to systems of equations, since there is no obvious
counterpart to the Intermediate Value Theorem for vector-valued functions.

Most other numerical schemes for solving equations rely on some form of fixed point
iteration. Thus, we seek to replace the system of equations f(u) = 0 with a fixed point
system u = g(u), that leads to the iterative solution scheme u(k+1) = g(u(k)). For this to
work, there are two key requirements:

(a) The solution u? to the equation f(u) = 0 is also a fixed point for g(u), and

(b) u? is, in fact a stable fixed point, meaning that the Jacobian g ′(u?) is a convergent
matrix, or, slightly more restrictively, ‖g ′(u?) ‖ < 1 for a prescribed matrix norm.

If both conditions hold, then, provided we choose the initial iterate u(0) = c sufficiently

close to u?, the iterates u(k) → u? will converge to the desired solution. Thus, the key
to the practical use of functional iteration for solving equations is the proper design of an
iterative system — coupled with a reasonably good initial guess for the solution. Before
implementing general procedures, let us discuss a näıve example.

Example 19.21. To solve the cubic equation

f(u) = u3 − u− 1 = 0 (19.37)

we note that f(1) = −1 while f(2) = 5, and so there is a root between 1 and 2. Indeed,
the Bisection Method leads to the approximate value u? ≈ 1.3247 after 17 iterations.

Let us try to find the same root by fixed point iteration. As a first, näıve, guess, we
rewrite the cubic equation in fixed point form

u = u3 − 1 = g̃(u).

Starting with the initial guess u(0) = 1.5, successive approximations to the solution are
found by iterating

u(k+1) = g̃(u(k)) = (u(k))3 − 1, k = 0, 1, 2, . . . .
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However, their values

u(0) = 1.5, u(1) = 2.375, u(2) = 12.396,

u(3) = 1904, u(4) = 6.9024× 109, u(5) = 3.2886× 1029, . . .

rapidly become unbounded, and so fail to converge. This could, in fact, have been predicted
by the convergence criterion in Theorem 19.4. Indeed, g̃ ′(u) = −3u2 and so | g̃ ′(u) | > 3
for all u ≥ 1, including the root u?. This means that u? is an unstable fixed point, and
the iterates cannot converge to it.

On the other hand, we can rewrite the equation (19.37) in the alternative iterative
form

u = 3
√

1 + u = g(u).

In this case

0 ≤ g′(u) =
1

3(1 + u)2/3
≤

1

3
for u > 0.

Thus, the stability condition (19.14) is satisfied, and we anticipate convergence at a rate
of at least 1

3 . (The Bisection Method converges more slowly, at rate 1
2 .) Indeed, the first

few iterates u(k+1) =
3
√

1 + u(k) are

1.5, 1.35721, 1.33086, 1.32588, 1.32494, 1.32476, 1.32473,

and we have converged to the root, correct to four decimal places, in only 6 iterations.

Newton’s Method

Our immediate goal is to design an efficient iterative scheme u(k+1) = g(u(k)) whose
iterates converge rapidly to the solution of the given scalar equation f(u) = 0. As we
learned in Section 19.1, the convergence of the iteration is governed by the magnitude
of its derivative at the fixed point. At the very least, we should impose the stability
criterion | g′(u?) | < 1, and the smaller this quantity can be made, the faster the iterative
scheme converges. if we are able to arrange that g′(u?) = 0, then the iterates will converge
quadratically fast, leading, as noted in the discussion following Theorem 19.8, to a dramatic
improvement in speed and efficiency.

Now, the first condition requires that g(u) = u whenever f(u) = 0. A little thought
will convince you that the iterative function should take the form

g(u) = u− h(u) f(u), (19.38)

where h(u) is a reasonably nice function. If f(u?) = 0, then clearly u? = g(u?), and so u?

is a fixed point. The converse holds provided h(u) 6= 0 is never zero.

For quadratic convergence, the key requirement is that the derivative of g(u) be zero
at the fixed point solutions. We compute

g′(u) = 1− h′(u) f(u)− h(u) f ′(u).

Thus, g′(u?) = 0 at a solution to f(u?) = 0 if and only if

0 = 1− h′(u?) f(u?)− h(u?) f ′(u?) = 1− h(u?) f ′(u?).
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Consequently, we should require that

h(u?) =
1

f ′(u?)
(19.39)

to ensure a quadratically convergent iterative scheme. This assumes that f ′(u?) 6= 0,
which means that u? is a simple root of f . For here on, we leave aside multiple roots,
which require a different approach, to be outlined in Exercise .

Of course, there are many functions h(u) that satisfy (19.39), since we only need to
specify its value at a single point. The problem is that we do not know u? — after all this
is what we are trying to compute — and so cannot compute the value of the derivative
of f there. However, we can circumvent this apparent difficulty by a simple device: we
impose equation (19.39) at all points, setting

h(u) =
1

f ′(u)
, (19.40)

which certainly guarantees that it holds at the solution u?. The result is the function

g(u) = u −
f(u)

f ′(u)
, (19.41)

and the resulting iteration scheme is known as Newton’s Method , which, as the name
suggests, dates back to the founder of the calculus. To this day, Newton’s Method remains
the most important general purpose algorithm for solving equations. It starts with an
initial guess u(0) to be supplied by the user, and then successively computes

u(k+1) = u(k) −
f(u(k))

f ′(u(k))
. (19.42)

As long as the initial guess is sufficiently close, the iterates u(k) are guaranteed to converge,
quadratically fast, to the (simple) root u? of the equation f(u) = 0.

Theorem 19.22. Suppose f(u) ∈ C2 is twice continuously differentiable. Let u? be

a solution to the equation f(u?) = 0 such that f ′(u?) 6= 0. Given an initial guess u(0)

sufficiently close to u?, the Newton iteration scheme (19.42) converges at a quadratic rate

to the solution u?.

Proof : By continuity, if f ′(u?) 6= 0, then f ′(u) 6= 0 for all u sufficiently close to u?, and
hence the Newton iterative function (19.41) is well defined and continuously differentiable
near u?. Since g′(u) = f(u) f ′′(u)/f ′(u)2, we have g′(u?) = 0 when f(u?) = 0, as promised
by our construction. The quadratic convergence of the resulting iterative scheme is an
immediate consequence of Theorem 19.8. Q.E.D.

Example 19.23. Consider the cubic equation

f(u) = u3 − u− 1 = 0,

that we already solved in Example 19.21. The function used in the Newton iteration is

g(u) = u−
f(u)

f ′(u)
= u−

u3 − u− 1

3u2 − 1
,
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Figure 19.12. The function f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 .

which is well-defined as long as u 6= ± 1√
3

. We will try to avoid these singular points. The

iterative procedure

u(k+1) = g(u(k)) = u(k) −
(u(k))3 − u(k) − 1

3(u(k))2 − 1

with initial guess u(0) = 1.5 produces the following values:

1.5, 1.34783, 1.32520, 1.32472,

and we have computed the root to 5 decimal places after only three iterations. The
quadratic convergence of Newton’s Method implies that, roughly, each new iterate doubles
the number of correct decimal places. Thus, to compute the root accurately to 40 decimal
places would only require 3 further iterations†. This underscores the tremendous advantage
that the Newton algorithm offers over competing methods.

Example 19.24. Consider the cubic polynomial equation

f(u) = u3 − 3
2 u2 + 5

9 u− 1
27 = 0.

Since

f(0) = − 1
27 , f

(
1
3

)
= 1

54 , f
(

2
3

)
= − 1

27 , f(1) = 1
54 ,

the Intermediate Value Lemma 19.17 guarantees that there are three roots on the interval
[0, 1]: one between 0 and 1

3 , the second between 1
3 and 2

3 , and the third between 2
3 and 1.

The graph in Figure 19.12 reconfirms this observation. Since we are dealing with a cubic
polynomial, there are no other roots. (Why?)

† This assumes we are working in a sufficiently high precision arithmetic so as to avoid round-off
errors.
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It takes sixteen iterations of the Bisection Method starting with the three subintervals[
0 , 1

3

]
,
[

1
3 , 2

3

]
and

[
2
3 , 1

]
, to produce the roots to six decimal places:

u?
1 ≈ .085119, u?

2 ≈ .451805, u?
3 ≈ .963076.

Incidentally, if we start with the interval [0, 1] and apply bisection, we converge (perhaps
surprisingly) to the largest root u?

3 in 17 iterations.

Fixed point iteration based on the formulation

u = g(u) = −u3 + 3
2 u2 + 4

9 u + 1
27

can be used to find the first and third roots, but not the second root. For instance, starting
with u(0) = 0 produces u?

1 to 5 decimal places after 23 iterations, whereas starting with
u(0) = 1 produces u?

3 to 5 decimal places after 14 iterations. The reason we cannot produce
u?

2 is due to the magnitude of the derivative

g′(u) = −3u2 + 3u + 4
9

at the roots, which is

g′(u?
1) ≈ 0.678065, g′(u?

2) ≈ 1.18748, g′(u?
3) ≈ 0.551126.

Thus, u?
1 and u?

3 are stable fixed points, but u?
2 is unstable. However, because g′(u?

1) and
g′(u?

3) are both bigger than .5, this iterative algorithm actually converges slower than
ordinary bisection!

Finally, Newton’s Method is based upon iteration of the rational function

g(u) = u−
f(u)

f ′(u)
= u−

u3 − 3
2 u2 + 5

9 u− 1
27

3u2 − 3u + 5
9

.

Starting with an initial guess of u(0) = 0, the method computes u?
1 to 6 decimal places

after only 4 iterations; starting with u(0) = .5, it produces u?
2 to similar accuracy after 2

iterations; while starting with u(0) = 1 produces u?
3 after 3 iterations — a dramatic speed

up over the other two methods.

Newton’s Method has a very pretty graphical interpretation, that helps us understand
what is going on and why it converges so fast. Given the equation f(u) = 0, suppose we
know an approximate value u = u(k) for a solution. Nearby u(k), we can approximate the
nonlinear function f(u) by its tangent line

y = f(u(k)) + f ′(u(k))(u− u(k)). (19.43)

As long as the tangent line is not horizontal — which requires f ′(u(k)) 6= 0 — it crosses
the axis at

u(k+1) = u(k) −
f(u(k))

f ′(u(k))
,
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u(k)u(k+1)

f(u)

Figure 19.13. Newton’s Method.

which represents a new, and, presumably more accurate, approximation to the desired
root. The procedure is illustrated pictorially in Figure 19.13. Note that the passage from
u(k) to u(k+1) is exactly the Newton iteration step (19.42). Thus, Newtonian iteration is
the same as the approximation of function’s root by those of its successive tangent lines.

Given a sufficiently accurate initial guess, Newton’s Method will rapidly produce
highly accurate values for the simple roots to the equation in question. In practice, barring
some kind of special exploitable structure, Newton’s Method is the root-finding algorithm
of choice. The one caveat is that we need to start the process reasonably close to the
root we are seeking. Otherwise, there is no guarantee that a particular set of iterates will
converge, although if they do, the limiting value is necessarily a root of our equation. The
behavior of Newton’s Method as we change parameters and vary the initial guess is very
similar to the simpler logistic map that we studied in Section 19.1, including period dou-
bling bifurcations and chaotic behavior. The reader is invited to experiment with simple
examples, some of which are provided in Exercise ; further details can be found in [147].

Example 19.25. For fixed values of the eccentricity ε, Kepler’s equation

u− ε sinu = m (19.44)

can be viewed as a implicit equation defining the eccentric anomaly u as a function of
the mean anomaly m. To solve Kepler’s equation by Newton’s Method, we introduce the
iterative function

g(u) = u −
u− ε sin u−m

1− ε cos u
.

Notice that when | ε | < 1, the denominator never vanishes and so the iteration remains
well-defined everywhere. Starting with a sufficiently close initial guess u(0), we are assured
that the method will quickly converge to the solution.

Fixing the eccentricity ε, we can employ the method of continuation to determine
how the solution u? = h(m) depends upon the mean anomaly m. Namely, we start at
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Figure 19.14. The Solution to the Kepler Equation for Eccentricity ε = .5.

m = m0 = 0 with the obvious solution u? = h(0) = 0. Then, to compute the solution
at successive closely spaced values 0 < m1 < m2 < m3 < · · · , we use the previously
computed value as an initial guess u(0) = h(mk) for the value of the solution at the next
mesh point mk+1, and run the Newton scheme until it converges to a sufficiently accurate
approximation to the value u? = h(mk+1). As long as mk+1 is reasonably close to mk,
Newton’s Method will converge to the solution quite quickly.

The continuation method will quickly produce the values of u at the sample points.
Intermediate values can either be determined by an interpolation scheme, e.g., a cubic
spline fit of the data, or by running the Newton scheme using the closest known value as
an initial condition. A plot for 0 ≤ m ≤ 1 using the value ε = .5 appears in Figure 19.14.

Systems of Equations

Let us now turn our attention to nonlinear systems of equations. We shall only
consider the case when there are the same number of equations as unknowns:

f1(u1, . . . , un) = 0, . . . fn(u1, . . . , un) = 0. (19.45)

We shall rewrite the system in vector form

f(u) = 0, (19.46)

where f : Rn → R
n is a vector-valued function of n variables. In practice, we do not

necessarily require that f be defined on all of R
n, although this does simplify the exposition.

We shall only consider solutions that are separated from any others. More formally:

Definition 19.26. A solution u? to a system f(u) = 0 is called isolated if there
exists δ > 0 such that f(u) 6= 0 for all u satisfying 0 < ‖u− u? ‖ < δ.

Example 19.27. Consider the planar equation

x2 + y2 = (x2 + y2)2.
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Rewriting the equation in polar coordinates as

r = r2 or r(r − 1) = 0,

we immediately see that the solutions consist of the origin x = y = 0 and all points on the
unit circle r2 = x2 + y2 = 1. Only the origin is an isolated solution, since every solution
lying on the circle has plenty of other points on the circle that lie arbitrarily close to it.

Typically, solutions to a system of n equations in n unknowns are isolated, although
this is not always true. For example, if A is a singular n× n matrix, then the solutions to
the homogeneous linear system Au = 0 form a nontrivial subspace, and so are not isolated.
Nonlinear systems with non-isolated solutions can similarly be viewed as exhibiting some
form of degeneracy. In general, the numerical computation of non-isolated solutions, e.g.,
solving the implicit equations for a curve or surface, is a much more difficult problem, and
we will not attempt to discuss these issues in this introductory presentation. (However, our
continuation approach to the Kepler equation in Example 19.25 indicates how one might
proceed in such situations.)

In the case of a single scalar equation, the simple roots, meaning those for which
f ′(u?) 6= 0, are the easiest to compute. In higher dimensions, the role of the derivative
of the function is played by the Jacobian matrix (19.28), and this motivates the following
definition.

Definition 19.28. A solution u? to a system f(u) = 0 is called nonsingular if the
associated Jacobian matrix is nonsingular there: det f ′(u?) 6= 0.

Note that the Jacobian matrix is square if and only if the system has the same number
of equations as unknowns, which is thus one of the requirements for a solution to be
nonsingular in our sense. Moreover, the Inverse Function Theorem from multivariable
calculus, [9, 126], implies that a nonsingular solution is necessarily isolated.

Theorem 19.29. Every nonsingular solution u? to a system f(u) = 0 is isolated.

Being the multivariate counterparts of simple roots also means that nonsingular solu-
tions of systems are the most amenable to practical computation. Computing non-isolated
solutions, as well as isolated solutions with a singular Jacobian matrix, is a considerable
challenge, and practical algorithms remain much less well developed. For this reason, we
focus exclusively on numerical solution techniques for nonsingular solutions.

Now, let us turn to numerical solution techniques. The first remark is that, unlike the
scalar case, proving existence of a solution to a system of equations is often a challenging
issue. There is no counterpart to the Intermediate Value Lemma 19.17 for vector-valued
functions. It is not hard to find vector-valued functions whose entries take on both positive
and negative values, but admit no solutions; a simple example can be found in Exercise .
This precludes any simple analog of the Bisection Method for nonlinear systems in more
than one unknown.

On the other hand, Newton’s Method can be straightforwardly adapted to compute
nonsingular solutions to systems of equations, and is the most widely used method for this
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purpose. The derivation proceeds in very similar manner to the scalar case. First, we
replace the system (19.46) by a fixed point system

u = g(u) (19.47)

having the same solutions. By direct analogy with (19.38), any (reasonable) fixed point
method will take the form

g(u) = u− L(u) f(u), (19.48)

where L(u) is an n × n matrix-valued function. Clearly, if f(u) = 0 then g(u) = u;
conversely, if g(u) = u, then L(u) f(u) = 0. If we further require that the matrix L(u)
be nonsingular, i.e., detL(u) 6= 0, then every fixed point of the iterator (19.48) will be a
solution to the system (19.46) and vice versa.

According to Theorem 19.12, the speed of convergence (if any) of the iterative method

u(k+1) = g(u(k)) (19.49)

is governed by the matrix norm (or, more precisely, the spectral radius) of the Jacobian
matrix g ′(u?) at the fixed point. In particular, if

g ′(u?) = O (19.50)

is the zero matrix, then the method converges quadratically fast. Let’s figure out how this
can be arranged. Computing the derivative using the matrix version of the Leibniz rule
for the derivative of a matrix product, (9.40), we find

g ′(u?) = I − L(u?) f ′(u?), (19.51)

where I is the n × n identity matrix. (Fortunately, all the terms that involve derivatives
of the entries of L(u) go away since f(u?) = 0 by assumption; details are relegated to
Exercise .) Therefore, the quadratic convergence criterion (19.50) holds if and only if

L(u?) f ′(u?) = I , and hence L(u?) = f ′(u?)
−1

(19.52)

should be the inverse of the Jacobian matrix of f at the solution, which, fortuitously, was
already assumed to be nonsingular.

As in the scalar case, we don’t know the solution u?, but we can arrange that condition
(19.52) holds by setting

L(u) = f ′(u)
−1

everywhere — or at least everywhere that f has a nonsingular Jacobian matrix. The
resulting fixed point system

u = g(u) = u− f ′(u)−1 f(u), (19.53)

leads to the quadratically convergent Newton iteration scheme

u(k+1) = u(k) − f ′(u(k))−1 f(u(k)). (19.54)

All it requires is that we guess an initial value u(0) that is sufficiently close to the de-
sired solution u?. We are then guaranteed, by Exercise , that the iterates u(k) converge
quadratically fast to u?.
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Theorem 19.30. Let u? be a nonsingular solution to the system f(u) = 0. Then,

provided u(0) is sufficiently close to u?, the Newton iteration scheme (19.54) converges at

a quadratic rate to the solution: u(k) → u?.

Example 19.31. Consider the pair of simultaneous cubic equations

f1(u, v) = u3 − 3uv2 − 1 = 0, f2(u, v) = 3u2 v − v3 = 0. (19.55)

It is not difficult to prove that there are precisely three solutions:

u?
1 =

(
1
0

)
, u?

2 =

(
−.5

.866025 . . .

)
, u?

3 =

(
−.5

−.866025 . . .

)
. (19.56)

The Newton scheme relies on the Jacobian matrix

f ′(u) =

(
3u2 − 3v2 − 6uv

6uv 3u2 − 3v2

)
.

Since det f ′(u) = 9(u2 + v2) is non-zero except at the origin, all three solutions are non-
singular, and hence, for a sufficiently close initial value, Newton’s Method will converge to
the nearby solution. We explicitly compute the inverse Jacobian matrix:

f ′(u)−1 =
1

9(u2 + v2)

(
3u2 − 3v2 6uv
− 6uv 3u2 − 3v2

)
.

Hence, in this particular example, the Newton iterator (19.53) is

g(u) =

(
u
v

)
−

1

9(u2 + v2)

(
3u2 − 3v2 6uv
− 6uv 3u2 − 3v2

)(
u3 − 3uv2 − 1

3u2 v − v3

)
.

A complete diagram of the three basins of attraction, consisting of points whose New-
ton iterates converge to each of the three roots, has a remarkably complicated, fractal-like
structure, as illustrated in Figure 19.15. In this plot, the x and y coordinates run from
−1.5 to 1.5. The points in the black region all converge to u?

1; those in the light gray region
all converge to u?

2; while those in the dark gray region all converge to u?
3. The closer one

is to the root, the sooner the iterates converge. On the interfaces between the basins of
attraction are points for which the Newton iterates fail to converge, but exhibit a random,
chaotic behavior. However, round-off errors will cause such iterates to fall into one of the
basins, making it extremely difficult to observe such behavio over the long run.

Remark : The alert reader may notice that in this example, we are in fact merely
computing the cube roots of unity, i.e., equations (19.55) are the real and imaginary parts
of the complex equation z3 = 1 when z = u + i v.

Example 19.32. A robot arm consists of two rigid rods that are joined end-to-end
to a fixed point in the plane, which we take as the origin 0. The arms are free to rotate,
and the problem is to configure them so that the robot’s hand ends up at the prescribed
position a = ( a, b )

T
. The first rod has length ` and makes an angle α with the horizontal,

so its end is at position v1 = ( ` cos α, ` sinα )
T
. The second rod has length m and makes an
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Figure 19.15. Computing the Cube Roots of Unity by Newton’s Method.

α

β

`

m

v1

v1 + v2

Figure 19.16. Robot Arm.

angle β with the horizontal, and so is represented by the vector v2 = (m cos β,m sin β )
T
.

The hand at the end of the second arm is at position v1 + v2, and the problem is to find
values for the angles α, β so that v1 + v2 = a; see Figure 19.16. To this end, we need to
solve the system of equations

` cos α + m cos β = a, ` sin α + m sin β = b, (19.57)

for the angles α, β.

To find the solution, we shall apply Newton’s Method. First, we compute the Jacobian
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matrix of the system with respect to α, β, which is

f ′(α, β) =

(
− ` sinα −m sin β

` cos α m cos β

)
,

with inverse

f ′(α, β)−1 =
1

`m sin(β − α)

(
− ` sinα m sin β
− ` cosα m cos β

)
.

As a result, the Newton iteration equation (19.54) has the explicit form
(

α(k+1)

β(k+1)

)
=

(
α(k)

β(k)

)
−

−
1

`m sin(β(k) − α(k))

(
− ` cos α(k) m sin β(k)

− ` cos α(k) m sin β(k)

)(
` cosα(k) + m cos β(k) − a
` sinα(k) + m sin β(k) − b

)
.

when running the iteration, one must be careful to avoid points at which α(k) − β(k) = 0
or π, i.e., where the robot arm has straightened out.

As an example, let us assume that the rods have lengths ` = 2, m = 1, and the
desired location of the hand is at a = ( 1, 1 )

T
. We start with an initial guess of α(0) = 0,

β(0) = 1
2 π, so the first rod lies along the x–axis and the second is perpendicular. The first

few Newton iterates are given in the accompanying table. The first column is the iterate
number k; the second and third columns indicate the angles α(k), β(k) of the rods. The
fourth and fifth give the position (x(k), y(k))T of the joint or elbow, while the final two
indicate the position (z(k), w(k))T of the robot’s hand.

k α(k) β(k) x(k) y(k) z(k) w(k)

0 .0000 1.5708 2.0000 .0000 2.0000 1.0000

1 .0000 2.5708 2.0000 .0000 1.1585 .5403

2 .3533 2.8642 1.8765 .6920 .9147 .9658

3 .2917 2.7084 1.9155 .5751 1.0079 .9948

4 .2987 2.7176 1.9114 .5886 1.0000 1.0000

5 .2987 2.7176 1.9114 .5886 1.0000 1.0000

Observe that the robot has rapidly converged to one of the two possible configurations.
(Can you figure out what the second equilibrium is?) In general, convergence depends on
the choice of initial configuration, and the Newton iterates do not always settle down to
a fixed point. For instance, if ‖a ‖ > ` + m, there is no possible solution, since the arms
are too short for the hand to reach to desired location; thus, no choice of initial conditions
will lead to a convergent scheme and the robot arm flaps around in a chaotic manner.

Now that we have gained a little experience with Newton’s Method for systems of
equations, some supplementary remarks are in order. As we learned back in Chapter 1,
except perhaps in very low-dimensional situations, one should not directly invert a matrix,
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but rather use Gaussian elimination, or, in favorable situations, a linear iterative scheme,
e.g., Jacobi, Gauss–Seidel or even SOR. So a better strategy is to leave the Newton system
(19.54) in unsolved, implicit form

f ′(u(k))v(k) = − f(u(k)), u(k+1) = u(k) + v(k). (19.58)

Given the iterate u(k), we compute the Jacobian matrix f ′(u(k)) and the right hand side
− f(u(k)), and then use our preferred linear systems solver to find v(k). Adding u(k) to
the result immediately yields the updated approximation u(k+1) to the solution.

The main bottleneck in the implementation of the Newton scheme, particularly for
large systems, is solving the linear system in (19.58). The coefficient matrix f ′(u(k)) must
be recomputed at each step of the iteration, and hence knowing the solution to the kth linear
system does not appear to help us solve the subsequent system. Pereforming a complete
Gaussian elimination at every step will tend to slow down the algorithm, particularly in
high dimensional situations involving many equations in many unknowns.

One simple dodge for speeding up the computation is to note that, once we start
converging, u(k) will be very close to u(k−1) and so we will probably not go far wrong by
using f ′(u(k−1)) in place of the updated Jacobian matrix f ′(u(k)). Since we have already
solved the linear system with coefficient matrix f ′(u(k−1)), we know its LU factorization,
and hence can use Forward and Back Substitution to quickly solve the modified system

f ′(u(k−1))v(k+1) = − f(u(k)), u(k+1) = u(k) + v(k). (19.59)

If u(k+1) is still close to u(k−1), we can continue to use f ′(u(k−1)) as the coefficient matrix
when proceeding on to the next iterate u(k+2). We proceed in this manner until there
has been a notable change in the iterates, at which stage we can revert to solving the
correct, unmodified linear system (19.58) by Gaussian Elimination. This strategy may
dramatically reduce the total amount of computation required to approximate the solution
to a prescribed accuracy. The down side is that this quasi-Newton scheme is only linearly
convergent, and so does not home in on the root as fast as the unmodified implementation.
The user needs to balance the trade-off between speed of convergence versus amount of
time needed to solve the linear system at each step in the process. See [148] for further
discussion.

19.3. Optimization.

We have already noted the importance of quadratic minimization principles for char-
acterizing the equilibrium solutions of linear systems of physical significance. In nonlinear
systems, optimization — either maximization or minimization — retains its centrality,
and the wealth of practical applications has spawned an entire subdiscipline of applied
mathematics. Physical systems naturally seek to minimize the potential energy function,
and so determination of the possible equilibrium configurations requires solving a non-
linear minimization principle. Engineering design is guided by a variety of optimization
constraints, such as performance, longevity, safety, and cost. Non-quadratic minimization
principles also arise in the fitting of data by schemes that go beyond the simple linear least
squares approximation method discussed in Section 4.3. Additional applications naturally

5/1/06 1074 c© 2006 Peter J. Olver



appear in economics and financial mathematics — one often wishes to minimize expenses
or maximize profits, in biological and ecological systems, in pattern recognition and signal
processing, in statistics, and so on. In this section, we will describe the basic mathematics
underlying simple nonlinear optimization problems along with basic numerical techniques.

The Objective Function

Throughout this section, the real-valued function F (u) = F (u1, . . . , un) to be op-
timized — the energy, cost, entropy, performance, etc. — will be called the objective

function. As such, it depends upon one or more variables u = (u1, u2, . . . , un )
T

that
belong to a prescribed subset Ω ⊂ R

n.

Definition 19.33. A point u? ∈ Ω is a global minimum of the objective function

F (u?) ≤ F (u) for all u ∈ Ω. (19.60)

The minimum is called strict if

F (u?) < F (u) for u? 6= u ∈ Ω. (19.61)

The point u? is called a (strict) local minimum if the relevant inequality holds just for
points u ∈ Ω nearby u?, i.e., satisfying ‖u− u? ‖ < δ for some δ > 0. In particular, strict
local minima are isolated .

The definition of a maximum — local or global — is the same, but with the reversed
inequality: F (u?) ≥ F (u) or, in the strict case, F (u?) > F (u). Alternatively, a maximum
of F (u) is the same as a minimum of the negative −F (u). Therefore, every result that
applies to minimization of a function can easily be translated into a result on maximization,
which allows us to concentrate exclusively on the minimization problem without any loss of
generality. We will use extremum as a shorthand term for either a minimum or a maximum.

Remark : As we already noted in Section 4.1, any system of equations can be readily
converted into a minimization principle. Given a system f(u) = 0, we introduce the
objective function

F (u) = ‖ f(u) ‖2, (19.62)

where ‖ · ‖ is any convenient norm on R
n. By the basic properties of the norm, the

minimum value is F (u) = 0, and this is achieved if and only if f(u) = 0, i.e., at a solution
to the system. More generally, if there is no solution to the system, the minimizer(s) of
F (u) play the role of a least squares solution, at least for an inner product-based norm,
along with the extensions to more general norms.

In contrast to the rather difficult question of existence of solutions to systems of
equations, there is a general theorem that guarantees the existence of minima (and, hence,
maxima) for a broad class of optimization problems.

Theorem 19.34. If F : Ω → R is continuous, and Ω ⊂ R
n is compact, maening

closed and bounded, then F has at least one global minimum u? ∈ Ω.
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Figure 19.17. The function 8u3 + 5u2 − 6u.

Proof : Let m? = min{F (u) |u ∈ Ω }, which may, a priori , be −∞. Choose points
u(1),u(2), . . . ∈ Ω, such that F (u(k))→ m as k →∞. By the basic properties of compact
sets, [152], there is a convergent subsequence u(ki) → u? ∈ Ω. By continuity,

F (u?) = F

(
lim

ki →∞
u(ki)

)
= lim

ki →∞
F
(
u(ki)

)
= m?,

and hence u? is a minimizer. Q.E.D.

Although Theorem 19.34 assures us of the existence of a global minimum of any
continuous function on a bounded domain, it does not guarantee uniqueness, nor does
it indicate how to go about finding it. Just as with the solution of nonlinear systems
of equations, it is quite rare that one can extract explicit formulae for the minima of
non-quadratic functions. Our goal, then, is to formulate practical algorithms that can
accurately compute the minima of general nonlinear functions.

The most näıve algorithm, but one that is often successful in small scale problems,
[148, opt], is to select a reasonably dense set of sample points u(k) in the domain and
choose the one that provides the smallest value for F (u(k)). If the points are sufficiently
densely distributed and the function is not too wild, this will give a reasonable approxima-
tion to the minimum. The algorithm can be speeded up by appealing to more sophisticated
means of selecting the sample points.

In the rest of this section, we will discuss optimization strategies that exploit the
differential calculus. Let us first review the basic procedure for optimizing functions that
you learned in first and second year calculus. As you no doubt remember, there are two
different possible types of minima. An interior minimum occurs at an interior point of the
domain of definition of the function, whereas a boundary minimum occurs on its boundary
∂Ω. Interior local minima are easier to find, and, to keep the presentation simple, we shall
focus our efforts on them. Let us begin with a simple scalar example.

Example 19.35. Let us optimize the scalar function

f(u) = 8u3 + 5u2 − 6u

on the domain −1 ≤ u ≤ 1. To locate the minimum, the first step is to look at the critical
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points where the derivative vanishes:

f ′(u) = 24u2 + 10u− 6 = 0, and hence u = 1
3 , − 3

4 .

To ascertain the local nature of the two critical points, we apply the second derivative test.
Since f ′′(u) = 48u + 10, we have

f ′′
(

1
3

)
= 26 > 0, whereas f ′′

(
− 3

4

)
= −26 < 0.

We conclude that 1
3 is a local minimum, while 3

4 is a local maximum.

To find the global minimum and maximum on the interval [−1, 1], we must also take
into account the boundary points ±1. Comparing the function values at the four points,

f(−1) = 3, f
(

1
3

)
= − 31

27 ≈ −1.148, f
(
− 3

4

)
= 63

16 = 3.9375, f(1) = 7,

we see that 1
3 is the global minimum, whereas 1 is the global maximum — which occurs on

the boundary of the interval. This is borne out by the graph of the function, as displayed
in Figure 19.17.

The Gradient

As you first learn in multi-variable calculus, [9, 126], the interior extrema — minima
and maxima — of a smooth function F (u) = F (u1, . . . , un) are necessarily critical points,
meaning places where the gradient of F vanishes. The standard gradient is the vector field
whose entries are its first order partial derivatives:

∇F (u) =

(
∂F

∂u1

, . . . ,
∂F

∂un

)T

. (19.63)

Let us, in preparation for the more general minimization problems over infinite-dimensional
function spaces to be treated in Chapter 21, reformulate the definition of the gradient in
a more intrinsic manner. An important but subtle point is that the gradient operator, in
fact, relies upon the introduction of an inner product on the underlying vector space. The
version (19.63) is, in fact, based upon on the Euclidean dot product on R

n. Altering the
inner product will change the formula for the gradient!

Definition 19.36. Let V be an inner product space. The gradient of a function
F :V → R at a point u ∈ V is the vector ∇F (u) ∈ V that satisfies

〈∇F (u) ,v 〉 =
d

dt
F (u + tv)

∣∣∣∣
t=0

for all v ∈ V. (19.64)

Remark : The function F does not have to be defined on all of the space V in order
for this definition to make sense.

The quantity displayed in the preceding formula is known as the directional derivative

of F with respect to v ∈ V , and typically denoted by ∂F/∂v. Thus, by definition, the
directional derivative equals the inner product with the gradient vector. The directional
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derivative measures the rate of change of F in the direction of the vector v, scaled in
proportion to its length.

In the Euclidean case, when F (u) = F (u1, . . . , un) is a function of n variables, defined

for u = (u1, u2, . . . , un )
T
∈ R

n, we can use the chain rule to compute

d

dt
F (u + tv) =

d

dt
F (u1 + t v1, . . . , un + t vn)

=
∂F

∂u1

(u + tv) v1 + · · · +
∂F

∂un

(u + tv) vn.
(19.65)

Setting t = 0, the right hand side of (19.64) reduces to

d

dt
F (u + tv)

∣∣∣∣
t=0

=
∂F

∂u1

(u) v1 + · · · +
∂F

∂un

(u) vn = ∇F (u) · v.

Therefore, the directional derivative equals the Euclidean dot product between the usual
gradient of the function (19.63) and the direction vector v, justifying (19.64) in the Eu-
clidean case.

Remark : In this chapter, we will only deal with the standard Euclidean dot product,
which results in the usual gradient formula (19.63). If we introduce an alternative inner
product on R

n, then the notion of gradient, as defined in (19.64) will change. Details are
outlined in Exercise .

A function F (u) is continuously differentiable if and only if its gradient ∇F (u) is a
continuously varying vector-valued function of u. This is equivalent to the requirement
that its first order partial derivatives ∂F/∂ui are all continuous. As usual, we use C1(Ω)
to denote the vector space of all continuously differentiable scalar-valued functions defined
on a domain Ω ⊂ R

n. From now on, all objective functions are assumed to be continuously
differentiable on their domain of definition.

If u(t) represents a parametrized curve contained within the domain of definition of
F (u), then the instantaneous rate of change in the scalar quantity F as we move along the
curve is given by

d

dt
F (u(t)) =

〈
∇F (u) ,

du

dt

〉
, (19.66)

which is the directional derivative of F with respect to the velocity or tangent vector
v =

¦

u to the curve. For instance, suppose F (u1, u2) represents the elevation of a mountain

range at position u = (u1, u2 )
T
. If we travel through the mountains along the path

u(t) = (u1(t), u2(t) )
T
, then our instantaneous rate of ascent or descent (19.66) is equal

to the dot product of our velocity vector
¦

u(t) with the gradient of the elevation function.
This observation leads to an important interpretation of the gradient vector.

Theorem 19.37. The gradient ∇F (u) of a scalar function F (u) points in the direc-

tion of its steepest increase at the point u. The negative gradient, −∇F (u), which points

in the opposite direction, indicates the direction of steepest decrease.
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Thus, when F represents elevation, ∇F tells us the direction that is steepest uphill,
while −∇F points directly downhill — the direction water will flow. Similarly, if F
represents the temperature of a solid body, then ∇F tells us the direction in which it
is heating up the quickest. Heat energy (like water) will flow in the opposite, coldest
direction, namely that of the negative gradient vector −∇F .

But you need to be careful in how you interpret Theorem 19.37. Clearly, the faster
you move along a curve, the faster the function F (u) will vary, and one needs to take
this into account when comparing the rates of change along different curves. The easiest
way to effect the comparison is to assume that the tangent vector a =

¦

u has unit norm,
so ‖a ‖ = 1, which means that we are passing through the point u(t) with unit speed.
Once this is done, Theorem 19.37 is an immediate consequence of the Cauchy–Schwarz
inequality (3.18). Indeed,

∣∣∣∣
∂F

∂a

∣∣∣∣ = |a · ∇F | ≤ ‖a ‖ ‖∇F ‖ = ‖∇F ‖, when ‖a ‖ = 1,

with equality if and only if a points in the same direction as the gradient. Therefore,
the maximum rate of change is when a = ∇F/‖∇F ‖ is the unit vector in the gradient
direction, while the minimum is achieved when a = −∇F/‖∇F ‖ points in the opposite
direction.

Critical Points

Thus, the only points at which the gradient fails to indicate directions of increase/de-
crease of the objective fulnction are where it vanishes. Such points play a critical role in
the analysis, whence the following definition.

Definition 19.38. A point u? is called a critical point of the objective function F (u)
if

∇F (u?) = 0. (19.67)

Let us prove that all local minima are indeed critical points. The most important thing
about this proof is that it only relies on the intrinsic definition of gradient, and therefore
applies to any function on any inner product space. Moreover, even though the gradient
will change if we alter the underlying inner product, the requirement that it vanish at a
local minimum does not.

Theorem 19.39. Every local (interior) minimum u? of a continuously differentiable

function F (u) is a critical point: ∇F (u?) = 0.

Proof : Let 0 6= v ∈ R
n be any vector. Consider the scalar function

g(t) = F (u? + tv) = F (u?
1 + t v1, . . . , u

?
n + t vn), (19.68)

where t ∈ R is sufficiently small to ensure that u? + tv remains strictly inside the domain
of F . Note that g measures the values of F along a straight line passing through u? in the
direction prescribed by v. Since u? is a local minimum,

F (u?) ≤ F (u? + tv), and hence g(0) ≤ g(t)
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for all t sufficiently close to zero. In other words, g(t), as a function of the single variable t,
has a local minimum at t = 0. By the basic calculus result on minima of functions of one
variable, the derivative of g(t) must vanish at t = 0. Therefore, by the definition (19.64)
of gradient,

0 = g′(0) =
d

dt
F (u? + tv)

∣∣∣∣
t=0

= 〈∇F (u?) ,v 〉.

We conclude that the gradient vector ∇F (u?) at the critical point must be orthogonal to
every vector v ∈ R

n, which is only possible if ∇F (u?) = 0. Q.E.D.

Thus, provided the objective function is continuously differentiable, every interior
minimum, both local and global, is necessarily a critical point. The converse is not true;
critical points can be maxima; they can also be saddle points or of some degenerate form.
The basic analytical method† for determining the (interior) minima of a given function is
to first find all its critical points by solving the system of equations (19.67). Each critical
point then needs to be examined more closely — as it could be either a minimum, or a
maximum, or neither.

Example 19.40. Consider the function

F (u, v) = u4 − 2u2 + v2,

which is defined and continuously differentiable on all of R
2. Since∇F =

(
4u3 − 4u, 2v

)T
,

its critical points are obtained by solving the pair of equations

4u3 − 4u = 0, 2v = 0.

The solutions to the first equation are u = 0,±1, while the second equation requires v = 0.
Therefore, F has three critical points:

u?
1 =

(
0
0

)
, u?

2 =

(
1
0

)
, u?

3 =

(
−1

0

)
. (19.69)

Inspecting its graph in Figure 19.18, we suspect that the first critical point u?
1 is a saddle

point, whereas the other two appear to be local minima, having the same value F (u?
2) =

F (u?
3) = −1. This will be confirmed once we learn how to rigorously distinguish critical

points.

The student should also pay attention to the distinction between local minima and
global minima. In the absence of theoretical justification, the only practical way to deter-
mine whether or not a minimum is global is to find all the different local minima, including
those on the boundary, and see which one gives the smallest value. If the domain is un-
bounded, one must also worry about the asymptotic behavior of the objective function for
large u.

