
COPYRIGHT NOTICE:
R. H. Landau, M. J. Páez, and C. C. Bordeianu:
A Survey of Computational Physics
is published by Princeton University Press and copyrighted, © 2008, by Princeton
University Press. All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher, except for reading
and browsing via the World Wide Web. Users are not permitted to mount this file on any
network servers.

Follow links Class Use and other Permissions. For more information, send email to:
permissions@press.princeton.edu

http://www.pupress.princeton.edu/class.html
http://www.pupress.princeton.edu/permissions.html
mailto:permissions@press.princeton.edu

1

Computational Science Basics

Some people spend their entire lives reading but never get
beyond reading the words on the page; they don’t
understand that the words are merely stepping stones
placed across a fast-flowing river, and the reason they’re
there is so that we can reach the farther shore; it’s the other
side that matters.

— José Saramago

As an introduction to the book to follow, we start this chapter with a description of
how computational physics (CP) fits into the broader field of computational science,
and what topics we will present as the contents of CP. We then get down to basics and
examine computing languages, number representations, and programming. Related
topics dealing with hardware basics are found in Chapter 14, “High-Performance
Computing Hardware, Tuning, and Parallel Computing.”

1.1 Computational Physics
and Computational Science

This book adopts the view that CP is a subfield of computational science. This means
that CP is a multidisciplinary subject combining aspects of physics, applied math­
ematics, and computer science (CS) (Figure 1.1), with the aim of solving realistic
physics problems. Other computational sciences replace the physics with biology,
chemistry, engineering, and so on, and together face grand challenge problems
such as

Climate prediction Materials science Structural biology
Superconductivity Semiconductor design Drug design
Human genome Quantum chromodynamics Turbulence
Speech and vision Relativistic astrophysics Vehicle dynamics
Nuclear fusion Combustion systems Oil and gas recovery
Ocean science Vehicle signature Undersea surveillance

2 chapter 1

C
P

Physics

Figure 1.1 A representation of the multidisciplinary nature of computational physics both as

an overlap of physics, applied mathematics, and computer science and as a bridge among

the disciplines.

Although related, computational science is not computer science. Computer science
studies computing for its own intrinsic interest and develops the hardware and
software tools that computational scientists use. Likewise, applied mathematics
develops and studies the algorithms that computational scientists use. As much as
we too find math and computer science interesting for their own sakes, our focus is
on solving physical problems; we need to understand the CS and math tools well
enough to be able to solve our problems correctly.

As CP has matured, we have come to realize that it is more than the overlap
of physics, computer science, and mathematics (Figure 1.1). It is also a bridge
among them (the central region in Figure 1.1) containing core elements of it own,
such as computational tools and methods. To us, CP’s commonality of tools and a
problem-solving mindset draws it toward the other computational sciences and
away from the subspecialization found in so much of physics.

In order to emphasize our computational science focus, to the extent possible,
we present the subjects in this book in the form of a problem to solve, with
the components that constitute the solution separated according to the scientific
problem-solving paradigm (Figure 1.2 left). Traditionally, physics employs both
experimental and theoretical approaches to discover scientific truth (Figure 1.2
right). Being able to transform a theory into an algorithm requires significant
theoretical insight, detailed physical and mathematical understanding, and a
mastery of the art of programming. The actual debugging, testing, and organiza-
tion of scientific programs is analogous to experimentation, with the numerical
simulations of nature being essentially virtual experiments. The synthesis of

computational science basics 3

Experiment

T
h
e
o
ry

S
im

u
la

ti
o

n

T ruth

Figure 1.2 Left: The problem-solving paradigm followed in this book. Right: Simulation

has been added to experiment and theory as a basic approach of science and its search

for underlying truths.

numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essen­
tial a part of the scientific process that many people believe that the scientific
paradigm has been extended to include simulation as an additional dimension
(Figure 1.2 right).

1.2 How to Read and Use This Book

Figure 1.3 maps out the CP concepts we cover in this book and the relations among
them. You may think of this concept map as the details left out of Figure 1.1. On
the left are the hardware and software components from computer science; in the
middle are the algorithms of applied mathematics; on the right are the physics
applications. Yet because CP is multidisciplinary, it is easy to argue that certain
concepts should be moved someplace else.