† Numerical methods are discussed below.
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Figure 19.18. The Function u4 − 2u2 + v2.

The Second Derivative Test

The status of critical point — minimum, maximum, or neither — can often be resolved
by analyzing the second derivative of the objective function at the critical point. Let us
first review the one variable second derivative test you learned in first year calculus.

Proposition 19.41. Let g(t) ∈ C2 be a scalar function, and suppose t? a critical

point: g′(t?) = 0. If t? is a local minimum, then g′′(t?) ≥ 0. Conversely, if g′′(t?) > 0,
then t? is a strict local minimum. Similarly, g′′(t?) ≤ 0 is required at a local maximum,

while g′′(t?) < 0 implies that t? is a strict local maximum.

Remark : If g′′(t?) 6= 0, then the quadratic Taylor polynomial has a minimum or
maximum at t? according to the sign of the second derivative. In the borderline case,
when g′′(t?) = 0, the second derivative test is inconclusive, and the point could be either
maximum or minimum or neither. One must look at the higher order terms in the Taylor
expansion to resolve the issue; see Exercise .

In multi-variate calculus, the “second derivative” of a function F (u) = F (u1, . . . , un)
is represented by the n × n Hessian† matrix , whose entries are its second order partial

† Named after the early eighteenth century German mathematician Ludwig Otto Hesse.
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derivatives:

∇2F (u) =




∂2F

∂u2
1

∂2F

∂u1 ∂u2

. . .
∂2F

∂u1 ∂un

∂2F

∂u2 ∂u1

∂2F

∂u2
2

. . .
∂2F

∂u2 ∂un

...
...

. . .
...

∂2F

∂un ∂u1

∂2F

∂un ∂u2

. . .
∂2F

∂u2
n




, (19.70)

We will always assume that F (u) ∈ C2 has continuous second order partial derivatives. In
this case, its mixed partial derivatives are equal: ∂2F/∂ui ∂uj = ∂2F/∂uj ∂ui, cf. [9, 126].

As a result, the Hessian is a symmetric matrix: ∇2F (u) = ∇2F (u)T .

The second derivative test for a local minimum of scalar function relies on the positiv-
ity of its second derivative. For a function of several variables, the corresponding condition
is that the Hessian matrix be positive definite, as in Definition 3.20. More specifically:

Theorem 19.42. Let F (u) = F (u1, . . . , un) ∈ C2(Ω) be a real-valued, twice con-

tinuously differentiable function defined on an open domain Ω ⊂ R
n. If u? ∈ Ω is a

(local, interior) minimum for F , then it is necessarily a critical point, so ∇F (u?) = 0.

Moreover, the Hessian matrix (19.70) must be positive semi-definite at the minimum, so

∇2F (u?) ≥ 0. Conversely, if u? is a critical point with positive definite Hessian matrix

∇2F (u?) > 0, then u? is a strict local minimum of F .

A maximum requires a negative semi-definite Hessian matrix. If, moreover, the Hes-
sian at the critical point is negative definite, then the critical point is a strict local maxi-
mum. If the Hessian matrix is indefinite, then the critical point is a saddle point — neither
minimum nor maximum. In the borderline case, when the Hessian is only positive or nega-
tive semi-definite at the critical point, the second derivative test is inconclusive. Resolving
the nature of the critical point requires more detailed knowledge of the objective function,
e.g., its higher order derivatives.

We defer the proof of Theorem 19.42 until the end of this section.

Example 19.43. As a first, elementary example, consider the quadratic function

F (u, v) = u2 − 2uv + 3v2.

To minimize F , we begin by computing its gradient

∇F (u, v) =

(
2u− 2v
−2u + 6v

)
.

Solving the pair of equations ∇F = 0, namely

2u− 2v = 0, −2u + 6v = 0,
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we see that the only critical point is the origin u = v = 0. To test whether the origin is a
maximum or minimum, we further compute the Hessian matrix

H = ∇2F (u, v) =

(
Fuu Fuv

Fuv Fvv

)
=

(
2 −2
−2 6

)
.

Using the methods of Section 3.5, we easily prove that the Hessian matrix is positive
definite. Therefore, by Theorem 19.42, u? = 0 is a strict local minimum of F .

Indeed, we recognize F (u, v) to be, in fact, a homogeneous positive definite quadratic
form, which can be written in the form

F (u, v) = uT K u, where K =

(
1 −1
−1 3

)
= 1

2 H, u =

(
u
v

)
.

Positive definiteness of the coefficient matrix K implies that F (u, v) > 0 for all u =

(u, v )
T
6= 0, and hence 0 is, in fact, a global minimum.

In general, any quadratic function Q(u) = Q(u1, . . . , un) can be written in the form

Q(u) = uT Ku− 2bT u + c =
m∑

i,j =1

kij ui uj − 2
n∑

i=1

bi ui + c, (19.71)

where K = KT is a symmetric n × n matrix, b ∈ R
n is a fixed vector, and c ∈ R is a

scalar. A straightforward computation produces the formula for its gradient and Hessian
matrix:

∇Q(u) = 2Ku− 2b, ∇2Q(u) = 2K. (19.72)

As a result, the critical points of the quadratic function are the solutions to the linear
system Ku = b. If K is nonsingular, there is a unique critical point u?, which is a strict
local minimum if and only if K > 0 is positive definite. In fact, Theorem 4.1 tells us that,
in the positive definite case, u? is a strict global minimum for Q(u). Thus, the algebraic
approach of Chapter 4 provides additional, global information that cannot be gleaned
directly from the local, multivariable calculus Theorem 19.42. But algebra is only able to
handle quadratic minimization problems with ease. The analytical classification of minima
and maxima of more complicated objective functions necessarily relies the gradient and
Hessian criteria of Theorem 19.42.

Example 19.44. The function

F (u, v) = u2 + v2 − v3 has gradient ∇F (u, v) =

(
2u

2v − 3v2

)
.

The critical point equation ∇F = 0 has two solutions: u?
1 =

(
0
0

)
and u?

2 =

(
0
2
3

)
. The

Hessian matrix of the objective function is

∇2F (u, v) =

(
2 0
0 2− 6v

)
.
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u2 + v2 − v3 u2 + v4 u2 + v3

Figure 19.19. Critical Points.

At the first critical point, the Hessian ∇2F (0, 0) =

(
2 0
0 2

)
is positive definite. Therefore,

the origin is a strict local minimum. On the other hand, ∇2F
(
0, 2

3

)
=

(
2 0
0 −2

)
is

indefinite, and hence u?
2 =

(
0
2
3

)
a saddle point. The function is graphed in Figure 19.19,

with the critical points indicated by the small solid balls. The origin is, in fact, only a
local minimum, since F (0, 0) = 0, whereas F (0, v) < 0 for all v > 1. Thus, this particular
function has no global minimum or maximum on R

2.

Next, consider the function

F (u, v) = u2 + v4, with gradient ∇F (u, v) =

(
2u
4v3

)
.

The only critical point is the origin u = v = 0. The origin is a strict global minimum
because F (u, v) > 0 = F (0, 0) for all (u, v) 6= ( 0, 0 )

T
. However, its Hessian matrix

∇2F (u, v) =

(
2 0
0 12v2

)

is only positive semi-definite at the origin, ∇2F (0, 0) =

(
2 0
0 0

)
.

On the other hand, the origin u = v = 0 is also the only critical point for the function

F (u, v) = u2 + v3 with ∇F (u, v) =

(
2u
3v2

)
.

The Hessian matrix is

∇2F (u, v) =

(
2 0
0 6v

)
, and so ∇2F (0, 0) =

(
2 0
0 0

)

is the same positive semi-definite matrix at the critical point. However, in this case (0, 0)
is not a local minimum; indeed

F (0, v) < 0 = F (0, 0) whenever v < 0,

and so there exist points arbitrarily close to the origin where F takes on smaller values.
As illustrated in Figure 19.19, the origin is, in fact, a degenerate saddle point.
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Finally, the function

F (u, v) = u2 − 2uv + v2 has gradient ∇F (u, v) =

(
2u− 2v
−2u + 2v

)
,

and so every point u = v is a critical point. The Hessian matrix

∇2F (u, v) =

(
Fuu Fuv

Fuv Fvv

)
=

(
2 −2
−2 2

)

is positive semi-definite everywhere. Since F (u, u) = 0, while F (u, v) = (u − v)2 > 0
when u 6= v, each of these critical points is a non-isolated (and hence non-strict) local
minimum. Thus, comparing the three preceding examples, we see that a semi-definite
Hessian is unable to distinguish between different types of degenerate critical points.

Finally, the reader should always keep in mind that first and second derivative tests
only determine the local behavior of the function near the critical point. They cannot
be used to determine whether or not we are at a global minimum. This requires some
additional analysis, and, often, a fair amount of ingenuity.

Proof of Theorem 19.42 : We return to the proof of Theorem 19.39. Given a local
minimum u?, the scalar function g(t) = F (u? + tv) in (19.68) has a local minimum at
t = 0. As noted above, basic calculus tells us that its derivatives at t = 0 must satisfy

g′(0) = 0, g′′(0) ≥ 0. (19.73)

The first condition leads to the critical point equation ∇F (u?) = 0. A straightforward
chain rule calculation produces the formula

g′′(0) =
n∑

i,j =1

∂2F

∂ui ∂uj

(u?) vi vj = vT ∇2F (u?)v.

As a result, the second condition in (19.73) requires that

vT ∇2F (u?)v ≥ 0.

Since this condition is required for every direction v ∈ R
n, the Hessian matrix∇2F (u?) ≥ 0

satisfies the criterion for positive semi-definiteness, proving the first part of the theorem.

The proof of the converse relies† on the second order Taylor expansion (C.16) of the
function:

F (u) = F (u?) +∇F (u?) · v + 1
2 vT∇2F (u?)v + S(v,u?)

= F (u?) + 1
2 vT∇2F (u?)v + S(v,u?),

where v = u− u?,

(19.74)

† Actually, it is not hard to prove the first part using the first order Taylor expansion without
resorting to the scalar function g; see Exercise . On the other hand, when we look at infinite-
dimensional minimization problems arising in the calculus of variations, we will no longer have the
luxury of appealilng to the finite-dimensional Taylor expansion, whereas the previous argument
continues to apply in general contextx.
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at the critical point, whence ∇F (u?) = 0. The remainder term in the Taylor formaul goes
to 0 as u→ u? at a rate faster than quadratic:

S(v,u?)

‖v ‖2
−→ 0 as v −→ 0. (19.75)

Assuming ∇2F (u?), there is a constant C > 0 such that

vT∇2F (u?)v ≥ C ‖v ‖2 for all v ∈ R
n.

This is a consequence of the Theorem 3.17 on the equivalence of norms, coupled with the
fact that every positive definite matrix defines a norm. By (19.75), we can find δ > 0 such
that

|S(v,u?) | < 1
2 C ‖v ‖2 whenever 0 < ‖v ‖ = ‖u− u? ‖ < δ.

But then the Taylor formula (19.74) implies that, for all u satisfying the preceding in-
equality,

0 < 1
2 vT∇2F (u?)v + S(v,u?) = F (u)− F (u?),

which implies u? is a strict local minimum of F (u). Q.E.D.

Constrained Optimization and Lagrange Multipliers

In many applications, the function to be minimized is subject to constraints. For
instance, finding boundary minima requires constraining the minima to the boundary of
the domain. Another example would be to find the minimum temperature on the surface
of the earth. Assuming the earth is a perfect sphere of radius R, the temperature function
T (u, v, w) is then to be minimized subject to the constraint u2 + v2 + w2 = R2.

Let us focus on finding the minimum value of an objective function F (u) = F (u, v, w)
when its arguments (u, v, w) are constrained to lie on a regular surface S ⊂ R

3. Suppose

u? = (u?, v?, w? )
T
∈ S is a (local) minimum for the constrained objective function. Let

u(t) = (u(t), v(t), w(t) )
T
⊂ S be any curve contained within the surface that passes

through the minimum, with u(0) = u?. Then the scalar function g(t) = F (u(t)) must
have a local minimum at t = 0, and hence, in view of (19.66),

0 = g′(0) =
d

dt
F (u(t))

∣∣∣∣
t=0

= ∇F (u(0)) ·
¦

u(0) = ∇F (u?) ·
¦

u(0) . (19.76)

Thus, the gradient of the objective function at the surface minimum must be orthogonal
to the tangent vector to the curve. Since the curve was constrained to lies entirely in S, its
tangent vector

¦

u(0) is tangent to the surface at the point u?. Since every tangent vector to
the surface is tangent to some curve contained in the surface, ∇F (u?) must be orthogonal
to every tangent vector, and hence point in the normal direction to the surface. Thus, a
contrained critical point u? ∈ S of a function on a surface is defined so that

∇F (u?) = λn, (19.77)
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where n denotes the normal to the surface at the point u?. The scalar factor λ is known as
the Lagrange multiplier in honor or Lagrange, one of the pioneers of constrained optimiza-
tion. The value of the Lagrange multiplier is not fixed a priori., but must be determined
by solving the critical point system (19.77). The same reasoning applies to local maxima,
which are also constrained critical points. The nature of a constrained critical point —
local minimum, local maximum, local saddle point, etc. — is fixed by a constrained second
derivative test; details are discussed in Exercise .

Example 19.45. Our problem is to find the minimum value of the objective function
F (u, v, w) = u2−2w3 when u, v, w are restricted to the unit sphere S = (u2 + v2 + w2 = 1).

The radial vector n = (u, v, w )
T

is normal to the sphere, and so the critical point condition
(19.77) is

∇F =




2u
0

−6w2


 = λ




u
v
w


.

Thus, we must solve the system of equations

2u = λu, 0 = λ v, −6w2 = λw, subject to u2 + v2 + w2 = 1,

for the unknowns u, v, w and λ. This needs to be done carefully to avoid missing any cases.
First, if u 6= 0, then λ = 2, v = 0, and either w = 0 whence u = ±1, or w = − 1

3 and so

u = ±
√

1− w2 = ± 2
√

2
3 . On the other hand, if u = 0, then either λ = 0, w = 0 and so

v = ±1, or v = 0, w = ±1, and λ = ∓6. Collecting these together, we discover that there
are a total of 8 critical points on the unit sphere:

u?
1 =




1
0
0


, u?

2 =



−1

0
0


, u?

3 =




2
√

2
3

0

− 1
3


, u?

4 =



− 2

√
2

3

0

− 1
3


,

u?
5 =




0
1
0


, u?

6 =




0
−1

0


, u?

7 =




0
0
1


, u?

8 =




0
0
−1


.

Since the unit sphere is closed and bounded, we are assured that F has a global maximum
and a global minimum when restricted to S, which are both to be found among our
candidate critical points. Thus, we merely compute the value of the objective function at
each critical point,

F (u?
1) = 1, F (u?

2) = 1, F (u?
3) = 22

27 , F (u?
4) = 26

27 ,

F (u?
5) = 0, F (u?

6) = 0, F (u?
7) = −2, F (u?

8) = 2.

Therefore, u?
7 must be the global minimum and u?

8 the global maximum of the objective
function restricted to the unit sphere. The status of the other six critical points — con-
strainned local maximum, minimum, or neither — is less evident, and a full classification
requires the second derivative test outlined in Exercise .
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If the surface is given as the level set of a function

G(u, v, w) = c, (19.78)

then at any point u? ∈ S, the gradient vector ∇G(u?) points in the normal direction to
the surface, and hence, provided n = ∇G(u?) 6= 0, the surface critical point condition can
be rewritten as

∇F (u?) = λ∇G(u?), (19.79)

or, in full detail, the critical point (u?, v?, w? )
T

must satisfy

∂F

∂u
(u, v, w) = λ

∂G

∂u
(u, v, w),

∂F

∂v
(u, v, w) = λ

∂G

∂v
(u, v, w),

∂F

∂w
(u, v, w) = λ

∂G

∂w
(u, v, w).

(19.80)

Thus, to find the contrained critical points, one needs to solve the combined system (19.78,
80) of 4 equations for the four unknowns u, v, w and the Lagrange multiplier λ.

Formally, one can reformulate the problem as an unconstrained optimization problem
by introducing the augmented objective function

H(u, v, w, λ) = F (u, v, w)− λ
(
G(u, v, w)− c

)
. (19.81)

The critical points of the augmented function are where its gradient, with respect to all four
arguments, vanishes. Setting the partial derivatives with respect to u, v, w to 0 reproduces
the system (19.80), while it partial derivative with respect to λ reporduces the constraint
(19.78).

Example 19.46. Consider the problem of minimizing F (u, v, w) = when con-
strained to the surface torus?

If F (u) is defined on a closed subdomain Ω ⊂ R
n, then its minima may also occur

at boundary points u ∈ ∂Ω. When the boundary is smooth, there is an analogous critical
point condition for local boundary extrema.

Theorem 19.47. Let Ω ⊂ R
n be a domain with smooth boundary ∂Ω. Suppose

F (u) is co;ntinuously differentiable at all points in Ω = Ω ∪ ∂Ω. If the boundary point

u0 ∈ ∂Ω is a (local) minimum for F when restricted to the closed domain Ω, then the

gradient vector ∇F (u0) is either 0 or points inside the domain in the normal direction to

∂Ω. See Figure bmin for a sketch of the geometrical configuration.

Proof : Let u(t) ⊂ ∂Ω be any curve that is entirely contained in the boundary, with
u(0) = u0. Then the scalar function g(t) = F (u(t)) must have a local minimum at t = 0,
and hence, in view of (19.66),

0 = g′(0) =
d

dt
F (u(t))

∣∣∣∣
t=0

=
〈
∇F (u(0)) ,

¦

u(0)
〉

.
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Since the curve lies entirely in ∂Ω, its tangent vector
¦

u(0) is tangent to the boundary at
the point u0; moreover, we can realize any such tangent vector by a suitable choice of
curve. We conclude that ∇F (u0) is orthogonal to every tangent vector to ∂Ω at the point
u0, and hence must point in the normal direction to the boundary. Moreover, if non-zero,
it cannot point outside Ω since then −∇F (u0), which is the direction of decrease in the
objective function, would point inside the domain, which would preclude u0 from being a
local minimum. Q.E.D.

The same ideas can be applied to optimization problems involving functions of several
varaibles subject to one or more constraints. Suppose the objective function F (u) =
F (u1, . . . , un) is subject to the constraints

G1(u) = c1, · · · Gk(u) = ck. (19.82)

A point u satisfying the constraints is termed regular if the corresponding gradient vectors
∇G1(u), . . . ,∇Gk(u) are linearly independent. (Irregular points are more tricky, and must
be handled separately.) A regular constrained critical point necessarily satisfies the vector
equation

∇F (u) = λ1∇G1(u) + · · · + λ1∇G1(u), (19.83)

where the unspecified scalars λ1, . . . , λk are called the Lagrange multipliers for the con-
strained optimization problem. The critical points are thus found by solving the combined
system (19.82–83) for the n + k varaibles u1, . . . , un and λ1, . . . , λk. As in (19.81) we
can reformulate this as an uncontrained optimization problem for the augmented objective

function

H(u,λ) = F (u)−

k∑

i=1

λi

(
Gi(u)− ci

)
. (19.84)

The gradient with respect to u reproduces the critical point system (19.83), while its
gradient with respect to to λ = (λ1, . . . , λk) recovers the constraints (19.82).

Theorem 19.48. Every regular constrained local minimum and maximum is a con-

strained critical point.

Numerical Minimization of Scalar Functions

In practical optimization, one typically bypasses the preliminary characterization of
minima as critical points, and instead implements a direct iterative procedure that con-
structs a sequence of successively better approximations to the desired minimum. As the
computation progresses, the approximations are adjusted so that the objective function
is made smaller and smaller, which, we hope, will ensure that we are converging to some
form of minimum.

As always, to understand the issues involved, it is essential to consider the simplest
scalar situation. Thus, we are given the problem of minimizing a scalar function F (u) on
a bounded interval a ≤ u ≤ b. The minimum value can either be at an endpoint or an
interior minimum. Let us first state a result that plays a similar role to the Intermediate
Value Lemma 19.17 that formed the basis of the Bisection Method for locating roots.
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Lemma 19.49. Suppose that F (u) is defined and continuous for all a ≤ u ≤ b.
Suppose that we can find a point a < c < b such that F (c) < F (a) and F (c) < F (b). Then

F (u) has a minimum at some point a < u? < b.

The proof is an easy consequence of Theorem 19.34. Therefore, if we find three points
a < c < b satisfying the conditions of the lemma, we are assured of the existence of a local
minimum for the function between the two endpoints. Once this is done, we can design
an algorithm to home in on the minimum u?. We choose another point, say d between
a and c and evaluate F (d). If F (d) < F (c), then F (d) < F (a) also, and so the points
a < d < c satisfy the hypotheses of Lemma 19.49. Otherwise, if F (d) > F (c) then the
points d < c < b satisfy the hypotheses of the lemma. In either case, a local minimum
has been narrowed down to a smaller interval, either [a, c ] or [d, b ]. In the unlikely even
that F (d) = F (c), one can try another point instead — unless the objective function is
constant, one will eventually find a suitable value of d. Iterating the method will produce
a sequence of progressively smaller and smaller intervals in which the minimum is trapped,
and, just like the Bisection Method, the endpoints of the intervals get closer and closer to
u?.

The one question is how to choose the point d. We described the algorithm when
it was selected to lie between a and c, but one could equally well try a point between
c and b. To speed up the algorithm, it makes sense to place d in the larger of the two
subintervals [a, c ] and [c, b ]. One could try placing d in the midpoint of the interval, but
a more inspired choice is to place it at a fraction θ = 5√

2
− 1

2 ≈ .61803 of the way along

the interval, i.e., at θa + (1 − θ)c if[a, c ] is the longer interval. (One could equally well
take the point (1− θ)a+ θ c.) The result is the Golden Section Method . At each stage, the
length of the interval has been reduced by a factor of θ, so the convergence rate is linear,
although a bit slower than bisection.

Another strategy is to use an interpolating polynomial passing through the three
points on the graph of F (u) and use its minimum value as the next approximation to the
minimum. According to Exercise 4.4.23, the minimizing value occurs at

d =
ms− nt

s− t
,

where

s =
F (c)− F (a)

c− a
, t =

F (b)− F (c)

b− c
, m =

a + c

2
, n =

c + b

2
.

As long as a < c < b satisfy the hypothesis of Lemma 19.49, we are assured that the
quadratic interpolant has a minimum (and not a maximum!), and that the minimum
remains between the endpoints of the interval: a < d < b. If the length of the interval is
small, the minimum value should be a good approximation to the minimizer u? of F (u)
itself. Once d is determined, the algorithm proceeds as before. In this case, convergence is
not quite guaranteed, or, in unfavorable situations, could be much slower than the Golden
Section Method. One can even try using the method when the function values do not
satisfy the hypothesis of Lemma 19.49, although now the new point d will not necessarily
lie between a and b. Worse, the quadratic interpolant may have a maximum at d, and one
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ends up going in the wrong direction, which can even happen in the minimizing case due
to the discrepancy between it and the objective function F (u). Thus, this method must
be handled with care.

A final idea is to focus not on the objective function F (u) but rather its derivative
f(u) = F ′(u). The critical points of F are the roots of f(u) = 0, and so one can use one
of the solution methods, e.g., Bisection or Newton’s Method, to find the critical points.
Of course, one must then take care that the critical point u? is indeed a minimum, as it
could equally well be a maximum of the original objective function. (It will probably not
be an inflection point, as these do not correspond to simple roots of f(u).) The status of
the critical point can be checked by looking at the sign of F ′′(u?) = f ′(u?); indeed, if we
use Newton’s Method we will be computing the derivative at each stage of the algorithm,
and can stop looking if the derivative turns out to be of the wrong sign.

Gradient Descent

Now, let us turn our attention to multi-dimensional optimization problems. We are
seeking to minimize a (smooth) scalar objective function F (u) = F (u1, . . . , un). According
to Theorem 19.37, at any given point u in the domain of definition of F , the negative
gradient vector −∇F (u), if nonzero, points in the direction of the steepest decrease in
F . Thus, to minimize F , an evident strategy is to “walk downhill”, and, to be efficient,
walk downhill as fast as possible, namely in the direction −∇F (u). After walking in this
direction for a little while, we recompute the gradient, and this tells us the new direction
to head downhill. With luck, we will eventually end up at the bottom of the valley, i.e.,
at a (local) minimum value of the objective function.

This simple idea forms the basis of the Gradient Descent Method for minimizing the
objective function F (u). In a numerical implementation, we start the iterative procedure
with an initial guess u(0), and let u(k) denote the kth approximation to the minimum u?.
To compute the next approximation, we set out from u(k) in the direction of the negative
gradient, and set

u(k+1) = u(k) − tk∇F (u(k)). (19.85)

for some positive scalar tk > 0. We are free to adjust tk so as to optimize our descent
path, and this is the key to the success of the method.

If ∇F (u(k)) 6= 0, then, at least when tk > 0 is sufficiently small,

F (u(k+1)) < F (u(k)), (19.86)

and so u(k+1) is, presumably, a better approximation to the desired minimum. Clearly, we
cannot choose tk too large or we run the risk of overshooting the minimum and reversing
the inequality (19.86). Think of walking downhill in the Swiss Alps. If you walk too far
in a straight line, which is what happens as tk increases, then you might very well miss
the valley and end up higher than you began — not a good strategy for descending to the
bottom! On the other hand, if we choose tk too small, taking very tiny steps, then the
method may end up converging to the minimum much too slowly to be of practical use.

How should we choose an optimal value for the factor tk? Keep in mind that the goal
is to minimize F (u). Thus, a good strategy would be to set tk equal to the value of t > 0
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that minimizes the scalar objective function

g(t) = F
(
u(k) − t∇F (u(k))

)
(19.87)

obtained by restricting F (u) to the ray emanating from u(k) that lies in the negative
gradient direction. Physically, this corresponds to setting off in a straight line in the
direction of steepest decrease, and continuing on until we cannot go down any further.
Barring luck, we will not have reached the actual bottom of the valley, but must then
readjust our direction and continue on down the hill in a series of straight line paths.

In practice, one can rarely compute the minimizing value t? of (19.87) exactly. Instead,
we employ one of the scalar minimization algorithms presented in the previous subsection.
Note that we only need to look for a minimum among positive values of t > 0, since our
choice of the negative gradient direction assures us that, at least for t sufficiently small
and positive, g(t) < g(0).

A more sophisticated approach is to employ the second order Taylor polynomial to
approximate the function and then use its minimum (assuming such exists) as the next
approximation to the desired minimizer. Specifically, if u(k) is the current approximation
to the minimum, then we approximate

F (u) ≈ c(k) + (u− u(k))T g(k) + 1
2 (u− u(k))T H(k)(u− u(k)) (19.88)

near u(k), where

c(k) = F (u(k)), g(k) = ∇F (u(k)), H(k) = ∇2F (u(k)), (19.89)

are, respectively, the function value, the gradient and the Hessian at the current iterate. If
u? is a stric local minimum, then ∇2F (u?) is positive definite, and hence, assuming u(k) is
close, so is H(k) = ∇2F (u(k)). Thus, by Theorem 4.1, the quadratic Taylor approximation
has a unique minimum value u(k+1) which satisfies the linear system

H(k)(u(k+1) − u(k)) = −g(k). (19.90)

The solution serves to define the next approximation u(k+1). While not guaranteed to
converge, the method does perform well in all reasonable situations.
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Chapter 20

Nonlinear Ordinary Differential Equations

This chapter is concerned with initial value problems for systems of ordinary differ-
ential equations. We have already dealt with the linear case in Chapter 9, and so here our
emphasis will be on nonlinear phenomena and properties, particularly those with physical
relevance. Finding a solution to a differential equation may not be so important if that
solution never appears in the physical model represented by the system, or is only realized
in exceptional circumstances. Thus, equilibrium solutions, which correspond to configura-
tions in which the physical system does not move, only occur in everyday situations if they
are stable. An unstable equilibrium will not appear in practice, since slight perturbations
in the system or its physical surroundings will immediately dislodge the system far away
from equilibrium.

Of course, very few nonlinear systems can be solved explicitly, and so one must typ-
ically rely on a numerical scheme to accurately approximate the solution. Basic methods
for initial value problems, beginning with the simple Euler scheme, and working up to
the extremely popular Runge–Kutta fourth order method, will be the subject of the final
section of the chapter. However, numerical schemes do not always give accurate results,
and we breifly discuss the class of stiff differential equations, which present a more serious
challenge to numerical analysts.

Without some basic theoretical understanding of the nature of solutions, equilibrium
points, and stability properties, one would not be able to understand when numerical so-
lutions (even those provided by standard well-used packages) are to be trusted. Moreover,
when testing a numerical scheme, it helps to have already assembled a repertoire of nonlin-
ear problems in which one already knows one or more explicit analytic solutions. Further
tests and theoretical results can be based on first integrals (also known as conservation
laws) or, more generally, Lyapunov functions. Although we have only space to touch on
these topics briefly, but, we hope, this will whet the reader’s appetite for delving into this
subject in more depth. The references [19, 56, 89, 99, 105] can be profitably consulted.

20.1. First Order Systems of Ordinary Differential Equations.

Let us begin by introducing the basic object of study in discrete dynamics: the initial
value problem for a first order system of ordinary differential equations. Many physical
applications lead to higher order systems of ordinary differential equations, but there is a
simple reformulation that will convert them into equivalent first order systems. Thus, we
do not lose any generality by restricting our attention to the first order case throughout.
Moreover, numerical solution schemes for higher order initial value problems are entirely
based on their reformulation as first order systems.
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Scalar Ordinary Differential Equations

As always, when confronted with a new problem, it is essential to fully understand
the simplest case first. Thus, we begin with a single scalar, first order ordinary differential
equation

du

dt
= F (t, u). (20.1)

In many applications, the independent variable t represents time, and the unknown func-
tion u(t) is some dynamical physical quantity. Throughout this chapter, all quantities
are assumed to be real. (Results on complex ordinary differential equations can be found
in [98].) Under appropriate conditions on the right hand side (to be formalized in the
following section), the solution u(t) is uniquely specified by its value at a single time,

u(t0) = u0. (20.2)

The combination (20.1–2) is referred to as an initial value problem, and our goal is to
devise both analytical and numerical solution strategies.

A differential equation is called autonomous if the right hand side does not explicitly
depend upon the time variable:

du

dt
= F (u). (20.3)

All autonomous scalar equations can be solved by direct integration. We divide both sides
by F (u), whereby

1

F (u)

du

dt
= 1,

and then integrate with respect to t; the result is
∫

1

F (u)

du

dt
dt =

∫
dt = t + k,

where k is the constant of integration. The left hand integral can be evaluated by the
change of variables that replaces t by u, whereby du = (du/dt) dt, and so

∫
1

F (u)

du

dt
dt =

∫
du

F (u)
= G(u),

where G(u) indicates a convenient anti-derivative† of the function 1/F (u). Thus, the
solution can be written in implicit form

G(u) = t + k. (20.4)

If we are able to solve the implicit equation (20.4), we may thereby obtain the explicit
solution

u(t) = H(t + k) (20.5)

† Technically, a second constant of integration should appear here, but this can be absorbed
into the previous constant k, and so proves to be unnecessary.
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Figure 20.1. Solutions to
¦

u = u2.

in terms of the inverse function H = G−1. Finally, to satisfy the initial condition (20.2),
we set t = t0 in the implicit solution formula (20.4), whereby G(u0) = t0 + k. Therefore,
the solution to our initial value problem is

G(u)−G(u0) = t− t0, or, explicitly, u(t) = H
(
t− t0 + G(u0)

)
. (20.6)

Remark : A more direct version of this solution technique is to rewrite the differential
equation (20.3) in the “separated form”

du

F (u)
= dt,

in which all terms involving u, including its differential du, are collected on the left hand
side of the equation, while all terms involving t and its differential are placed on the right,
and then formally integrate both sides, leading to the same implicit solution formula:

G(u) =

∫
du

F (u)
=

∫
dt = t + k. (20.7)

Before completing our analysis of this solution method, let us run through a couple
of elementary examples.

Example 20.1. Consider the autonomous initial value problem

du

dt
= u2, u(t0) = u0. (20.8)

To solve the differential equation, we rewrite it in the separated form

du

u2
= dt, and then integrate both sides: −

1

u
=

∫
du

u2
= t + k.
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Solving the resulting algebraic equation for u, we deduce the solution formula

u = −
1

t + k
. (20.9)

To specify the integration constant k, we evaluate u at the initial time t0; this implies

u0 = −
1

t0 + k
, so that k = −

1

u0

− t0.

Therefore, the solution to the initial value problem is

u =
u0

1− u0(t− t0)
. (20.10)

Figure 20.1 shows the graphs of some typical solutions.

As t approaches the critical value t? = t0 +1/u0 from below, the solution “blows up”,
meaning u(t) → ∞ as t → t?. The blow-up time t? depends upon the initial data — the
larger u0 > 0 is, the sooner the solution goes off to infinity. If the initial data is negative,
u0 < 0, the solution is well-defined for all t > t0, but has a singularity in the past, at
t? = t0 + 1/u0 < t0. The only solution that exists for all positive and negative time is the
constant solution u(t) ≡ 0, corresponding to the initial condition u0 = 0.

In general, the constant equilibrium solutions to an autonomous ordinary differential
equation, also known as its fixed points, play a distinguished role. If u(t) ≡ u? is a constant
solution, then du/dt ≡ 0, and hence the differential equation (20.3) implies that F (u?) = 0.
Therefore, the equilibrium solutions coincide with the roots of the function F (u). In
point of fact, since we divided by F (u), the derivation of our formula for the solution
(20.7) assumed that we were not at an equilibrium point. In the preceding example,
our final solution formula (20.10) happens to include the equilibrium solution u(t) ≡ 0,
corresponding to u0 = 0, but this is a lucky accident. Indeed, the equilibrium solution does
not appear in the “general” solution formula (20.9). One must typically take extra care
that equilibrium solutions do not elude us when utilizing this basic integration method.

Example 20.2. Although a population of people, animals, or bacteria consists of
individuals, the aggregate behavior can often be effectively modeled by a dynamical system
that involves continuously varying variables. As first proposed by the English economist
Thomas Malthus in 1798, the population of a species grows, roughly, in proportion to
its size. Thus, the number of individuals N(t) at time t satisfies a first order differential
equation of the form

dN

dt
= ρN, (20.11)

where the proportionality factor ρ = β − δ measures the rate of growth, namely the
difference between the birth rate β ≥ 0 and the death rate δ ≥ 0. Thus, if births exceed
deaths, ρ > 0, and the population increases, whereas if ρ < 0, more individuals are dying
and the population shrinks.

In the very simplest model, the growth rate ρ is assumed to be independent of the
population size, and (20.11) reduces to the simple linear ordinary differential equation
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(8.1) that we solved at the beginning of Chapter 8. The solutions satisfy the Malthusian
exponential growth law N(t) = N0 eρt, where N0 = N(0) is the initial population size.
Thus, if ρ > 0, the population grows without limit, while if ρ < 0, the population dies out,
so N(t) → 0 as t → ∞, at an exponentially fast rate. The Malthusian population model
provides a reasonably accurate description of the behavior of an isolated population in an
environment with unlimited resources.

In a more realistic scenario, the growth rate will depend upon the size of the population
as well as external environmental factors. For example, in the presence of limited resources,
relatively small populations will increase, whereas an excessively large population will have
insufficient resources to survive, and so its growth rate will be negative. In other words,
the growth rate ρ(N) > 0 when N < N?, while ρ(N) < 0 when N > N?, where the
carrying capacity N? > 0 depends upon the resource availability. The simplest class of
functions that satifies these two inequalities are of the form ρ(N) = λ(N ? − N), where
λ > 0 is a positive constant. This leads us to the nonlinear population model

dN

dt
= λN (N? −N). (20.12)

In deriving this model, we assumed that the environment is not changing over time; a
dynamical environment would require a more complicated non-autonomous differential
equation.

Before analyzing the solutions to the nonlinear population model, let us make a pre-
liminary change of variables, and set u(t) = N(t)/N ?, so that u represents the size of
the population in proportion to the carrying capacity N ?. A straightforward computation
shows that u(t) satisfies the so-called logistic differential equation

du

dt
= λu(1− u), u(0) = u0, (20.13)

where we assign the initial time to be t0 = 0 for simplicity. The logistic differential equation
can be viewed as the continuous counterpart of the logistic map (19.19). However, unlike
its discrete namesake, the logistic differential equation is quite sedate, and its solutions
easily understood.

First, there are two equilibrium solutions: u(t) ≡ 0 and u(t) ≡ 1, obtained by setting
the right hand side of the equation equal to zero. The first represents a nonexistent
population with no individuals and hence no reproduction. The second equilibrium solution
corresponds to a static population N(t) ≡ N ? that is at the ideal size for the environment,
so deaths exactly balance births. In all other situations, the population size will vary over
time.

To integrate the logistic differential equation, we proceed as above, first writing it in
the separated form

du

u(1− u)
= λ dt.

Integrating both sides, and using partial fractions,

λt + k =

∫
du

u(1− u)
=

∫ [
1

u
+

1

1− u

]
du = log

∣∣∣∣
u

1− u

∣∣∣∣ ,
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Figure 20.2. Solutions to u′ = u(1− u).

where k is a constant of integration. Therefore

u

1− u
= ceλt, where c = ±ek.

Solving for u, we deduce the solution

u(t) =
ceλt

1 + ceλt
. (20.14)

The constant of integration is fixed by the initial condition. Solving the algebraic equation

u0 = u(0) =
c

1 + c
yields c =

u0

1− u0

.

Substituting the result back into the solution formula (20.14) and simplifying, we find

u(t) =
u0 eλt

1− u0 + u0 eλt
. (20.15)

The resulting solutions are illustrated in Figure 20.2. Interestingly, while the equilibrium
solutions are not covered by the integration method, they reappear in the final solution
formula, corresponding to initial data u0 = 0 and u0 = 1 respectively. However, this is a
lucky accident, and cannot be anticipated in more complicated situations.

When using the logistic equation to model population dynamics, the initial data is
assumed to be positive, u0 > 0. As time t → ∞, the solution (20.15) tends to the
equilibrium value u(t)→ 1 — which corresponds to N(t)→ N ? approaching the carrying
capacity in the original population model. For small initial values u0 ¿ 1 the solution
initially grows at an exponential rate λ, corresponding to a population with unlimited
resources. However, as the population increases, the gradual lack of resources tends to
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slow down the growth rate, and eventually the population saturates at the equilibrium
value. On the other hand, if u0 > 1, the population is too large to be sustained by the
available resources, and so dies off until it reaches the same saturation value. If u0 = 0,
then the solution remains at equilibrium u(t) ≡ 0. Finally, when u0 < 0, the solution only
exists for a finite amount of time, with

u(t) −→ −∞ as t −→ t? =
1

λ
log

(
1−

1
u0

)
.

Of course, this final case does appear in the physical world, since we cannot have a negative
population!

The separation of variables method used to solve autonomous equations can be stra-
ightforwardly extended to a special class of non-autonomous equations. A separable ordi-
nary differential equation has the form

du

dt
= a(t)F (u), (20.16)

in which the right hand side is the product of a function of t and a function of u. To solve
the equation, we rewrite it in the separated form

du

F (u)
= a(t) dt.

Integrating both sides leads to the solution in implicit form

G(u) =

∫
du

F (u)
=

∫
a(t) dt = A(t) + k. (20.17)

The integration constant k is then fixed by the initial condition. And, as before, one must
properly account for any equilibrium solutions, when F (u) = 0.

Example 20.3. Let us solve the particular initial value problem

du

dt
= (1− 2 t)u, u(0) = 1. (20.18)

We begin by writing the differential equation in separated form

du

u
= (1− 2 t) dt.

Integrating both sides leads to

log u =

∫
du

u
=

∫
(1− 2 t) dt = t− t2 + k,

where k is the constant of integration. We can readily solve for

u(t) = cet−t2 ,

where c = ±ek. The latter formula constitutes the general solution to the differential
equation, and happens to include the equilibrium solution u(t) ≡ 0 when c = 0. The given

initial condition requires that c = 1, and hence u(t) = et−t2 is the unique solution to the
initial value problem. The solution is graphed in Figure 20.3.
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Figure 20.3. Solution to the Initial Value Problem
¦

u = (1− 2 t)u, u(0) = 1.

First Order Systems

A first order system of ordinary differential equations has the general form

du1

dt
= F1(t, u1, . . . , un), · · ·

dun

dt
= Fn(t, u1, . . . , un). (20.19)

The unknowns u1(t), . . . , un(t) are scalar functions of the real variable t, which usually
represents time. We shall write the system more compactly in vector form

du

dt
= F(t,u), (20.20)

where u(t) = (u1(t), . . . , un(t) )
T
, and F(t,u) = (F1(t, u1, . . . , un), . . . , Fn(t, u1, . . . , un) )

T

is a vector-valued function of n + 1 variables. By a solution to the differential equation,
we mean a vector-valued function u(t) that is defined and continuously differentiable on
an interval a < t < b, and, moreover, satisfies the differential equation on its interval of
definition. Each solution u(t) serves to parametrize a curve C ⊂ R

n, also known as a
trajectory or orbit of the system.

In this chapter, we shall concentrate on initial value problems for such first order
systems. The general initial conditions are

u1(t0) = a1, u2(t0) = a2, · · · un(t0) = an, (20.21)

or, in vectorial form,

u(t0) = a (20.22)

Here t0 is a prescribed initial time, while the vector a = ( a1, a2, . . . , an )
T

fixes the initial
position of the desired solution. In favorable situations, as described below, the initial
conditions serve to uniquely specify a solution to the differential equations — at least for
nearby times. The general issues of existence and uniquenss of solutions will be addressed
in the following section.
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A system of differential equations is called autonomous if the right hand side does not
explicitly depend upon the time t, and so takes the form

du

dt
= F(u). (20.23)

One important class of autonomous first order systems are the steady state fluid flows.
Here F(u) = v represents the fluid velocity vector field at the position u. The solution
u(t) to the initial value problem (20.23, 22) describes the motion of a fluid particle that
starts at position a at time t0. The differential equation tells us that the fluid velocity
at each point on the particle’s trajectory matches the prescribed vector field. Additional
details can be found in Chapter 16 and Appendices A and B.

An equilibrium solution is constant: u(t) ≡ u? for all t. Thus, its derivative must
vanish, du/dt ≡ 0, and hence, every equilibrium solution arises as a solution to the system
of algebraic equations

F(u?) = 0 (20.24)

prescribed by the vanishing of the right hand side of the system (20.23).

Example 20.4. A predator-prey system is a simplified ecological model of two
species: the predators which feed on the prey. For example, the predators might be
lions roaming the Serengeti and the prey zebra. We let u(t) represent the number of prey,
and v(t) the number of predators at time t. Both species obey a population growth model
of the form (20.11), and so the dynamical equations can be written as

du

dt
= ρu,

dv

dt
= σv,

where the growth rates ρ, σ may depend upon the other species. The more prey, i.e., the
larger u is, the faster the predators reproduce, while a lack of prey will cause them to die
off. On the other hand, the more predators, the faster the prey are consumed and the
slower their net rate of growth.

If we assume that the environment has unlimited resources for the prey, which, bar-
ring drought, is probably valid in the case of the zebras, then the simplest model that
incorporates these assumptions is the Lotka–Volterra system

du

dt
= αu− δuv,

dv

dt
= −β v + γ uv, (20.25)

corresponding to growth rates ρ = α − δ v, σ = −β + γ u. The parameters α, β, γ, δ >
0 are all positive, and their precise values will depend upon the species involved and
how they interact, as indicated by field data, combined with, perhaps, educated guesses.
In particular, α represents the unrestrained growth rate of the prey in the absence of
predators, while −β represents the rate that the predators die off in the absence of their
prey. The nonlinear terms model the interaction of the two species: the rate of increase
in the predators is proportional to the number of available prey, while the rate of decrese
in the prey is proportional to the number of predators. The initial conditions u(t0) = u0,
v(t0) = v0 represent the initial populations of the two species.
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We will discuss the integration of the Lotka–Volterra system (20.25) in Section 20.3.
Here, let us content ourselves with determining the possible equilibria. Setting the right
hand sides of the system to zero leads to the nonlinear algebraic system

0 = αu− δuv = u(α− δ v), 0 = −β v + γ uv = v(−β + γ u).

Thus, there are two distinct equilibria, namely

u?
1 = v?

1 = 0, u?
2 = β/γ, v?

2 = α/δ.

The first is the uninteresting (or, rather catastropic) situation where there are no animals —
no predators and no prey. The second is a nontrivial solution in which both populations
maintain a steady value, for which the birth rate of the prey is precisely sufficient to
continuously feed the predators. Is this a feasible solution? Or, to state the question more
mathematically, is this a stable equilibrium? We shall develop the tools to answer this
question below.

Higher Order Systems

A wide variety of physical systems are modeled by nonlinear systems of differential
equations depending upon second and, occasionally, even higher order derivatives of the
unknowns. But there is an easy device that will reduce any higher order ordinary differ-
ential equation or system to an equivalent first order system. “Equivalent” means that
each solution to the first order system uniquely corresponds to a solution to the higher
order equation and vice versa. The upshot is that, for all practical purposes, one only
needs to analyze first order systems. Moreover, the vast majority of numerical solution
algorithms are designed for first order systems, and so to numerically integrate a higher
order equation, one must place it into an equivalent first order form.

We have already encountered the main idea in our discussion of the phase plane
approach to second order scalar equations

d2u

dt2
= F

(
t, u,

du

dt

)
. (20.26)

We introduce a new dependent variable v =
du

dt
. Since

dv

dt
=

d2u

dt2
, the functions u, v satisfy

the equivalent first order system

du

dt
= v,

dv

dt
= F (t, u, v). (20.27)

Conversely, it is easy to check that if u(t) = (u(t), v(t) )
T

is any solution to the first
order system, then its first component u(t) defines a solution to the scalar equation, which
establishes their equivalence. The basic initial conditions u(t0) = u0, v(t0) = v0, for the
first order system translate into a pair of initial conditions u(t0) = u0,

¦

u(t0) = v0, specifying
the value of the solution and its first order derivative for the second order equation.

Similarly, given a third order equation

d3u

dt3
= F

(
t, u,

du

dt
,
d2u

dt2

)
,
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we set

v =
du

dt
, w =

dv

dt
=

d2u

dt2
.

The variables u, v, w satisfy the equivalent first order system

du

dt
= v,

dv

dt
= w,

dw

dt
= F (t, u, v, w).

The general technique should now be clear.

Example 20.5. The forced van der Pol equation

d2u

dt2
+ (u2 − 1)

du

dt
+ u = f(t) (20.28)

arises in the modeling of an electrical circuit with a triode whose resistance changes with
the current, [EE]. It also arises in certain chemical reactions, [odz], and wind-induced
motions of structures, [odz]. To convert the van der Pol equation into an equivalent first
order system, we set v = du/dt, whence

du

dt
= v,

dv

dt
= f(t)− (u2 − 1)v − u, (20.29)

is the equivalent phase plane system.

Example 20.6. The Newtonian equations for a mass m moving in a potential force
field are a second order system of the form

m
d2u

dt2
= −∇F (u)

in which u(t) = (u(t), v(t), w(t) )
T

represents the position of the mass and F (u) =
F (u, v, w) the potential function. In components,

m
d2u

dt2
= −

∂F

∂u
, m

d2v

dt2
= −

∂F

∂v
, m

d2w

dt2
= −

∂F

∂w
. (20.30)

For example, a planet moving in the sun’s gravitational field satisfies the Newtonian system
for the gravitational potential

F (u) = −
α

‖u ‖
= −

α
√

u2 + v2 + w2
, (20.31)

where α depends on the masses and the universal gravitational constant. (This simplified
model ignores all interplanetary forces.) Thus, the mass’ motion in such a gravitational
force field follows the solution to the second order Newtonian system

m
d2u

dt2
= −∇F (u) = −

αu

‖u ‖3
=

α

(u2 + v2 + w2)3/2




u
v
w


.
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The same system of ordinary differential equations describes the motion of a charged
particle in a Coulomb electric force field, where the sign of α is positive for attracting
opposite charges, and negative for repelling like charges.

To convert the second order Newton equations into a first order system, we set v =
¦

u

to be the mass’ velocity vector, with components

p =
du

dt
, q =

dv

dt
, r =

dw

dt
,

and so

du

dt
= p,

dv

dt
= q,

dw

dt
= r, (20.32)

dp

dt
= −

1

m

∂F

∂u
(u, v, w),

dq

dt
= −

1

m

∂F

∂v
(u, v, w),

dr

dt
= −

1

m

∂F

∂w
(u, v, w).

One of Newton’s greatest acheivements was to solve this system in the case of the cen-
tral gravitational potential (20.31), and thereby confirm the validity of Kepler’s laws of
planetary motion.

Finally, we note that there is a simple device that will convert any non-autonomous
system into an equivalent autonomous system involving one additional variable. Namely,
one introduces an extra coordinate u0 = t to represent the time, which satisfies the el-
ementary differential equation du0/dt = 1 with initial condition u0(t0) = t0. Thus, the
original system (20.19) can be written in the autonomous form

du0

dt
= 1,

du1

dt
= F1(u0, u1, . . . , un), · · ·

dun

dt
= Fn(u0, u1, . . . , un). (20.33)

For example, the autonomous form of the forced van der Pol system (20.29) is

du0

dt
= 1,

du1

dt
= u2,

du2

dt
= f(u0)− (u2

1 − 1)u2 − u1, (20.34)

in which u0 represents the time variable.

20.2. Existence, Uniqueness, and Continuous Dependence.

It goes without saying that there is no general analytical method that will solve all
differential equations. Indeed, even relatively simple first order, scalar, non-autonomous
ordinary differential equations cannot be solved in closed form. For example, the solution
to the particular Riccati equation

du

dt
= u2 + t (20.35)

cannot be written in terms of elementary functions, although the method of Exercise can
be used to obtain a formula that relies on Airy functions, cf. (C.42, 44). The Abel equation

du

dt
= u3 + t (20.36)
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fares even worse, since its general solution cannot be written in terms of even standard
special functions — although power series solutions can be tediously ground out term
by term. Understanding when a given differential equation can be solved in terms of
elementary functions or known special functions is an active area of contemporary research,
[31]. In this vein, we cannot resist mentioning that the most important class of exact
solution techniques for differential equations are those based on symmetry. An introduction
can be found in the author’s graduate level monograph [141]; see also [38, 104].

Existence

Before worrying about how to solve a differential equation, either analytically, qual-
itatively, or numerically, it behooves us to try to resolve the core mathematical issues of
existence and uniqueness. First, does a solution exist? If, not, it makes no sense trying to
find one. Second, is the solution uniquely determined? Otherwise, the differential equation
probably has scant relevance for physical applications since we cannot use it as a predictive
tool. Since differential equations inevitably have lots of solutions, the only way in which
we can deduce uniqueness is by imposing suitable initial (or boundary) conditions.

Unlike partial differential equations, which must be treated on a case-by-case basis,
there are complete general answers to both the existence and uniqueness questions for
initial value problems for systems of ordinary differential equations. (Boundary value
problems are more subtle.) While obviously important, we will not take the time to
present the proofs of these fundamental results, which can be found in most advanced
textbooks on the subject, including [19, 89, 99, 105].

Let us begin by stating the Fundamental Existence Theorem for initial value problems
associated with first order systems of ordinary differential equations.

Theorem 20.7. Let F(t,u) be a continuous function. Then the initial value prob-

lem†

du

dt
= F(t,u), u(t0) = a, (20.37)

admits a solution u = f(t) that is, at least, defined for nearby times, i.e., when | t− t0 | < δ
for some δ > 0.

Theorem 20.7 guarantees that the solution to the initial value problem exists — at
least for times sufficiently close to the initial instant t0. This may be the most that can be
said, although in many cases the maximal interval α < t < β of existence of the solution
might be much larger — possibly infinite, −∞ < t < ∞, resulting in a global solution.
The interval of existence of a solution typically depends upon both the equation and the
particular initial data. For instance, even though its right hand side is defined everywhere,
the solutions to the scalar initial value problem (20.8) only exist up until time 1/u0, and
so, the larger the initial data, the shorter the time of existence. In this example, the only
global solution is the equilibrium solution u(t) ≡ 0. It is worth noting that this short-term

† If F(t,u) is only defined on a subdomain Ω ⊂ R
n+1, then we must assume that the point

(t0,a) ∈ Ω specifying the initial conditions belongs to its domain of definition.
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existence phenomenon does not appear in the linear regime, where, barring singularities
in the equation itself, solutions to a linear ordinary differential equation are guaranteed to
exist for all time.

In practice, one always extends a solutions to its maximal interval of existence. The
Existence Theorem 20.7 implies that there are only two possible ways in whcih a solution
cannot be extended beyond a time t?: Either

(i) the solution becomes unbounded: ‖u(t) ‖ → ∞ as t→ t?, or

(ii) if the right hand side F (t,u) is only defined on a subset Ω ⊂ R
n+1, then the solution

u(t) reaches the boundary ∂Ω as t→ t?.

If neither occurs in finite time, then the solution is necessarily global. In other words, a
solution to an ordinary differential equation cannot suddenly vanish into thin air.

Remark : The existence theorem can be readily adapted to any higher order system
of ordinary differential equations through the method of converting it into an equivalent
first order system by introducing additional variables. The appropriate initial conditions
guaranteeing existence are induced from those of the corresponding first order system, as
in the second order example (20.26) discussed above.

Uniqueness and Smoothness

As important as existence is the question of uniqueness. Does the initial value problem
have more than one solution? If so, then we cannot use the differential equation to predict
the future behavior of the system from its current state. While continuity of the right
hand side of the differential equation will guarantee that a solution exists, it is not quite
sufficient to ensure uniqueness of the solution to the initial value problem. The difficulty
can be appreciated by looking at an elementary example.

Example 20.8. Consider the nonlinear initial value problem

du

dt
=

5

3
u2/5, u(0) = 0. (20.38)

Since the right hand side is a continuous function, Theorem 20.7 assures us of the existence
of a solution — at least for t close to 0. This autonomous scalar equation can be easily
solved by the usual method:

∫
3

5

du

u2/5
= u3/5 = t + c, and so u = (t + c)5/3.

Substituting into the initial condition implies that c = 0, and hence u(t) = t5/3 is a solution
to the initial value problem.

On the other hand, since the right hand side of the differential equation vanishes at
u = 0, the constant function u(t) ≡ 0 is an equilibrium solution to the differential equation.
(Here is an example where the integration method fails to recover the equilibrium solution.)
Moreover, the equilibrium solution has the same initial value u(0) = 0. Therefore, we have
constructed two different solutions to the initial value problem (20.38). Uniqueness is not
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Figure 20.4. Solutions to the Differential Equation
¦

u = 5
3 u2/5.

valid! Worse yet, there are, in fact, an infinite number of solutions to the initial value
problem. For any a > 0, the function

u(t) =

{
0, 0 ≤ t ≤ a,

(t− a)5/3, t ≥ a,
(20.39)

is differentiable everywhere, even at t = a. (Why?) Moreover, it satisfies both the differ-
ential equation and the initial condition, and hence defines a solution to the initial value
problem. Several of these solutions are plotted in Figure 20.4.

Thus, to ensure uniqueness of solutions, we need to impose a more stringent condition,
beyond mere continuity. The proof of the following basic uniqueness theorem can be found
in the above references.

Theorem 20.9. If F(t,u) ∈ C1 is continuously differentiable, then there exists one

and only one solution† to the initial value problem (20.37).

Thus, the difficulty with the differential equation (20.38) is that the function F (u) =
5
3 u2/5, although continuous everywhere, is not differentiable at u = 0, and hence the
Uniqueness Theorem 20.9 does not apply. On the other hand, F (u) is continuously differ-
entiable away from u = 0, and so any nonzero initial condition u(t0) = u0 6= 0 will produce
a unique solution — for as long as it remains away from the problematic value u = 0.

Blanket Hypothesis: From now on, all differential equations must satisfy the unique-
ness criterion that their right hand side is continuously differentiable.

While continuous differentiability is sufficient to guarantee uniqueness of solutions,
the smoother the right hand side of the system, the smoother the solutions. Specifically:

Theorem 20.10. If F ∈ Cn for n ≥ 1, then any solution to the system
¦

u = F(t,u)
is of class u ∈ Cn+1. If F(t,u) is an analytic function, then all solutions u(t) are analytic.

† As noted earlier, we extend all solutions to their maximal interval of existence.
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The basic outline of the proof of the first result is clear: Continuity of u(t) (which
is a basic prerequiste of any solution) implies continuity of F(t,u(t)), which means

¦

u is
continuous and hence u ∈ C1. This in turn implies F(t,u(t)) =

¦

u is a continuously
differentiable of t, and so u ∈ C2. And so on, up to order n. The proof of analyticity
follows from a detailed analysis of the power series solutions, [98]. Indeed, the analytic
result underlies the method of power series solutions of ordinary differential equations,
developed in detail in Appendix C.

Uniqueness has a number of particularly important consequences for the solutions to
autonomous systems, i.e., those whoe right hand side does not explicitly depend upon t.
Throughout the remainder of this section, we will deal with an autonomous system of
ordinary differential equations

du

dt
= F(u), where F ∈ C1, (20.40)

whose right hand side is defined and continuously differentiable for all u in a domain
Ω ⊂ R

n. As a consequence, each solution u(t) is, on its interval of existence, uniquely
determined by its initial data. Autonomy of the differential equation is an essential hy-
pothesis for the validity of the following properties.

The first result tells us that the solution trajectories of an autonomous system do not
vary over time.

Proposition 20.11. If u(t) is the solution to the autonomous system (20.40) with

initial condition u(t0) = u0, then the solution to the initial value problem ũ(t1) = u0 is

ũ(t) = u(t− t1 + t0).

Proof : Let ũ(t) = u(t − t1 + t0), where u(t) is the original solution. In view of the
chain rule and the fact that t1 and t0 are fixed,

d

dt
ũ(t) =

du

dt
(t− t1 + t0) = F

(
u(t− t1 + t0)

)
= F

(
ũ(t)

)
,

and hence ũ(t) is also a solution to the system (20.40). Moreover,

ũ(t1) = u(t0) = u0

has the indicated initial conditions, and hence, by uniqueness, must be the one and only
solution to the latter initial value problem. Q.E.D.

Note that the two solutions u(t) and ũ(t) parametrize the same curve in R
n, differing

only by an overall “phase shift”, t1 − t0, in their parametrizations. Thus, all solutions
passing through the point u0 follow the same trajectory, irrespective of the time they
arrive there. Indeed, not only is the trajectory the same, but the solutions have identical
speeds at each point along the trajectory curve. For instance, if the right hand side of
(20.40) represents the velocity vector field of steady state fluid flow, Proposition 20.11
implies that the stream lines — the paths followed by the individual fluid particles — do
not change in time, even though the fluid itself is in motion. This, indeed, is the meaning
of the term “steady state” in fluid mechanics.
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One particularly important consequence of uniqueness is that a solution u(t) to an
autonomous system is either stuck at an equilibrium for all time, or is always in motion.
In other words, either

¦

u ≡ 0, in the case of equilibrium, or, otherwise,
¦

u 6= 0 wherever
defined.

Proposition 20.12. Let u? be an equilibrium for the autonomous system (20.40),
so F(u?) = 0. If u(t) is any solution such that u(t?) = u? at some time t?, then u(t) ≡ u?

is the equilibrium solution.

Proof : We regard u(t?) = u? as initial data for the given solution u(t) at the initial
time t?. Since F(u?) = 0, the constant function u?(t) ≡ u? is a solution of the differential
equation that satisfies the same initial conditions. Therefore, by uniqueness, it coincides
with the solution in question. Q.E.D.

In other words, it is mathematically impossible for a solution to reach an equilibrium
position in a finite amount of time — although it may well approach equilibrium in an
asymptotic fashion as t → ∞. Physically, this result has the interesting and counterintu-
itive consequence that a system never actually attains an equilibrium position! Even at
very large times, there is always some very slight residual motion. In practice, though, once
the solution gets sufficiently close to equilibrium, we are unable to detect the motion, and
the physical system has, in all but name, reached its stationary equilibrium configuration.
And, of course, the inherent motion of the atoms and molecules not included in such a
simplified model would hide any infinitesimal residual effects of the mathematical solution.
Without uniqueness, the result is false. For example, the function u(t) = (t − t?)5/3 is a
solution to the scalar ordinary differential equation (20.38) that reaches the equilibrium
point u? = 0 in a finite time t = t?.

Although a solution cannot reach equilibrium in a finite time, it may certainly have a
well-defined limiting value. Using the existence and uniqueness theorems, it can be proved,
[89], that such a limit point is necessarily an equilibrium solution.

Theorem 20.13. If u(t) is any solution to an autonomous system
¦

u = F(u) such

that lim
t→∞

u(t) = u?, then u? is an equilibrium solution, and so F(u?) = 0.

The same conclusion holds if we run time backwards: if lim
t→−∞

u(t) = u?, then u?

is also an equilibrium point. solutions that start and end at equilibrium points are of
particular interest for understanding the dynamics, and known as heteroclinic, or, if the
start and end equilibria are the same, homoclinic orbits. Of course, limiting equilibrium
points are but one of the possible long term behaviors of solutions to nonlinear ordinary
differential equations, which can also become unbounded in finite or infinite time, or ap-
proach periodic orbits, known as limit cycles, or become completely chaotic, depending
upon the nature of the system and the initial conditions. Resolving the long term behavior
os solutions is one of the many challenges awaiting the detailed analysis of any nonlinear
ordinary differential equation.

Continuous Dependence

In a real-world applications, initial conditions are almost never known exactly. Rather,
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experimental and physical errors will only allow us to say that their values are approxi-
mately equal to those in our mathematical model. Thus, to retain physical relevance, we
need to be sure that small errors in our initial measurements do not induce a large change
in the solution. A similar argument can be made for any physical parameters, e.g., masses,
charges, spring stiffnesses, frictional coefficients, etc., that appear in the differential equa-
tion itself. A slight change in the parameters should not have a dramatic effect on the
solution.

Mathematically, what we are after is a criterion of continuous dependence of solutions
upon both initial data and parameters. Fortunately, the desired result holds without any
additional assumptions, beyond requiring that the parameters appear continuously in the
differential equation. We state both results in a single theorem.

Theorem 20.14. Consider an initial value problem problem

du

dt
= F(t,u,µ), u(t0) = a(µ), (20.41)

in which the differential equation and/or the initial conditions depend continuously on

one or more parameters µ = (µ1, . . . , µk). Then the unique† solution u(t,µ) depends

continuously upon the parameters.

Example 20.15. Let us look at a perturbed version

du

dt
= α u2, u(0) = u0 + ε,

of the initial value problem that we considered in Example 20.1. We regard ε as a small
perturbation of our original initial data u0, and α as a variable parameter in the equation.
The solution is

u(t, ε) =
u0 + ε

1− α(u0 + ε) t
. (20.42)

Note that, where defined, this is a continuous function of both parameters α, ε. Thus, a
small change in the initial data, or in the equation, produces a small change in the solution
— at least for times near the initial time.

Continuous dependence does not preclude nearby solutions from eventually becoming
far apart. Indeed, the blow-up time t? = 1/

[
α(u0 + ε)

]
for the solution (20.42) depends

upon both the initial data and the parameter in the equation. Thus, as we approach the
singularity, solutions that started out very close to each other will get arbitrarily far apart;
see Figure 20.1 for an illustration.

An even simpler example is the linear model of exponential growth
¦

u = αu when
α > 0. A very tiny change in the initial conditions has a negligible short term effect upon
the solution, but over longer time intervals, the differences between the two solutions will
be dramatic. Thus, the “sensitive dependence” of solutions on initial conditions already
appears in very simple linear equations. For similar reasons, sontinuous dependence does
not prevent solutions from exhibiting chaotic behavior. Further development of these ideas
can be found in [7, 54] and elsewhere.

† We continue to impose our blanket uniqueness hypothesis.
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20.3. Stability.

Once a solution to a system of ordinary differential equations has settled down, its
limiting value is an equilibrium solution; this is the content of Theorem 20.13. However,
not all equilibria appear in this fashion. The only steady state solutions that one directly
observes in a physical system are the stable equilibria. Unstable equilibria are hard to
sustain, and will disappear when subjected to even the tiniest perturbation, e.g., a breath
of air, or outside traffic jarring the experimental apparatus. Thus, finding the equilibrium
solutions to a system of ordinary differential equations is only half the battle; one must
then understand their stability properties in order to characterize those that can be realized
in normal physical circumstances.

We will focus our attention on autonomous systems

¦

u = F(u)

whose right hand sides are at least continuously differentiable, so as to ensure the unique-
ness of solutions to the initial value problem. If every solution that starts out near a given
equilibrium solution tends to it, the equilibrium is called asymptotically stable. If the
solutions that start out nearby stay nearby, then the equilibrium is stable. More formally:

Definition 20.16. An equilibrium solution u? to an autonomous system of first
order ordinary differential equations is called

• stable if for every (small) ε > 0, there exists a δ > 0 such that every solution u(t)
having initial conditions within distance δ > ‖u(t0)− u? ‖ of the equilibrium
rmains within distance ε > ‖u(t)− u? ‖ for all t ≥ t0.

• asymptotically stable if it is stable and, in addition, there exists δ0 > 0 such that
whenever δ0 > ‖u(t0)− u? ‖, then u(t)→ u? as t→∞.

Thus, although solutions nearby a stable equilibrium may drift slightly farther away,
they must remain relatively close. In the case of asymptotic stability, they will eventually
return to equilibrium. This is illustrated in Figure 20.5
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Example 20.17. As we saw, the logistic differential equation

du

dt
= λu(1− u)

has two equilibrium solutions, corresponding to the two roots of the quadratic equation
λu(1− u) = 0. The solution graphs in Figure 20.1 illustrate the behavior of the solutions.
Observe that the first equilibrium solution u?

1 = 0 is unstable, since all nearby solutions
go away from it at an exponentially fast rate. On the other hand, the other equilibrium
solution u?

2 = 1 is asymptotically stable, since any solution with initial condition 0 < u0

tends to it, again at an exponentially fast rate.

Example 20.18. Consider an autonomous (meaning constant coefficient) homoge-
neous linear planar system

du

dt
= au + bv,

dv

dt
= cu + dv,

with coefficient matrix A =

(
a b
c d

)
. The origin u? = v? = 0 is an evident equilibrium,

solution, and, moreover, is the only equilibrium provided A is nonsingular. According to
the results in Section 9.3, the stability of the origin depends upon the eigenvalues of A: It
is (globally) asymptotically stable if and only if both eigenvalues are real and negative, and
is stable, but not asymptotically stable if and only if both eigenvalues are purely imaginary,
or if 0 is a double eigenvalue and so A = O. In all other cases, the origin is an unstable
equilibrium. Later, we will see how this simple linear analysis has a direct bearing on the
stability question for nonlinear planar systems.

Stability of Scalar Differential Equations

Before looking at any further examples, we need to develop some basic mathematical
tools for investigating the stability of equilibria. We begin at the beginning. The stability
analysis for first order scalar ordinary differential equations

du

dt
= F (u) (20.43)

is particularly easy. The first observation is that all non-equilibrium solutions u(t) are
strictly monotone functions, meaning they are either always increasing or always decreas-
ing. Indeed, when F (u) > 0, then (20.43) implies that the derivative

¦

u > 0, and hence
u(t) is increasing at such a point. Vice versa, solutions are decreasing at any point where
F (u) < 0. Since F (u(t)) depends continuously on t, any non-monotone solution would have
to pass through an equilibrium value where F (u?) = 0, in violation of Proposition 20.12.
This proves the claim.

As a consequence of monotonicity, there are only three possible behaviors for a non-
equilibrium solution:

(a) it becomes unbounded at some finite time: |u(t) | → ∞ as t→ t?; or

(b) it exists for all t ≥ t0, but becomes unbounded as t→∞; or
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(c) it exists for all t ≥ t0 and has a limiting value, u(t) → u? as t → ∞, which, by
Theorem 20.13 must be an equilibrium point.

Let us look more carefully at the last eventuality. Suppose u? is an equilibrium
point, so F (u?) = 0. Suppose that F (u) > 0 for all u lying slightly below u?, i.e., on an
interval of the form u? − δ < u < u?. Any solution u(t) that starts out on this interval,
u? − δ < u(t0) < u? must be increasing. Moreover, u(t) < u? for all t since, according to
Proposition 20.12, the solution cannot pass through the equilibrium point. Therefore, u(t)
is a solution of type (c). It must have limiting value u?, since by assumption, this is the
only equilibrium solution it can increase to. Therefore, in this situation, the equilibrium
point u? is asymptotically stable from below : solutions that start out slightly below return
to it in the limit. On the other hand, if F (u) < 0 for all u slightly below u?, then any
solution that starts out in this regime will be monotonically decreasing, and so will move
downwards, away from the equilibrium point, which is thus unstable from below .

By the same reasoning, if F (u) < 0 for u slightly above u?, then solutions starting
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¦

u = u− u3.

out there will be monotonically decreasing, bounded from below by u?, and hence have
no choice but to tend to u? in the limit. Under this condition, the equilibrium point
is asymptotically stable from above. The reverse inequality, F (u) > 0, corresponds to
solutions that increase away from u?, which is hence unstable from above. Combining
the two stable cases produces the basic asymptotic stability criterion for scalar ordinary
differential equations.

Theorem 20.19. A equilibrium point u? of an autonomous scalar differential equa-

tion is asymptotically stable if and only if F (u) > 0 for u? − δ < u < u? and F (u) < 0 for

u? < u < u? + δ, for some δ > 0.

In other words, if F (u) switches sign from positive to negative as u increases through
the equilibrium point, then the equilibrium is asymptotically stable. If the inequalities are
reversed, and F (u) goes from negative to positive, then the equilibrium point is unstable.
The two cases are illustrated in Figure 20.6. An equilibrium point where F (u) is of one
sign on both sides, e.g., the point u? = 0 for F (u) = u2, is stable from one side, and
unstable from the other; in Exercise you are asked to analyze such cases in detail.

Example 20.20. Consider the differential equation

du

dt
= u− u3. (20.44)

Solving the algebraic equation F (u) = u − u3 = 0, we find that the equation has three
equilibria: u?

1 = −1, u?
2 = 0, u?

3 = +1, As u increases, the graph of the function F (u) =
u − u3 switches from positive to negative at the first equilibrium point u?

1 = −1, which
proves its stability. Similarly, the graph goes back from positive to negative at u?

2 = 0,
establishing the instability of the second equilibrium. The final equilibrium u?

3 = +1 is
stable because F (u) again changes from negative to positive there.

With this information in hand, we are able to completely characterize the behavior of
all solutions to the system. Any solution with negative initial condition, u0 < 0, will end
up, asymptotically, at the first equilibrium, u(t)→ −1 as t→∞. Indeed, if u0 < −1, then
u(t) is monotonically increasing to −1, while if −1 < u0 < 0, the solution is decreasing
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towards −1. On the other hand, if u0 > 0, the corresponding solution ends up at the
other stable equilibrium, u(t)→ +1; those with 0 < u0 < 1 are monotonically increasing,
while those with u0 > 1 are decreasing. The only solution that does not end up at either
−1 or +1 as t → ∞ is the unstable equilibrium solution u(t) ≡ 0. Any perturbation
of it, no matter how tiny, will force the solutions to choose one of the stable equilibria.
Representative solutions are plotted in Figure 20.7. Note that all the curves, with the sole
exception of the horizontal axis, converge to one of the stable solutions ±1, and diverge
from the unstable solution 0 as t→∞.

Thus, the sign of the function F (u) nearby an equilibrium determines its stability.
In most instances, this can be checked by looking at the derivative of the function at the
equilibrium. If F ′(u?) < 0, then we are in the stable situation, where F (u) goes from
positive to negative with increasing u, whereas if F ′(u?) > 0, then the equilibrium u?

unstable on both sides.

Theorem 20.21. Let u? be a equilibrium point for a scalar ordinary differential

equation
¦

u = F (u). If F ′(u?) < 0, then u? is asymptotically stable. If F ′(u?) > 0, then u?

is unstable.

For instance, in the preceding example,

F ′(u) = 1− 3u2,

and its value at the equilibria are

F ′(−1) = −2 < 0, F ′(0) = 1 > 0, F ′(1) = −2 < 0.

The signs reconfirm our conclusion that ±1 are stable equilibria, while 0 is unstable.

In the borderline case when F ′(u?) = 0, the derivative test is inconclusive, and further
analysis is needed to resolve the status of the equilibrium point. For example, the equations
¦

u = u3 and
¦

u = −u3 both satisfy F ′(0) = 0 at the equilibrium point u? = 0. But,
according to the criterion of Theorem 20.19, the former has an unstable equilibrium, while
the latter’s is stable. Thus, Theorem 20.21 is not as powerful as the direct algebraic test
in Theorem 20.19. But it does have the advantage of being a bit easier to use. More
significantly, unlike the algebraic test, it can be directly generalized to systems of ordinary
differential equations.

Linearization and Stability

In higher dimensional situations, we can no longer rely on simple monotonicity prop-
erties, and a more sophisticated approach to stability issues is required. The key idea is
already contained in the second characterization of stable equilibria in Theorem 20.21. The
derivative F ′(u?) determines the slope of the tangent line, which is a linear approximation
to the function F (u) near the equilibrium point. In a similar fashion, a vector-vallued
function F(u) is replaced by its linear approximation near an equilibrium point. The basic
stability criteria for the resulting linearized differential equation were established in Sec-
tion 9.2, and, in most situations, the linearized stability or instability carries over to the
nonlinear regime.
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Let us first revisit the scalar case

du

dt
= F (u) (20.45)

from this point of view. Linearization of a scalar function at a point means to replace it
by its tangent line approximation

F (u) ≈ F (u?) + F ′(u?)(u− u?) (20.46)

If u? is an equilibrium point, then F (u?) = 0, and so the first term disappears. Therefore,
we anticipate that, near the equilibrium point, the solutions to the nonlinear ordinary
differential equation (20.45) will be well approximated by its linearization

du

dt
= F ′(u?)(u− u?).

Let us rewrite the linearized equation in terms of the deviation v(t) = u(t) − u? of the
solution from equilibrium. Since u? is fixed, dv/dt = du/dt, and so the linearized equation
takes the elementary form

dv

dt
= a v, where a = F ′(u?) (20.47)

is the value of the derivative at the equilibrium point. Note that the original equilibrium
point u? corresponds to the zero equilibrium point v? = 0 of the linearized equation (20.47).
We already know that the linear differential equation (20.47) has an asymptotically stable
equilibrium at v? = 0 if and only if a = F ′(u?) < 0, while for a = F ′(u?) > 0 the origin is
unstable. In this manner, the linearized stability criterion reproduces that established in
Theorem 20.21.

The same linearization technique can be applied to analyze the stability of an equi-
librium solution u? to a first order autonomous system

¦

u = F(u). (20.48)

We approximate the function F(u) near an equilibrium point, where F(u?) = 0, by its
first order Taylor polynomial:

F(u) ≈ F(u?) + F′(u?)(u− u?) = F′(u?)(u− u?). (20.49)

Here, F′(u?) denotes its n×n Jacobian matrix (19.28) at the equilibrium point. Thus, for
nearby solutions, we expect that the deviation from equilibrium, v(t) = u(t)− u?, will be
governed by the linearized system

dv

dt
= Av, where A = F′(u?). (20.50)

Now, we already know the complete stability criteria for linear systems. According
to Theorem 9.15, the zero equilibrium solution to (20.50) is asymptotically stable if and
only if all the eigenvalues of the coefficient matrix A = F ′(u?) have negative real part. In
contrast, if one or more of the eigenvalues has positive real part, then the zero solution is
unstable. Indeed, it can be proved, [89, 99], that these linearized stability criteria are also
valid in the nonlinear case.
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Figure 20.8. The Pendulum.

Theorem 20.22. Let u? be an equilibrium point for the first order ordinary differ-

ential equation
¦

u = F(u). If all of the eigenvalues of the Jacobian matrix F ′(u?) have

negative real part, Re λ < 0, then u? is asymptotically stable. If, on the other hand,

F′(u?) has one or more eigenvalues with positive real part, Re λ > 0, then u? is an

unstable equilibrium.

Intuitively, the additional nonlinear terms in the full system should only slightly per-
turb the eigenvalues, and hence, at least for those with nonzero real part, not alter their
effect on the stability of solutions. The borderline case occurs when one or more of the
eigenvalues of F′(u?) is either 0 or purely imaginary, i.e., Re λ = 0, while all other eigenval-
ues have negative real part. In such situations, the linearized stability test is inconclusive,
and we need more detailed information (which may not be easy to come by) to resolve the
status of the equilibrium.

Example 20.23. The second order ordinary differential equation

m
d2θ

dt2
+ µ

dθ

dt
+ κ sin θ = 0 (20.51)

describes the damped oscillations of a rigid pendulum that rotates on a pivot subject to a
uniform gravitational force in the vertical direction. The unknown function θ(t) measures
the angle of the pendulum from the vertical, as illustrated in Figure 20.8. The constant
m > 0 is the mass of the pendulum bob, µ > 0 is the coefficient of friction, assumed here
to be strictly positive, and κ > 0 represents the gravitational force.

In order to study the equilibrium solutions and their stability, we must first convert

the equation into a first order system. Setting u(t) = θ(t), v(t) =
dθ

dt
, we find

du

dt
= v,

dv

dt
= −α sinu− β v, where α =

κ

m
, β =

µ

m
, (20.52)

are both positive constants. The equilibria occur where the right hand sides of the first
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order system (20.52) simultaneously vanish, that is,

v = 0, −α sin u− β v = 0, and hence u = 0, ±π, ±2π, . . . .

Thus, the system has infinitely many equilibrium points:

u?
k = (kπ, 0) where k = 0,±1,±2, . . . is any integer. (20.53)

The equilibrium point u?
0 = (0, 0) corresponds to u = θ = 0, v =

¦

θ = 0, which means
that the pendulum is at rest at the bottom of its arc. Our physical intuition leads us to
expect this to describe a stable configuration, as the frictional effects will eventually damp
out small nearby motions. The next equilibrium u?

1 = (π, 0) corresponds to u = θ = π,

v =
¦

θ = 0, which means that the pendulum is sitting motionless at the top of its arc. This
is a theoretically possible equilibrium configuration, but highly unlikely to be observed in
practice, and is thus expected to be unstable. Now, since u = θ is an angular variable,
equilibria whose u values differ by an integer multiple of 2π define the same physical
configuration, and hence should have identical stability properties. Therefore, all the
remaining equilibria u?

k physically correspond to one or the other of these two possibilities:
when k = 2j is even, the pendulum is at the bottom, while when k = 2j + 1 is odd, the
pendulum is at the top.

Let us now confirm our intuition by applying the linearization stability criterion of
Theorem 20.22. The right hand side of the system (20.52), namely

F(u, v) =

(
v

−α sinu− β v

)
, has Jacobian matrix F′(u, v) =

(
0 1

−α cos u −β

)
.

At the bottom equilibrium u?
0 = (0, 0), the Jacobian matrix

F′(0, 0) =

(
0 1
−α −β

)
has eigenvalues λ =

−β ±
√

β2 − 4α

2
.

Under our assumption that α, β > 0, both eigenvalues have negative real part, and hence
the origin is a stable equilibrium. If β2 < 4α — the underdamped case — the eigenvalues
are complex, and hence, in the terminology of Section 9.3, the origin is a stable focus. In
the phase plane, the solutions spiral in to the focus, which corresponds to a pendulum
with damped oscillations of decreasing magnitude. On the other hand, if β2 > 4α, then
the system is overdamped . Both eigenvalues are negative, and the origin is a stable node.
In this case, the solutions decay exponentially fast to 0. Physically, this would be like
a pendulum moving in a vat of molasses. The exact same analysis applies at all even
equilibria u?

2j = (2j π, 0) — which really represent the same bottom equilibrium point.

On the other hand, at the top equilibrium u?
1 = (π, 0), the Jacobian matrix

F′(0, 0) =

(
0 1
α −β

)
has eigenvalues λ =

−β ±
√

β2 + 4α

2
.

In this case, one of the eigenvalues is real and positive while the other is negative. The
linearized system has an unstable saddle point, and hence the nonlinear system is also

5/2/06 1115 c© 2006 Peter J. Olver



Figure 20.9. The Underdamped Pendulum.

unstable at this equilibrium point. Any tiny perturbation of an upright pendulum will
dislodge it, causing it to swing down, and eventually settle into a damped oscillatory
motion converging on one of the stable bottom equilibria.