A more traditional way to view the materials in this text is in terms of its use in
courses. In our classes [CPUG] we use approximately the first third of the text, with
its emphasis on computing tools, for a course in scientific computing (after students
have acquired familiarity with a compiled language). Typical topics covered in the
10 weeks of such a course are given in Table 1.1. Some options are indicated in the
caption, and, depending upon the background of the students, other topics may
be included or substituted. The latter two-thirds of the text includes more physics,
and, indeed, we use it for a two-quarter (20-week) course in computational physics.
Typical topics covered for each term are given in Table 1.2. What with many of the
latter topics being research level, we suspect that these materials can easily be used
for a full year’s course as well.

For these materials to contribute to a successful learning experience, we assume
that the reader will work through the problem at the beginning of each chapter −1
or unit. This entails studying the text, writing, debugging and running programs, 0
visualizing the results, and then expressing in words what has been done and what 1

ALLpup_06.04 — 2008/3/20 — Page 3

4 chapter 1

N-D

trapezoid

multiscale

affect

Computational Physics

Partial Differential
Equations

Ordinary Differential
Equations

Molecular
Dynamics (MD)

Integral Equations

Fourier Analyses

Nonlinear Systems

Errors & Limits

Linear Algebra
Matrix Computing

Scientific Libraries

Performance Tuning

Parallel Computing

Integration

Differentiation

Eigenvalue Problems

Computational
Fluid Dynamics

IEEE Floating Point

Wavelet Analyses

Software Hardware Numerics Applications

CS CS Math Science

Data Analysis
Interpretation

interpolation

statistical fitting

data structures

Architecture
Memory
Hierarchy

finite differences
elements

Simulation
Problem Solving

Communication

Markup languages

hyperbolic PDE
wave equation

elliptic PDE
Poisson's equation

parabolic PDE
heat equation

Operating Systems

Monte Carlo
Simulations

Metropolis algorithm

stochastics

via standard

thus

Visualization

2-D, 3-D,N-D

BC

BC

finite

scale

hardware

viaTrial & Error Searching

bisection algorithm

Newton-Raphson

nonlinear

methods

basis
data solution

object oriented

High Level Languages
Compiled Languages

procedural

CS

math-like

within

HPC

storage

communication

scale

tuned

digital libe

reports

random #

e.g.

communications

link

Simulations

link

Figure 1.3 A concept map of the subjects covered in this book. The rectangular boxes

indicate major areas, the angular boxes indicate subareas, and the ovals give specifics.

can be concluded. Further exploring is encouraged. Although we recognize that
programming is a valuable skill for scientists, we also know that it is incredibly
exacting and time-consuming. In order to lighten the workload somewhat, we
provide “bare bones” programs in the text and on the CD. We recommend that
these be used as guides for the reader’s own programs or tested and extended to

TABLE 1.1
Topics for One Quarter (10 Weeks) of a scientific computing Course.∗

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (4) 6 Matrices, N-D search 8I

2 Errors, visualization 2, 3 7 Data fitting 8II

3 Monte Carlo, visualization 5, 3 8 ODE oscillations 9I

4 Integration, visualization 6, (3) 9 ODE eigenvalues 9II

5 Derivatives, searching 7I, II 10 Hardware basics 14I, III�

* Units are indicated by I, II, and III, and the visualization, here spread out into several laboratory
periods, can be completed in one. Options: week 3 on visualization; postpone matrix computing;
postpone hardware basics; devote a week to OOP; include hardware basics in week 2.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 4

computational science basics 5

TABLE 1.2
Topics for Two Quarters (20 Weeks) of a computational Physics Course.*

Computational Physics I Computational Physics II

Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 9I, II 1 Ising model, Metropolis 15I
algorithm