The complete phase portrait of an underdamped pendulum appears in Figure 20.9.
Note that, as advertised, almost all solutions end up spiraling into the stable equilibria.
Solutions with a large initial velocity will spin several times around the center, but even-
tually the cumulative effect of frictional forces wins out and the pendulum ends up in a
damped oscillatory mode. Each of the the unstable equilibria has the same saddle form
as its linearizations, with two very special solutions, corresponding to the stable eigen-
line of the linearization, in which the pendulum spins around a few times, and, in the
t → ∞ limit, ends up standing upright at the unstable equilibrium position. However,
like unstable equilibria, such solutions are practically impossible to achieve in a physical
environment as any tiny perturbation will cause the pendulum to sightly deviate and then
end up eventually decaying into the usual damped oscillatory motion at the bottom.

A deeper analysis demonstrates the local structural stability of any nonlinear equi-
librium whose linearization is structurally stable, and hence has no eigenvalues on the
imaginary axis: Re λ 6= 0. Structural stability means that, not only are the stability
properties of the equilibrium dictated by the linearized approximation, but, nearby the
equilibrium point, all solutions to the nonlinear system are slight perturbations of solu-
tions to the corresponding linearized system, and so, close to the equilibrium point, the two
phase portraits have the same qualitative features. Thus, stable foci of the linearization
remain stable foci of the nonlinear system; unstable saddle points remain saddle points,
although the eigenlines become slightly curved as they depart from the equilibrium. Thus,
the structural stability of linear systems, as discussed at the end of Section 9.3 also carries
over to the nonlinear regime near an equilibrium. A more in depth discussion of these
issues can be found, for instance, in [89, 99].

,

Example 20.24. Consider the unforced van der Pol system

du

dt
= v,

dv

dt
= −(u2 − 1)v − u. (20.54)
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Figure 20.10. Phase Portrait of the van der Pol System.

that we derived in Example 20.5. The only equilibrium point is at the origin u = v = 0.
Computing the Jacobian matrix of the right hand side,

F′(u, v) =

(
0 1

2uv − 1 1

)
, and hence F′(0, 0) =

(
0 1
−1 1

)
.

The eigenvalues of F′(0, 0) are 1
2 ± i

√
3

2 , and correspond to an unstable focus of the lin-
earized system near the equilibrium point. Therefore, the origin is an unstable equilibrium
for nonlinear van der Pol system, and all non-equilibrium solutions starting out near 0

eventually spiral away.

On the other hand, it can be shown that solutions that are sufficiently far away from
the origin spiral in towards the center, cf. Exercise . So what happens to the solutions?
As illustrated in the phase plane portrait sketched in Figure 20.10, all non-equilibrium
solutions spiral towards a stable periodic orbit, known as a limit cycle for the system.
Any non-zero initial data will eventually end up closely following the limit cycle orbit
as it periodically circles around the origin. A rigorous proof of the existence of a limit
cycle relies on the more sophisticated Poincaré–Bendixson Theory for planar autonomous
systems, discussed in detail in [89].

Example 20.25. The nonlinear system

du

dt
= u(v − 1),

dv

dt
= 4− u2 − v2,

has four equilibria: (0,±2) and (±
√

3 , 1). Its Jacobian matrix is

F′(u, v) =

(
v − 1 u
−2u −2v

)
.
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Figure 20.11. Phase Portrait for
¦

u = u(v − 1),
¦

v = 4− u2 − v2..

A table of the eigenvalues at the equilibrium points and their stability follows: These
results are reconfirmed by the phase portrait drawn in Figure 20.11

Equilibrium Point Jacobian matrix Eigenvalues Stability

(0, 2)

(
1 0
0 −4

)
1, −4

unstable
saddle

(0,−2)

(
−3 0

0 6

)
−3, 6

unstable
saddle

(
√

3 , 1)

(
0 −

√
3

2
√

3 −2

)
−1± i

√
5

stable
focus

(−
√

3 , 1)

(
0 −

√
3

2
√

3 −2

)
−1± i

√
5

stable
focus

Conservative Systems

When modeling a physical system that includes some form of damping — due to fric-
tion, viscosity, or dissipation — linearization will usually suffice to resolve the stability or
instability of equilibria. However, when dealing with conservative systems, when damp-
ing is absent and energy is preserved, the linearization test is often inconclusive, and one
must rely on more sophisticated stability criteria. In such situations, one can often exploit
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conservation of energy, appealing to our general philosophy that minimizers of an energy
function should be stable (but not necessarily asymptotically stable) equilibria.

By saying that energy is conserved , we mean that it remains constant as the solution
evolves. Conserved quantities are also known as first integrals for the system of ordinary
differential equations. Additional well-known examples include the laws of conservation of
mass, and conservation of linear and angular momentum. Let us mathematically formulate
the general definition.

Definition 20.26. A first integral of an autonomous system
¦

u = F(u) is a real-
valued function I(u) which is constant on solutions.

In other words, for each solution u(t) to the differential equation,

I(u(t)) = c for all t, (20.55)

where c is a fixed constant, which will depend upon which solution is being monitored.
The value of c is fixed by the initial data since, in particular, c = I(u(t0)) = I(u0). Or,
to rephrase this condition in another, equivalent manner, every solution to the dynamical
system is constrained to move along a single level set {I(u) = c} of the first integral,
namely the level set that contains the initial data u0.

Note first that any constant function, I(u) ≡ c0, is trivially a first integral, but this
provides no useful information whatsoever about the solutions, and so is uninteresting. We
will call any autonomous system that possesses a nontrivial first integral I(u) a conservative

system.

How do we find first integrals? In applications, one often appeals to the underlying
physical principles such as conservation of energy, momentum, or mass. Mathematically,
the most convenient way to check whether a function is constant is to verify that its
derivative is identically zero. Thus, differentiating (20.55) with respect to t and invoking
the chain rule leads to the basic condition

0 =
d

dt
I(u(t)) = ∇I(u(t)) ·

du

dt
= ∇I(u(t)) · F(u(t)). (20.56)

The final expression can be identified as the directional derivative of I(u) with respect to
the vector field v = F(u) that specifies the differential equation, cf. (19.64). Writing out
(20.56) in detail, we find that a first integral I(u1, . . . , un) must satisfy a first order linear
partial differential equation:

F1(u1, . . . , un)
∂I

∂u1

+ · · · + Fn(u1, . . . , un)
∂I

∂un

= 0. (20.57)

As such, it looks harder to solve than the original ordinary differential equation! Often,
one falls back on either physical intuition, intelligent guesswork, or, as a last resort, a
lucky guess. A deeper fact, due to the pioneering twentieth century mathematician Emmy
Noether, cf. [137, 141], is that first integrals and conservation laws are the result of un-
derlying symmetry properties of the differential equation. Like many nonlinear methods,
it remains the subject of contemporary research.
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Let us specialize to planar autonomous systems

du

dt
= F (u, v),

dv

dt
= G(u, v). (20.58)

According to (20.57), any first integral I(u, v) must satisfy the linear partial differential
equation

F (u, v)
∂I

∂u
+ G(u, v)

∂I

∂v
= 0. (20.59)

This nonlinear first order partial differential equation can be solved by the method of
characteristics†. Consider the auxiliary first order scalar ordinary differential equation‡

dv

du
=

G(u, v)

F (u, v)
(20.60)

for v = h(u). Note that (20.60) can be formally obtained by dividing the second equation
in the original system (20.58) by the first, and then canceling the time differentials dt.
Suppose we can write the general solution to the scalar equation (20.60) in the implicit
form

I(u, v) = c, (20.61)

where c is a constant of integration. We claim that the function I(u, v) is a first integral
of the original system (20.58). Indeed, differentiating (20.61) with respect to u, and using
the chain rule, we find

0 =
d

du
I(u, v) =

∂I

∂u
+

dv

du

∂I

∂v
=

∂I

∂u
+

G(u, v)

F (u, v)

∂I

∂v
.

Clearing the denominator, we conclude that I(u, v) solves the partial differential equation
(20.59), which justifies our claim.

Example 20.27. As an elementary example, consider the linear system

du

dt
= −v,

dv

dt
= u. (20.62)

To construct a first integral, we form the auxiliary equation (20.60), which is

dv

du
= −

u

v
.

This first order ordinary differential equation can be solved by separating variables:

v dv = −u du, and hence 1
2 u2 + 1

2 v2 = c,

† See Section 22.1 for an alternative perspective on solving such partial differential equations.

‡ We assume that F (u, v) 6≡ 0. Otherwise, I(u) = u is itself a first integral, and the system
reduces to a scalar equation for v; see Exercise .
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where c is the constant of integration. Therefore, by the preceding result,

I(u, v) = 1
2 u2 + 1

2 v2

is a first integral. The level sets of I(u, v) are the concentric circles centered at the origin,
and we recover the fact that the solutions of (20.62) go around the circles. The origin is a
stable equilibrium — a center.

This simple example hints at the importance of first integrals in stability theory. The
following key result confirms our general philosophy that energy minimizers, or, more
generally, minimizers of first integrals, are stable equilibria. See Exercise for an outline
of the proof of the key result.

Theorem 20.28. Let I(u) be a first integral for the autonomous system
¦

u = F(u).
If u? is a strict local extremum — minimum or mximum — of I, then u? is a stable

equilibrium point for the system.

Remark : At first sight, the fact that strict maxima are also stable equilibria appears
to contradict our intuition. However, energy functions typically do not have local maxima.
Indeed, physical energy is the sum of kinetic and potential contributions. While potential
energy can admit maxima, e.g., the pendulum at the top of its arc, these are only unstable
saddle points for the full energy function, since the kinetic energy can always be increased
by moving a bit faster.

Example 20.29. Consider the specific predator-prey system

du

dt
= 2u− uv,

dv

dt
= −9v + 3uv, (20.63)

modeling populations of, say, lions and zebra, and a special case of (20.25). According to
Example 20.4, there are two possible equilibria:

u?
1 = v?

1 = 0, u?
2 = 3, v?

2 = 2.

Let us first try to determine their stability by linearization. The Jacobian matrix for the
system is

F′(u, v) =

(
2− v −u
3v 3u− 9

)
.

At the first, trivial equilibrium,

F′(0, 0) =

(
2 0
0 −9

)
, with eigenvalues 2 and − 9.

Since there is one positive and one negative eigenvalue, the origin is an unstable saddle
point. On the other hand, at the nonzero equilibrium, the Jacobian matrix

F′(3, 2) =

(
0 −3
6 0

)
, has purely imaginary eigenvalues ± 3

√
2 i .
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So the linearized system has a stable center. However, as purely imaginary eigenvalues is
a borderline situation, Theorem 20.22 cannot be applied. Thus, the linearization stability
test is inconclusive.

It turns out that the predator-prey model is a conservative system. To find a first
integral, we need to solve the auxiliary equation (20.60), which is

dv

du
=
−9v + 3uv

2u− uv
=
−9/u + 3

2/v − 1
.

Fortunately, this is a separable first order ordinary differential equation. Integrating,

2 log v − v =

∫ (
2

v
− 1

)
dv =

∫ (
−

9

u
+ 3

)
du = −9 log u + 3u + c,

where c is the constant of integration. Writing the solution in the form (20.61), we conclude
that

I(u, v) = 9 log u− 3u + 2 log v − v = c,

is a first integral of the system. The solutions to (20.63) must stay on the level sets of
I(u, v). Note that

∇I(u, v) =

(
9/u− 3
2/v − 1

)
, and hence ∇I(3, 2) = 0,

which shows that the second equilibrium is a critical point. (On the other hand, I(u, v) is
not defined at the unstable zero equilibrium.) Moreover, the Hessian matrix at the critical
point,

∇2I(3, 2) =

(
−3 0

0 −1

)
,

is negative definite, and hence u?
2 = ( 3, 2 )

T
is a strict local maximum of the first integral

I(u, v). Thus, Theorem 20.28 proves that the equilibrium point is a stable center.

The first integral serves to completely characterize the qualitative behavior of the sys-
tem. In the physically relevant region, i.e., the upper right quadrant Q = {u > 0, v > 0}
where both populations are positive, all of the level sets of the first integral are closed
curves encircling the equilibrium point u?

2 = ( 3, 2 )
T
. The solutions move in a counter-

clockwise direction around the closed level curves, and hence all non-equilibrium solutions
in the positive quadrant are periodic. The phase portrait is illustrated in Figure 20.12,
along with a typicl periodic solution. Thus, in such an idealized ecological model, for
any initial conditions starting with some zebra and lions, i.e., where u(t0), v(t0) > 0, the
populations will maintain a balance over the long term, each varying periodically between
maximum and minimum values. Observe also that the maximum and minimum values
of the two populations are not achieved simultaneously. Starting with a small number of
predators, the number of prey will initially increase. The predators then have more food
availbable, and so also start to increase in numbers. At a certain critical point, the preda-
tors are sufficiently numerous as to kill prey faster than they can reproduce. At this point,
the prey population has reached its maximum, and begins to decline. But it takes a while
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Figure 20.12. Phase Portrait and Solution of the Predator-Prey System.

for the predator population to feel the effect, and so it continues to increase. Eventually
the increasingly rapid decline in the number of prey begins to affect the predators. After
the predators reach their maximum number, both populations are in decline. Eventually,
enough predators have died off so as to relieve the pressure on the prey, whose population
bottoms out, and then slowly begins to rebound. Later, the number of predators also
reaches a minimum, at which point the entire growth and decay cycle starts over again.

In contrast to a linear system, the period of the population cycle is not fixed, but
depends upon how far away from the stable equilibrium the solution orbit lies. Near
equilibrium, the solutions are close to those of the linearized system which, in view of its
eigenvalues ±3 i

√
2, are periodic of frequency 3

√
2 and period

√
2 π/3. However, solutions

that are far away from equilibrium have much longer periods, and so greater imbalances
between predator and prey populations leads to longer periods, and more radically varying
numbers. Understanding the mechanisms behind these population cycles is of increasing
important in the ecological management of natural resources, [biol].

Example 20.30. In our next example, we look at the undamped oscillations of a
pendulum. When we set the friction coefficient µ = 0, the nonlinear second order ordinary
differential equation (20.51) reduces to

m
d2θ

dt2
+ κ sin θ = 0. (20.64)

As before, we convert this into a first order system

du

dt
= v,

dv

dt
= −α sinu, (20.65)

where

u(t) = θ(t), v(t) =
dθ

dt
, α =

κ

m
.

The equilibria,

u?
k = (kπ, 0) for k = 0,±1,±2, . . . ,
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are the same as in the damped case, i.e., the pendulum is either at the top (k even) or the
bottom (k odd) of the circle.

Let us see what the linearization stability test tells us. In this case, the Jacobian
matrix of (20.65) is

F′(u, v) =

(
0 1

−α cos u 0

)
.

At the top equilibria

F′(u?
2j+1) = F′

(
(2j + 1)π, 0

)
=

(
0 1
α 0

)
has real eigenvalues ±

√
α ,

and hence these equilibria are unstable saddle points, just as in the damped version. On
the other hand, at the bottom equilibria

F′(u?
2j) = F′(2j π, 0) =

(
0 1
−α 0

)
, has purely imaginary eigenvalues ± i

√
α .

Without the benefit of damping, the linearization test is inconclusive, and the stability of
the bottom equilibria remains in doubt.

Since we are dealing with a conservative system, the total energy of the pendulum,
namely

E(u, v) = 1
2 mv2 + κ (1− cos u) =

m

2

(
dθ

dt

)
2

+ κ (1− cos θ) (20.66)

should provide us with a first integral. Note that E is a sum of two terms, which represent,
respectively, the kinetic energy due to the pendulum’s motion, and the potential energy†

due to the height of the pendulum bob. To verify that E(u, v) is indeed a first integral,
we compute

dE

dt
=

∂E

∂u

du

dt
+

∂E

∂v

dv

dt
= (κ sinu)v + (mv)(−α sinu) = 0, since α =

κ

m
.

Therefore, E is indeed constant on solutions, reconfirming the physical basis of the model.

The phase plane solutions to the pendulum equation will move along the level sets of
the energy function E(u, v), which are plotted in Figure 20.13. Its critical points are the
equilibria, where

∇E(u) =

(
κ sin u
mv

)
= 0, and hence u = u?

k = ( kπ, 0 ) , k = 0,±1,±2, . . . .

To characterize the critical points, we appeal to the second derivative test, and so evaluate
the Hessian

∇2E(u, v) =

(
κ cos u 0

0 m

)
.

† In a physical system, the potential energy is only defined up to an additive constant. Here
we have fixed the zero energy level to be at the bottom of the pendulum’s arc.
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Figure 20.13. The Undamped Pendulum.

At the bottom equilibria,

∇2E(u?
2j) = ∇2E(2j π, 0) =

(
κ 0
0 m

)

is positive definite, since κ and m are positive constants. Therefore, the bottom equilibria
are strict local minima of the energy, and so Theorem 20.28 guarantees their stability.

Each stable equilibrium is surrounded by a family of closed oval-shaped level curves,
and hence forms a center. Each oval corresponds to a periodic solution† of the system, in
which the pendulum oscillates back and forth symmetrically around the bottom of its arc.
Near the equilibrium, the period is close to that of the linearized system, namely 2π/

√
α

as prescribed by the eigenvalues of the Jacobian matrix. This fact underlies the use of
pendulum-based clocks for keeping time, first recognized by Galileo. A grandfather clock
is accurate because the amplitude of its pendulum’s oscillations is kept relatively small.
However, moving further away from the equilibrium point in the phase plane, we find
that the periodic solutions with very large amplitude oscillations, in which the pendulum
becomes nearly vertical, have much longer periods, and so would lead to inaccurate time-
keeping.

The large amplitude limit of the periodic solutions is of particular interest. The pair
of trajectories connecting two distinct unstable equilibria are known as the homoclinic

orbits, and play an essential role in the more advanced analysis of the pendulum under
perturbations, [130, X]. Physically, a homoclinic orbit corresponds to a pendulum that
starts out just shy of vertical, goes through exactly one full rotation, and eventually (as
t→∞) ends up vertical again.

Finally, the level sets lying above and below the “cat’s-eyes” formed by the homoclinic
and periodic orbits are known as the running orbits. Since u = θ is a 2π periodic angular

variable, a running orbit solution (u(t), v(t) )
T

= (θ(t),
¦

θ(t))T , in fact, also corresponds
to a periodic physical motion, in which the pendulum spins around and around its pivot.
The larger the total energy E(u, v), the farther away from the u–axis the running orbit
lies, and the faster the pendulum spins.

† More precisely, a family of periodic solutions indexed by their initial condition on the oval,
and differing only by a phase shift: u(t − δ).
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In summary, the qualitative behavior of a solution to the pendulum equation is almost
entirely characterized by its energy:

• E = 0, stable equilibria,

• 0 < E < 2κ, periodic oscillating orbits,

• E = 2κ, unstable equilibria and homoclinic orbits,

• E > 2κ, running orbits.

Example 20.31. The system governing the dynamical rotations of a rigid solid body
around its center of mass are known as the Euler equations of rigid body mechanics, in
honor of the prolific eighteenth century Swiss mathematician Leonhard Euler, cf. [78].
According to Exercise 8.4.23, the eigenvectors of the positive definite inertia tensor of the
body prescribe its three mutually orthogonal principal axes. The corresponding eigenvalues
I1, I2, I3 > 0 are called the principal moments of inertia. Let u1(t), u2(t), u3(t) denote the
angular momenta of the body around its three principal axes. In the absence of external
forces, the dynamical system governing the body’s rotations around its center of mass
takes the symmetric form

du1

dt
=

I2 − I3

I2 I3

u2u3,
du2

dt
=

I3 − I1

I1 I3

u1u3,
du3

dt
=

I1 − I2

I1 I2

u1u2. (20.67)

Th Euler equations model, for example, the dynamics of a satellite spinning in its orbit
around the earth. The solution will prescribe the angular motions of the satellite around
its center of mass, but not the overall motion of the center of mass as the satellite orbits
the earth.

Let us assume that the moments of inertia are all different, which we place in increasing
order 0 < I1 < I2 < I3. The equilibria of the Euler system (20.67) are where the right
hand sides simultaneously vanish, which requires that either u2 = u3 = 0, or u1 = u3 = 0,
or u1 = u2 = 0. In other words, every point on the three coordinate axes is an equilibrium
configuration. Since the variables represent angular momenta, these equilibria correspond
to the body spinning around one of its principal axes at a fixed angular velocity.

Let us analyze the stability of these equilibrium configurations. The linearization test
fails completely — as it must whenever dealing with a non-isolated equilibrium. But the
Euler equations turn out to admit two independent first integrals:

E(u) =
1

2

(
u2

1

I1

+
u2

2

I2

+
u2

3

I3

)
, A(u) =

1

2

(
u2

1 + u2
2 + u2

3

)
. (20.68)

The first is the total kinetic energy, while the second is the total angular momentum. The
proof that dE/dt = 0 = dA/dt for any solution u(t) to (20.67) is left as Exercise for the
reader.

Since both E and A are constant, the solutions to the system are constrained to move
along a common level set C = {E = e, A = a}. Thus, the solution trajectories are the
curves obtained by intersecting the sphere Sa =

{
A(u) = a

}
of radius

√
2a with the

ellipsoid Le =
{

E(u) = e
}
. In Figure rigid , we have graphed the intersection curves
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Ca,e = Sa ∩ Le of a fixed sphere with a family of ellipsoids corresponding to different
values of the kinetic energy. The six equilibria on the sphere are at its intersections with
the coordinate axes. Those on the x and z axes are surrounded by closed periodic orbits,
and hence are stable equilibria; indeed, they are, respectively, local minima and maxima
of the energy when restricted to the sphere. On the other hand, the two equilibria on
the y axis have the form of unstable saddle points. We conclude that a body that spins
around either of its principal axes with the smallest or the largest moment of inertia is
stable, whereas one that spins around the axis corresponding to the intermediate moment
of inertia is unstable. This mathematical deduction can be demonstrated physically by
flipping a solid rectangular object, e.g., this book, up into the air. It is easy to arrange it
to spin around its long axis or its short axis in a stable manner, but it will balk at attempts
to make it rotate around its middle axis!

Lyapunov’s Method

Systems that incorporate damping, viscosity and/or frictional effects do not typically
possess non-constant first integrals. From a physical standpoint, the damping will cause the
total energy of the system to be a decreasing function of time. Asymptotically, the system
returns to a (stable) equilibrium, and the extra energy has been dissipated away. However,
this physical principle captures important mathematical implications for the behavior of
solutions. It leads to a useful alternative method for establishing stability of equilibria,
even in cases when the linearization stability test is inconclusive. The nineteenth century
Russian mathematician Alexander Lyapunov was the first to pinpoint the importance of
such functions in dynamics.

Definition 20.32. A Lyapunov function for the first order autonomous system
¦

u =
F(u) is a continuous real-valued function L(u) that is non-increasing on all solutions u(t),
meaning that

L(u(t)) ≤ L(u(t0)) for all t > t0. (20.69)

A strict Lyapunov function satisfies the strict inequality

L(u(t)) < L(u(t0)) for all t > t0, (20.70)

whenever u(t) is a non-equilibrium solution to the system. (Clearly, the Lyapunov function
must be constant on an equilibrium solution.)

We can characterize continuously differentiable Lyapunov functions by using the ele-
mentary calculus results that a scalar function is non-increasing if and only if its derivative
is non-negative, and is strictly decreasing if its derivative is strictly less than 0.

Lemma 20.33. A continuously differentiable function L(u) is a Lyapunov function

for the system
¦

u = F(u) if and only if it satisfies the Lyapunov inequality

d

dt
L(u(t)) = ∇L(u) · F(u) ≤ 0 for all solutions u(t). (20.71)

If
d

dt
L(u(t)) = ∇L(u) · F(u) < 0 whenever F(u) 6= 0, (20.72)

then L(u) is a strict Lyapunov function.
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Indeed, the formula for the derivative of L(u(t)) follows from the same chain rule
computation used to establish (20.56)

The proof of Theorem 20.28 can be readily adapted to prove stability of equilibria of
a system which has a Lyapunov function; details can be found in [89, 99].

Theorem 20.34. Let L(u) be a Lyapunov function for the autonomous system
¦

u = F(u). If u? is a strict local minimum of L, then u? is a stable equilibrium point. If

L(u) is a strict Lyapunov function, then u? is an asymptotically stable equilibrium.

Proof :

Warning : Maxima of Lyapunov functions are not stable equilibria.

Unlike first integrals, which can, at least in principle, be systematically constructed
by solving a first order partial differential equation, finding Lyapunov functions is much
more of an art form, usually requiring some combination of physical intuition and inspired
guesswork.

Example 20.35. Return to the planar system

du

dt
= v,

dv

dt
= −α sinu− β v,

describing the damped oscillations of a pendulum, as in (20.52). Physically, we expect
that the damping will cause a continual decrease in the total energy in the system, which,
by (20.66), is

E(u, v) = 1
2 mv2 + κ(1− cos u).

Let us prove that E is, indeed, a Lyapunov function. We compute its time derivative,
when u(t), v(t) is a solution to the damped system. Recalling that α = κ/m, β = µ/m, we
find

dE

dt
=

∂E

∂u

du

dt
+

∂E

∂v

dv

dt
= (κ sinu)v + (mv) (−α sinu− β v) = −µ v2 ≤ 0,

since we are assuming that the frictional coefficient µ > 0. Therefore, the energy satisfies
the Lyapunov stability criterion (20.71). Consequently, Theorem 20.34 re-establishes the
stability of the energy minima u?

2k = 2kπ, v?
2k = 0, where the damped pendulum is at the

bottom of the arc. In fact, since dE/dt < 0 except when v = 0, with a little more work,
the Lyapunov criterion can be used to establish their asymptotic stability.

20.4. Numerical Methods.

Since we have no hope of solving the vast majority of differential equations in explicit,
analytic form, the design of suitable numerical algorithms for accurately approximating
solutions is essential. The ubiquity of differential equations throughout mathematics and
its applications has driven the tremendous research effort devoted to numerical solution
schemes, some dating back to the beginnings of the calculus. Nowadays, one has the
luxury of choosing from a wide range of excellent software packages that provide reliable
and accurate results for a broad range of systems, at least for solutions over moderately
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long time periods. However, all of these packages, and the underlying methods, have their
limitations, and it is essential that one be able to to recognize when the software is working
as advertised, and when it produces spurious results! Here is where the theory, particularly
the classification of equilibria and their stability properties, as well as first integrals and
Lyapunov functions, can play an essential role. Explicit solutions, when known, can also
be used as test cases for tracking the reliability and accuracy of a chosen numerical scheme.

In this section, we survey the most basic numerical methods for solving initial value
problems. For brevity, we shall only consider so-called single step schemes, culminating in
the very popular and versatile fourth order Runge–Kutta Method. This should only serve
as a extremely basic introduction to the subject, and many other important and useful
methods can be found in more specialized texts, [88, 107]. It goes without saying that
some equations are more difficult to accurately approximate than others, and a variety
of more specialized techniques are employed when confronted with a recalcitrant system.
But all of the more advanced developments build on the basic schemes and ideas laid out
in this section.

Euler’s Method

The key issues confronting the numerical analyst of ordinary differential equations
already appear in the simplest first order ordinary differential equation. Our goal is to
calculate a decent approxiomation to the (unique) solution to the initial value problem

du

dt
= F (t, u), u(t0) = u0. (20.73)

To keep matters simple, we will focus our attention on the scalar case; however, all formulas
and results written in a manner that can be readily adapted to first order systems — just
replace the scalar functions u(t) and F (t, u) by vector-valued functions u and F(t,u)
throughout. (The time t, of course, remains a scalar.) Higher order ordinary differential
equations are inevitably handled by first converting them into an equivalent first order
system, as discussed in Section 20.1, and then applying the numerical scheme.

The very simplest numerical solution method is named after Leonhard Euler — al-
though Newton and his contemporaries were well aware of such a simple technique. Euler’s
Method is rarely used in practice because much more efficient and accurate techniques can
be implemented with minimal additional work. Nevertheless, the method lies at the core
of the entire subject, and must be thoroughly understood before progressing on to the
more sophisticated algorithms that arise in real-world computations.

Starting at the initial time t0, we introduce successive mesh points (or sample times)

t0 < t1 < t2 < t3 < · · · ,

continuing on until we reach a desired final time tn = t?. The mesh points should be fairly
closely spaced. To keep the analysis as simple as possible, we will always use a uniform
step size, and so

h = tk+1 − tk > 0, (20.74)

does not depend on k and is assumed to be relatively small. This assumption serves to
simplify the analysis, and does not significantly affect the underlying ideas. For a uniform
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t0 t1 t2 t3

u0

u1

u2

u3

u(t)

Figure 20.14. Euler’s Method.

step size, the kth mesh point is at tk = t0 + k h. More sophisticated adaptive methods, in
which the step size is adjusted in order to maintain accuracy of the numerical solution, can
be found in more specialized texts, e.g., [88, 107]. Our numerical algorithm will recursively
compute approximations uk ≈ u(tk), for k = 0, 1, 2, 3, . . . , to the sampled values of the
solution u(t) at the chosen mesh points. Our goal is to make the error Ek = uk − u(tk)
in the approximation at each time tk as small as possible. If required, the values of
the solution u(t) between mesh points may be computed by a subsequent interpolation
procedure, e.g., the cubic splines of Section 11.4.

As you learned in first year calculus, the simplest approximation to a (continuously
differentiable) function u(t) is provided by its tangent line or first order Taylor polynomial.
Thus, near the mesh point tk

u(t) ≈ u(tk) + (t− tk)
du

dt
(tk) = u(tk) + (t− tk)F (tk, u(tk)),

in which we replace the derivative du/dt of the solution by the right hand side of the
governing differential equation (20.73). In particular, the approximate value of the solution
at the subsequent mesh point is

u(tk+1) ≈ u(tk) + (tk+1 − tk)F (tk, u(tk)). (20.75)

This simple idea forms the basis of Euler’s Method.

Since in practice we only know the approximation uk to the value of u(tk) at the
current mesh point, we are forced to replace u(tk) by its approximation uk in the preceding
formula. We thereby convert (20.75) into the iterative scheme

uk+1 = uk + (tk+1 − tk)F (tk, uk). (20.76)

In particular, when based on a uniform step size (20.74), Euler’s Method takes the simple
form

uk+1 = uk + hF (tk, uk). (20.77)

As sketched in Figure 20.14, the method starts off approximating the solution reasonably
well, but gradually loses accuracy as the errors accumulate.
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Euler’s Method is the simplest example of a one-step numerical scheme for integrating
an ordinary differential equation. This refers to the fact that the succeeding approximation,
uk+1 ≈ u(tk+1), depends only upon the current value, uk ≈ u(tk), which is one mesh point
or “step” behind.

To begin to understand how Euler’s Method works in practice, let us test it on a
problem we know how to solve, since this will allow us to precisely monitor the resulting
errors in our numerical approximation to the solution.

Example 20.36. The simplest “nontrivial” initial value problem is

du

dt
= u, u(0) = 1,

whose solution is, of course, the exponential function u(t) = et. Since F (t, u) = u, Euler’s
Method (20.77) with a fixed step size h > 0 takes the form

uk+1 = uk + huk = (1 + h)uk.

This is a linear iterative equation, and hence easy to solve:

uk = (1 + h)ku0 = (1 + h)k

is our proposed approximation to the solution u(tk) = etk at the mesh point tk = kh.
Therefore, the Euler scheme to solve the differential equation, we are effectively approxi-
mating the exponential by a power function:

etk = ekh ≈ (1 + h)k

When we use simply t to indicate the mesh time tk = kh, we recover, in the limit, a
well-known calculus formula:

et = lim
h→ 0

(1 + h)t/h = lim
k →∞

(
1 +

t

k

)k

. (20.78)

A reader familiar with the computation of compound interest will recognize this particular
approximation. As the time interval of compounding, h, gets smaller and smaller, the
amount in the savings account approaches an exponential.

How good is the resulting approximation? The error

E(tk) = Ek = uk − etk

measures the difference between the true solution and its numerical approximation at time
t = tk = kh. Let us tabulate the error at the particular times t = 1, 2 and 3 for various
values of the step size h. The actual solution values are

e1 = e = 2.718281828 . . . , e2 = 7.389056096 . . . , e3 = 20.085536912 . . . .

In this case, the numerical approximation always underestimates the true solution.
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h E(1) E(2) E(3)

.1 − .125 − .662 −2.636

.01 − .0134 − .0730 − .297

.001 − .00135 − .00738 − .0301

.0001 − .000136 − .000739 − .00301

.00001 − .0000136 − .0000739 − .000301

Some key observations:

• For a fixed step size h, the further we go from the initial point t0 = 0, the larger the
magnitude of the error.

• On the other hand, the smaller the step size, the smaller the error at a fixed value of t.
The trade-off is that more steps, and hence more computational effort† is required
to produce the numerical approximation. For instance, we need k = 10 steps of
size h = .1, but k = 1000 steps of size h = .001 to compute an approximation to
u(t) at time t = 1.

• The error is more or less in proportion to the step size. Decreasing the step size by a
factor of 1

10 decreases the error by a similar amount, but simultaneously increases
the amount of computation by a factor of 10.

The final observation indicates that the Euler Method is of first order , which means that
the error depends linearly‡ on the step size h. More specifically, at a fixed time t, the error
is bounded by

|E(t) | = |uk − u(t) | ≤ C(t)h, when t = tk = k h, (20.79)

for some positive C(t) > 0 that depends upon the time, and the initial condition, but not
on the step size.

Example 20.37. The solution to the initial value problem

du

dt
=
(
1− 4

3 t
)
u, u(0) = 1, (20.80)

was found in Example 20.3 by the method of separation of variables:

u(t) = exp
(
t− 2

3 t2
)
. (20.81)

Euler’s Method leads to the iterative numerical scheme

uk+1 = uk + h
(
1− 4

3 tk
)
uk, u0 = 1.

† In this case, there happens to be an explicit formula for the numerical solution which can be
used to bypass the iterations. However, in almost any other situation, one cannot compute the
approximation uk without having first determined the intermediate values u0, . . . , uk−1.

‡ See the discussion of the order of iterative methods in Section 19.1 for motivation.
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Figure 20.15. Euler’s Method for
¦

u =
(
1− 4

3 t
)
u.

In Figure 20.15 we compare the graphs of the actual and numerical solutions for step sizes
h = .1 and .01. In the former plot, we expliticly show the mesh points, but not in the
latter, since they are too dense; moreover, the graphs of the numerical and true solutions
are almost indistinguishable at this resolution.

The following table lists the numerical errors E(tk) = uk−u(tk) between the computed
and actual solution values

u(1) = 1.395612425 . . . , u(2) = .513417119 . . . , u(3) = .049787068 . . . ,

for several different step sizes:

h E(1) E(2) E(3)

.1000 .07461761 .03357536 − .00845267

.0100 .00749258 .00324416 − .00075619

.0010 .00074947 .00032338 − .00007477

.0001 .00007495 .00003233 − .00000747

As in the previous example, each decrease in step size by a factor of 10 leads to one
additional decimal digit of accuracy in the computed solution.

Taylor Methods

In general, the order of a numerical solution method governs both the accuracy of its
approximations and the speed at which they converge to the true solution as the step size
is decreased. Although the Euler Method is simple and easy to implement, it is only a
first order scheme, and therefore of limited utility in serious computations. So, the goal is
to devise simple numerical methods that enjoy a much higher order of accuracy.

Our derivation of the Euler Method was based on a first order Taylor approximation
to the solution. So, an evident way to design a higher order method is to employ a higher
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order Taylor approximation. The Taylor series expansion for the solution u(t) at the
succeeding mesh point tk+1 = tk + h has the form

u(tk+1) = u(tk + h) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) +

h3

6

d3u

dt3
(tk) + · · · . (20.82)

As we just saw, we can evaluate the first derivative term through use of the underlying
differential equation:

du

dt
= F (t, u). (20.83)

The second derivative term can be found by differentiating the equation with respect to t.
Invoking the chain rule†,

d2u

dt2
=

d

dt

du

dt
=

d

dt
F (t, u(t)) =

∂F

∂t
(t, u) +

∂F

∂u
(t, u)

du

dt

=
∂F

∂t
(t, u) +

∂F

∂u
(t, u) F (t, u) ≡ F (2)(t, u).

(20.84)

This operation is known as the total derivative, indicating that that we must treat the
second variable u as a function of t when differentiating. Substituting (20.83–84) into
(20.82) and truncating at order h2 leads to the Second Order Taylor Method

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk)

= uk + hF (tk, uk) +
h2

2

(
∂F

∂t
(tk, uk) +

∂F

∂u
(tk, uk) F (tk, uk)

)
,

(20.85)

in which, as before, we replace the solution value u(tk) by its computed approximation
uk. The resulting method is of second order, meaning that the error function satisfies the
quadratic error estimate

|E(t) | = |uk − u(t) | ≤ C(t)h2 when t = tk = k h. (20.86)

Example 20.38. Let us explicitly formulate the second order Taylor Method for the
initial value problem (20.80). Here

du

dt
= F (t, u) =

(
1− 4

3 t
)
u,

d2u

dt2
=

d

dt
F (t, u) = − 4

3 u +
(
1− 4

3 t
) du

dt
= − 4

3 u +
(
1− 4

3 t
)2

u,

and so (20.85) becomes

uk+1 = uk + h
(
1− 4

3 tk
)
uk + 1

2 h2
[
− 4

3 uk +
(
1− 4

3 tk
)2

uk

]
, u0 = 1.

The following table lists the errors between the values computed by the second order Taylor
scheme and the actual solution values, as given in Example 20.37.

† We assume throughout that F has as many continuous derivatives as needed.
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h E(1) E(2) E(3)

.100 .00276995 −.00133328 .00027753

.010 .00002680 −.00001216 .00000252

.001 .00000027 −.00000012 .00000002

In accordance with the quadratic error estimate (20.86), a decrease in the step size
by a factor of 1

10 leads in an increase in accuracy of the solution by a factor 1
100 , i.e., an

increase in 2 significant decimal places in the numerical approximation of the solution.

Higher order Taylor methods are obtained by including further terms in the expansion
(20.82). For example, to derive a third order Taylor method, we include the third order
term (h3/6)d3u/dt3 in the Taylor expansion, where we evaluate the third derivative by
differentiating (20.84), and so

d3u

dt3
=

d

dt

d2u

dt2
=

d

dt
F (2)(t, u) =

∂F (2)

∂t
+

∂F (2)

∂u

du

dt
=

∂F (2)

∂t
+ F

∂F (2)

∂u

=
∂2F

∂t2
+ 2F

∂2F

∂t ∂u
+ F 2 ∂2F

∂u2
+

∂F

∂t

∂F

∂u
+ F

(
∂F

∂u

)2

≡ F (3)(t, u),

(20.87)

where we continue to make use of the fact that du/dt = F (t, u) is provided by the right
hand side of the differential equation. The resulting third order Taylor method is

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) +

h3

6
F (3)(tk, uk), (20.88)

where the last two summand are given by (20.84), (20.87), respectively. The higher order
expressions are even worse, and a good symbolic manipulation system is almost essential
for accurate computation.

Whereas higher order Taylor methods are easy to motivate, they are rarely used in
practice. There are two principal difficulties:

• Owing to their dependence upon the partial derivatives of F (t, u), the right hand side
of the differential equation needs to be rather smooth.

• Even worse, the explicit formulae become exceedingly complicated, even for relatively
simple functions F (t, u). Efficient evaluation of the multiplicity of terms in the Taylor
approximation and avoidance of round off errors become significant concerns.

As a result, mathematicians soon abandoned the Taylor series approach, and began to look
elsewhere for high order, efficient integration methods.

Error Analysis

Before pressing on, we need to engage in a more serious discussion of the error in a
numerical scheme. A general one-step numerical method can be written in the form

uk+1 = G(h, tk, uk), (20.89)
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where G is a prescribed function of the current approximate solution value uk ≈ u(tk), the
time tk, and the step size h = tk+1 − tk, which, for illustrative purposes, we assume to be
fixed. (We leave the discussion of multi-step methods, in which G could also depend upon
the earlier values uk−1, uk−2, . . . , to more advanced texts, e.g., [88, 107].)

In any numerical integration scheme there are, in general, three sources of error.

• The first is the local error committed in the current step of the algorithm. Even if we
have managed to compute a completely accurate value of the solution uk = u(tk) at
time tk, the numerical approximation scheme (20.89) is almost certainly not exact,
and will therefore introduce an error into the next computed value uk+1 ≈ u(tk+1).
Round-off errors, resulting from the finite precision of the computer arithmetic, will
also contribute to the local error.

• The second is due to the error that is already present in the current approximation uk ≈
u(tk). The local errors tend to accumulate as we continue to run the iteration, and
the net result is the global error , which is what we actually observe when compaing
the numerical apporximation with the exact solution.

• Finally, if the initial condition u0 ≈ u(t0) is not computed accurately, this initial error

will also make a contribution. For example, if u(t0) = π, then we introduce some
initial error by using a decimal approximation, say π ≈ 3.14159.

The third error source will, for simplicity, be ignored in our discussion, i.e., we will assume
u0 = u(t0) is exact. Further, for simplicity we will assume that round-off errors do not
play any significant role — although one must always keep them in mind when analyzing
the computation. Since the global error is entirely due to the accumulation of successive
local errors, we must first understand the local error in detail.

To measure the local error in going from tk to tk+1, we compare the exact solution
value u(tk+1) with its numerical approximation (20.89) under the assumption that the
current computed value is correct: uk = u(tk). Of course, in practice this is never the case,
and so the local error is an artificial quantity. Be that as it may, in most circumstances
the local error is (a) easy to estimate, and, (b) provides a reliable guide to the global
accuracy of the numerical scheme. To estimate the local error, we assume that the step
size h is small and approximate the solution u(t) by its Taylor expansion†

u(tk+1) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) + · · ·

= uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) + · · · .

(20.90)

In the second expression, we have employed (20.84) and its higher order analogs to evaluate
the derivative terms, and then invoked our local accuracy assumption to replace u(tk) by
uk. On the other hand, a direct Taylor expansion, in h, of the numerical scheme produces

uk+1 = G(h, tk, uk) = G(0, tk, uk) + h
∂G

∂h
(0, tk, uk) +

h2

2

∂2G

∂h2
(0, tk, uk) + · · · . (20.91)

† In our analysis, we assume that the differential equation, and hence the solution, has sufficient
smoothness to justify the relevant Taylor approximation.
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The local error is obtained by comparing these two Taylor expansions.

Definition 20.39. A numerical integration method is of order n if the Taylor ex-
pansions (20.90, 91) of the exact and numerical solutions agree up to order hn.

For example, the Euler Method

uk+1 = G(h, tk, uk) = uk + hF (tk, uk),

is already in the form of a Taylor expansion — that has no terms involving h2, h3, . . . .
Comparing with the exact expansion (20.90), we see that the constant and order h terms
are the same, but the order h2 terms differ (unless F (2) ≡ 0). Thus, according to the
definition, the Euler Method is a first order method. Similarly, the Taylor Method (20.85)
is a second order method, because it was explicitly designed to match the constant, h and
h2 terms in the Taylor expansion of the solution. The general Taylor Method of order n
sets G(h, tk, uk) to be exactly the order n Taylor polynomial, differing from the full Taylor
expansion at order hn+1.

Under fairly general hypotheses, it can be proved that, if the numerical scheme has
order n as measured by the local error, then the global error is bounded by a multiple of
hn. In other words, assuming no round-off or initial error, the computed value uk and the
solution at time tk can be bounded by

|uk − u(tk) | ≤M hn, (20.92)

where the constant M > 0 may depend on the time tk and the particular solution u(t). The
error bound (20.92) serves to justify our numerical observations. For a method of order n,
decreasing the step size by a factor of 1

10 will decrease the overall error by a factor of about
10−n, and so, roughly speaking, we anticipate gaining an additional n digits of accuracy —
at least up until the point that round-off errors begin to play a role. Readers interested in a
more complete error analysis of numerical integration schemes should consult a specialized
text, e.g., [88, 107].

The bottom line is the higher its order, the more accurate the numerical scheme, and
hence the larger the step size that can be used to produce the solution to a desired accuracy.
However, this must be balanced with the fact that higher order methods inevitably require
more computational effort at each step. If the total amount of computation has also
decreased, then the high order method is to be preferred over a simpler, lower order
method. Our goal now is to find another route to the design of higher order methods that
avoids the complications inherent in a direct Taylor expansion.

An Equivalent Integral Equation

The secret to the design of higher order numerical algorithms is to replace the dif-
ferential equation by an equivalent integral equation. By way of motivation, recall that,
in general, differentiation is a badly behaved process; a reasonable function can have an
unreasonable derivative. On the other hand, integration ameliorates; even quite nasty
functions have relatively well-behaved integrals. For the same reason, accurate numerical
integration is relatively painless, whereas numerical differentiation should be avoided un-
less necessary. While we have not dealt directly with integral equations in this text, the
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subject has been extensively developed by mathematicians, [46], and has many important
physical applications, [apl].

Conversion of an initial value problem (20.73) to an integral equation is straightfor-
ward. We integrate both sides of the differential equation from the initial point t0 to a
variable time t. The Fundamental Theorem of Calculus is used to explicitly evaluate the
left hand integral:

u(t)− u(t0) =

∫ t

t0

¦

u(s) ds =

∫ t

t0

F (s, u(s)) ds.

Rearranging terms, we arrive at the key result.

Lemma 20.40. The solution u(t) to the the integral equation

u(t) = u(t0) +

∫ t

t0

F (s, u(s)) ds (20.93)

coincides with the solution to the initial value problem
du

dt
= F (t, u), u(t0) = u0.

Proof : Our derivation already showed that the solution to the initial value problem
satisfies the integral equation (20.93). Conversely, suppose that u(t) solves the integral
equation. Since u(t0) = u0 is constant, the Fundamental Theorem of Calculus tells us that

the derivative of the right hand side of (20.93) is equal to the integrand, so
du

dt
= F (t, u(t)).

Moreover, at t = t0, the upper and lower limits of the integral coincide, and so it vanishes,
whence u(t) = u(t0) = u0 has the correct initial conditions. Q.E.D.

Observe that, unlike the differential equation, the integral equation (20.93) requires
no additional initial condition — it is automatically built into the equation. The proofs of
the fundamental existence and uniqueness Theorems 20.7 and 20.9 for ordinary differential
equations are, in fact, based on the integral equation reformulation of the initial value
problem; see [89, 99] for details.

The integral equation reformulation is equally valid for systems of first order ordinary
differential equations. As noted above, u(t) and F(t,u(t)) become vector-valued func-
tions. Integrating a vector-valued function is accomplished by integrating its individual
components. Complete details are left to the exercises.

Implicit and Predictor–Corrector Methods

From this point onwards, we shall abandon the original initial value problem, and
turn our attention to numerically solving the equivalent integral equation (20.93). Let us
rewrite the integral equation, starting at the mesh point tk instead of t0, and integrating
until time t = tk+1. The result is the basic integral formula

u(tk+1) = u(tk) +

∫ tk+1

tk

F (s, u(s)) ds (20.94)
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Left Endpoint Rule Trapezoid Rule Midpoint Rule

Figure 20.16. Numerical Integration Methods.

that (implicitly) computes the value of the solution at the subsequent mesh point. Com-
paring this formula with the Euler Method

uk+1 = uk + hF (tk, uk), where h = tk+1 − tk,

and assuming for the moment that uk = u(tk) is exact, we discover that we are merely
approximating the integral by

∫ tk+1

tk

F (s, u(s)) ds ≈ hF (tk, u(tk)). (20.95)

This is the Left Endpoint Rule for numerical integration — that approximates the area
under the curve g(t) = F (t, u(t)) between tk ≤ t ≤ tk+1 by the area of a rectangle whose
height g(tk) = F (tk, u(tk)) ≈ F (tk, uk) is prescribed by the left-hand endpoint of the graph.
As indicated in Figure 20.16, this is a reasonable, but not especially accurate method of
numerical integration.

In first year calculus, you no doubt encountered much better methods of approximating
the integral of a function. One of these is the Trapezoid Rule, which approximates the
integral of the function g(t) by the area of a trapezoid obtained by connecting the two
points (tk, g(tk)) and (tk+1, g(tk+1)) on the graph of g by a straight line, as in the second
Figure 20.16. Let us therefore try replacing (20.95) by the more accurate trapezoidal
approximation

∫ tk+1

tk

F (s, u(s)) ds ≈ 1
2 h
[
F (tk, u(tk)) + F (tk+1, u(tk+1))

]
. (20.96)

Substituting this approximation into the integral formula (20.94), and replacing the solu-
tion values u(tk), u(tk+1) by their numerical approximations, leads to the (hopefully) more
accurate numerical scheme

uk+1 = uk + 1
2 h
[
F (tk, uk) + F (tk+1, uk+1)

]
, (20.97)

known as the Trapezoid Method . It is an implicit scheme, since the updated value uk+1

appears on both sides of the equation, and hence is only defined implicitly.
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Example 20.41. Consider the differential equation
¦

u =
(
1− 4

3 t
)
u studied in Ex-

amples 20.37 and 20.38. The Trapezoid Method with a fixed step size h takes the form

uk+1 = uk + 1
2 h
[ (

1− 4
3 tk

)
uk +

(
1− 4

3 tk+1

)
uk+1

]
.

In this case, we can explicit solve for the updated solution value, leading to the recursive
formula

uk+1 =
1 + 1

2 h
(
1− 4

3 tk
)

1− 1
2 h
(
1− 4

3 tk+1

) uk =
1 + 1

2 h− 2
3 htk

1− 1
2 h + 2

3 h (tk + h)
uk. (20.98)

Implementing this scheme for three different step sizes gives the following errors between
the computed and true solutions at times t = 1, 2, 3.

h E(1) E(2) E(3)

.100 −.00133315 .00060372 −.00012486

.010 −.00001335 .00000602 −.00000124

.001 −.00000013 .00000006 −.00000001

The numerical data indicates that the Trapezoid Method is of second order. For each
reduction in step size by 1

10 , the accuracy in the solution increases by, roughly, a factor of
1

100 = 1
102 ; that is, the numerical solution acquires two additional accurate decimal digits.

You are asked to formally prove this in Exercise .

The main difficulty with the Trapezoid Method (and any other implicit scheme) is
immediately apparent. The updated approximate value for the solution uk+1 appears on
both sides of the equation (20.97). Only for very simple functions F (t, u) can one expect to
solve (20.97) explicitly for uk+1 in terms of the known quantities tk, uk and tk+1 = tk + h.
The alternative is to employ a numerical equation solver, such as the bisection algorithm
or Newton’s Method, to compute uk+1. In the case of Newton’s Method, one would use
the current approximation uk as a first guess for the new approximation uk+1 — as in
the continuation method discussed in Example 19.25. The resulting scheme requires some
work to program, but can be effective in certain situations.

An alternative, less involved strategy is based on the following far-reaching idea. We
already know a half-way decent approximation to the solution value uk+1 — namely that
provided by the more primitive Euler scheme

ũk+1 = uk + hF (tk, uk). (20.99)

Let’s use this estimated value in place of uk+1 on the right hand side of the implicit
equation (20.97). The result

uk+1 = uk + 1
2 h
[
F (tk, uk) + F (tk + h, ũk+1)

]

= uk + 1
2 h
[
F (tk, uk) + F

(
tk + h, uk + hF (tk, uk)

) ]
.

(20.100)

is known as the Improved Euler Method . It is a completely explicit scheme since there is
no need to solve any equation to find the updated value uk+1.

5/2/06 1140 c© 2006 Peter J. Olver



Example 20.42. For our favorite equation
¦

u =
(
1− 4

3 t
)
u, the Improved Euler

Method begins with the Euler approximation

ũk+1 = uk + h
(
1− 4

3 tk
)
uk,

and then replaces it by the improved value

uk+1 = uk + 1
2 h
[ (

1− 4
3 tk

)
uk +

(
1− 4

3 tk+1

)
ũk+1

]

= uk + 1
2 h
[ (

1− 4
3 tk

)
uk +

(
1− 4

3 (tk + h)
)(

uk + h
(
1− 4

3 tk
)
uk

) ]

=
[ (

1− 2
3 h2

) [
1 + h

(
1− 4

3 tk
) ]

+ 1
2 h2

(
1− 4

3 tk
)2 ]

uk.

Implementing this scheme leads to the following errors in the numerical solution at the
indicated times. The Improved Euler Method performs comparably to the fully implicit
scheme (20.98), and significantly better than the original Euler Method.

h E(1) E(2) E(3)

.100 −.00070230 .00097842 .00147748

.010 −.00000459 .00001068 .00001264

.001 −.00000004 .00000011 .00000012

The Improved Euler Method is the simplest of a large family of so-called predictor–

corrector algorithms. In general, one begins a relatively crude method — in this case the
Euler Method — to predict a first approximation ũk+1 to the desired solution value uk+1.
One then employs a more sophisticated, typically implicit, method to correct the original
prediction, by replacing the required update uk+1 on the right hand side of the implicit
scheme by the less accurate prediction ũk+1. The resulting explicit, corrected value uk+1

will, provided the method has been designed with due care, be an improved approximation
to the true solution.

The numerical data in Example 20.42 indicates that the Improved Euler Method is
of second order since each reduction in step size by 1

10 improves the solution accuracy
by, roughly, a factor of 1

100 . To verify this prediction, we expand the right hand side
of (20.100) in a Taylor series in h, and then compare, term by term, with the solution
expansion (20.90). First†,

F
(
tk + h, uk + hF (tk, uk)

)
= F + h

(
Ft + F Fu

)
+ 1

2 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · ,

where all the terms involving F and its partial derivatives on the right hand side are
evaluated at tk, uk. Substituting into (20.100), we find

uk+1 = uk + hF + 1
2 h2

(
Ft + F Fu

)
+ 1

4 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · . (20.101)

† We use subscripts to indicate partial derivatives to save space.
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The two Taylor expansions (20.90) and (20.101) agree in their order 1, h and h2 terms, but
differ at order h3. This confirms our experimental observation that the Improved Euler
Method is of second order.

We can design a range of numerical solution schemes by implementing alternative nu-
merical approximations to the basic integral equation (20.94). For example, the Midpoint
Rule approximates the integral of the function g(t) by the area of the rectangle whose
height is the value of the function at the midpoint:

∫ tk+1

tk

g(s) ds ≈ h g
(
tk + 1

2 h
)
, where h = tk+1 − tk. (20.102)

See Figure 20.16 for an illustration. The Midpoint Rule is known to have the same or-
der of accuracy as the Trapezoid Rule, [9, 34]. Substituting into (20.94) leads to the
approximation

uk+1 = uk +

∫ tk+1

tk

F (s, u(s)) ds ≈ uk + hF
(
tk + 1

2 h, u
(
tk + 1

2 h
) )

.

Of course, we don’t know the value of the solution u
(
tk + 1

2 h
)

at the midpoint, but can
predict it through a straightforward adaptation of the basic Euler approximation:

u
(
tk + 1

2 h
)
≈ uk + 1

2 hF (tk, uk).

The result is the Midpoint Method

uk+1 = uk + hF
(
tk + 1

2 h, uk + 1
2 hF (tk, uk)

)
. (20.103)

A comparison of the terms in the Taylor expansions of (20.90) and (20.103) reveals that
the Midpoint Method is also of second order; see Exercise .

Runge–Kutta Methods

The Improved Euler and Midpoint Methods are the most elementary incarnations of
a general class of numerical schemes for ordinary differential equations that were first sys-
tematically studied by the German mathematicians Carle Runge and Martin Kutta in the
late nineteenth century. Runge–Kutta Methods are by far the most popular and powerful
general-purpose numerical methods for integrating ordinary differential equations. While
not appropriate in all possible situations, Runge–Kutta schemes are surprisingly robust,
performing efficiently and accurately in a wide variety of problems. Barring significant
complications, they are the method of choice in most basic applications. They comprise
the engine that powers most computer software for solving general initial value problems
for systems of ordinary differential equations.

The most general Runge–Kutta Method takes the form

uk+1 = uk + h
m∑

i=1

ci F (ti,k, ui,k), (20.104)

where m counts the number of terms in the method. Each ti,k denotes a point in the kth

mesh interval, so tk ≤ ti,k ≤ tk+1. The second argument ui,k ≈ u(ti,k) should be viewed as
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an approximation to the solution at the point ti,k, and so is computed by a simpler Runge–
Kutta scheme of the same general format. There is a lot of flexibility in the design of the
method, through choosing the coefficients ci, the times ti,k, as well as the scheme (and
all parameters therein) used to compute each of the intermediate approximations ui,k. As
always, the order of the method is fixed by the power of h to which the Taylor expansions
of the numerical method (20.104) and the actual solution (20.90) agree. Clearly, the more
terms we include in the Runge–Kutta formula (20.104), the more free parameters available
to match terms in the solution’s Taylor series, and so the higher the potential order of the
method. Thus, the goal is to arrange the parameters so that the method has a high order of
accuracy, while, simultaneously, avoiding unduly complicated, and hence computationally
costly, formulae.

Both the Improved Euler and Midpoint Methods are instances of a family of two term
Runge–Kutta Methods

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk,2, uk,2

) ]

= uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]
,

(20.105)

based on the current mesh point, so tk,1 = tk, and one intermediate point tk,2 = tk + λh
with 0 ≤ λ ≤ 1. The basic Euler Method is used to approximate the solution value

uk,2 = uk + λhF (tk, uk)

at tk,2. The Improved Euler Method sets a = b = 1
2 and λ = 1, while the Midpoint Method

corresponds to a = 0, b = 1, λ = 1
2 . The range of possible values for a, b and λ is found

by matching the Taylor expansion

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]

= uk + h (a + b)F (tk, uk) + h2 b λ

[
∂F

∂t
(tk, uk) + F (tk, uk)

∂F

∂u
(tk, uk)

]
+ · · · .

(in powers of h) of the right hand side of (20.105) with the Taylor expansion (20.90) of the
solution, namely

u(tk+1) = uk + hF (tk, uk) +
h2

2
[ Ft(tk, uk) + F (tk, uk)Fu(tk, uk) ] + · · · ,

to as high an order as possible. First, the constant terms, uk, are the same. For the order
h and order h2 terms to agree, we must have, respectively,

a + b = 1, b λ = 1
2 .

Therefore, setting

a = 1− µ, b = µ, and λ =
1

2µ
, where µ is arbitrary†,
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leads to the following family of two term, second order Runge–Kutta Methods:

uk+1 = uk + h

[
(1− µ)F (tk, uk) + µF

(
tk +

h

2µ
, uk +

h

2µ
F (tk, uk)

)]
. (20.106)

The case µ = 1
2 corresponds to the Improved Euler Method (20.100), while µ = 1 yields

the Midpoint Method (20.103). Unfortunately, none of these methods are able to match
all of the third order terms in the Taylor expansion for the solution, and so we are left
with a one-parameter family of two step Runge–Kutta Methods, all of second order, that
include the Improved Euler and Midpoint schemes as particular instances. The methods
with 1

2 ≤ µ ≤ 1 all perform more or less comparably, and there is no special reason to
prefer one over the other.

To construct a third order Runge–Kutta Method, we need to take at least m ≥ 3
terms in (20.104). A rather intricate computation (best done with the aid of computer
algebra) will produce a range of valid schemes; the results can be found in [88, 107].
The algebraic manipulations are rather tedious, and we leave a complete discussion of the
available options to a more advanced treatment. In practical applications, a particularly
simple fourth order, four term formula has become the most used. The method, often
abbreviated as RK4, takes the form

uk+1 = uk +
h

6

[
F (tk, uk) + 2F (t2,k, u2,k) + 2F (t3,k, u3,k) + F (t4,k, u4,k)

]
, (20.107)

where the times and function values are successively computed according to the following
procedure:

t2,k = tk + 1
2 h, u2,k = uk + 1

2 hF (tk, uk),

t3,k = tk + 1
2 h, u3,k = uk + 1

2 hF (t2,k, u2,k),

t4,k = tk + h, u4,k = uk + hF (t3,k, u3,k).

(20.108)

The four term RK4 scheme (20.107–108) is, in fact, a fourth order method. This is con-
firmed by demonstrating that the Taylor expansion of the right hand side of (20.107) in
powers of h matches all of the terms in the Taylor series for the solution (20.90) up to
and including those of order h4, and hence the local error is of order h5. This is not a
computation for the faint-hearted — bring lots of paper and erasers, or, better yet, a good
computer algebra package! The RK4 scheme is but one instance of a large family of fourth
order, four term Runge–Kutta Methods, and by far the most popular owing to its relative
simplicity.

Example 20.43. Application of the RK4 Method (20.107–108) to our favorite initial
value problem (20.80) leads to the following errors at the indicated times:

† Although we should restrict µ ≥ 1
2 in order that 0 ≤ λ ≤ 1.
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h E(1) E(2) E(3)

.100 −1.944× 10−7 1.086× 10−6 4.592× 10−6

.010 −1.508× 10−11 1.093× 10−10 3.851× 10−10

.001 −1.332× 10−15 −4.741× 10−14 1.932× 10−14

The accuracy is phenomenally good — much better than any of our earlier numerical
schemes. Each decrease in the step size by a factor of 1

10 results in about 4 additional
decimal digits of accuracy in the computed solution, in complete accordance with its status
as a fourth order method.

Actually, it is not entirely fair to compare the accuracy of the methods using the
same step size. Each iteration of the RK4 Method requires four evaluations of the func-
tion F (t, u), and hence takes the same computational effort as four Euler iterations, or,
equivalently, two Improved Euler iterations. Thus, the more revealing comparison would
be between RK4 at step size h, Euler at step size 1

4 h, and Improved Euler at step size 1
2 h,

as these involve roughly the same amount of computational effort. The resulting errors
E(1) at time t = 1 are listed in the following table.

Thus, even taking computational effort into account, the Runge–Kutta Method con-
tinues to outperform its rivals. At a step size of .1, it is almost as accurate as the Im-
proved Euler Method with step size .0005, and hence 200 times as much computation,
while the Euler Method would require a step size of approximately .24× 10−6, and would
be 4, 000, 000 times as slow as Runge–Kutta! With a step size of .001, RK4 computes a
solution value that is near the limits imposed by machine accuracy (in single precision
arithmetic). The superb performance level and accuracy of the RK4 Method immediately
explains its popularity for a broad range of applications.

h Euler Improved Euler Runge–Kutta 4

.1 1.872× 10−2 −1.424× 10−4 −1.944× 10−7

.01 1.874× 10−3 −1.112× 10−6 −1.508× 10−11

.001 1.870× 10−4 −1.080× 10−8 −1.332× 10−15

Example 20.44. As noted earlier, by writing the function values as vectors uk ≈
u(tk), one can immediately use all of the preceding methods to integrate initial value
problems for first order systems of ordinary differential equations

¦

u = F(u). Consider, by
way of example, the Lotka–Volterra system

du

dt
= 2u− uv,

dv

dt
= −9v + 3uv, (20.109)

analyzed in Example 20.29. To find a numerical solution, we write u = (u, v )
T

for the
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RK4 Method, h = .01

Figure 20.17. Numerical Solutions of Predator–Prey Model.

solution vector, while F(u) = ( 2u− uv,−9v + 3uv )
T

is the right hand side of the system.
The Euler Method with step size h is given by

u(k+1) = u(k) + hF(u(k)),

or, explicitly, as a first order nonlinear iterative system

u(k+1) = u(k) + h (2u(k) − u(k) v(k)), v(k+1) = v(k) + h (−9v(k) + 3u(k) v(k)).

The Improved Euler and Runge–Kutta schemes are implemented in a similar fashion.
Phase portraits of the three numerical algorithms starting with initial conditions u(0) =
v(0) = 1.5, and up to time t = 25 in the case of the Euler Method, and t = 50 for the other
two, appear in Figure 20.17. Recall that the solution is supposed to travel periodically
around a closed curve, which is the level set

I(u, v) = 9 log u− 3u + 2 log v − v = I(1.5, 1.5) = −1.53988
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Figure 20.18. Numerical Evaluation of Lotka–Volterra First Integral.

of the first integral. The Euler Method spirals away from the exact periodic solution,
whereas the Improved Euler and RK4 Methods perform rather well. Since we do not have
an analytic formula for the solution, we are not able to measure the error exactly. However,
the known first integral is supposed to remain constant on the solution trajectories, and
so one means of monitoring the accuracy of the solution is to track the variation in the
numerical values of I(u(k), v(k)). These are graphed in Figure 20.18; the Improved Euler
keeps the value within .0005, while in the RK4 solution, the first integral only experiences
change in its the fifth decimal place over the indicated time period. Of course, the ononger
one continues to integrate, the more error will gradually creep into the numerical solution.
Still, for most practical purposes, the RK4 solution is indistinguishable from the exact
solution.

In practical implementations, it is important to monitor the accuracy of the numer-
ical solution, so to gauge when to abandon an insufficiently precise computation. Since
accuracy is dependent upon the step size h, one may try adjusting h so as stay within a
preassigned error. Adaptive methods, allow one to change the step size during the course
of the computation, in response to some estimation of the overall error. Insufficiently ac-
curate numerical solutions would necessitate a suitable reduction in step size (or increase
in the order of the scheme). On the other hand, if the solution is more accurate than the
application requires, one could increase the step size so as to reduce the total amount of
computational effort.

How might one decide when a method is giving inaccurate results, since one presum-
ably does not know the true solution and so has nothing to directly test the numerical
approximation against? One useful idea is to integrate the differential equation using two
different numerical schemes, usually of different orders of accuracy, and then compare the
results. If the two solution values are reasonably close, then one is usually safe in as-
suming that the methods are both giving accurate results, while in the event that they
differ beyond some preassigned tolerance, then one needs to re-evaluate the step size. The
required adjustment to the step size relies on a more detailed analysis of the error terms.
Several well-studied methods are employed in practical situations; the most popular is the
Runge–Kutta–Fehlberg Method, which combines a fourth and a fifth order Runge–Kutta
scheme for error control. Details can be found in more advanced treatments of the subject,
e.g., [88, 107].
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Stiff Differential Equations

While the fourth order Runge–Kutta Method with a sufficiently small step size will
successfully integrate a broad range of differential equations — at least over not unduly long
time intervals — it does occasionally experience unexpected difficulties. While we have
not developed sufficiently sophisticated analytical tools to conduct a thorough analysis, it
will be instructive to look at why a breakdown might occur in a simpler context.

Example 20.45. The elementary linear initial value problem

du

dt
= −250u, u(0) = 1, (20.110)

is an instructive and sobering example. The explicit solution is easily found; it is a very
rapidly decreasing exponential: u(t) = e−250 t.

u(t) = e−250 t with u(1) ≈ 2.69× 10−109.

The following table gives the result of approximating the solution value u(1) ≈ 2.69×10−109

at time t = 1 using three of our numerical integration schemes for various step sizes:

h Euler Improved Euler RK4

.1 6.34× 1013 3.99× 1024 2.81× 1041

.01 4.07× 1017 1.22× 1021 1.53× 10−19

.001 1.15× 10−125 6.17× 10−108 2.69× 10−109

The results are not misprints! When the step size is .1, the computed solution values
are perplexingly large, and appear to represent an exponentially growing solution — the
complete opposite of the rapidly decaying true solution. Reducing the step size beyond a
critical threshold suddenly transforms the numerical solution to an exponentially decaying
function. Only the fourth order RK4 Method with step size h = .001 — and hence a total
of 1, 000 steps — does a reasonable job at approximating the correct value of the solution
at t = 1.

You may well ask, what on earth is going on? The solution couldn’t be simpler — why
is it so difficult to compute it? To understand the basic issue, let us analyze how the Euler
Method handles such simple differential equations. Consider the initial value problem

du

dt
= λu, u(0) = 1, (20.111)

which has an exponential solution
u(t) = eλt. (20.112)

As in Example 20.36, the Euler Method with step size h relies on the iterative scheme

uk+1 = (1 + λh)uk, u0 = 1,
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with solution

uk = (1 + λh)k. (20.113)

If λ > 0, the exact solution (20.112) is exponentially growing. Since 1 + λh > 1, the
numerical iterates are also growing, albeit at a somewhat slower rate. In this case, there
is no inherent surprise with the numerical approximation procedure — in the short run
it gives fairly accurate results, but eventually trails behind the exponentially growing
solution.

On the other hand, if λ < 0, then the exact solution is exponentially decaying and
positive. But now, if λh < −2, then 1 + λh < −1, and the iterates (20.113) grow
exponentially fast in magnitude, with alternating signs. In this case, the numerical solution
is nowhere close to the true solution; this explains the previously observed pathological
behavior. If −1 < 1 + λh < 0, the numerical solutions decay in magnitude, but continue
to alternate between positive and negative values. Thus, to correctly model the qualitative
features of the solution and obtain a numerically respectable approximation, we need to
choose the step size h so as to ensure that 0 < 1 + λh, and hence h < −1/λ when λ < 0.
For the value λ = −250 in the example, then, we must choose h < 1

250 = .004 in order that
the Euler Method give a reasonable numerical answer. A similar, but more complicated
analysis applies to any of the Runge–Kutta schemes.

Thus, the numerical methods for ordinary differential equations exhibit a form of
conditional stability, cf. Section 14.6. Paradoxically, the larger negative λ is — and hence
the faster the solution tends to a trivial zero equilibrium — the more difficult and expensive
the numerical integration.

The system (20.110) is the simplest example of what is known as a stiff differential

equation. In general, an equation or system is stiff if it has one or more very rapidly
decaying solutions. In the case of autonomous (constant coefficient) linear systems

¦

u = Au,
stiffness occurs whenever the coefficient matrix A has an eigenvalue with a large negative
real part: Re λ ¿ 0, resulting in a very rapidly decaying eigensolution. It only takes one
such eigensolution to render the equation stiff, and ruin the numerical computation of even
the well behaved solutions! Curiously, the component of the actual solution corresponding
to such large negative eigenvalues is almost irrelevant, as it becomes almost instanteously
tiny. However, the presence of such an eigenvalue continues to render the numerical solution
to the system very difficult, even to the point of exhausting any available computing
resources. Stiff equations require more sophisticated numerical procedures to integrate,
and we refer the reader to [88, 107] for details.

Most of the other methods derived above also suffer from instability due to stiffness of
the ordinary differential equation for sufficiently large negative λ. Interestingly, stability for
solving the trivial test scalar ordinary differential equation (20.111) suffices to characterize
acceptable step sizes h, depending on the size of λ, which, in the case of systems, becomes
the eigenvalue. The analysis is not so difficult, owing to the innate simplicity of the
test ordinary differential equation (20.111). A significant exception, which also illustrates
the test for behavior under rapidly decaying solutions, is the Trapezoid Method (20.97).
Let us analyze the behavio of the resulting numerical solution to (20.111). Substituting

5/2/06 1149 c© 2006 Peter J. Olver



f(t, u) = λu into the Trapezoid iterative equation (20.97), we find

uk+1 = uk + 1
2 h
[
λuk + λuk+1

]
,

which we solve for

uk+1 =
1 + 1

2 hλ

1− 1
2 hλ

uk ≡ µuk.

Thus, the behavior of the solution is entirely determined by the size of the coefficient µ.
If λ > 0, then µ > 1 and the numerical solution is exponentially growing, as long as the
denominator is positive, which requires h < 2/λ to be sufficiently small. In other words,
rapidly growing exponential solutions require reasonably small step sizes to accurately
compute, which is not surprising. On the other hand, if λ < 0, then |µ | < 1, no matter

how large negative λ gets! (But we should also restrict h < −2/λ to be sufficiently small,
as otherwise µ < 0 and the numerical solution would have oscillating signs, even though
it is decaying, and hence vanishing small. If this were part of a larger system, such minor
oscillations would not worry us because they would be unnoticeable in the long run.)
Thus, the Trapezoid Method is not affected by very large negative exponents, and hence
not subject to the effects of stiffness. The Trapezoid Method is the simplest example of an
A stable method. More precisely, a numerical solution method is called A stable if the zero
solution is asymptotically stable for the iterative equation resulting from the numerical
solution to the ordinary differential equation

¦

u = λu for all λ < 0. The big advantage
of A stable methods is that they are not affected by stiffness. Unfortunately, A stable
methods are few and far between. In fact, they are all implicit one-step methods! No

explicit Runge–Kutta Method is A stable; see [107] for a proof of this disappointing result.
Moreover, multistep method, as discussed in Exercise , also suffer from the lack of A
stability and so are all prone to the effects of stiffnness. Still, when confronted with a very
stiff equation, one must discard the sophisticated Runge–Kutta and multi-step methods
are resort to a low order, but A stable scheme like the Trapezoid Method.
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Chapter 21

The Calculus of Variations

We have already had ample opportunity to exploit Nature’s propensity to minimize.
Minimization principles form one of the most wide-ranging means of formulating mathe-
matical models governing the equilibrium configurations of physical systems. Moreover,
many popular numerical integration schemes such as the powerful finite element method
are also founded upon a minimization paradigm. In this chapter, we will develop the basic
mathematical analysis of nonlinear minimization principles on infinite-dimensional function
spaces — a subject known as the “calculus of variations”, for reasons that will be explained
as soon as we present the basic ideas. Classical solutions to minimization problems in the
calculus of variations are prescribed by boundary value problems involving certain types
of differential equations, known as the associated Euler–Lagrange equations. The math-
ematical techniques that have been developed to handle such optimization problems are
fundamental in many areas of mathematics, physics, engineering, and other applications.
In this chapter, we will only have room to scratch the surface of this vast and lively area
of classical and contemporary research.

The history of the calculus of variations is tightly interwoven with the history of
mathematics. The field has drawn the attention of a remarkable range of mathematical
luminaries, beginning with Newton, then initiated as a subject in its own right by the
Bernoulli family. The first major developments appeared in the work of Euler, Lagrange
and Laplace. In the nineteenth century, Hamilton, Dirichlet and Hilbert are but a few of
the outstanding contributors. In modern times, the calculus of variations has continued
to occupy center stage, witnessing major theoretical advances, along with wide-ranging
applications in physics, engineering and all branches of mathematics.

Minimization problems amenable to the methods of the calculus of variations serve to
characterize the equilibrium configurations of almost all continuous physical systems, rang-
ing through elasticity, solid and fluid mechanics, electro-magnetism, gravitation, quantum
mechanics, string theory, and many, many others. Many geometrical configurations, such
as minimal surfaces, can be conveniently formulated as optimization problems. Moreover,
numerical approximations to the equilibrium solutions of such boundary value problems
are based on a nonlinear finite element approach that reduced the infinite-dimensional min-
imization problem to a finite-dimensional problem, to which we can apply the optimization
techniques learned in Section 19.3; however, we will not pursue this direction here.

We have, in fact, already treated the simplest problems in the calculus of variations. As
we learned in Chapters 11 and 15, minimization of a quadratic functional requires solving
an associated linear boundary value problem. Just as the vanishing of the gradient of a
function of several variables singles out the critical points, among which are the minima,
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Figure 21.1. The Shortest Path is a Straight Line.

both local and global, so a similar “functional gradient” will distinguish the candidate
functions that might be minimizers of the functional. The finite-dimensional calculus
leads to a system of algebraic equations for the critical points; the infinite-dimensional
functional analog results a boundary value problem for a nonlinear ordinary or partial
differential equation whose solutions are the critical functions for the variational problem.
So, the passage from finite to infinite dimensional nonlinear systems mirrors the transition
from linear algebraic systems to boundary value problems.

21.1. Examples of Variational Problems.

The best way to appreciate the calculus of variations is by introducing a few concrete
examples of both mathematical and practical importance. Some of these minimization
problems played a key role in the historical development of the subject. And they still
serve as an excellent means of learning its basic constructions.

Minimal Curves, Optics, and Geodesics

The minimal curve problem is to find the shortest path between two specified locations.
In its simplest manifestation, we are given two distinct points

a = (a, α) and b = (b, β) in the plane R
2, (21.1)

and our task is to find the curve of shortest length connecting them. “Obviously”, as you
learn in childhood, the shortest route between two points is a straight line; see Figure 21.1.
Mathematically, then, the minimizing curve should be the graph of the particular affine
function†

y = c x + d =
β − α

b− a
(x− a) + α (21.2)

that passes through or interpolates the two points. However, this commonly accepted
“fact” — that (21.2) is the solution to the minimization problem — is, upon closer inspec-
tion, perhaps not so immediately obvious from a rigorous mathematical standpoint.

† We assume that a 6= b, i.e., the points a,b do not lie on a common vertical line.
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Let us see how we might formulate the minimal curve problem in a mathematically
precise way. For simplicity, we assume that the minimal curve is given as the graph of a
smooth function y = u(x). Then, according to (A.27), the length of the curve is given by
the standard arc length integral

J [u ] =

∫ b

a

√
1 + u′(x)2 dx, (21.3)

where we abbreviate u′ = du/dx. The function u(x) is required to satisfy the boundary
conditions

u(a) = α, u(b) = β, (21.4)

in order that its graph pass through the two prescribed points (21.1). The minimal curve
problem asks us to find the function y = u(x) that minimizes the arc length functional
(21.3) among all “reasonable” functions satisfying the prescribed boundary conditions.
The reader might pause to meditate on whether it is analytically obvious that the affine
function (21.2) is the one that minimizes the arc length integral (21.3) subject to the given
boundary conditions. One of the motivating tasks of the calculus of variations, then, is to
rigorously prove that our everyday intuition is indeed correct.

Indeed, the word “reasonable” is important. For the arc length functional (21.3)
to be defined, the function u(x) should be at least piecewise C1, i.e., continuous with
a piecewise continuous derivative. Indeed, if we were to allow discontinuous functions,
then the straight line (21.2) does not, in most cases, give the minimizer; see Exercise .
Moreover, continuous functions which are not piecewise C1 need not have a well-defined
arc length. The more seriously one thinks about these issues, the less evident the “obvious”
solution becomes. But before you get too worried, rest assured that the straight line (21.2)
is indeed the true minimizer. However, a fully rigorous proof of this fact requires a careful
development of the mathematical machinery of the calculus of variations.

A closely related problem arises in geometrical optics. The underlying physical prin-
ciple, first formulated by the seventeenth century French mathematician Pierre de Fermat,
is that, when a light ray moves through an optical medium, it travels along a path that
minimizes the travel time. As always, Nature seeks the most economical† solution. In an
inhomogeneous planar‡ optical medium, the speed of light, c(x, y), varies from point to
point, depending on the optical properties. Speed equals the time derivative of distance
traveled, namely, the arc length of the curve y = u(x) traced by the light ray. Thus,

c(x, u(x)) =
ds

dt
=
√

1 + u′(x)2
dx

dt
.

Integrating from start to finish, we conclude that the total travel time along the curve is
equal to

T [u ] =

∫ T

0

dt =

∫ b

a

dt

dx
dx =

∫ b

a

√
1 + u′(x)2

c(x, u(x))
dx. (21.5)

† Assuming time = money!

‡ For simplicity, we only treat the two-dimensional case in the text. See Exercise for the
three-dimensional version.
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a

b

Figure 21.2. Geodesics on a Cylinder.

Fermat’s Principle states that, to get from point a = (a.α) to point b = (b, β), the light
ray follows the curve y = u(x) that minimizes this functional subject to the boundary
conditions

u(a) = α, u(b) = β,

If the medium is homogeneous, e.g., a vacuum†, then c(x, y) ≡ c is constant, and T [u ] is a
multiple of the arc length functional (21.3), whose minimizers are the “obvious” straight
lines traced by the light rays. In an inhomogeneous medium, the path taken by the
light ray is no longer evident, and we are in need of a systematic method for solving the
minimization problem. Indeed, all of the known laws of geometric optics, lens design,
focusing, refraction, aberrations, etc., will be consequences of the geometric and analytic
properties of solutions to Fermat’s minimization principle, [optics].

Another minimization problem of a similar ilk is to construct the geodesics on a curved
surface, meaning the curves of minimal length. Given two points a,b lying on a surface
S ⊂ R

3, we seek the curve C ⊂ S that joins them and has the minimal possible length.
For example, if S is a circular cylinder, then there are three possible types of geodesic
curves: straight line segments parallel to the center line; arcs of circles orthogonal to the
center line; and spiral helices, the latter illustrated in Figure 21.2. Similarly, the geodesics
on a sphere are arcs of great circles. In aeronautics, to minimize distance flown, airplanes
follow geodesic circumpolar paths around the globe. However, both of these claims are in
need of mathematical justification.

In order to mathematically formulate the geodesic minimization problem, we suppose,
for simplicity, that our surface S ⊂ R

3 is realized as the graph‡ of a function z = F (x, y).
We seek the geodesic curve C ⊂ S that joins the given points

a = (a, α, F (a, α)), and b = (b, β, F (b, β)), lying on the surface S.