2 Chaotic scattering 9III 2 Molecular dynamics 16

3 Fourier analysis, filters 10I, II 3 Project completions —

4 Wavelet analysis 11I 4 Laplace and Poisson PDEs 17I

5 Nonlinear maps 12I 5 Heat PDE 17III

6 Chaotic/double pendulum 12II 6 Waves, catenary, friction 18I

7 Project completion 12I, II 7 Shocks and solitons 19I

8 Fractals, growth 13 8 Fluid dynamics 19 II

9 Parallel computing, MPI 14II 9 Quantum integral equations 20I (II)

10 More parallel computing 14III 10 Feynman path integration 15III

* Units are indicated by I, II, and III. Options: include OpenDX visualization (§3.5, Appendix C);
include multiresolution analysis (11II); include FFT (10III) in place of wavelets; include FFT (10III)
in place of parallel computing; substitute Feynman path integrals (15III) for integral equations (20);
add several weeks on CFD (hard); substitute coupled predator-prey (12III) for heat PDE (17III);
include quantum wave packets (18II) in place of CFD; include finite element method (17II) in place
of heat PDE.

solve the problem at hand. As part of this approach we suggest that the learner

write up a mini lab report for each problem containing

Equations solved Numerical method Code listing

Visualization Discussion Critique

The report should be an executive summary of the type given to a boss or man­

ager; make it clear that you understand the materials but do not waste everyone’s

time.

One of the most rewarding uses of computers is visualizing and analyzing the
results of calculations with 2-D and 3-D plots, with color, and with animation.
This assists in the debugging process, hastens the development of physical and
mathematical intuition, and increases the enjoyment of the work. It is essential
that you learn to use visualization tools as soon as possible, and so in Chapter 3,
“Visualization Tools,” and Appendix C we describe a number of free visualization −1
tools that we use and recommend. We include many figures showing visualizations 0
(unfortunately just in gray scale), with color versions on the CD. 1

ALLpup_06.04 — 2008/3/20 — Page 5

�

C D

6 chapter 1

We have tried to make the multifaceted contents of this book clearer by use of
the following symbols and fonts:

in the margin Material on the CD
� Optional material

at line’s end End of exercise or problem
Monospace font Words as they would appear on a computer screen
Italic font Note at beginning of chapter to the reader about

what’s to follow
Sans serif font Program commands from drop-down menus

We also indicate a user–computer dialog via three different fonts on a line:

Monospace computer’s output > Bold monospace user’s command Comments

Code listings are formatted within a shaded box, with italic key words and bold
comments (usually on the right):

�

f o r (i = 0 ; i <= Nxmax ; i ++) { / / Comment : Fluid surface
u [i] [Nymax] = u [i] [Nymax−1] + V0∗h ;
w[i] [Nymax−1] = 0 . ;

}

p u b l i c d o u b l e g e t I () { r e t u r n (2 . / 5 .) ∗ m ∗ r∗ r ; } / / Method ge t I
�

Note that we have tried to structure the codes so that a line is skipped before each
method, so that each logical structure is indented by two spaces, and so that the
ending brace } of a logical element is on a separate line aligned with the beginning
of the logic element. However, in order to conserve space, sometimes we do not
insert blank lines even though it may add clarity, sometimes the commands for
short methods or logical structures are placed on a single line, and usually we
combine multiple ending braces on the last line.

Although we try to be careful to define each term the first time it is used, we
also have included a glossary in Appendix A for reference. Further, Appendix B
describes the steps needed to install some of the software packages we recommend,
and Appendix F lists the names and functions of the various items on the CD.

1.3 Making Computers Obey; Languages (Theory)

Computers are incredibly fast, accurate, and stupid; humans are incred­

ibly slow, inaccurate, and brilliant; together they are powerful beyond

imagination.

— Albert Einstein

As anthropomorphic as your view of your computer may be, keep in mind that −1
computers always do exactly as they are told. This means that you must tell them 0

1

ALLpup_06.04 — 2008/3/20 — Page 6

computational science basics 7

cp rm

Program Development

Shell

Utilities

Kernel

del

appletviewer

GUI

windows

Hardware

Figure 1.4 A schematic view of a computer’s kernel and shells.

exactly everything they have to do. Of course the programs you run may have such
convoluted logic that you may not have the endurance to figure out the details of
what you have told the computer to do, but it is always possible in principle. So
your first problem is to obtain enough understanding so that you feel well enough
in control, no matter how illusionary, to figure out what the computer is doing.