† In the absence of gravitational effects due to general relativity.

‡ Cylinders are not graphs, but can be placed within this framework by passing to cylindrical
coordinates. Similarly, spherical surfaces are best treated in spherical coordinates. In differential
geometry, [59], one extends these constructions to arbitrary parametrized surfaces and higher
dimensional manifolds.
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Let us assume that C can be parametrized by the x coordinate, in the form

y = u(x), z = v(x) = F (x, u(x)),

where the last equation ensures that it lies in the surface S. In particular, this requires
a 6= b. The length of the curve is supplied by the standard three-dimensional arc length
integral (B.17). Thus, to find the geodesics, we must minimize the functional

J [u ] =

∫ b

a

√
1 +

(
dy

dx

)
2

+

(
dz

dx

)
2

dx

=

∫ b

a

√
1 +

(
du

dx

)
2

+

(
∂F

∂x
(x, u(x)) +

∂F

∂u
(x, u(x))

du

dx

)
2

dx,

(21.6)

subject to the boundary conditions u(a) = α, u(b) = β. For example, geodesics on the
paraboloid

z = 1
2 x2 + 1

2 y2 (21.7)

can be found by minimizing the functional

J [u ] =

∫ b

a

√
1 + (u′)2 + (x + uu′)2 dx. (21.8)

Minimal Surfaces

The minimal surface problem is a natural generalization of the minimal curve or
geodesic problem. In its simplest manifestation, we are given a simple closed curve C ⊂ R

3.
The problem is to find the surface of least total area among all those whose boundary is
the curve C. Thus, we seek to minimize the surface area integral

area S =

∫ ∫

S

dS

over all possible surfaces S ⊂ R
3 with the prescribed boundary curve ∂S = C. Such an

area–minimizing surface is known as a minimal surface for short. For example, if C is a
closed plane curve, e.g., a circle, then the minimal surface will just be the planar region
it encloses. But, if the curve C twists into the third dimension, then the shape of the
minimizing surface is by no means evident.

Physically, if we bend a wire in the shape of the curve C and then dip it into soapy
water, the surface tension forces in the resulting soap film will cause it to minimize surface
area, and hence be a minimal surface†. Soap films and bubbles have been the source of
much fascination, physical, æsthetical and mathematical, over the centuries. The minimal
surface problem is also known as Plateau’s Problem, named after the nineteenth century

† More accurately, the soap film will realize a local but not necessarily global minimum for
the surface area functional. Nonuniqueness of local minimizers can be realized in the physical
experiment — the same wire may support more than one stable soap film.
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∂Ω

C

Figure 21.3. Minimal Surface.

French physicist Joseph Plateau who conducted systematic experiments on such soap films.
A satisfactory mathematical solution to even the simplest version of the minimal surface
problem was only achieved in the mid twentieth century, [132, 136]. Minimal surfaces and
related variational problems remain an active area of contemporary research, and are of
importance in engineering design, architecture, and biology, including foams, domes, cell
membranes, and so on.

Let us mathematically formulate the search for a minimal surface as a problem in
the calculus of variations. For simplicity, we shall assume that the bounding curve C
projects down to a simple closed curve Γ = ∂Ω that bounds an open domain Ω ⊂ R

2 in
the (x, y) plane, as in Figure 21.3. The space curve C ⊂ R

3 is then given by z = g(x, y) for
(x, y) ∈ Γ = ∂Ω. For “reasonable” boundary curves C, we expect that the minimal surface
S will be described as the graph of a function z = u(x, y) parametrized by (x, y) ∈ Ω.
According to the basic calculus formula (B.39), the surface area of such a graph is given
by the double integral

J [u ] =

∫ ∫

Ω

√
1 +

(
∂u

∂x

)
2

+

(
∂u

∂y

)
2

dx dy. (21.9)

To find the minimal surface, then, we seek the function z = u(x, y) that minimizes the
surface area integral (21.9) when subject to the Dirichlet boundary conditions

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω. (21.10)

As we will see, (21.57), the solutions to this minimization problem satisfy a complicated
nonlinear second order partial differential equation.

A simple version of the minimal surface problem, that still contains some interesting
features, is to find minimal surfaces with rotational symmetry. A surface of revolution is
obtained by revolving a plane curve about an axis, which, for definiteness, we take to be
the x axis. Thus, given two points a = (a, α), b = (b, β) ∈ R

2, the goal is to find the curve
y = u(x) joining them such that the surface of revolution obtained by revolving the curve
around the x-axis has the least surface area. Each cross-section of the resulting surface is
a circle centered on the x axis; see Figure srev . According to Exercise , the area of such
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a surface of revolution is given by

J [u ] =

∫ b

a

2π |u |
√

1 + (u′)2 dx. (21.11)

We seek a minimizer of this integral among all functions u(x) that satisfy the fixed bound-
ary conditions u(a) = α, u(b) = β. The minimal surface of revolution can be physically
realized by stretching a soap film between two circular wires, of respective radius α and β,
that are held a distance b− a apart. Symmetry considerations will require the minimizing
surface to be rotationally symmetric. Interestingly, the revolutionary surface area func-
tional (21.11) is exactly the same as the optical functional (21.5) when the light speed at a
point is inversely proportional to its distance from the horizontal axis: c(x, y) = 1/(2 π | y |).

Isoperimetric Problems and Constraints

The simplest isoperimetric problem is to construct the simple closed plane curve of a
fixed length ` that encloses the domain of largest area. In other words, we seek to maximize

area Ω =

∫ ∫

Ω

subject to the constraint length ∂Ω =

∮

∂Ω

= `,

over all possible domains Ω ⊂ R
2. Of course, the “obvious” solution to this problem is

that the curve must be a circle whose perimeter is `, whence the name “isoperimetric”.
Note that the problem, as stated, does not have a unique solution, since if Ω is a maximing
domain, any translated or rotated version of Ω will also maximize area subject to the
length constraint.

To make progress on the isoperimetric problem, let us assume that the boundary curve
is parametrized by its arc length, so x(s) = (x(s), y(s) )

T
with 0 ≤ s ≤ `, subject to the

requirement that (
dx

ds

)2

+

(
dy

ds

)2

= 1. (21.12)

According to (A.56), we can compute the area of the domain by a line integral around its
boundary,

area Ω =

∮

∂Ω

x dy =

∫ `

0

x
dy

ds
ds, (21.13)

and thus we seek to maximize the latter integral subject to the arc length constraint
(21.12). We also impose periodic boundary conditions

x(0) = x(`), y(0) = y(`), (21.14)

that guarantee that the curve x(s) closes up. (Technically, we should also make sure that
x(s) 6= x(s′) for any 0 ≤ s < s′ < `, ensuring that the curve does not cross itself.)

A simpler isoperimetric problem, but one with a less evident solution, is the following.
Among all curves of length ` in the upper half plane that connect two points (−a, 0) and
(a, 0), find the one that, along with the interval [−a, a ], encloses the region having the
largest area. Of course, we must take ` ≥ 2a, as otherwise the curve will be too short
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to connect the points. In this case, we assume the curve is represented by the graph of a
non-ngebtaive function y = u(x), and we seek to maximize the functional

∫ a

−a

u dx subject to the constraint

∫ a

−a

√
1 + u′2 dx = `. (21.15)

In the previous formulation (21.12), the arc length constraint was imposed at every point,
whereas here it is manifested as an integral constraint. Both types of contraints, pointwise
and integral, appear in a wide range of applied and geometrical problems. Such constrained
variational problems can profitably be viewed as function space versions of constrained
optimization problems. Thus, not surprisingly, their analytical solution will require the
introduction of suitable Lagrange multipliers.

21.2. The Euler–Lagrange Equation.

Even the preceding limited collection of examples of variational problems should al-
ready convince the reader of the tremendous practical utility of the calculus of variations.
Let us now discuss the most basic analytical techniques for solving such minimization
problems. We will exclusively deal with classical techniques, leaving more modern direct
methods — the function space equivalent of gradient descent and related methods — to a
more in–depth treatment of the subject, [cvar].

Let us concentrate on the simplest class of variational problems, in which the unknown
is a continuously differentiable scalar function, and the functional to be minimized depends
upon at most its first derivative. The basic minimization problem, then, is to determine a
suitable function y = u(x) ∈ C1[a, b ] that minimizes the objective functional

J [u ] =

∫ b

a

L(x, u, u′) dx. (21.16)

The integrand is known as the Lagrangian for the variational problem, in honor of La-
grange, one of the main founders of the subject. We usually assume that the Lagrangian
L(x, u, p) is a reasonably smooth function of all three of its (scalar) arguments x, u, and
p, which represents the derivative u′. For example, the arc length functional (21.3) has

Lagrangian function L(x, u, p) =
√

1 + p2, whereas in the surface of revolution problem

(21.11), we have L(x, u, p) = 2π |u |
√

1 + p2. (In the latter case, the points where u = 0
are slightly problematic, since L is not continuously differentiable there.)

In order to uniquely specify a minimizing function, we must impose suitable boundary
conditions. All of the usual suspects — Dirichlet (fixed), Neumann (free), as well as mixed
and periodic boundary conditions — that arose in Chapter 11 are also relevant here. In
the interests of brevity, we shall concentrate on the Dirichlet boundary conditions

u(a) = α, u(b) = β, (21.17)

although some of the exercises will investigate other types of boundary conditions.

The First Variation

According to Section 19.3, the (local) minimizers of a (sufficiently nice) objective
function defined on a finite-dimensional vector space are initially characterized as critical
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points, where the objective function’s gradient vanishes. An analogous construction applies
in the infinite-dimensional context treated by the calculus of variations. Every minimizer
of a sufficiently nice functional J [u ] is a “critical function”, meaning that its functional
gradient vanishes: ∇J [u ] = 0. Indeed, the mathematical justification of this fact outlined
in Section 19.3 continues to apply here; see, in particular, the proof of Theorem 19.39. Of
course, not every critical point turns out to be a minimum — maxima, saddles, and many
degenerate points are also critical. The characterization of In nondegenerate critical points
as local minima or maxima relies on the second derivative test, whose functional version,
known as the second variation, will be is the topic of the following Section 21.3.

But we are getting ahead of ourselves. The first order of business is to learn how to
compute the gradient of a functional defined on an infinite-dimensional function space. As
noted in the general Definition 19.36 of the gradient, we must first impose an inner product
on the underlying space. The gradient ∇J [u ] of the functional (21.16) will be defined by
the same basic directional derivative formula:

〈∇J [u ] , v 〉 =
d

dt
J [u + t v ]

∣∣∣∣
t=0

. (21.18)

Here v(x) is a function that prescribes the “direction” in which the derivative is computed.
Classically, v is known as a variation in the function u, sometimes written v = δu, whence
the term “calculus of variations”. Similarly, the gradient operator on functionals is often
referred to as the variational derivative, and often written δJ . The inner product used in
(21.18) is usually taken (again for simplicity) to be the standard L2 inner product

〈 f , g 〉 =

∫ b

a

f(x) g(x) dx (21.19)

on function space. Indeed, while the formula for the graident will depend upon the under-
lying inner product, cf. Exercise , the characterization of critical points does not, and so
the choice of inner product is primarily dictated by simplicity.

Now, starting with (21.16), for each fixed u and v, we must compute the derivative of
the function

h(t) = J [u + t v ] =

∫ b

a

L(x, u + t v, u′ + t v′ ) dx. (21.20)

Assuming sufficient smoothness of the integrand allows us to bring the derivative inside
the integral and so, by the chain rule,

h′(t) =
d

dt
J [u + t v ] =

∫ b

a

d

dt
L(x, u + t v, u′ + t v′ ) dx

=

∫ b

a

[
v

∂L

∂u
(x, u + t v, u′ + t v′) + v′ ∂L

∂p
(x, u + t v, u′ + t v′)

]
dx.

Therefore, setting t = 0 in order to evaluate (21.18), we find

〈∇J [u ] , v 〉 =

∫ b

a

[
v

∂L

∂u
(x, u, u′) + v′ ∂L

∂p
(x, u, u′)

]
dx. (21.21)
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The resulting integral often referred to as the first variation of the functional J [u ]. The
condition

〈∇J [u ] , v 〉 = 0

for a minimizer is known as the weak form of the variational principle.

To obtain an explicit formula for ∇J [u ], the right hand side of (21.21) needs to be
written as an inner product,

〈∇J [u ] , v 〉 =

∫ b

a

∇J [u ] v dx =

∫ b

a

h v dx

between some function h(x) = ∇J [u ] and the variation v. The first summand has this
form, but the derivative v′ appearing in the second summand is problematic. However, as
the reader of Chapter 11 already knows, the secret to moving around derivatives inside an
integral is integration by parts. If we set

r(x) ≡
∂L

∂p
(x, u(x), u′(x)),

we can rewrite the offending term as

∫ b

a

r(x)v′(x) dx =
[
r(b)v(b)− r(a)v(a)

]
−

∫ b

a

r′(x)v(x) dx, (21.22)

where, again by the chain rule,

r′(x) =
d

dx

(
∂L

∂p
(x, u, u′)

)
=

∂2L

∂x∂p
(x, u, u′) + u′ ∂2L

∂u∂p
(x, u, u′) + u′′ ∂2L

∂p2
(x, u, u′) .

(21.23)

So far we have not imposed any conditions on our variation v(x). We are only com-
paring the values of J [u ] among functions that satisfy the prescribed boundary conditions,
namely

u(a) = α, u(b) = β.

Therefore, we must make sure that the varied function û(x) = u(x)+ t v(x) remains within
this set of functions, and so

û(a) = u(a) + t v(a) = α, û(b) = u(b) + t v(b) = β.

For this to hold, the variation v(x) must satisfy the corresponding homogeneous boundary
conditions

v(a) = 0, v(b) = 0. (21.24)

As a result, both boundary terms in our integration by parts formula (21.22) vanish, and
we can write (21.21) as

〈∇J [u ] , v 〉 =

∫ b

a

∇J [u ] v dx =

∫ b

a

v

[
∂L

∂u
(x, u, u′)−

d

dx

(
∂L

∂p
(x, u, u′)

)]
dx.
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Since this holds for all variations v(x), we conclude that†

∇J [u ] =
∂L

∂u
(x, u, u′)−

d

dx

(
∂L

∂p
(x, u, u′)

)
. (21.25)

This is our explicit formula for the functional gradient or variational derivative of the func-
tional (21.16) with Lagrangian L(x, u, p). Observe that the gradient ∇J [u ] of a functional
is a function.

The critical functions u(x) are, by definition, those for which the functional gradient
vanishes: satisfy

∇J [u ] =
∂L

∂u
(x, u, u′)−

d

dx

∂L

∂p
(x, u, u′) = 0. (21.26)

In view of (21.23), the critical equation (21.26) is, in fact, a second order ordinary differ-
ential equation,

E(x, u, u′, u′′) =
∂L

∂u
(x, u, u′)−

∂2L

∂x∂p
(x, u, u′)−u′ ∂2L

∂u∂p
(x, u, u′)−u′′ ∂2L

∂p2
(x, u, u′) = 0,

(21.27)
known as the Euler–Lagrange equation associated with the variational problem (21.16), in
honor of two of the most important contributors to the subject. Any solution to the Euler–
Lagrange equation that is subject to the assumed boundary conditions forms a critical point
for the functional, and hence is a potential candidate for the desired minimizing function.
And, in many cases, the Euler–Lagrange equation suffices to characterize the minimizer
without further ado.

Theorem 21.1. Suppose the Lagrangian function is at least twice continuously dif-

ferentiable: L(x, u, p) ∈ C2. Then any C2 minimizer u(x) to the corresponding functional

J [u ] =

∫ b

a

L(x, u, u′) dx, subject to the selected boundary conditions, must satisfy the

associated Euler–Lagrange equation (21.26).

Let us now investigate what the Euler–Lagrange equation tells us about the examples
of variational problems presented at the beginning of this section. One word of caution:
there do exist seemingly reasonable functionals whose minimizers are not, in fact, C2,
and hence do not solve the Euler–Lagrange equation in the classical sense; see [13] for
examples. Fortunately, in most variational problems that arise in real-world applications,
such pathologies do not appear.

Curves of Shortest Length — Planar Geodesics

Let us return to the most elementary problem in the calculus of variations: finding
the curve of shortest length connecting two points a = (a, α), b = (b, β) ∈ R

2 in the
plane. As we noted in Section 21.2, such planar geodesics minimize the arc length integral

J [u ] =

∫ b

a

√
1 + (u′)2 dx with Lagrangian L(x, u, p) =

√
1 + p2 ,

† See Exercise for a complete justification.
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subject to the boundary conditions

u(a) = α, u(b) = β.

Since
∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2

,

the Euler–Lagrange equation (21.26) in this case takes the form

0 = −
d

dx

u′

√
1 + (u′)2

= −
u′′

(1 + (u′)2)3/2
.

Since the denominator does not vanish, this is the same as the simplest second order
ordinary differential equation

u′′ = 0. (21.28)

Therefore, the solutions to the Euler–Lagrange equation are all affine functions, u = c x +
d, whose graphs are straight lines. Since our solution must also satisfy the boundary
conditions, the only critical function — and hence the sole candidate for a minimizer — is
the straight line

y =
β − α

b− a
(x− a) + α (21.29)

passing through the two points. Thus, the Euler–Lagrange equation helps to reconfirm
our intuition that straight lines minimize distance.

Be that as it may, the fact that a function satisfies the Euler–Lagrange equation
and the boundary conditions merely confirms its status as a critical function, and does
not guarantee that it is the minimizer. Indeed, any critical function is also a candidate
for maximizing the variational problem, too. The nature of a critical function will be
elucidated by the second derivative test, and requires some further work. Of course, for
the minimum distance problem, we “know” that a straight line cannot maximize distance,
and must be the minimizer. Nevertheless, the reader should have a small nagging doubt
that we have completely solved the problem at hand . . .

Minimal Surface of Revolution

Consider next the problem of finding the curve connecting two points that generates
a surface of revolution of minimal surface area. For simplicity, we assume that the curve
is given by the graph of a non-negative function y = u(x) ≥ 0. According to (21.11), the
required curve will minimize the functional

J [u ] =

∫ b

a

u
√

1 + (u′)2 dx, with Lagrangian L(x, u, p) = u
√

1 + p2 , (21.30)

where we have omitted an irrelevant factor of 2π and used positivity to delete the absolute
value on u in the integrand. Since

∂L

∂u
=
√

1 + p2 ,
∂L

∂p
=

u p√
1 + p2

,
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the Euler–Lagrange equation (21.26) is

√
1 + (u′)2 −

d

dx

uu′

√
1 + (u′)2

=
1 + (u′)2 − uu′′

(1 + (u′)2)3/2
= 0. (21.31)

Therefore, to find the critical functions, we need to solve a nonlinear second order ordinary
differential equation — and not one in a familiar form.

Fortunately, there is a little trick† we can use to find the solution. If we multiply the
equation by u′, we can then rewrite the result as an exact derivative

u′

(
1 + (u′)2 − uu′′

(1 + (u′)2)3/2

)
=

d

dx

u√
1 + (u′)2

= 0.

We conclude that the quantity
u√

1 + (u′)2
= c, (21.32)

is constant, and so the left hand side is a first integral for the differential equation, as per
Definition 20.26. Solving for‡

du

dx
= u′ =

√
u2 − c2

c

results in an autonomous first order ordinary differential equation, which we can immedi-
ately solve: ∫

c du
√

u2 − c2
= x + δ,

where δ is a constant of integration. The most useful form of the left hand integral is in
terms of the inverse to the hyperbolic cosine function cosh z = 1

2 (ez + e−z), whereby

cosh−1 u

c
= x + δ, and hence u = c cosh

(
x + δ

c

)
. (21.33)

In this manner, we have produced the general solution to the Euler–Lagrange equation
(21.31). Any solution that also satisfies the boundary conditions provides a critical function
for the surface area functional (21.30), and hence is a candidate for the minimizer.

The curve prescribed by the graph of a hyperbolic cosine function (21.33) is known
as a catenary . It is not a parabola, even though to the untrained eye it looks similar.
Interestingly, the catenary is the same profile as a hanging chain; see Exercise . Owing
to their minimizing properties, catenaries are quite common in engineering design — for
instance the cables in a suspension bridge such as the Golden Gate Bridge are catenaries,
while the arch in St. Louis is an inverted catenary.

† Actually, as with many tricks, this is really an indication that something profound is going on.
Noether’s Theorem, a result of fundamental importance in modern physics that relates symmetries
and conservation laws, [76, 141], underlies the integration method; see Exercise for further
details.

‡ The square root is real since, by (21.32), |u | ≤ | c |.
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So far, we have not taken into account the boundary conditions It turns out that there
are three distinct possibilities, depending upon the configuration of the boundary points:

(a) There is precisely one value of the two integration constants c, δ that satisfies the two
boundary conditions. In this case, it can be proved that this catenary is the unique
curve that minimizes the area of its associated surface of revolution.

(b) There are two different possible values of c, δ that satisfy the boundary conditions. In
this case, one of these is the minimizer, and the other is a spurious solution — one
that corresponds to a saddle point for the surface area functional.

(c) There are no values of c, δ that allow (21.33) to satisfy the two boundary conditions.
This occurs when the two boundary points a,b are relatively far apart. In this
configuration, the physical soap film spanning the two circular wires breaks apart
into two circular disks, and this defines the minimizer for the problem, i.e., unlike
cases (a) and (b), there is no surface of revolution that has a smaller surface area
than the two disks. However, the “function”† that minimizes this configuration
consists of two vertical lines from the boundary points to the x axis, along with
that segment on the axis lying between them. More precisely, we can approximate
this function by a sequence of genuine functions that give progressively smaller and
smaller values to the surface area functional (21.11), but the actual minimum is not
attained among the class of (smooth) functions; this is illustrated in Figure cats .

Further details are relegated to the exercises.

Thus, even in such a reasonably simple example, a number of the subtle complications
can already be seen. Lack of space precludes a more detailed development of the subject,
and we refer the interested reader to more specialized books on the calculus of variations,
including [46, 76].

The Brachistochrone Problem

The most famous classical variational principle is the so-called brachistochrone prob-

lem. The Latin word “brachistochrone” means “minimal time”. An experimenter lets a
bead slide down a wire that connects two fixed points. The goal is to shape the wire in
such a way that, starting from rest, the bead slides from one end to the other in minimal
time. Näıve guesses for the wire’s optimal shape, including a straight line, a parabola, a
circular arc, or even a catenary are wrong. One can do better through a careful analysis of
the associated variational problem. The brachistochrone problem was originally posed by
the Swiss mathematician Johann Bernoulli in 1696, and served as an inspiration for much
of the subsequent development of the subject.

We take, without loss of generality, the starting point of the bead to be at the origin:
a = (0, 0). The wire will bend downwards, and so, to avoid distracting minus signs in the
subsequent formulae, we take the vertical y axis to point downwards. The shape of the
wire will be given by the graph of a function y = u(x) ≥ 0. The end point b = (b, β) is

† Here “function” must be taken in a very broad sense, as this one does not even correspond
to a generalized function!
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Figure 21.4. The Brachistrochrone Problem.

assumed to lie below and to the right, and so b > 0 and β > 0. The set-up is sketched in
Figure 21.4.

To mathematically formulate the problem, the first step is to find the formula for the
transit time of the bead sliding along the wire. Arguing as in our derivation of the optics
functional (21.5), if v(x) denotes the instantaneous speed of descent of the bead when it
reaches position (x, u(x)), then the total travel time is

T [u ] =

∫ `

0

ds

v
=

∫ b

0

√
1 + (u′)2

v
dx, (21.34)

where ` is the overall length of the wire.

We shall use conservation of energy to determine a formula for the speed v as a
function of the position along the wire. The kinetic energy of the bead is 1

2 mv2, where
m is its mass. On the other hand, due to our sign convention, the potential energy of the
bead when it is at height y = u(x) is −mgu(x), where g the gravitational force, and we
take the initial height as the zero potential energy level. The bead is initially at rest, with
0 kinetic energy and 0 potential energy. Assuming that frictional forces are negligible,
conservation of energy implies that the total energy must remain equal to 0, and hence

0 = 1
2 mv2 −mgu.

We can solve this equation to determine the bead’s speed as a function of its height:

v =
√

2gu . (21.35)

Substituting this expression into (21.34), we conclude that the shape y = u(x) of the wire
is obtained by minimizing the functional

T [u ] =

∫ b

0

√
1 + (u′)2

2gu
dx, (21.36)

subjet to the boundary conditions

u(0) = 0, u(b) = β. (21.37)
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The associated Lagrangian is

L(x, u, p) =

√
1 + p2

u
,

where we omit an irrelevant factor of
√

2g (or adopt physical units in which g = 1
2 ). We

compute

∂L

∂u
= −

√
1 + p2

2u3/2
,

∂L

∂p
=

p√
u (1 + p2)

.

Therefore, the Euler–Lagrange equation for the brachistochrone functional is

−

√
1 + (u′)2

2u3/2
−

d

dx

u′

√
u (1 + (u′)2)

= −
2uu′′ + (u′)2 + 1

2
√

u (1 + (u′)2)
= 0. (21.38)

Thus, the minimizing functions solve the nonlinear second order ordinary differential equa-
tion

2uu′′ + (u′)2 + 1 = 0.

Rather than try to solve this differential equation directly, we note that the Lagrangian
does not depend upon x, and therefore we can use the result of Exercise , that states that
the Hamiltonian function

H(x, u, p) = L− p
∂L

∂p
=

1√
u(1 + p2)

defines a first integral. Thus,

H(x, u, u′) =
1√

u(1 + (u′)2)
= k, which we rewrite as u(1 + (u′)2) = c,

where c = 1/k2 is a constant. (This can be checked by directly calculating dH/dx ≡ 0.)
Solving for the derivative u′ results in the first order autonomous ordinary differential
equation

du

dx
=

√
c− u

u
.

As in (20.7), this equation can be explicitly solved by separation of variables, and so

∫ √
u

c− u
du = x + k.

The left hand integration relies on the trigonometric substitution

u = 1
2 c(1− cos θ),

whereby

x + k = 1
2 c

∫ √
1− cos θ

1 + cos θ
sin θ dθ = 1

2 c

∫
(1− cos θ) dθ = 1

2 c(θ − sin θ).
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Figure 21.5. A Cycloid.

The left hand boundary condition implies k = 0, and so the solution to the Euler–Lagrange
equation are curves parametrized by

x = r(θ − sin θ), u = r(1− cos θ). (21.39)

With a little more work, it can be proved that the parameter r = 1
2 c is uniquely prescribed

by the right hand boundary condition, and moreover, the resulting curve supplies the global
minimizer of the brachistochrone functional, [cvar]. The miniming curve is known as a
cycloid , which, according to Exercise , can be visualized as the curve traced by a point
sitting on the edge of a rolling wheel of radius r, as plotted in Figure 21.5. Interestingly,
in certain configurations, namely if β < 2 b/π, the cycloid that solves the brachistrochrone
problem dips below the right hand endpoint b = (b, β), and so the bead is moving upwards
when it reaches the end of the wire.

21.3. The Second Variation.

The solutions to the Euler–Lagrange boundary value problem are the critical functions
for the variational principle, meaning that they cause the functional gradient to vanish.
For finite-dimensional optimization problems, being a critical point is only a necessary
condition for minimality. One must impose additional conditions, based on the second
derivative of the objective function at the critical point, in order to guarantee that it is
a minimum and not a maximum or saddle point. Similarly, in the calculus of variations,
the solutions to the Euler–Lagrange equation may also include (local) maxima, as well as
other non-extremal critical functions. To distinguish between the possibilties, we need to
formulate a second derivative test for the objective functional. In the calculus of variations,
the second derivative of a functional is known as its second variation, and the goal of this
section is to construct and analyze it in its simplest manifestation.

For a finite-dimensional objective function F (u1, . . . , un), the second derivative test
was based on the positive definiteness of its Hessian matrix. The justification was based
on the second order Taylor expansion of the objective function at the critical point. In
an analogous fashion, we expand an objective functional J [u ] near the critical function.
Consider the scalar function

h(t) = J [u + t v ],

where the function v(x) represents a variation. The second order Taylor expansion of h(t)
takes the form

h(t) = J [u + t v ] = J [u ] + t K[u; v ] + 1
2 t2 Q[u; v ] + · · · .
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The first order terms are linear in the variation v, and, according to our earlier calculation,
given by an inner product

h′(0) = K[u; v ] = 〈∇J [u ] , v 〉

between the variation and the functional gradient. In particular, if u is a critical function,
then the first order terms vanish,

K[u; v ] = 〈∇J [u ] , v 〉 = 0

for all allowable variations v, meaning those that satisfy the homogeneous boundary con-
ditions. Therefore, the nature of the critical function u — minimum, maximum, or neither
— will, in most cases, be determined by the second derivative terms

h′′(0) = Q[u; v ].

As argued in our proof of the finite-dimensional Theorem 19.42, if u is a minimizer, then
Q[u; v ] ≥ 0. Conversely, if Q[u; v ] > 0 for all v 6≡ 0, i.e., the second variation is positive
definite, then the critical function u will be a strict local minimizer. This forms the crux
of the second derivative test.

Let us explicitly evaluate the second variational for the simplest functional (21.16).
Consider the scalar function

h(t) = J [u + t v ] =

∫ b

a

L(x, u + t v, u′ + t v′) dx,

whose first derivative h′(0) was already determined in (21.21); here we require the second
variation

Q[u; v ] = h′′(0) =

∫ b

a

[
Av2 + 2Bvv′ + C (v′)2

]
dx, (21.40)

where the coefficient functions

A(x) =
∂2L

∂u2
(x, u, u′) , B(x) =

∂2L

∂u∂p
(x, u, u′) , C(x) =

∂2L

∂p2
(x, u, u′) , (21.41)

are found by evaluating certain second order derivatives of the Lagrangian at the critical
function u(x). In contrast to the first variation, integration by parts will not eliminate
all of the derivatives on v in the quadratic functional (21.40), which causes significant
complications in the ensuing analysis.

The second derivative test for a minimizer relies on the positivity of the second varia-
tion. To formulate conditions that the critical function be a minimizer for the functional,
So, we need to establish criteria guaranteeing the positive definiteness of such a quad-
ratic functional is positive definite, meaning that Q[u; v ] > 0 for all non-zero allowable
variations v(x) 6≡ 0. Clearly, if the integrand is positive definite at each point, so

A(x)v2 + 2B(x)v v′ + C(x)(v′)2 > 0 whenever a < x < b, and v(x) 6≡ 0, (21.42)

then Q[u; v ] > 0 is also positive definite.
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Example 21.2. For the arc length minimization functional (21.3), the Lagrangian

is L(x, u, p) =
√

1 + p2. To analyze the second variation, we first compute

∂2L

∂u2
= 0,

∂2L

∂u∂p
= 0,

∂2L

∂p2
=

1

(1 + p2)3/2
.

For the critical straight line function

u(x) =
β − α

b− a
(x− a) + α, with p = u′(x) =

β − α

b− a
,

we find

A(x) =
∂2L

∂u2
= 0, B(x) =

∂2L

∂u∂p
= 0, C(x) =

∂2L

∂p2
=

(b− a)3
[
(b− a)2 + (β − α)2

]3/2
≡ k.

Therefore, the second variation functional (21.40) is

Q[u; v ] =

∫ b

a

k (v′)2 dx,

where k > 0 is a positive constant. Thus, Q[u; v ] = 0 vanishes if and only if v(x) is a
constant function. But the variation v(x) is required to satisfy the homogeneous boundary
conditions v(a) = v(b) = 0, and hence Q[u; v ] > 0 for all allowable nonzero variations.
Therefore, we conclude that the straight line is, indeed, a (local) minimizer for the arc
length functional. We have at last justified our intuition that the shortest distance between
two points is a straight line!

In general, as the following example demonstrates, the pointwise positivity condition
(21.42) is overly restrictive.

Example 21.3. Consider the quadratic functional

Q[v ] =

∫ 1

0

[
(v′)2 − v2

]
dx. (21.43)

We claim that Q[v ] > 0 for all nonzero v 6≡ 0 subject to homogeneous Dirichlet boundary
conditions v(0) = 0 = v(1). This result is not trivial! Indeed, the boundary conditions
play an essential role, since choosing v(x) ≡ c 6= 0 to be any constant function will produce
a negative value for the functional: Q[v ] = − c2.

To prove the claim, consider the quadratic functional

Q̃[v ] =

∫ 1

0

(v′ + v tanx)2 dx ≥ 0,

which is clearly non-negative, since the integrand is everywhere ≥ 0. Moreover, by continu-
ity, the integral vanishes if and only if v satisfies the first order linear ordinary differential
equation

v′ + v tanx = 0, for all 0 ≤ x ≤ 1.
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The only solution that also satisfies boundary condition v(0) = 0 is the trivial one v ≡ 0.

We conclude that Q̃[v ] = 0 if and only if v ≡ 0, and hence Q̃[v ] is a positive definite
quadratic functional on the space of allowable variations.

Let us expand the latter functional,

Q̃[v ] =

∫ 1

0

[
(v′)2 + 2v v′ tanx + v2 tan2 x

]
dx

=

∫ 1

0

[
(v′)2 − v2 (tanx)′ + v2 tan2 x

]
dx =

∫ 1

0

[
(v′)2 − v2

]
dx = Q[v ].

In the second equality, we integrated the middle term by parts, using (v2)′ = 2v v′, and
noting that the boundary terms vanish owing to our imposed boundary conditions. Since
Q̃[v ] is positive definite, so is Q[v ], justifying the previous claim.

To appreciate how subtle this result is, consider the almost identical quadratic func-
tional

Q̂[v ] =

∫ 4

0

[
(v′)2 − v2

]
dx, (21.44)

the only difference being the upper limit of the integral. A quick computation shows that
the function v(x) = x(4− x) satisfies the boundary conditions v(0) = 0 = v(4), but

Q̂[v ] =

∫ 4

0

[
(4− 2x)2 − x2(4− x)2

]
dx = −

64

5
< 0.

Therefore, Q̂[v ] is not positive definite. Our preceding analysis does not apply be-
cause the function tan x becomes singular at x = 1

2π, and so the auxiliary integral∫ 4

0

(v′ + v tanx)2 dx does not converge.

The complete analysis of positive definiteness of quadratic functionals is quite subtle.
Indeed, the strange appearance of tanx in the preceding example turns out to be an
important clue! In the interests of brevity, let us just state without proof a fundamental
theorem, and refer the interested reader to [76] for full details.

Theorem 21.4. Let A(x), B(x), C(x) ∈ C0[a, b ] be continuous functions. The quad-

ratic functional

Q[v ] =

∫ b

a

[
Av2 + 2Bvv′ + C (v′)2

]
dx

is positive definite, so Q[v ] > 0 for all v 6≡ 0 satisfying the homogeneous Dirichlet boundary

conditions v(a) = v(b) = 0, provided

(a) C(x) > 0 for all a ≤ x ≤ b, and

(b) For any a < c ≤ b, the only solution to its linear Euler–Lagrange boundary value

problem

− (C v′)′ + (A−B′)v = 0, v(a) = 0 = v(c), (21.45)

is the trivial function v(x) ≡ 0.
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Remark : A value c for which (21.45) has a nontrivial solution is known as a conjugate

point to a. Thus, condition (b) can be restated that the variational problem has no
conjugate points in the interval (a, b ].

Example 21.5. The quadratic functional

Q[v ] =

∫ b

0

[
(v′)2 − v2

]
dx (21.46)

has Euler–Lagrange equation

−v′′ − v = 0.

The solutions v(x) = k sinx satisfy the boundary condition v(0) = 0. The first conjugate
point occurs at c = π where v(π) = 0. Therefore, Theorem 21.4 implies that the quadratic
functional (21.46) is positive definite provided the upper integration limit b < π. This
explains why the original quadratic functional (21.43) is positive definite, since there are
no conjugate points on the interval [0, 1], while the modified version (21.44) is not , because
the first conjugate point π lies on the interval (0, 4].

In the case when the quadratic functional arises as the second variation of a functional
(21.16), then the coefficient functions A,B,C are given in terms of the Lagrangian L(x, u, p)
by formulae (21.41). In this case, the first condition in Theorem 21.4 requires

∂2L

∂p2
(x, u, u′) > 0 (21.47)

for the minimizer u(x). This is known as the Legendre condition. The second, conjugate

point condition requires that the so-called linear variational equation

−
d

dx

(
∂2L

∂p2
(x, u, u′)

dv

dx

)
+

(
∂2L

∂u2
(x, u, u′)−

d

dx

∂2L

∂u∂p
(x, u, u′)

)
v = 0 (21.48)

has no nontrivial solutions v(x) 6≡ 0 that satisfy v(a) = 0 and v(c) = 0 for a < c ≤ b. In
this way, we have arrived at a rigorous form of the second derivative test for the simplest
functional in the calculus of variations.

Theorem 21.6. If the function u(x) satisfies the Euler–Lagrange equation (21.26),
and, in addition, the Legendre condition (21.47) and there are no conjugate points on the

interval, then u(x) is a strict local minimum for the functional.

21.4. Multi-dimensional Variational Problems.

The calculus of variations encompasses a very broad range of mathematical applica-
tions. The methods of variational analysis can be applied to an enormous variety of phys-
ical systems, whose equilibrium configurations inevitably minimize a suitable functional,
which, typically, represents the potential energy of the system. Minimizing configurations
appear as critical functions at which the functional gradient vanishes. Following similar
computational procedures as in the one-dimensional calculus of variations, we find that the
critical functions are characterized as solutions to a system of partial differential equations,
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known as the Euler–Lagrange equations associated with the variational principle. Each
solution to the boundary value problem specified by the Euler–Lagrange equations sub-
ject to appropraite boundary conditions is, thus, a candidate minimizer for the variational
problem. In many applications, the Euler–Lagrange boundary value problem suffices to
single out the physically relevant solutions, and one need not press on to the considerably
more difficult second variation.

Implementation of the variational calculus for functionals in higher dimensions will be
illustrated by looking at a specific example — a first order variational problem involving a
single scalar function of two variables. Once this is fully understood, generalizations and
extensions to higher dimensions and higher order Lagrangians are readily apparent. Thus,
we consider an objective functional

J [u ] =

∫ ∫

Ω

L(x, y, u, ux, uy) dx dy, (21.49)

having the form of a double integral over a prescribed domain Ω ⊂ R
2. The Lagrangian

L(x, y, u, p, q) is assumed to be a sufficiently smooth function of its five arguments. Our
goal is to find the function(s) u = f(x, y) that minimize the value of J [u ] when subject
to a set of prescribed boundary conditions on ∂Ω, the most important being our usual
Dirichlet, Neumann, or mixed boundary conditions. For simplicity, we concentrate on the
Dirichlet boundary value problem, and require that the minimizer satisfy

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω. (21.50)

The First Variation

The basic necessary condition for an extremum (minimum or maximum) is obtained
in precisely the same manner as in the one-dimensional framework. Consider the scalar
function

h(t) ≡ J [u + t v ] =

∫ ∫

Ω

L(x, y, u + t v, ux + t vx, uy + t vy) dx dy

depending on t ∈ R. The variation v(x, y) is assumed to satisfy homogeneous Dirichlet
boundary conditions

v(x, y) = 0 for (x, y) ∈ ∂Ω, (21.51)

to ensure that u + t v satisfies the same boundary conditions (21.50) as u itself. Under
these conditions, if u is a minimizer, then the scalar function h(t) will have a minimum at
t = 0, and hence

h′(0) = 0.

When computing h′(t), we assume that the functions involved are sufficiently smooth so
as to allow us to bring the derivative inside the integral, and then apply the chain rule. At
t = 0, the result is

h′(0) =
d

dt
J [u + t v ]

∣∣∣∣
t=0

=

∫ ∫

Ω

(
v

∂L

∂u
+ vx

∂L

∂p
+ vy

∂L

∂q

)
dx dy, (21.52)
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where the derivatives of L are all evaluated at x, y, u, ux, uy. To identify the functional
gradient, we need to rewrite this integral in the form of an inner product:

h′(0) = 〈∇J [u ] , v 〉 =

∫ ∫

Ω

h(x, y) v(x, y) dx dy, where h = ∇J [u ].

To convert (21.52) into this form, we need to remove the offending derivatives from v.
In two dimensions, the requisite integration by parts formula is based on Green’s Theo-
rem A.26, and the required formula can be found in (15.88), namely,

∫ ∫

Ω

∂v

∂x
w1 +

∂v

∂y
w2 dx dy =

∮

∂Ω

v (−w2 dx + w1 dy)−

∫ ∫

Ω

v

(
∂w1

∂x
+

∂w2

∂y

)
dx dy,

(21.53)

in which w1, w2 are arbitrary smooth functions. Setting w1 =
∂L

∂p
, w2 =

∂L

∂q
, we find

∫ ∫

Ω

(
vx

∂L

∂p
+ vy

∂L

∂q

)
dx dy = −

∫ ∫

Ω

v

[
∂

∂x

(
∂L

∂p

)
+

∂

∂y

(
∂L

∂q

)]
dx dy,

where the boundary integral vanishes owing to the boundary conditions (21.51) that we
impose on the allowed variations. Substituting this result back into (21.52), we conclude
that

h′(0) =

∫ ∫

Ω

v

[
∂L

∂u
−

∂

∂x

(
∂L

∂p

)
−

∂

∂y

(
∂L

∂q

)]
dx dy = 〈∇J [u ] , v 〉, (21.54)

where

∇J [u ] =
∂L

∂u
−

∂

∂x

(
∂L

∂p

)
−

∂

∂y

(
∂L

∂q

)

is the desired first variation or functional gradient. Since the gradient vanishes at a critical
function, we conclude that the minimizer u(x, y) must satisfy the Euler–Lagrange equation

∂L

∂u
(x, y, u, ux, uy) −

∂

∂x

(
∂L

∂p
(x, y, u, ux, uy)

)
−

∂

∂y

(
∂L

∂q
(x, y, u, ux, uy)

)
= 0.

(21.55)
Once we explicitly evaluate the derivatives, the net result is a second order partial differ-
ential equation, which you are asked to write out in full detail in Exercise .

Example 21.7. As a first elementary example, consider the Dirichlet minimization
problem

J [u ] =

∫ ∫

Ω

1
2

(
u2

x + u2
y

)
dx dy (21.56)

that we first encountered in our analysis of the Laplace equation (15.100). In this case,
the associated Lagrangian is

L = 1
2 (p2 + q2), with

∂L

∂u
= 0,

∂L

∂p
= p = ux,

∂L

∂q
= q = uy.
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Therefore, the Euler–Lagrange equation (21.55) becomes

−
∂

∂x
(ux)−

∂

∂y
(uy) = −uxx − uyy = −∆u = 0,

which is the two-dimensional Laplace equation. Subject to the selected boundary condi-
tions, the solutions, i.e., the harmonic functions, are critical functions for the Dirichlet
variational principle. This reconfirms the Dirichlet characterization of harmonic functions
as minimizers of the variational principle, as stated in Theorem 15.14.

However, the calculus of variations approach, as developed so far, leads to a much
weaker result since it only singles out the harmonic functions as candidates for minimizing
the Dirichlet integral; they could just as easily be maximing functions or saddle points.
When dealing with a quadratic variational problem, the direct algebraic approach is, when
applicable, the more powerful, since it assures us that the solutions to the Laplace equation
really do minimize the integral among the space of functions satisfying the appropriate
boundary conditions. However, the direct method is restricted to quadratic variational
problems, whose Euler–Lagrange equations are linear partial differential equations. In
nonlinear cases, one really does need to utilize the full power of the variational machinery.

Example 21.8. Let us derive the Euler–Lagrange equation for the minimal surface
problem. From (21.9), the surface area integral

J [u ] =

∫ ∫

Ω

√
1 + u2

x + u2
y dx dy has Lagrangian L =

√
1 + p2 + q2 .

Note that

∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2 + q2

,
∂L

∂q
=

q√
1 + p2 + q2

.

Therefore, replacing p → ux and q → uy and then evaluating the derivatives, the Euler–
Lagrange equation (21.55) becomes

−
∂

∂x

ux√
1 + u2

x + u2
y

−
∂

∂y

uy√
1 + u2

x + u2
y

=
− (1 + u2

y)uxx + 2uxuyuxy − (1 + u2
x)uyy

(1 + u2
x + u2

y)3/2
= 0.

Thus, a surface described by the graph of a function u = f(x, y) is a critical function, and
hence a candidate for minimizing surface area, provided it satisfies the minimal surface

equation

(1 + u2
y)uxx − 2ux uy uxy + (1 + u2

x)uyy = 0. (21.57)

We are confronted with a complicated, nonlinear, second order partial differential equation,
which has been the focus of some of the most sophisticated and deep analysis over the past
two centuries, with significant progress on understanding its solution only within the past
70 years. In this book, we have not developed the sophisticated analytical, geometrical,
and numerical techniques that are required to have anything of substance to say about
its solutions. We refer the interested reader to the advanced texts [132, 136] for further
developments in this fascinating problem.
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Example 21.9. The small deformations of an elastic body Ω ⊂ R
n are described by

the displacement field, u: Ω → R
n. Each material point x ∈ Ω in the undeformed body

will move to a new position y = x + u(x) in the deformed body

Ω̃ = { y = x + u(x) | x ∈ Ω } .

The one-dimensional case governs bars, beams and rods, two-dimensional bodies include
thin plates and shells, while n = 3 for fully three-dimensional solid bodies. See [8, 85] for
details and physical derivations.

For small deformations, we can use a linear theory to approximate the much more
complicated equations of nonlinear elasticity. The simplest case is that of a homogeneous
and isotropic planar body Ω ⊂ R

2. The equilibrium mechanics are described by the defor-
mation function u(x) = (u(x, y), v(x, y) )

T
. A detailed physical analysis of the constitutive

assumptions leads to a minimization principle based on the following functional:

J [u, v ] =

∫ ∫

Ω

[
1
2 µ ‖∇u ‖2 + 1

2 (λ + µ)(∇ · u)2
]
dx dy

=

∫ ∫

Ω

[ (
1
2 λ + µ

)
(u2

x + v2
y) + 1

2 µ(u2
y + v2

x) + (λ + µ)ux vy

]
dx dy.

(21.58)

The parameters λ, µ are known as the Lamé moduli of the material, and govern its intrinsic
elastic properties. They are measured by performing suitable experiments on a sample of
the material. Physically, (21.58) represents the stored (or potential) energy in the body
under the prescribed displacement. Nature, as always, seeks the displacement that will
minimize the total energy.

To compute the Euler–Lagrange equations, we consider the functional variation

h(t) = J [u + tf, v + tg ],

in which the individual variations f, g are arbitrary functions subject only to the given
homogeneous boundary conditions. If u, v minimize J , then h(t) has a minimum at t = 0,
and so we are led to compute

h′(0) = 〈∇J , f 〉 =

∫ ∫

Ω

(f∇uJ + g∇vJ) dx dy,

which we write as an inner product (using the standard L2 inner product between vector

fields) between the variation f and the functional gradient ∇J = (∇uJ,∇vJ )
T
. For the

particular functional (21.58), we find

h′(0) =

∫ ∫

Ω

[ (
λ + 2µ

)
(ux fx + vy gy) + µ(uy fy + vx gx) + (λ + µ)(ux gy + vy fx)

]
dx dy.

We use the integration by parts formula (21.53) to remove the derivatives from the vari-
ations f, g. Discarding the boundary integrals, which are used to prescribe the allowable
boundary conditions, we find

h′(0) = −

∫ ∫

Ω

( [
(λ + 2µ)uxx + µuyy + (λ + µ)vxy

]
f +

+
[
(λ + µ)uxy + µvxx + (λ + 2µ)vyy

]
g

)
dx dy.
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The two terms in brackets give the two components of the functional gradient. Setting
them equal to zero, we derive the second order linear system of Euler–Lagrange equations

(λ + 2µ)uxx + µuyy + (λ + µ)vxy = 0, (λ + µ)uxy + µvxx + (λ + 2µ)vyy = 0,

(21.59)
known as Navier’s equations, which can be compactly written as

µ∆u + (µ + λ)∇(∇ · u) = 0 (21.60)

for the displacement vector u = (u, v )
T
. The solutions to are the critical displacements

that, under appropraite boundary conditions, minimize the potential energy functional.

Since we are dealing with a quadratic functional, a more detailed algebraic analy-
sis will demonstrate that the solutions to Navier’s equations are the minimizers for the
variational principle (21.58). Although only valid in a limited range of physical and kine-
matical conditions, the solutions to the planar Navier’s equations and its three-dimensional
counterpart are successfully used to model a wide class of elastic materials.

In general, the solutions to the Euler–Lagrange boundary value problem are critical
functions for the variational problem, and hence include all (smooth) local and global min-
imizers. Determination of which solutions are geniune minima requires a further analysis
of the positivity properties of the second variation, which is beyond the scope of our intro-
ductory treatment. Indeed, a complete analysis of the positive definiteness of the second
variation of multi-dimensional variational problems is quite complicated, and still awaits
a completely satisfactory resolution!
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Chapter 22

Nonlinear Partial Differential Equations

The ultimate topic to be touched on in this book is the vast and active field of nonlinear
partial differential equations. Leaving aside quantum mechanics, which remains to date an
inherently linear theory, most real-world physical systems, including gas dynamics, fluid
mechanics, elasticity, relativity, ecology, neurology, thermodynamics, and many more, are
modeled by nonlinear partial differential equations. Attempts to survey, in such a small
space, even a tiny fraction of such an all-encompassing range of phenomena, methods,
results, and mathematical developments, are doomed to failure. So we will be content to
introduce a handful of prototypical, seminal examples that arise in the study of nonlinear
waves and that serve to highlight some of the most significant physical and mathematical
phenomena not encountered in simpler linear systems. We will only have space to look at
simple one-dimensional models; the far more complicated nonlinear systems that govern our
three-dimensional dynamical universe quickly lead one to the cutting edge of contemporary
research.

Historically, comparatively little was known about the extraordinary range of behav-
ior exhibited by the solutions to nonlinear partial differential equations. Many of the
most fundamental phenomena that now drive modern-day research, including solitons,
chaos, stability, blow-up and singularity formation, asymptotic properties, etc., remained
undetected or at best dimly perceived in the pre-computer era. The last sixty years has
witnessed a remarkable blossoming in our understanding, due in large part to the insight
offered by the availability of high performance computers coupled with great advances in
the understanding and development of suitable numerical approximation schemes. New an-
alytical methods, new mathematical theories, coupled with new computational algorithms
have precipitated this revolution in our understanding and study of nonlinear systems, an
activity that continues to grow in intensity and breadth. Each leap in computing power
coupled with theoretical advances has led to yet deeper understanding of nonlinear phe-
nomena, while simultaneously demonstrating how far we have yet to go. To make sense
of this bewildering variety of methods, equations, and results, it is essential build upon
a firm foundation on, first of all, linear systems theory, and secondly, nonlinear algebraic
equations and nonlinear ordinary differential equations.

Our presentation is arranged according to the order of the underlying differential
equation. First order nonlinear partial differential equations model nonlinear waves and
arise in gas dynamics, water waves, elastodynamics, chemical reactions, transport of pol-
lutants, flood waves in rivers, chromatography, traffic flow, and a wide range of biological
and ecological systems. One of the most important nonlinear phenomena, with no linear
counterpart, is the break down of solutions in finite time, resulting in the formation of

5/1/06 1176 c© 2006 Peter J. Olver



discontinuous shock waves. A striking example is the supersonic boom produced by an
airplane that breaks the sound barrier. As in the linear wave equation, the signals propa-
gate along the characteristics, but in the nonlinear case the characteristics can cross each
other, precipitating the onset of a shock. The characterization of the shock dynamics re-
quires additional physical information, in the form of a conservation law, that supplements
the original partial differential equation.

Parabolic second order partial differential equations govern nonlinear diffusion pro-
cesses, including thermodynamics, chemical reactions, dispersion of pollutants, and popu-
lation dynamics. The simplest and most well understood is Burgers’ equation, which can,
surprisingly, be linearized by transforming it to the heat equation. This accident provides
an essential glimpse into the world of nonlinear diffusion processes. In the limit, as the
diffusion or viscosity tends to zero, the solutions to Burgers’ equation tend to the shock
wave solutions to the limiting first order dispersionless equation, and thus provides an
alternate mechanism for unraveling shock dynamics.

Third order partial differential equations arise in the study of dispersive wave motion,
including water waves, plasma waves, waves in elastic media, and elsewhere. We first treat
the basic linear dispersive model, comparing and contrasting it with the hyperbolic mod-
els we encountered earlier in this text. The distinction between group and wave velocity
— observed when, for instance, surface waves propagate over water — is developed. Fi-
nally, we introduce the remarkable Korteweg–deVries equation, which serves as a model for
waves in shallow water, waves in plasmas, and elsewhere. Despite its intrinsic nonlinearity,
it supports stable localized traveling wave solutions, known as solitons, that, remarkably,
maintain their shape even under collision. The Korteweg–deVries equation is the proto-
typical example of an integrable system, and this discovery in the mid 1960’s inaugurated
intense and ongoing research in the remarkable physical models that exhibit integrability,
a development that has had many ramifications in both pure and applied mathematics.

22.1. Nonlinear Waves and Shocks.

Before attempting to tackle any nonlinear partial differential equations, we must care-
fully review the solution to the simplest linear first order partial differential equation.

Linear Transport and Characteristics

The transport equation

ut + cux = 0, (22.1)

is so named because it models the transport of, say, a pollutant in a uniform fluid flow. Let
us begin by assuming that the wave speed c is constant. According to Proposition 14.8,
every solution is constant along the characteristic lines of slope

dx

dt
= c, namely x− ct = constant. (22.2)

As a consequence, the solutions are traveling waves of the form

u(t, x) = p(x− ct), (22.3)
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Figure 22.1. Traveling Wave.

where p(ξ) is an arbitrary function of the characteristic variable ξ = x−ct. To a stationary
observer, the solution (22.3) appears as a wave of unchanging form moving at velocity c.
When c > 0, the wave translates to the right, as illustrated in Figure 22.1. When c < 0,
the wave moves to the left, while c = 0 corresponds to a permanent wave form that remains
fixed at its original location.

Slightly more complicated, but still linear, is the non-uniform transport equation

ut + c(x)ux = 0, (22.4)

where the wave velocity c(x) depends upon the spatial position. This equation models
unidirectional waves propagating through a non-uniform, but static medium. Generalizing
the construction (22.2), we define a characteristic curve to be a solution to the autonomous
ordinary differential equation

dx

dt
= c(x). (22.5)

Thus, unlike the constant velocity version, the characteristics are no longer necessarily
straight lines. Nevertheless, the preceding observation remains valid:

Proposition 22.1. Solutions to the linear transport equation (22.4) are constant on

its characteristic curves.

Proof : Let x(t) be a characteristic curve, i.e., a solution to (22.5), parametrized by
the time t. Let h(t) = u(t, x(t)) be the value of the solution at the point (t, x(t)) on the
given characteristic curve. Our goal is to prove that h(t) is a constant function of t, and,
as usual, this is done by proving that its derivative is identically zero. To differentiate h(t),
we invoke the chain rule:

dh

dt
=

d

dt
u(t, x(t)) =

∂u

∂t
(t, x(t)) +

dx

dt

∂u

∂x
(t, x(t)) =

∂u

∂t
(t, x(t)) + c(x(t))

∂u

∂x
(t, x(t)) = 0.

We replaced dx/dt by c(x) since we are assuming that x(t) is a characteristic curve, and
hence satisfies (22.5). The final combination of derivatives is zero whenever u solves the
transport equation (22.4). Q.E.D.

Since the characteristic curve differential equation (22.5) is autonomous, it can be
immediately solved:

b(x) ≡

∫
dx

c(x)
= t + k, (22.6)
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Figure 22.2. Characteristic Curve.

where k is the constant of integration. Thus, the characteristic curves are “parallel”, each
being a translate of the graph of t = b(x) in the direction of the t axis. The characteristic
curves are therefore defined by the formula x = g(t + k), where g = b−1 is the inverse
function. (See Section 20.1 for full details.)

Observe that the characteristic curves are the level sets of the characteristic variable

ξ = b(x) − t. As a consequence, any function which is constant along the characteristic
curves depends only on the value of the characteristic variable at each point, and hence
takes the form

u(t, x) = p(b(x)− t) (22.7)

for some function p(ξ). In other words, the characteristic curves are the common level
curves of all solutions to the transport equation. It is easy to check directly that, provided
b(x) is defined by (22.6), u(t, x) solves the partial differential equation (22.4) for any choice
of function p(ξ).

To find the solution that satisfies the prescribed initial conditions

u(0, x) = f(x) (22.8)

we merely substitute the general solution formula (22.7). This leads to the equation

p(b(x)) = f(x), and, therefore, p(ξ) = f ◦ b−1(ξ) = f
(

g(ξ)
)
.

The resulting solution formula has a simple graphical interpretation: to find its value u(t, x)
at a given point, we look at the characteristic curve passing through (t, x). If this curve
intersects the x axis at the point (0, y), then u(t, x) = u(0, y) = f(y). The construction
is illustrated in Figure 22.2. Incidentally, if the characteristic curve through (t, x) doesn’t
intersect the x axis, the solution value u(t, x) is not prescribed by the initial data.
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Figure 22.3. Characteristic Curves for ut +
1

x2 + 1
ux = 0.

Example 22.2. Let us solve the particular transport equation

∂u

∂t
+

1

x2 + 1

∂u

∂x
= 0 (22.9)

by the method of characteristics. According to (22.5), the characteristic curves satisfy the
first order ordinary differential equation

dx

dt
=

1

x2 + 1
.

Separating variables and integrating, we find
∫

(x2 + 1) dx = 1
3 x3 + x = t + k,

where k is the integration constant. Some of the resulting characteristic curves are plotted
in Figure 22.3.

The characteristic variable is ξ = 1
3 x3 + x − t, and hence the general solution to the

equation takes the form
u = p

(
1
3 x3 + x− t

)
,

where p(ξ) is an arbitrary function. A typical solution, corresponding to initial data

u(t, 0) =
1

1 + (x + 2.75)2
,

is plotted at times t = 0, 2, 5, 10, 25, 50 in Figure 22.4. The fact that the characteristic
curves are not straight means that, although the solution remains constant along each
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Figure 22.4. Solution to ut +
1

x2 + 1
ux = 0.

t

x

Figure 22.5. Characteristic Curves for ut − xux = 0.

individual curve, a stationary observer will witness a dynamically changing profile as the
wave moves along through the non-uniform medium. The wave speeds up as it aapproaches
the origin, and then slows back down once it passes and moves off to the right. As a result,
we observe the wave spreading out as it approaches the origin, and then contracting as it
moves off to the right.

Example 22.3. Consider the equation

ut − xux = 0. (22.10)
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Figure 22.6. Solution to ut − xux = 0.

In this case, the characteristic curves are the solutions to

dx

dt
= −x, and so x et = k, (22.11)

where k is the constant of integration; see Figure 22.5. It is easier to adopt ξ = x et as
the characteristic variable here, noting that its level sets are the characteristic curves. The
solution therefore takes the form

u = p(xet), (22.12)

where p(ξ) is an arbitrary function of ξ = xet. Given the initial data

u(0, x) = f(x), the resulting solution is u = f(xet).

For example, the solution

u(t, x) =
1

(xet)2 + 1
=

e−2 t

x2 + e−2 t

corresponding to initial data u(t, 0) = f(x) = (x2 + 1)−1 is plotted in Figure 22.6 at times
t = 0, 1, 2, 3. Note that since the characteristic curves all converge on the t axis, the
solution becomes more and more concentrated at the origin. In the limit, it converges to
the function that is zero everywhere except for the value u(t, 0) ≡ 1 at the origin. Warning :
The limit is not a delta function, since its value at x = 0 remains bounded.

A Nonlinear Transport Equation

Perhaps the simplest possible nonlinear partial differential equations is the nonlinear

transport equation

ut + uux = 0. (22.13)
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first systematically studied by Poisson and Riemann in the early nineteenth century. Since
it appears in so many applications, this equation appears in the literature under a variety
of names, including the Riemann equation, the inviscid Burgers’ equation, and the dis-
persionless Korteweg–deVries equation. It and its multi-dimensional and multi-component
generalizations play a crucial role in the modeling of gas dynamics, traffic flow, flood waves
in rivers, chromatography, chemical reactions, and other areas; see [182].

The first order partial differential equation (22.13) has the form of a transport equa-
tion, whose wave velocity c = u depends, not on the position x, but rather on the size of the
disturbance. Larger waves move faster, and overtake smaller waves. Waves of elevation,
where u > 0, move to the right, while waves of depression, where u < 0, move to the left.

Fortunately, the method of characteristics that was developed for linear wave equations
also works in the present nonlinear situation and leads to a complete solution. Mimicking
our previous construction, (22.5), let us define a characteristic curve of the nonlinear wave
equation (22.13) to be a solution to the ordinary differential equation

dx

dt
= u(t, x). (22.14)

As such, the characteristics depend upon the solution u, which, in turn, is based on the
characteristic variable. So we appear to be trapped in a circular argument. The resolution
of the apparent conundrum is to observe that, as in the linear case, the solution u(t, x)
remains constant along its characteristics, and this fact will allow us to simultaneously
specify both.

To prove this claim, suppose that x = x(t) parametrizes a characteristic curve. We
need to show that the function h(t) = u(t, x(t)), which is obtained by evaluating the
solution along the curve, is constant. As usual, constancy is proved by checking that its
derivative is identically zero. Invoking the chain rule, and then (22.14), we deduce that

dh

dt
=

d

dt
u(t, x(t)) =

∂u

∂t
(t, x(t))+

dx

dt

∂u

∂x
(t, x(t)) =

∂u

∂t
(t, x(t))+u(t, x(t))

∂u

∂x
(t, x(t)) = 0.

The final expression vanishes because u is assumed to solve the wave equation (22.13) at
all values of (t, x), including those on the curve (t, x(t)). This verifies our claim that h(t)
is constant, and so the solution u is constant on the characteristic curve. This has the
implication that the right hand side of equation (22.14) is a constant whenever x = x(t)
defines a characteristic curve, and so the derivative dx/dt is a constant — namely the value
of u on the curve. In this manner, we arrive at the key deduction that the characteristic
curve must be a straight line

x = ut + k, (22.15)

whose characteristic slope u equals the value assumed by the solution u on it. The larger
u is, the steeper the characteristic line, and the faster that part of the wave travels.

The corresponding characteristic variable ξ = x−tu depends upon the solution, which
can now be written in implicit form

u = f(x− tu), (22.16)
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Figure 22.7. Two Solutions to ut + uux = 0.

where f(ξ) is an arbitrary function of the characteristic variable. The solution u(t, x) can
be found by solving the algebraic equation (22.16). For example, if

fξ) = αξ + β

is an affine function, with α, β constant, then

u = α(x− tu) + β, and hence u(t, x) =
αx + β

1 + α t
(22.17)

is the corresponding solution to the nonlinear transport equation. At each fixed t, the
graph of the solution is a straight line. If α > 0, the solution flattens out as t → ∞. On
the other hand, if α < 0, the straight line rapidly steepens to vertical as t approaches the
critical time t? = −1/α, at which point the solution ceases to exist — it is said to “blow
up”. In Figure 22.7, we graph the solution with α = 1, β = .5, when t = 0, 1, 5, 20 on the
top row, and α = −.2, β = .1, at times t = 0, 3, 4, 4.9 on the bottom row. In the second
case, the solution becomes vertical as t→ 5 and then ceases to exist.

In general, to construct the solution u(t, x) to the initial value problem

u(0, x) = f(x), (22.18)

we note that, at t = 0, the implicit solution formula (22.16) reduces to u(0, x) = f(x).
Thus, the function f coincides with the initial data. However, because (22.16) is an implicit
equation for u(t, x), it is not immediately evident

(a) whether it can be solved to give a well-defined value for u(t, x), and,

(b) even granted this, how to describe the solution’s qualitative features and dynamical
behavior.

A more instructive and revealing strategy is based on the following geometrical con-
struction, inspired by the linear version appearing in Figure 22.2. Through each point
(0, y) on the x axis, draw the characteristic line

x = t f(y) + y (22.19)

5/1/06 1184 c© 2006 Peter J. Olver



t

x

Figure 22.8. Characteristic Lines for f(x) = 1
4 sin(1.8x− .8).

whose slope, namely f(y) = u(0, y), equals the value of the initial data at that point.
According to the preceding argument, the solution will have the same value on the entire
characteristic line (22.19), and so

u(t, t f(y) + y) = f(y).

For example, if f(y) = y, then u(t, x) = y whenever x = ty + y; eliminating y, we recover
u(t, x) = x/(t + 1), which agrees with one of our straight line solutions (22.17).

Now, the trouble with our construction is immediately apparent from the illustrative
Figure 22.8. Any two characteristic lines that are not parallel must cross each other
somewhere. The value of the solution must equal to the slope of the characteristic line,
and so, at the crossing point, the solution is required to assume two different values, one
corresponding to each line. Something is clearly amiss, and we need to study the resulting
solutions in more depth.

It turns out that there are three basic scenarios. The first, trivial case is when all the
characteristic lines are parallel and so the difficulty does not arise. In this case, they all
have the same slope, say c, which means that the solution has the same value on each one.
Therefore, u(t, x) ≡ c is a trivial constant solution.

The next simplest case occurs when the initial data f(x) is everywhere increasing, so
f(x) ≤ f(y) whenever x ≤ y, which is assured if its derivative is never negative: f ′(x) ≥ 0.
In this case, as in sketched in Figure 22.9, the characteristic lines emanating from the x
axis fan out into the right half plane, and so never cross each other when t ≥ 0. Each point
(t, x) for t ≥ 0 lies on a unique characteristic line, and the value of the solution at (t, x) is
equal to the slope of the line. Consequently, the solution is well-defined at all future times.
Physically, such solutions represent rarefaction waves, which gradually spread out as time
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Figure 22.9. Characteristic Lines for a Rarefaction Wave.

Figure 22.10. Rarefaction Wave.

progresses. A typical example, corresponding to initial data

u(0, x) = tan−1 3x +
π

2
,

is plotted in Figure 22.10 at successive times t = 0, 1, 2, 3. Note how the slope of the
solution gradually diminishes as the rarefaction wave spreads out.

The more interesting case is when f ′(x) < 0. Now some of the characteristic lines
starting at t = 0 will cross at some point in the future. If (t, x) lies on two or more distinct
characteristic lines, the value of the solution u(t, x), which should equal the characteristic
slope, is no longer uniquely determined. Although one might be tempted to deal with such
multiply-valued solutions in a purely mathematical framework, from a physical standpoint
this is unacceptable. The solution u(t, x) is supposed to represent a physical quantity, e.g.,
density, velocity, pressure, etc., and must therefore assume a unique value at each point.
The mathematical model has broken down, and fails to agree with the physical reality.

Before confronting this difficulty, let us first, from a theoretical standpoint, try to
understand what happens if we were to continue the solution as a multiply-valued function.
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Figure 22.11. Characteristics for a Shock Wave.

To be specific, consider the initial data

u(0, x) =
π

6
−

1

3
tan−1 x, (22.20)

appearing in the first plot in Figure 22.12. The corresponding characteristic lines are
sketched in Figure 22.11. Initially, they do not cross, and the solution remains a well-
defined, single-valued function. However, eventually one reaches a critical time, t = t? > 0,
when the first two characteristic lines cross each other. Subsequently, a wedge-shaped
region appears in the (t, x) plane, consisting of points which lie on the intersection of three
different characteristic lines with different slopes; at such points, the solution achieves
three distinct values. Outside the wedge, the points only belong to a single characteristic
line, and the solution remains single-valued. (The boundary of the wedge consists of points
where only two characteristic lines cross.)

To fully appreciate what is going on, look now at the sequence of pictures of the
multiply-valued solution at successive times in Figure 22.12. Since the initial data is
positive, f(x) > 0, all the characteristic slopes are positive. As a consequence, all the
points on the solution curve will move to the right, at a speed equal to their height. Since
the initial data is a decreasing function, points lying to the left will move faster than those
on the right, and eventually overtake them. Thus, as time passes, the solution steepens.
At the critical time t? when the first two characteristic lines cross, say at x?, the tangent
to the solution curve has become vertical:

∂u

∂x
(t, x?) −→ ∞ as t −→ t?.

Afterwards, the solution graph no longer represents a single-valued function; its overlapping
lobes lie over points (t, x) in the aforementioned wedge.
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Figure 22.12. Multiply–Valued Solution.

The critical time t? can be determined from the implicit solution formula (22.16).
Indeed, if we differentiate with respect to x, we find

∂u

∂x
=

∂

∂x
f(x− tu) = f ′(ξ)

(
1− t

∂u

∂x

)
, where ξ = x− tu

is the characteristic variable, which is constant along the characteristic lines. Solving,

∂u

∂x
=

f ′(ξ)

1 + t f ′(ξ)
.

Therefore, the slope blows up,

∂u

∂x
−→ ∞, as t −→ −

1

f ′(ξ)
.

In other words, if the initial data has negative slope at position x, so f ′(x) < 0, then the
solution along the characteristic line emanating from the point (0, x) will break down at
the time −1/f ′(x). As a consequence, the earliest critical time is

t? = min

{
−

1

f ′(x)

∣∣∣∣ f ′(x) < 0

}
. (22.21)

For instance, for the particular initial configuration (22.20) represented by the pictures,

f ′(x) = −
1

3(1 + x2)
, and so the critical time is t? = min(3(1 + x2)) = 3.

Now, while mathematically plausible, such a multiply-valued solution is physically
untenable. So what happens after the critical time t?? One needs to choose which of the
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possible solution values at each point (t, x) contained in the wedge is physically appropriate.
Indeed, the mathematics by itself is incapable of specifying how to continue the solution
past the critical time at which the characteristics begin to cross. We therefore must return
to the underlying physics, and ask what sort of phenomenon are we trying to model. The
most instructive is to view the differential equation as a simple model of compressible fluid
flow in a single space variable, e.g., motion of gas in a long pipe. If we push a piston
down the end of a long pipe then the gas will move ahead of the piston and thereby be
compressed. However, if the piston moves too rapidly, the gas piles up on top of itself,
and a shock wave forms and propagates down the pipe. Mathematically, the shock is
represented by a discontinuity where the solution abruptly changes value.

Conservation Laws and Shocks

One way to resolve our mathematical dilemma relies on the fact that the partial
differential equation takes the form of a conservation law, in accordance with the following
definition†.

Definition 22.4. A conservation law is an equation of the form

∂T

∂t
+

∂X

∂x
= 0. (22.22)

The functions T and X are known, respectively, as the conserved density and associated
flux .

In the simplest situations, the conserved density T (t, x, u) and flux X(t, x, u) depend
on the time t, the position x, and the solution u(t, x) to the physical system. (Higher
order conservation laws, which also depend upon derivatives of u, will appear in the final
section.) We can clearly rewrite the nonlinear transport equation (22.13) in the following
conservation law form:

∂u

∂t
+

∂

∂x

(
1
2 u2

)
= 0, (22.23)

where the conserved density and flux are, respectively,

T = u, X = 1
2 u2.

The reason for calling (22.22) a conservation law comes from the following observation.

Proposition 22.5. Given a conservation law (22.22),

d

dt

∫ b

a

T dx = − X
∣∣∣
b

x=a
. (22.24)

† Here we describe the one-dimensional situation. See Exercise for conservation laws for
n-dimensional dynamics.
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The proof of (22.24) is immediate — assuming sufficient smoothness that allows one to
bring the derivative inside the integral sign, and then invoking the Fundamental Theorem
of Calculus:

d

dt

∫ b

a

T dx =

∫ b

a

∂T

∂t
dx = −

∫ b

a

∂X

∂x
dx = − X

∣∣∣
b

x=a
.

Formula (22.24) says that the rate of change of the integrated density over an interval
depends only on the flux through its endpoints. In particular, if there is no net flux into
or out of the interval, then the integrated density is conserved , meaning that it remains
constant over time. All physical conservation laws — mass, momentum, energy, and
so on — for systems governed by partial differential equations are of this form. (For
ordinary differential equations, conservation laws coincide with first integrals, as discussed
in Section 20.3.)

For the transport equation (22.23), the integrated conservation law (22.24) takes the
specific form

d

dt

∫ b

a

u(t, x) dx = 1
2

[
u(t, a)2 − u(t, b)2

]
. (22.25)

Viewing the equation as a model for, say, compressible fluid flow in a pipe, the integral
on the left hand side represents the total mass of the fluid contained in the interval [a, b ].
The right hand side represents the mass flux into the interval through its two endpoints,
and thus the conservation equation (22.25) is the mathematical formalization of basic mass
conservation — mass is neither created nor destroyed, but can only enter a region as a flux
through its boundary. In particular, if there is zero mass flux, then we deduce conservation
of the total mass.

With this in hand, let us return to the physical context of the nonlinear transport
equation. We will assume that mass conservation continues to hold even within a shock,
which, from a purely molecular standpoint, makes eminent physical sense. By definition,
a shock is a jump discontinuity in the solution u(t, x). Suppose that, at time t, a shock
occurs at position x = s(t). We require† that both the left and right hand limits

u−(t) = u(t, s(t)−) = lim
x→ s(t)−

u(t, x), u+(t) = u(t, s(t)+) = lim
x→ s(t)+

u(t, x),

of the solution on either side of the shock discontinuity are well defined. Let us further
assume that, in time, the shock x = s(t) follows a smooth — meaning C1 — path. Now,
referring to Figure 22.13, Consider a small time interval, from t to t + ∆t. During this
time, the shock moves from position a = s(t) to position b = s(t + ∆t). The total mass
contained in the interval [a, b ] at time t, before the shock has passed through, is

m(t) =

∫ b

a

u(t, x) dx ≈ u+(t) (b− a) = u+(t)
[
s(t + ∆t)− s(t)

]
,

† With more analytical work, [182], the listed assumptions can all be rigorously justified.
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Figure 22.13. Conservation of Mass Near a Shock.

where u+(t) is the average value of u(t, x) over the interval. After the shock has passed,
the total mass has become

m(t + ∆t) =

∫ b

a

u(t + ∆t, x) dx ≈ u−(t) (b− a) = u−(t)
[
s(t + ∆t)− s(t)

]
,

where u−(t) refers to the average value of u(t + ∆t, x) over the same interval. In the limit
as ∆t→ 0, the point b = s(t + ∆t) −→ s(t) = a, and hence the averages

lim
∆t→ 0

u+(t) = u+(t), lim
∆t→ 0

u−(t) = u−(t),

tend to the limiting solution values on the right and left hand sides of the shock disconti-
nuity. Thus, the limiting rate of change in mass across the shock at time t is

dm

dt
= lim

∆t→ 0

m(t + ∆t)−m(t)

∆t

= lim
∆t→ 0

[
u−(t)− u+(t)

] s(t + ∆t)− s(t)

∆t
=
[
u−(t)− u+(t)

] ds

dt
,

which is the product of the shock speed times minus the jump magnitude at the shock
discontinuity. On the other hand, at any t < τ < t + ∆t, the mass flux into the interval
[a, b ] is, according to the right hand side of (22.25),

1
2

[
u(τ, a)2 − u(τ, b)2

]
−→ 1

2

[
u−(t)2 − u+(t)2

]
as ∆t −→ 0.

For conservation of mass to hold across the shock, the limiting value of the rate of change
in mass must equal the limiting mass flux,

[
u−(t)− u+(t)

] ds

dt
= 1

2

[
u−(t)2 − u+(t)2

]
,

5/1/06 1191 c© 2006 Peter J. Olver



x

u

Figure 22.14. Equal Area Rule.

from which we discover the Rankine–Hugoniot condition

ds

dt
=

1

2

u−(t)2 − u+(t)2

u−(t)− u+(t)
=

u−(t) + u+(t)

2
. (22.26)

So, to maintain conservation of mass, the speed of the shock must equal the average of the
solution values on either side.

A shock appears when one or more characteristic lines cross. For this to occur, charac-
teristics to the left of the shock must have larger slope (or speed), while those to the right
must have smaller slope. Since the shock speed is the average of the two characteristic
slopes, this means

u−(t) >
ds

dt
=

u−(t) + u+(t)

2
> u+(t). (22.27)

While it is theoretically possible to construct a shock solution to (22.13) that maintains the
Rankine–Hugoniot constraint (22.26) but violates (22.27), such solutions are excluded on
physical grounds, in that they violate causality, [103], which requires that characteristics
are only allowed to enter shocks, not leave, and, furthermore, are not stable under small
perturbations, [182]. The dynamics of shock wave solutions is then prescribed by the
Rankine–Hugoniot and causality conditions (22.26, 27).

How does one determine the motion of the shock in practice? The answer is beautifully
simple. Since the total mass, which at time t is the area under the curve u(t, x), must be
conserved, one merely draws the vertical shock line where the areas of the two lobes in the
multiply-valued solution are equal, as in Figure 22.14. This Equal Area Rule ensures that
the total mass of the shock solution matches that of the original (why?), as required by
the physical conservation law.

Example 22.6. An illuminating special case is when the initial data has the form
of a step function with a single jump discontinuity at the origin:

u(0, x) = f(x) = a + b σ(x) =

{
a, x < 0,

b, x > 0.
(22.28)
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Figure 22.15. Multiply–Valued Step Wave.

t

x

Figure 22.16. Characteristic Lines for the Step Wave Shock.

If† a > b > 0, then the initial data is already in the form of a shock wave. For t > 0, he
mathematical solution constructed by continuing along the characteristic lines is multiply-
valued in the region bt < x < at, where it assumes both values a and b; see Figure 22.15
. The Equal Area Rule tells us to draw the shock line halfway along, at x = 1

2 (a + b) t, in
order that the two triangles have the same area. Therefore, the shock moves with speed
c = 1

2 (a + b) equal to the average of the two speeds at the jump, and so this particular

† Cases where a or b are negative are left to the exercises.
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Figure 22.17. Piecewise Affine Rarefaction Wave.

shock wave solution is

u(t, x) = a + b σ(x− ct) =

{
a, x < ct,

b, x > ct,
where a > c =

a + b

2
> b. (22.29)

A graph of the characteristic lines appears in Figure 22.16.

By way of contrast, suppose 0 < a < b, so the initial data has a jump upwards. In this
case, the characteristic lines diverge from the initial discontinuity, and the mathematical
solution is not specified at all in the wedge-shaped region at < x < bt. Now our task is
to decide how to connect the two regions where the solution is well-defined. The simplest
connection is an affine function, i.e., a straight line. Indeed, a simple modification of the
rational solution (22.17) produces the function

u(t, x) =
x

t
,

which not only solves the differential equation, but also has the required values u(t, at) = a,
and u(t, b t) = b at the two edges of the wedge. The resulting solution is the piecewise affine
rarefaction wave

u(t, x) =





a, x ≤ at,

x/t, at ≤ x ≤ bt,

b, x ≥ bt,

(22.30)

which is graphed in Figure 22.17. In fact, it can be shown, [103], that this is the only
solution that preserves the causality condition (22.27).

These two prototypical solutions epitomize the basic phenomenon modeled by the
nonlinear transport equation — rarefaction waves where the solution spreads out as time
progresses, and compression waves, that progressively steepen and eventually break into
a shock discontinuity. , that correspond to regions where f ′(x) > 0, and compression

waves, for f ′(x) < 0, where the solution contracts and eventually breaks into a shock
discontinuity. Anyone caught in a traffic jam recognizes the compression waves, where
the vehicles are bunched together and almost stationary, while the interspersed rarefaction
waves correspond to freely moving traffic. (An intelligent driver will take advantage of
the rarefaction waves moving through the jam to switch lanes!) The familiar, frustrating
traffic jam phenomenon is an intrinsic effect of the nonlinear wave model that governs the
traffic flow.

Our derivation of the Rankine–Hugoniot condition (22.26) prescribing the shock speed
relies on the fact that we can write the original partial differential equation in the form
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of a conservation law. But there are other ways to do this; for instance, multiplying the
nonlinear transport equation (22.13) by u allows us write it in the alternative conservative
form

u
∂u

∂t
+ u2 ∂u

∂x
=

∂

∂t

(
1
2 u2

)
+

∂

∂x

(
1
3 u3

)
= 0. (22.31)

Here, the conserved density is T = 1
2 u2, and the associated flux X = 1

3 u3. The integral
form equation (22.24) of the conservation law is

d

dt

∫ b

a

1
2 u(t, x)2 dx = 1

3

[
u(t, a)3 − u(t, b)3

]
. (22.32)

In some physical models, the integral on the left hand side represents the energy within the
interval [a, b ], and the conservation law tells us that energy can only enter the interval as
a flux through its ends. If we assume that energy is conserved at a shock, then, repeating
our previous argument, we are led to the alternative condition

ds

dt
=

1
3 (u−(t)3 − u+(t)3)
1
2 (u−(t)2 − u+(t)2)

=
2

3

u−(t)2 + u−(t)u+(t) + u+(t)2

u−(t) + u+(t)
(22.33)

for the shock speed. Thus, a shock that conserves energy moves at a different speed than
one that conserves mass! The evolution of a shock depends not just on the underlying
differential equation, but also on the physical assumptions governing the selection of a
suitable entropy condition.