Before you tell the computer to obey your orders, you need to understand that
life is not simple for computers. The instructions they understand are in a basic
machine language1 that tells the hardware to do things like move a number stored in
one memory location to another location or to do some simple binary arithmetic.
Very few computational scientists talk to computers in a language computers can
understand. When writing and running programs, we usually communicate to
the computer through shells, in high-level languages (Java, Fortran, C), or through
problem-solving environments (Maple, Mathematica, and Matlab). Eventually these
commands or programs are translated into the basic machine language that the
hardware understands.

A shell is a command-line interpreter, that is, a set of small programs run by a
computer that respond to the commands (the names of the programs) that you
key in. Usually you open a special window to access the shell, and this window
is called a shell as well. It is helpful to think of these shells as the outer layers of
the computer’s operating system (OS) (Figure 1.4), within which lies a kernel of
elementary operations. (The user seldom interacts directly with the kernel, except

1 The Beginner’s All-Purpose Symbolic Instruction Code (BASIC) programming language
of the original PCs should not be confused with basic machine language.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 7

8 chapter 1

possibly when installing programs or when building an operating system from
scratch.) It is the job of the shell to run programs, compilers, and utilities that do
things like copying files. There can be different types of shells on a single computer
or multiple copies of the same shell running at the same time.

Operating systems have names such as Unix, Linux, DOS, MacOS, and MS
Windows. The operating system is a group of programs used by the computer to com­
municate with users and devices, to store and read data, and to execute programs.
Under Unix and Linux, the OS tells the computer what to do in an elementary
way, while Windows includes various graphical elements as part of the operating
system (this increases speed at the cost of complexity). The OS views you, other
devices, and programs as input data for it to process; in many ways, it is the indis­
pensable office manager. While all this may seem complicated, the purpose of the
OS is to let the computer do the nitty-gritty work so that you can think higher-level
thoughts and communicate with the computer in something closer to your normal
everyday language.

When you submit a program to your computer in a high-level language, the com­
puter uses a compiler to process it. The compiler is another program that treats your
program as a foreign language and uses a built-in dictionary and set of rules to
translate it into basic machine language. As you can probably imagine, the final set
of instructions is quite detailed and long and the compiler may make several passes
through your program to decipher your logic and translate it into a fast code. The
translated statements form an object or compiled code, and when linked together
with other needed subprograms, form a load module. A load module is a complete
set of machine language instructions that can be loaded into the computer’s memory
and read, understood, and followed by the computer.

Languages such as Fortran and C use compilers to read your entire program
and then translate it into basic machine instructions. Languages such as BASIC
and Maple translate each line of your program as it is entered. Compiled languages
usually lead to more efficient programs and permit the use of vast subprogram
libraries. Interpreted languages give a more immediate response to the user and
thereby appear “friendlier.” The Java language is a mix of the two. When you
first compile your program, it interprets it into an intermediate, universal byte
code, but then when you run your program, it recompiles the byte code into a
machine-specific compiled code.

1.4 Programming Warmup

Before we go on to serious work, we want to ensure that your local computer is
working right for you. Assume that calculators have not yet been invented and that
you need a program to calculate the area of a circle. Rather than use any specific
language, write that program in pseudocode that can be converted to your favorite
language later. The first program tells the computer:2

2 Comments placed in the field to the right are for your information and not for the computer
to act upon.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 8

�

�

computational science basics 9

�

C a l c u l a t e area of c i r c l e / / Do t h i s computer !
�

This program cannot really work because it does not tell the computer which circle
to consider and what to do with the area. A better program would be

� �

read radius / / Input
c a l c u l a t e area of c i r c l e / / Numerics
p r i n t area / / Output

�

The instruction calculate area of circle has no meaning in most computer lan­

guages, so we need to specify an algorithm, that is, a set of rules for the computer

to follow:

�

read radius / / Input
PI = 3 .141593 / / Set constant
area = PI r r / / Algorithm∗ ∗

�

p r i n t area / / Output

This is a better program, and so let’s see how to implement it in Java (other language

versions are on the CD). In Listing 1.1 we give a Java version of our area program.

This is a simple program that outputs to the screen and has its input entered via

statements.