The mathematical property that characterizes the shock dynamics is known as an
entropy condition. Entropy conditions, such as the Rankine–Hugoniot Equal Area Rule
(22.26), or the alternative (22.33), allow us to follow the solution beyond the formation
of a simple shock. Once a shock forms, it cannot suddenly disappear — the discontinuity
remains as the solution propagates. One consequence is the irreversibility of the solutions
to the nonlinear transport equation. One cannot simply run time backwards and expect
shocks to spontaneously vanish. However, this irreversibility is of a different character
than that of the ill-posedness in the backwards heat equation. The nonlinear transport
equation can be solved for t < 0, but this would result, typically, in the formation of a
different collection of shocks, and would not be just the time reversal of the solution.

Continuing past the initial shock formation, as other characteristic lines start to cross,
additional shocks appear. The shocks themselves continue propagate, often at different
velocities. When a fast moving shock catches up with a slow moving shock, one must then
decide how to merge the shocks together to retain a physically consistent solution. The
selected entropy condition continues to resolve the ambiguities. However, at this point,
the mathematical details have become too complicated for us to pursue in any more detail,
and we refer the interested reader to Whitham’s book, [182], which includes a wide range
of applications to equations of gas dynamics, flood waves in rivers, motion of glaciers,
chromotography, traffic flow, and many other physical systems.

22.2. Nonlinear Diffusion.

First order partial differential equations, beginning with elementary scalar transport
equations, and progressing on to the equations of gas dynamics, the full-blown Euler equa-
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tions of fluid mechanics, and yet more complicated systems for plasmas and other compli-
cated physical processes, are used to model conservative wave motion. Such systems fail to
account for frictional and/or viscous effects, which are typically modeled by a parabolic dif-
fusion equation such as the heat equation. In this section we investigate the consequences
of combining nonlinear wave motion with linear diffusion by analyzing the simplest such
model. As we will see, the viscous term helps smooth out abrupt shock discontinuities, and
the result is a well-determined and smooth dynamical process. Moreover, in the inviscid
limit, as the diffusion term becomes vanishingly small, the smooth viscous solutions con-
verge non-uniformly to the appropriate discontinuous shock wave, leading to an alternative
mechanism for analyzing conservative nonlinnear dynamical processes.

Burgers’ Equation

The simplest nonlinear diffusion equation is known as† Burgers’ equation

ut + uux = γ uxx, (22.34)

and is obtained by appending a linear diffusion term to the nonlinear transport equation
(22.13). In fluids and gases, one can interpret the right hand side as modeling the effect of
viscosity, and so Burgers’ equation represents a very simplified version of the equations of
viscous fluid mechanics, [182]. As with the heat equation, the diffusion coefficient γ > 0
must be positive in order that initial value problem be well-posed in forwards time.

Since Burgers’ equation is first order in t, we expect that its solutions are uniquely
prescribed by their initial values, say,

u(0, x) = f(x), −∞ < x <∞. (22.35)

(For simplicity, we will ignore boundary effects here.) Small, slowly varying solutions —
more specifically, those for which both |u(t, x) | and |ux(t, x) | are small — tend to act like
solutions to the heat equation, smoothing out and decaying to 0 as time progresses. On
the other hand, when the solution is large or rapidly varying, the nonlinear term tends
to play the dominant role, and we might expect the solution to behave like the nonlinear
waves that we analyzed in Section 22.1, perhaps steepening into some sort of shock. But,
as we will see, the smoothing effect of the diffusion term, no matter how small, ultimately
prevents the appearance of a discontinuous shock. Indeed, it can be proved that, under
rather mild assumptions on the initial data, the solution to the initial value problem (22.34,
35) remains smooth and well-defined for all subsequent times, [182].

The simplest explicit solutions are the traveling waves, for which

u(t, x) = v(ξ) = v(x− ct), where ξ = x− ct,

† The equation is named after the applied mathematician J.M. Burgers, [35], and so the
apostrophe goes after the “s”. Burgers’ equation was apparently first studied as a physical model
by Bateman, [15], although its solution already appears as an exercise in a nineteenth century
ordinary differential equations text, [71; vol. 6, p. 102].
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indicates a fixed profile, moving to the right with constant speed c. By the chain rule,

∂u

∂t
= −cv′(ξ),

∂u

∂x
= v′(ξ),

∂2u

∂x2
= v′′(ξ).

Substituting these expressions into Burgers’ equation (22.34), we conclude that v(ξ) must
satisfy the nonlinear second order ordinary differential equation

−cv′ + v v′ = γ v′′.

This equation can be solved by first integrating both sides with respect to ξ, and so

γ v′ = k − cv + 1
2 v2,

where k is a constant of integration. As in Section 20.1, the non-constant solutions to such
an autonomous first order ordinary differential equation tend to either ±∞ or to one of
the equilibrium points, i.e., the roots of the right hand side, as t→ ±∞. Thus, to obtain
a bounded traveling wave solution v(ξ), the quadratic polynomial on the right hand side
must have two real roots, which requires k < 1

2 c2. Assuming this holds, we rewrite the
equation in the form

2γ
dv

dξ
= (v − a)(v − b), where c = 1

2 (a + b). (22.36)

To obtain the bounded solutions, we concentrate on the case when a < v < b. Integrating
(22.36) by the usual method, we find

∫
2γ dv

(v − a)(v − b)
=

2γ

b− a
log

(
b− v

v − a

)
= ξ − δ,

for δ a constant of integration, and hence

v(ξ) =
ae(b−a)(ξ−δ)/(2γ) + b

e(b−a)(ξ−δ)/(2γ) + 1
.

Thus, the bounded traveling wave solutions all have the explicit form

u(t, x) =
ae(b−a)(x−ct−δ)/(2γ) + b

e(b−a)(x−ct−δ)/(2γ) + 1
.

Observe that
lim

x→−∞
u(t, x) = b, lim

x→∞
u(t, x) = a,

and hence our solution is a monotonically decreasing function going from b to a. The wave
travels to the right, unchanged in form, with speed equal to the average of its asymptotic
values. In Figure 22.18 we graph sample profiles corresponding to a = .1, b = 1 for three
different values of the diffusion coefficient. Note that the smaller γ is, the sharper the
transition layer between the two asymptotic values of the solution. In the inviscid limit
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Figure 22.18. Traveling Wave Solutions to Burgers’ Equation.

γ → 0, the solutions converge to the step shock wave wave solution (22.29) to the nonlinear
transport equation, which, as a result, is often referred to as the inviscid Burgers’ equation.

Indeed, the profound fact is that, in the inviscid limit as the diffusion becomes van-
ishingly small, γ → 0, the solutions to Burgers’ equation (22.34) converge to the shock
wave solution to (22.13) constructed by the Equal Area Rule. This observation is in accor-
dance with our physical intuition, that all physical systems retain a very small dissipative
component, that serves to smooth out discontinuities that might appear in a theoretical
model that fails to take the dissipation/viscosity/damping/etc. into account. In modern
theory, this so-called viscosity solution method has been successfully used to characterize
the discontinuous solutions to a broad range inviscid nonlinear wave equations is as the
limit, as the viscosity goes to zero, of classical solutions to a diffusive version. Thus, the
viscosity solutions to the nonlinear transport equation resulting from Burgers’ equation are
consistent with the Equal Area Rule for drawing the shock discontinuities. More generally,
this method allows one to monitor the solutions as they evolve into regimes where multiple
shocks merge and interact. We refer the interested reader to [117, 182].

The Hopf–Cole Transformation

By a remarkable stroke of luck, the nonlinear Burgers’ equation can be converted
into the linear heat equation and thereby explicitly solved. The linearization of Burgers’
equation first appeared in an obscure exercise in a nineteenth century differential equations
textbook, [71; vol. 6, p. 102]. Its modern rediscovery by Eberhard Hopf, [102], and Julian
Cole, [42], was a milestone in the modern era of nonlinear partial differential equations,
and is named the Hopf–Cole transformation in their honor.

Finding a way to covert a nonlinear differential equation into a linear equation is
extremely challenging, and, in, most instances, impossible. On the other hand, the re-
verse process — “nonlinearizing” a linear equation — is trivial: any nonlinear changes
of variables will do the trick! However, the resulting nonlinear equation, while evidently
linearizable through the inverse change of variables, is rarely of any independent inter-
est. Sometimes there is a lucky accident, and such “accidental” linearizations can have a
profound impact on our understanding of more complicated nonlinear systems.

In the present context, our starting point is the linear heat equation

vt = γ vxx. (22.37)

Among all possible nonlinear changes of dependent variable, one of the simplest that might
spring to mind is an exponential function. Let us, therefore, investigate the effect of an
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exponential change of variables

v(t, x) = eαϕ(t,x), so ϕ(t, x) =
1

α
log v(t, x), (22.38)

where α is a nonzero constant. The function ϕ(t, x) is real provided v(t, x) > 0 is a positive

solution to the heat equation. Fortunately, this is not hard to arrange: if the initial data
v(0, x) > 0 is strictly positive, then the resulting solution v(t, x) is positive for all t > 0.
This follows from the Maximum Principle for the heat equation, cf. Theorem 14.3.

To determine the differential equation satisfied by the function ϕ, we invoke the chain
rule to differentiate (22.38):

vt = αϕt eαϕ, vx = αϕx eαϕ, vxx =
(
αϕxx + α2 ϕ2

x

)
eαϕ.

Substituting the first and last formulae into the heat equation (22.37) and canceling a com-
mon exponential factor, we conclude that ϕ(t, x) satisfies the nonlinear partial differential
equation

ϕt = γϕxx + γαϕ2
x, (22.39)

known as the potential Burgers’ equation, for reasons that will soon become apparent.

The second step in the process is to differentiate the potential Burgers’ equation with
respect to x; the result is

ϕtx = γϕxxx + 2γαϕx ϕxx. (22.40)

If we now set
∂ϕ

∂x
= u, (22.41)

so that ϕ has the status of a potential function, then the resulting partial differential
equation

ut = γ uxx + 2γαuux

coincides with Burgers’ equation (22.34) with α = −1/(2γ). In this manner, we have
arrived at the famous Hopf–Cole transformation.

Theorem 22.7. If v(t, x) > 0 is any positive solution to the linear heat equation

vt = γ vxx, then

u(t, x) =
∂

∂x

(
−2γ log v(t, x)

)
= −2γ

vx

v
(22.42)

solves Burgers’ equation ut + uux = γ uxx.

Do all solutions to Burgers’ equation arise in this way? In order to decide, we run the
argument in reverse. First, choose a potential function ϕ̃(t, x) that satisfies (22.41); for
example

ϕ̃(t, x) =

∫ x

0

u(t, y) dy.

If u(t, x) is any solution to Burgers’ equation, then ϕ̃(t, x) satisfies (22.40). Integrating
both sides of the latter equation with respect to x, we conclude that

ϕ̃t = γ ϕ̃xx + γαϕ̃2
x + h(t),
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Figure 22.19. Solution to Burgers’ Equation.

for some integration “constant” h(t). Thus, unless h(t) ≡ 0, our potential function ϕ̃
doesn’t satisfy the potential Burgers’ equation (22.39), but that’s because we chose the
“wrong” potential. Indeed, if we define

ϕ(t, x) = ϕ̃(t, x)− η(t), where η′(t) = h(t),

then

ϕt = ϕ̃t − h(t) = γ ϕ̃xx + γαϕ̃2
x = γϕxx + γαϕ2

x,

and hence the modified potential ϕ(t, x) is a solution to the potential Burgers’ equation
(22.39). From this it easily follows that

v(t, x) = e−ϕ(t,x)/(2γ) (22.43)

is a positive solution to the heat equation, from which u(t, x) can be recovered via the
Hopf –Cole transformation (22.42). Thus, we have proved that every solution to Burgers’
equation comes from a positive solution to the heat equation via the Hopf–Cole transfor-
mation.

Example 22.8. As a simple example, the separable solution

v(t, x) = a + b e−γ ω2 t cos ωx

to the heat equation leads to the solution

u(t, x) =
2γ b ω e−γ ω2 t sinωx

a + b e−γ ω2 t cos ωx
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Figure 22.20. Shock Wave Solution to Burgers’ Equation.

to Burgers’ equation; a typical example is plotted in Figure 22.19. We should require that
a > | b | in order that v(t, x) > 0 be a positive solution to the heat equation for t ≥ 0;
otherwise the resulting solution to Burgers’ equation will have singularities at the roots of
u — see the first graph in Figure 22.19. This particular solution primarily feels the effects
of the diffusivity, and rapidly goes to zero.

To solve the initial value problem (22.34–35) for Burgers’ equation, we note that,
under the Hopf–Cole transformation,

v(0, x) = h(x) = exp

(
−

ϕ(0, x)

2γ

)
= exp

(
−

1

2γ

∫ x

0

f(x) dy

)
, (22.44)

Remark : The lower limit of the integral can be changed from 0 to any other convenient
value without affecting the final form of u(t, x) in (22.42). The only effect is to multiply
v(t, x) by an overall constant, which does not change u(t, x).

According to formula (14.60) (adapted to general diffusivity, as in Exercise ), the
solution to the initial value problem (22.37, 44) for the heat equation can be expressed as
a convolution integral with the fundamental solution:

v(t, x) =
1

2
√

πγ t

∫ ∞

−∞

e−(x−y)2/(4γ t) h(y) dy.

Therefore, the solution to the Burgers’ initial value problem (22.34, 35) is

u(t, x) =

∫ ∞

−∞

x− y

t
eF (t,x,y) dy

∫ ∞

−∞

eF (t,x,y) dy

where F (t, x, y) = −
1

2γ

∫ y

0

f(z) dz −
(x− y)2

4γ t
.

(22.45)

Example 22.9. To demonstrate the smoothing effect of the diffusion terms, let us
see what happens to the initial data

u(0, x) =

{
a, x < 0,

b, x > 0,
(22.46)

in the form of a step function. We assume that a > b, which would correspond to a shock
wave in the inviscid limit γ = 0. (In Exercise , the reader is asked to analyze the case
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Figure 22.21. Triangular Wave Solution to Burgers’ Equation.

a < b which corresponds to a rarefaction wave.) In this case,

F (t, x, y) = −
(x− y)2

4γ t
−





−
ay

2γ
, y < 0,

−
by

2γ
, y > 0.

After some algebraic manipulations, the solution is found to have the explicit form

u(t, x) = a +
b− a

1 + h(t, x) exp
b− a

2γ
(x− ct)

(22.47)

where

c =
a + b

2
, h(t, x) =

1− erf

(
x− bt
√

4γ t

)

1− erf

(
x− at
√

4γ t

) , (22.48)

and erf z denotes the error function (14.62). The solution, with a = 1, b = .1 and γ = .03
is plotted in Figure 22.20 at times t = .01, 1.0, 2.0. Note that the sharp transition region
for the shock is immediately smoothed, and the solution rapidly settles into the form of a
continuously varying transition layer between the two step heights. The larger the diffusion
coefficient in relation to the initial solution heights a, b, the more significant the smoothing
effect. Observe that, as γ → 0, the function h(t, x)→ 1, and hence the solution converges
to the shock wave solution (22.29) to the transport equation, in which the speed of the
shock is the average of the two initial values.

Example 22.10. Consider the case when the initial data u(0, x) = δ(x) is a concen-
trated delta function impulse at the origin. In the solution formula (22.45), starting the
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integral for F (t, x, y) at 0 is problematic, but as noted earlier, we are free to select any
other starting point, e.g., −∞. Thus, we take

F (t, x, y) = −
1

2γ

∫ y

−∞

δ(z) dz −
(x− y)2

4γ t
=





−
(x− y)2

4γ t
, y < 0,

−
1

2γ
−

(x− y)2

4γ t
, y > 0.

Substituting this into (22.45), we can evaluate the upper integral in elementary terms,
while the lower integral involves the error function (14.62); after a little algebra, we find

u(t, x) =

√
4γ

πt

e−x2/(4γ t)

coth

(
1

4γ

)
− erf

(
x
√

4γ t

) , (22.49)

where

coth z =
cosh z

sinh z
=

ez + e−z

ez − e−z
=

e2z + 1

e2z − 1

is the hyperbolic cotangent function. A graph of this solution when γ = .02 and a = 1,
at times t = 1, 5, 10, 50, appears in Figure 22.21. As you can see, the initial concentration
diffuses out, but, unlike the heat equation, the wave does not remain symmetric owing to
the advection terms in the equation. The effect is to steepen in front as it propagates.
Eventually the triangular wave spreads out as the diffusion progresses.

22.3. Dispersion and Solitons.

Finally, we study a remarkable third order evolution equation that originally arose
in the modeling of surface water waves, that serves to introduce yet further phenomena,
both linear and nonlinear. The third order derivative models dispersion, in which waves
of different frequencies move at different speeds. Coupled with the same nonlinearity as
in the inviscid and viscous Burgers’ (22.13, 34), the result is one of the most remarkable
equations in all of mathematics, with far-reaching implications, not only in fluid mechanics
and applications, but even in complex function theory, physics, etc., etc.

Linear Dispersion

So far, in our study of partial differential equations, we have not ventured beyond
second order. Higher order equations do occur in applications, particularly in models for
wave motion. The simplest linear partial differential equation of a type that we have not
yet considered is the third order equation

ut + uxxx = 0 (22.50)

It is the third in a hierarchy of simple evolution equations that starts with the simple
ordinary differential equation ut = u, then proceeds to the transport equation ut = ux,
and then the heat equation ut = uxx modeling basic diffusion processes. The third order
case (22.50) is a simple model for linear dispersive waves.
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To avoid additional complications caused by boundary conditions, we shall only look
at the equation on the entire line, so x ∈ R The solution to the equation is uniquely
specified by initial data

u(0, x) = f(x), −∞ < x <∞. (22.51)

See [1] for a proof.

Let us apply the Fourier transform to solve the initial value problem. Let

û(t, k) =
1
√

2π

∫ ∞

−∞

u(t, x) e− i kx dx

be the spatial Fourier transform of the solution, which is assumed to remain in L2 at all t,
a fact that can be justified a posteriori. In view of the effect of the Fourier transform on
derivatives — see Corollary 13.22 — the Fourier transform converts the partial differential
equation (22.50) into a first order, linear ordinary differential equation

ût − i k3 û = 0, (22.52)

parametrized by k, with initial conditions

û(0, k) = f̂(k) =
1
√

2π

∫ ∞

−∞

f(x) e− i kx dx (22.53)

given by the Fourier transform of (22.51). Solving the initial value problem (22.52–53) by
the usual technique, we find

û(t, k) = e i k3 tf̂(k).

Inverting the Fourier transform yields the explicit formula for the solution

u(t, x) =
1
√

2π

∫ ∞

−∞

e i k3 t+ i kxf̂(k) dk (22.54)

to the initial value problem for the dispersive wave equation (22.50–51).

Actually, to find the solutions to the differential equation, one does not need the full
power of the Fourier transform. Note that (22.54) represents a linear superposition of
elementary exponential functions. Let us substitute an exponential ansatz

u(t, x) = e i ωt+ i kx (22.55)

representing a complex oscillatory wave of frequency ω, which indicates the time vibrations,
and wave number k, which indicates the corresponding oscillations in space. Since

∂u

∂t
= iω e i ωt+ i kx,

∂3u

∂x3
= − i k3 e i ωt+ i kx,

(22.55) satisfies the partial differential equation (22.50) if and only if its frequency and
wave number are related by

ω = k3. (22.56)
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The result is known as the dispersion relation for the partial differential equation. In
general, any linear constant coefficient dynamical partial differential equation admits a
dispersion relation of the form ω = ω(k) which is straightforwardly found by substituting
the exponential ansatz (22.55) and canceling the common exponential factors in the re-
sulting equation. In our particular case, the exponential solution of wave number k has
the form

uk(t, x) = e i k3 t+ i kx.

Linear superposition permits us to combine them in integral form, and so, for any (rea-
sonable) function a(k) depending on the wave number,

u(t, x) =
1
√

2π

∫ ∞

−∞

e i k3 t+ i kxa(k) dk

is easily seen to be a solution to the partial differential equation. The Fourier transform
solution (22.54) has this form.

Example 22.11. The fundamental solution corresponds to a concentrated initial
disturbance

u(0, x) = δ(x).

since the Fourier transform of the delta function is just δ̂(k) = 1/
√

2π , the resulting
solution (22.54) is

u(t, x) =
1

2π

∫ ∞

−∞

e i k3 t+ i kx dk =
1

π

∫ ∞

0

cos(k3 t + kx) dk,

since the solution is real (or, equivalently, the imaginary part of the integrand is odd)
while the real part of the integrand is even. The second integral can be converted into
that defining the Airy function,

Ai(z) =
1

π

∫ ∞

0

cos
(
sz + 1

3 s3
)
ds,

as in (C.37), by the change of variables

s = k
3
√

3 t, z =
x

3
√

3 t
,

and we conclude that the fundamental solution to the dispersive wave equation (22.50)
can be written in terms of the Airy function:

u(t, x) =
1

3
√

3 t
Ai

(
x

3
√

3 t

)
.

See Figure ee3 for a graph. Furthermore, writing the general initial data as a superposition
of delta functions

f(x) =

∫ ∞

−∞

f(ξ) dξ δ(x− ξ),
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we conclude that the solution has the form

u(t, x) =
1

3
√

3 t

∫ ∞

−∞

f(ξ) Ai

(
x− ξ

3
√

3 t

)
dξ. (22.57)

Although energy is conserved, unlike the heat and diffusion equations, the dispersion
of waves means that the solution dies out.

Group velocity and wave velocity.

The Korteweg–deVries Equation

The simplest wave equation that combines dispersion with nonlinearity is the cele-
brated Korteweg–deVries equation

ut + uxxx + uux = 0. (22.58)

The equation was first derived by the French applied mathematician Boussinesq, [24;
eq. (30)], [25; eqs. (283, 291)], in 1872 as a model for surface water waves. It was redis-
covered by the Dutch mathematician Korteweg and his student de Vries, [118], over two
decades later, and, despite Boussinesq’s priority, is named after them. In the early 1960’s,
the American mathematical physicists Martin Kruskal and Norman Zabusky, [189], red-
erived it as a continuum limit of a model of nonlinear mass-spring chains studied by Fermi,
Pasta and Ulam, [66]. Understanding the puzzling behavior of both systems coming from
numerical experiments was the catalyst of one of the most remarkable and far-ranging
discoveries of modern mathematics: integrable nonlinear partial differential equations.

The most important special solutions to the Korteweg–deVries equation are the trav-

eling waves. We assume that the solution

u = v(ξ) = v(x− ct), where ξ = x− ct,

is a wave of permanent form, translating to the right with speed c. By the chain rule,

∂u

∂t
= −cv′(ξ),

∂u

∂x
= v′(ξ),

∂3u

∂x3
= v′′′(ξ).

Substituting these expressions into the Korteweg–deVries equation (22.58), we conclude
that v(ξ) must satisfy the nonlinear third order ordinary differential equation

v′′′ + v v′ − cv′ = 0. (22.59)

Let us further assume that the traveling wave is localized , meaning that the solution and
its derivatives are small at large distances:

lim
x→±∞

u(t, x) = lim
x→±∞

∂u

∂x
(t, x) = lim

x→±∞

∂2u

∂x2
(t, x) = 0.

To this end, we impose the boundary conditions

lim
ξ →±∞

v(ξ) = lim
ξ →±∞

v′(ξ) = lim
ξ →±∞

v′′(ξ) = 0. (22.60)

(See Exercise for an analysis of the non-localized traveling wave solutions.)
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Figure 22.22. Solitary Wave.

The ordinary differential equation (22.59) can, in fact be solved in closed form. First,
note that

d

dξ

[
v′′ + 1

2 v2 − cv
]

= 0, and hence v′′ + 1
2 v2 − cv = k,

is a first integral, with k indicating the constant of integration. However, the localizing
boundary conditions (22.60) imply that k = 0. Multiplying the latter equation by v ′ allows
us to integrate a second time

d

dξ

[
1
2 (v′)2 + 1

6 v3 − 1
2 cv2

]
= v′

[
v′′ + 1

2 v2 − cv
]

= 0.

Thus,
1
2 (v′)2 + 1

6 v3 − 1
2 cv2 = `,

where ` is a second constant of integration, which, again by the boundary conditions
(22.60), is also ` = 0. We conclude that v(ξ) satisfies the first order autonomous ordinary
differential equation

dv

dξ
= v

√
c− 1

3 v .

We integrate by the usual method, cf. (20.7):

∫
dv

v
√

c− 1
3 v

= ξ + δ.

Using a table of integrals, and then solving for v, we conclude that the solution has the
form

v(ξ) = 3c sech2
[

1
2

√
c ξ + δ

]
,

where

sech y =
1

cosh y
=

2

ey + e−y
,

is the hyperbolic secant function. The solution has the form graphed in Figure 22.22; it has
a global maximum at 3c sech 0 = 3c at y = 0, and is an even function, exponentially decay
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to 0 as | ξ | → ∞. The resulting localized traveling wave solutions to the Korteweg–deVries
equation are

u(t, x) = 3c sech2
[

1
2

√
c (x− ct) + δ

]
, (22.61)

where c > 0 and δ are arbitrary constants. The parameter c equals the speed of the wave.
It is also equal to one third its amplitude, since the maximum value of u(t, x) is 3c at the
points x = ct, as well as the width, which is on the order of

√
c . The taller and wider the

solitary wave, the faster it moves.

The solution (22.61) is known as a solitary wave solution since it represents a localized
wave that travels unchanged in shape. Such waves were first observed by the British
engineer J. Scott Russell, [159], who recounts how such a wave was generated by the
sudden motion of a barge along an Edinburgh canal and then chasing it on horseback for
several miles. Russell’s observations were dismissed by his contemporary, the prominent
mathematician George Airy, who claimed that such localized disturbances could not exist,
basing his analysis upon a linearized theory. Much later, Boussinesq established the proper
nonlinear surface wave model (22.58), valid for long waves in shallow water, and also derived
the solitary wave solution (22.61), thereby fully exonerating Scott Russell’s insight.

These nonlinear traveling wave solutions were discovered by Kruskal and Zabusky,
[189], to have remarkable properties. For this reason they have been given a special new
name — soliton. Ordinarily, combining two solutions to a nonlinear equation can be quite
unpredictable, and one might expect any number of scenarios to occur. If you start with
initial conditions representing a taller wave to the left of a shorter wave, the solution
of the Korteweg–deVries equation runs as follows. The taller wave moves faster, and so
catches up the shorter wave. They then have a very complicated nonlinear interaction, as
expected. But, remarkably, after a while they emerge from the interaction unscathed. The
smaller wave is now in back and the larger one in front. After this, they proceed along
their way, with the smaller one lagging behind the high speed tall wave. the only effect
of their encounter is a phase shift, meaning a change in the value of the phase parameter
δ in each wave. See Figure 22.23. After the interaction, the position of the soliton if it
had traveled unhindered by the other is shown in a dotted line. Thus, they behave like
colliding particles, which is the genesis of the word “soliton”.

A similar phenomenon holds for several such soliton solutions. After some time where
the various waves interact, they finally emerge with the largest soliton in front, and then
in order to the smallest one in back, all progressing at their own speed, and so gradually
drawing apart.

Moreover, starting with an arbitrary initial disturbance

u(0, x) = f(x)

it can be proved that after some time, the solution disintegrates into a finite number of
solitons of different heights, moving off to the right, plus a small dispersive tail moving
to the left that rapidly disappears. Proving this remarkable result is beyond the scope
of this book. It relies on the method of inverse scattering , that connects the Korteweg–
deVries equation with a linear eigenvalue problem of fundamental importance in one-
dimensional quantum mechanics. The solitons correspond to the bound states of a quantum
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Figure 22.23. Interaction of Two Solitons.

potential. We refer the interested reader to the introductory text [60] and the more
advanced monograph [1] for details.

Like Burgers’ equation, the Korteweg–deVries equation can be linearized, but the
linearization is considerably more subtle. It relies on the introduction of an auxiliary
linear eigenvalue.

Remark : In the Korteweg–deVries equation model, one can find arbitrarily tall soliton
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solutions. In physical water waves, if the wave is too tall it will break. Indeed, it can be
rigorously proved that the full water wave equations admit solitary wave solutions, but
there is a wave of greatest height, beyond which a wave will tend to break. The solitary
water waves are not genuine solitons, since there is a small, but measurable, effect when
two waves collide.

There is a remarkable transformation, known as the inverse scattering transform,
which is a form of nonlinear Fourier transform, that can be used to solve the Korteweg–
deVries equation. Its fascinating properties continue to be of great current research interest
to this day.

22.4. Important Nonlinear Partial Differential Equations.

We’ve run out of space, and so cannot do full justice to the final subject. but we
decided you should at least meet some of the most important nonlinear partial differential
equations arising in modern day physics and engineering. some we’ve already seen, and
we refer back to the minimal surface equation, (21.57).

The cast of major players includes:

Gas dynamics.

The Euler and Navier–Stokes Equations. viscosity. pressure.

The million dollar Cray prize.

The nonlinear Schrödinger equation.

Ginzburg–Landau?

Kuramoto–Sivashinki?

Nonlinear elasticity.

General relativity.

Now we can’t even write down the equations without a lot of explanations. A metric
on space time is defined by. The riemann curvature tensor. etc.

Free boundary problems.

Many questions remain unanswered and unresolved. Numerical solutions are a chal-
lenge. Variational structure, linearization and asymptotics, symmetries and conservation
laws can help find explicit solutions, prove existence, etc.

22.5. Conclusion and Bon Voyage.

These are your first wee steps in a vast new realm. We are unable to discuss nonlinear
partial differential equations arising in fluid mechanics, in elasticity, in relativity, in dif-
ferential geometry, in computer vision, in mathematical biology. Chaos and integrability
are the two great themes in modern nonlinear applied mathematics, and the student is
well-advised to pursue both.

We bid you, dear reader, a fond adieu and wish you unparalleled success in your
mathematical endeavors.
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Mathematics and Its Applications, v. 59, Cambridge University Press, Cambridge,
1996.

[13] Ball, J.M., and Mizel, V.J., One-dimensional variational problem whose minimizers do not
satisfy the Euler-Lagrange equation, Arch. Rat. Mech. Anal. 90 (1985), 325–388.

[14] Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, 1967.

[15] Bateman, H., Some recent researches on the motion of fluids, Monthly Weather Rev. 43

(1915), 63–170.

[16] Behrends, E., Introduction to Markov Chains, Vieweg, Braunschweig/Wiesbaden,
Germany, 2000.

[17] Berest, Y., and Winternitz, P., Huygens’ principle and separation of variables, Rev. Math.

Phys. 12 (2000), 159–180.

[18] Birkhoff, G., Hydrodynamics — A Study in Logic, Fact and Similitude, 1st ed., Princeton
University Press, Princeton, 1950.

[19] Birkhoff, G., and Rota, G.–C., Ordinary Differential Equations, Blaisdell Publ. Co.,
Waltham, Mass., 1962.

[20] Blanchard, P., Devaney, R.L., and Hall, G.R., Differential Equations, Brooks–Cole Publ.
Co., Pacific Grove, Calif., 1998.

5/1/06 1297 c© 2006 Peter J. Olver



[21] Bollobás, B., Graph Theory : an Introductory Course, Graduate Texts in Mathematics, vol.
63, Springer–Verlag, New York, 1993.

[22] Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry,
Academic Press, New York, 1975.

[23] Bott, R., and Tu, L.W., Differential Forms in Algebraic Topology, Springer–Verlag, New
York, 1982.
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[25] Boussinesq, J., Essai sur la théorie des eaux courants, Mém. Acad. Sci. Inst. Nat. France

23 (1) (1877), 1–680.

[26] Boyce, W.E., and DiPrima, R.C., Elementary Differential Equations and Boundary Value

Problems, 7th ed., John Wiley & Sons, Inc., New York, 2001.

[27] Bradie, B., A Friendly Introduction to Numerical Analysis, Prentice–Hall, Inc., Upper
Saddle River, N.J., 2006.

[28] Braun, M., Differential Equations and their Applications: an Introduction to Applied

Mathematics, Springer–Verlag, New York, 1993.

[29] Brigham, E.O., The Fast Fourier Transform, Prentice–Hall, Inc., Englewood Cliffs, N.J.,
1974.

[30] Briggs, W.L., Henson, V.E., The DFT. An Owner’s Manual for the Discrete Fourier
Transform; SIAM, Philadelphia, PA, 1995.

[31] Bronstein, M., and Lafaille, S., Solutions of linear ordinary differential equations in terms
of special functions, in: Proceedings of the 2002 International Symposium on Symbolic

and Algebraic Computation, T. Mora, ed., ACM, New York, 2002, pp. 23–28.

[32] Brown, J.W., and Churchill, R.V., Fourier Series and Boundary Value Problems,
McGraw-Hill, New York, 1993.

[33] Buhmann, M.D., Radial basis functions, Acta Numer. 9 (2000), 1–38.

[34] Burden, R.L., and Faires, J.D., Numerical Analysis, Seventh Edition, Brooks/Cole, Pacific
Grove, CA, 2001.

[35] Burgers, J.M., A mathematical model illustrating the theory of turbulence, Adv. Appl.

Mech. 1 (1948), 171–199.

[36] Bürgisser, P., Clausen, M., and Shokrollahi, M.A., Algebraic Complexity Theory,
Springer–Verlag, New York, 1997.

[37] Buss, S.A., 3D Computer Graphics, Cambridge University Press, Cambridge, 2003.

[38] Cantwell, B.J., Introduction to Symmetry Analysis, Cambridge University Press,
Cambridge, 2003.

[39] Carmichael, R., The Theory of Numbers, Dover Publ., New York, 1959.

[40] Clenshaw, C.W., and Olver, F.W.J., Beyond floating point, J. Assoc. Comput. Mach. 31

(1984), 319–328.

[41] Coddington, E.A., and Levinson, N., Theory of Ordinary Differential Equations,
McGraw–Hill, New York, 1955.

[42] Cole, J.D., On a quasilinear parabolic equation occurring in aerodynamics, Q. Appl. Math.

9 (1951), 225–236.

[43] Cooley, J.W., and Tukey, J.W., An algorithm for the machine computation of complex
Fourier series, Math. Comp. 19 (1965), 297–301.

5/1/06 1298 c© 2006 Peter J. Olver



[44] Copson, E.T., Partial Differential Equations, Cambridge University Press, Cambridge,
1975.

[45] Courant, R., Differential and Integral Calculus, 2nd ed., Interscience Publ., New York,
1937.

[46] Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. I, Interscience Publ.,
New York, 1953.

[47] Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. II, Interscience Publ.,
New York, 1953.

[48] Crowe, M.J., A History of Vector Analysis, Dover Publ., New York, 1985.

[49] Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. Pure Appl.

Math. 41 (1988), 909–996.

[50] Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

[51] Davidson, K.R., and Donsig, A.P., Real Analysis with Real Applications, Prentice–Hall,
Inc., Upper Saddle River, N.J., 2002.

[52] DeGroot, M.H., and Schervish, M.J., Probability and Statistics, 3rd ed., Addison–Wesley,
Boston, 2002.

[53] Demmel, J.W., Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[54] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Addison–Wesley, Redwood
City, Calif., 1989.

[55] Dewdney, A.K., The Planiverse. Computer Contact with a Two-dimensional World,
Copernicus, New York, 2001.

[56] Diacu, F., An Introduction to Differential Equations, W.H. Freeman and Co., New York,
2000.

[57] Dirac, P.A.M., The Principles of Quantum Mechanics, Third Edition, Clarendon Press,
Oxford, 1947.

[58] DLMF Project .

[59] do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

[60] Drazin, P.G., and Johnson, R.S., Solitons: An Introduction, Cambridge University Press,
Cambridge, 1989.

[61] Durrett, R., Essentials of Stochastic Processes, Springer–Verlag, New York, 1999.

[62] Dym, H., and McKean, H.P., Fourier Series and Integrals, Academic Press, New York,
1972.

[63] Farin, G.E., Curves and Surfaces for CAGD: A Practical Guide, Academic Press, London,
2002.

[64] Feigenbaum, M.J., Qualitative universality for a class of nonlinear transformations, J.

Stat. Phys. 19 (1978), 25–52.

[65] Feller, W., An Introduction to Probability Theory and its Applications, Third Edition., J.
Wiley & Sons, New York, 1968.

[66] Fermi, E., Pasta, J., and Ulam, S., Studies of nonlinear problems. I., preprint, Los Alamos
Report LA 1940, 1955; in: Nonlinear Wave Motion, A.C. Newell, ed., Lectures in
Applied Math., vol. 15, American Math. Soc., Providence, R.I., 1974, pp. 143–156.

[67] Field, J.V., The Invention of Infinity: Mathematics and Art in the Renaissance, Oxford
University Press, Oxford, 1997.

[68] Fletcher, N.H., and Rossing, T.D., The Physics of Musical Instruments, Second Edition,
Springer–Verlag, New York, 1998.

5/1/06 1299 c© 2006 Peter J. Olver



[69] Fine, B., and Rosenberger, G., The Fundamental Theorem of Algebra, Undergraduate
Texts in Mathematics, Springer–Verlag, New York, 1997.

[70] Fleming, W.H., Functions of Several Variables, 2d ed., Springer–Verlag, New York, 1977.

[71] Forsyth, A.R., The Theory of Differential Equations, Cambridge University Press,
Cambridge, 1890, 1900, 1902, 1906.

[72] Fourier, J., The Analytical Theory of Heat, Dover Publ., New York, 1955.

[73] Francis, J.G.F., The QR transformation I, II, Comput. J. 4 (1961–2), 265–271, 332–345.

[74] Gaal, L., Classical Galois theory, 4th ed., Chelsea Publ. Co., New York, 1988.

[75] Garabedian, P., Partial Differential Equations, 2nd ed., Chelsea Publ. Co., New York,
1986.

[76] Gel’fand, I.M., and Fomin, S.V., Calculus of Variations, Prentice–Hall, Inc., Englewood
Cliffs, N.J., 1963.

[77] Gohberg, I., and Koltracht, I., Triangular factors of Cauchy and Vandermonde matrices,
Integral Eq. Operator Theory 26 (1996), 46–59.

[78] Goldstein, H., Classical Mechanics, Second Edition, Addison–Wesley, Reading, Mass.,
1980.

[79] Golub, G.H, and Van Loan, C.F., Matrix Computations, Johns Hopkins University Press,
Baltimore, 1989.

[80] Goode, S.W., Differential Equations and Linear Algebra, Second Ed., Prentice Hall, Upper
Saddle River, NJ, 2000.

[81] Gradshteyn, I.S., and Ryzhik, I.W., Table of Integrals, Series and Products, Academic
Press, New York, 1965.

[82] Graver, J.E., Counting on Frameworks: Mathematics to Aid the Design of Rigid

Structures, Dolciani Math. Expo. No. 25, Mathematical Association of America,
Washington, DC, 2001.

[83] Greene, B., The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the

Ultimate Theory, W. W. Norton, New York, 1999.[84] Guillemin, V., and Pollack, A.,
Differential Topology, Prentice–Hall, Inc., Englewood Cliffs, N.J., 1974..

[84] Guillemin, V., and Pollack, A., Differential Topology, Prentice–Hall, Inc., Englewood
Cliffs, N.J., 1974.

[85] Gurtin, M.E., An Introduction to Continuum Mechanics, Academic Press, New York, 1981.

[86] Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910),
331–371.

[87] Haberman, R., Elementary Applied Partial Differential Equations, Third Edition, Prentice
Hall, Upper Saddle River, NJ, 1998.

[88] Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations, 2nd
ed., Springer–Verlag, New York, 1993–1996.

[89] Hale, J.K., Ordinary Differential Equations, Second Edition, R. E. Krieger Pub. Co.,
Huntington, N.Y., 1980.
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