� �

/ / Area . java : Area of a c i r c l e , sample program

p u b l i c c l a s s Area
{

p u b l i c s t a t i c v o i d main (S t r i n g [] args) { / / Begin main method

d o u b l e radius , circum , area , PI = 3 . 1 4 1 5 9 3 ; / / Declaration
i n t modelN = 1 ; / / Declare , assign integer

radius = 1 . ; / / Assign radius
circum = 2 .∗ PI∗ radius ; / / Calculate circumference
area = radius ∗ radius ∗ PI ; / / Calculate area
System . out . p r i n t l n ("Program number = " + modelN) ; / / number
System . out . p r i n t l n ("Radius = " + radius) ; / / radius
System . out . p r i n t l n ("Circumference = " + circum) ; / / circum
System . out . p r i n t l n ("Area = " + area) ; / / area

} / / End main method
} / / End Area c l a s s
/∗
To Run :
>javac Area . java
>java Area
OUTPUT:
Program number = 1
Radius = 1 . 0
Circumference = 6 .283186
Area = 3 .141593
∗ /

�

Listing 1.1 The program Area.java outputs to the screen and has its input entered via

statements.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 9

�

10	 chapter 1

1.4.1 Structured Program Design

Programming is a written art that blends elements of science, mathematics, and

computer science into a set of instructions that permit a computer to accomplish a

desired task. Now that we are getting into the program-writing business, you will

benefit from understanding the overall structures that you should be building into

your programs, in addition to the grammar of a computer language. As with other

arts, we suggest that until you know better, you follow some simple rules. A good

program should

•	 Give the correct answers.
•	 Be clear and easy to read, with the action of each part easy to analyze.
•	 Document itself for the sake of readers and the programmer.
•	 Be easy to use.
•	 Be easy to modify and robust enough to keep giving correct answers after

modifications are made.

•	 Be passed on to others to use and develop further.

One attraction of object-oriented programming (Chapter 4; “Object-Oriented

Programs: Impedance & Batons”) is that it enforces these rules automatically. An

elementary way to make any program clearer is to structure it with indentation,

skipped lines, and braces placed strategically. This is done to provide visual clues

to the function of the different program parts (the “structures” in structured

programming). Regardless of the fact that compilers ignore these visual clues,

human readers are aided by having a program that not only looks good but also

has its different logical parts visually evident. Even though the space limitations

of a printed page keep us from inserting as many blank lines as we would prefer,

we recommend that you do as we say and not as we do!

In Figure 1.5 we present basic and detailed flowcharts that illustrate a possible

program for computing projectile motion. A flowchart is not meant to be a detailed

description of a program but instead is a graphical aid to help visualize its logical

flow. As such, it is independent of a specific computer language and is useful for

developing and understanding the basic structure of a program. We recommend

that you draw a flowchart or (second best) write a pseudocode before you write a

program. Pseudocode is like a text version of a flowchart that leaves out details and

instead focuses on the logic and structures:

�

Store g , Vo , and t h e t a
C a l c u l a t e R and T
Begin time loop

Pr i n t out "not yet fired" i f t < 0
Pr i n t out "grounded" i f t > T
Calculate , p r i n t x (t) and y (t)
Pr i n t out e r r o r message i f x > R , y > H 	

�

−1
End time loop End program

0
1

ALLpup_06.04 — 2008/3/20 — Page 10

computational science basics 11

Initialize Constants

Basic Calculations

Loop over time

End

Store g, V0, θ

Calculate R, T

Loop over time

Calculate x(t), y(t)

Print x, y “Not Yet Fired”

End

“Grounded”

0 < t < T ?

t < 0 ?
NY

NY

Figure 1.5 A flowchart illustrating a program to compute projectile motion. On the left are

the basic components of the program, and on the right are some of its details. When writing a

program, first map out the basic components, then decide upon the structures, and finally fill

in the details. This is called top-down programming.

1.4.2 Shells, Editors, and Execution

1. To gain some experience with your computer system, use an editor to enter

the program Area.java that computes the area of a circle (yes, we know you

can copy it from the CD, but you may need some exercise before getting

down to work). Then write your file to disk by saving it in your home

(personal) directory (we advise having a separate subdirectory for each

week). Note: For those who are familiar with Java, you may want to enter

the program AreaScanner.java instead (described in a later section) that uses

some recent advances in Java input/output (I/O).

2. Compile and execute the appropriate version of Area.java.
3. Change the program so that it computes the volume 43 πr3 of a sphere. Then

write your file to disk by saving it in your home (personal) directory and

giving it the name AreaMod.java.

4. Compile and execute AreaMod (remember that the file name and class name

must agree).

5. Check that your changes are correct by running a number of trial cases. A

good input datum is r = 1 because then A = π. Then try r = 10.

6. Experiment with your program. For example, see what happens if you leave
out decimal points in the assignment statement for r, if you assign r equal
to a blank, or if you assign a letter to r. Remember, it is unlikely that you −1
will “break” anything by making a mistake, and it is good to see how the 0
computer responds when under stress. 1

ALLpup_06.04 — 2008/3/20 — Page 11

12 chapter 1

7. Revise Area.java so that it takes input from a file name that you have made
up, then writes in a different format to another file you have created, and then
reads from the latter file.

8. See what happens when the data type given to output does not match the
type of data in the file (e.g., data are doubles, but read in as ints).

9. Revise AreaMod so that it uses a main method (which does the input and
output) and a separate method for the calculation. Check that you obtain the
same answers as before.

1.4.3 Java I/O, Scanner Class with printf

In Java 1.5 and later, there is a new Scanner class that provides similar functionality
as the popular scanf and printf methods in the C language. In Listing 1.2 we give
a version of our area program incorporating this class. When using printf, you
specify how many decimal places are desired, remembering to leave one place for
the decimal point, another for the sign, and another to have some space before
the next output item. As in C, there is an f for fixed-point formatting and a d for
integers (digits):

System.out.printf("x = %6.3f, Pi = %9.6f, Age = %d %n", x, Math.PI, 39)

System.out.printf("x = %6.3f, "+" Pi = %9.6f, "+" Age = %d %n", x, Math.PI, 39)

x = 12.345, Pi = 3.142, Age = 39 Output from either

Here the %6.3f formats a double or a float to be printed in fixed-point notation
using 6 places overall, with 3 places after the decimal point (this leaves 1 place for
the decimal point, 1 place for the sign, and 1 space before the decimal point). The
directive %9.6f has 6 digits after the decimal place and 9 overall, while %d is for
integers (digits), which are written out in their entirety. The %n directive is used to
indicate a new line. Other directives are

\ " double quote \0NNN octal value NNN \\ backslash
\a alert (bell) \b backspace \c no further output
\f form feed \n new line \r carriage return
\t horizontal tab \v vertical tab %% a single %

Notice in Listing 1.2 how we read from the keyboard, as well as from a file, and
output to both screen and file. Beware that unless you first create the file Name.dat,
the program will take exception because it cannot find the file.

1.4.4 I/O Redirection

Most programming environments assume that the standard (default) for input
is from the keyboard, and for output to the computer screen. However, you can

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 12

http:Math.PI
http:Math.PI

�

�

computational science basics 13

�

/ / AreaScanner : examples of use of Scanner and p r i n t f (JDK 1 . 5)
i m p o r t j ava . i o . ∗ ; / / Standard I /O c l a s s e s
i m p o r t j ava . u t i l . ∗ ; / / and scanner c l a s s

p u b l i c c l a s s AreaScanner {
p u b l i c s t a t i c f i n a l d o u b l e PI = 3 . 1 4 1 5 9 3 ; / / Constants
p u b l i c s t a t i c v o i d main (S t r i n g [] argv) throws IOException , FileNotFoundException {
d o u b l e r , A; / / Declare var iables
Scanner sc1 = new Scanner (System . in) ; / / Connect to standard input
System . out . p r i n t l n ("Key in your name and r on 1 or more lines") ;
S t r i n g name = sc1 . next () ; / / Read String
r = sc1 . nextDouble () ; / / Read double
System . out . p r i n t f ("Hi " + name) ;
System . out . p r i n t f ("\n radius = " + r) ;
System . out . p r i n t f ("\n\n Enter new name and r in Name. dat\n") ;
Scanner sc2 = new Scanner (new F i l e ("Name. dat")) ; / / Open f i l e
System . out . p r i n t f ("Hi %s\n" , sc2 . next ()) ; / / Read , pr int l ine 1
r = sc2 . nextDouble () ; / / Read l ine 2
System . out . p r i n t f ("r = %5.1f\n" , r) ; / / Pr int l ine 2
A = PI r r ; / / Computation∗ ∗
System . out . p r i n t f ("Done, look in A. dat\n") ; / / Screen pr int
Pr i n t W r i t e r q = new Pr i n t W r i t e r (new FileOutputStream ("A. dat") , t r u e) ;
q . p r i n t f ("r = %5.1f\n" , r) ; / / F i l e output
q . p r i n t f ("A = %8.3f\n" , A) ;
System . out . p r i n t f ("r = %5.1f\n" , r) ; / / Screen output
System . out . p r i n t f ("A = %8.3f\n" , A) ;
System . out . p r i n t f ("\n\n Now key in your age as an integer\n") ; / / i n t input
i n t age = s c 1 . n e x t I n t () ; / / Read i n t
System . out . p r i n t f (age + "years old , you don ’ t look i t !") ;
sc1 . c l o s e () ; sc2 . c l o s e () ; / / Close inputs

} / / End main
} / / End c l a s s

Listing 1.2 The program AreaScanner.java uses Java 1.5’s Scanner class for input and the

printf method for formatted output. Note how we input first from the keyboard and then from

a file and how different methods are used to convert the input string to a double or an integer.

easily change that. A simple way to read from or write to a file is via command-line
redirection from within the shell in which you are running your program:

% java A < infile.dat Redirect standard input

redirects standard input from the keyboard to the file infile.dat. Likewise,

% java A > outfile.dat Redirect standard output

redirects standard output from the screen to the file outfile.dat. Or you can put
them both together for complete redirection:

% java A < infile.dat > outfile.dat Redirect standard I/O

1.4.5 Command-Line Input

Although we do not use it often in our sample programs, you can also input data
to your program from the command line via the argument of your main method. −1
Remember how the main method is declared with the statement void main(String[] 0

1

ALLpup_06.04 — 2008/3/20 — Page 13

�

14 chapter 1

argv). Because main methods are methods, they take arguments (a parameter list)
and return values. The word void preceding main means that no argument is
returned to the command that calls main, while String[] argv means that the
argument argv is an array (indicated by the []) of the data type String. As an
example, the program CommandLineArgs.java in Listing 1.3 accepts and then uses
arguments from the command line

> java CommandLineArgs 2 1.0 TempFile

Here the main method is given an integer 2, a double 1.0, and a string TempFile,
with the latter to be used as a file name. Note that this program is not shy about
telling you what you should have done if you have forgotten to give it arguments.
Further details are given as part of the documentation within the program.

�

/∗ CommandLineArgs . java : Accepts 2 or 3 arguments from command line , e . g . :
java CommandLineArgs anInt aDouble [aString] .

[aString] i s optional filename . See CmdLineArgsDemo on CD for f u l l documentation
Written by Zlatko Dimcovic ∗ /

p u b l i c c l a s s CommandLineArgs {

p u b l i c s t a t i c v o i d main (S t r i n g [] args) {
i n t intParam = 0 ; / / Other values OK
d o u b l e doubleParam = 0 . 0 ; / / Defaults , args optional
S t r i n g f i lename = "baseName" ; / / Will form / read in r e s t
i f (args . length == 2 || args . length == 3) { / / Demand 2 or 3 args

intParam = I n t e g e r . p a r s e I n t (args [0]) ;
doubleParam = Double . parseDouble (args [1]) ;
i f (args . length == 3) f i lename = args [2] ; / / 3 rd arg = filename
e l s e f i lename += "_i" + intParam + "_d" + doubleParam + ".dat" ;

}
e l s e { / / No else , e x i t with i n s t r u c t i o n

System . e r r . p r i n t l n ("\n\t Usage : java CmdLineArgs intParam doubleParam [f i l e]") ;
/ / "\n" not portable ; use pr int ln ()

System . e r r . p r i n t l n ("\t 1st arg must be int , 2nd double (or int) ,"
+ "\n\t (optional) 3rd arg = string .\n") ;

System . e x i t (1) ;
} / / System . err , used to avoid a c c i d e n t a l r e d i r e c t
System . out . p r i n t l n ("Input arguments : intParam (1st) = " + intParam

+ " , doubleParam (2nd) = " + doubleParam) ;
i f (args . length == 3) System . out . p r i n t l n ("String input : " +fi lename) ;
e l s e i f (args . length == 2) System . out . p r i n t l n ("No f i le , use" + f i lename) ;
e l s e {

System . e r r . p r i n t l n ("\n\tERROR ! args . length must be 2 or 3.\n") ;
System . e x i t (1) ;

}
} }

�

Listing 1.3 The program CommandLineArgs.java (courtesy of Zlatko Dimcovic)

demonstrates how arguments can be transferred to a main program via the command line.

1.4.6 I/O Exceptions: FileCatchThrow.java

You may have noted that the programs containing file I/O have their main methods
declared with a statement of the form

main(String[] argv) throws IOException
−1

0
1

ALLpup_06.04 — 2008/3/20 — Page 14

�

computational science basics 15

This is required by Java when programs deal with files. Exceptions occur when
something goes wrong during the I/O process, such as not finding a file, trying
to read past the end of a file, or interrupting the I/O process. In fact, you may
get more information of this sort reported back to you by including any of these
phrases:

FileNotFoundException EOFException InterruptedException

after the words throws IOException. As an instance, AreaScanner in Listing 1.2
contains

public static void main(String[] argv) throws IOException, FileNotFoundException

where the intermediate comma is to be noted. In this case we have added in the
class (subclass) FileNotFoundException.

Dealing with I/O exceptions is important because it prevents the computer
from freezing up if a file cannot be read or written. If, for example, a file is
not found, then Java will create an Exception object and pass it along (“throw
exception”) to the program that called this main method. You will have the error
message delivered to you after you issue the java command to run the main
method.

�

/ / FileCatchThrow . java : throw , catch IO exception

i m p o r t j ava . i o . ∗ ;

p u b l i c c l a s s FileCatchThrow {

p u b l i c s t a t i c v o i d main (S t r i n g [] argv) { / / Begin main
d o u b l e r , circum , A, PI = 3 . 1 4 1 5 9 3 ; / / Declare , assign
r = 2 ;
circum = 2 .∗ PI∗ r ; / / Calculate circum
A = Math . pow(r , 2) ∗ PI ; / / Calculate A
t r y {

Pr i n t W r i t e r q = new Pr i n t W r i t e r (new FileOutputStream ("ThrowCatch . out") , t r u e) ;
q . p r i n t l n ("r = " + r + " , length , A = " + circum + " , " +A) ; }
c a t c h (IOException ex) { ex . p r i n t S t a c k T r a c e () ; } / / Catch

} }
�

Listing 1.4 FileCatchThrow.java reads from the file and handles the I/O exception.

Just how a program deals with (catches) the thrown exception object is beyond
the level of this book, although Listing 1.4 does give an example of the try-catch
construct. We see that while the declaration of the main method does not contain
any statement about an exception being thrown, in its place we have a try-catch
construct. The statements within the try block are executed, and if they throw an
exception, it is caught by the catch statement, which prints a statement to that
effect. In summary, if you use files, an appropriate throws IOException statement −1
is required for successful compilation. 0

1

ALLpup_06.04 — 2008/3/20 — Page 15

�

16 chapter 1

Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

SUMMARY: NESTED FIELD CONSTR METHOD DETAIL: FIELD CONSTR METHOD

Class TrapMethods

java.lang.Object

+––TrapMethods

public class TrapMethods

extends java.lang.Object

TrapMethods.java by RH Landau, trapezoid-rule integration with method calls

Field Summary
static double A

static double B

static int N

Constructor Summary

Figure 1.6 A sample of the automatic code documentation produced by running javadoc.

1.4.7 Automatic Code Documentation �

A nice feature of Java is that you can place comments in your code (always
a good idea) and then have Java use these comments to create a professional-
looking Hypertext Markup Language (HTML) documentation page (Figure 1.6).
The comments in your code must have the form

�

/∗∗ DocDemo. java : with javadoc comments ∗ /
p u b l i c c l a s s TrapMethods {

p u b l i c s t a t i c f i n a l d o u b l e A = 0 . , B = 3 . ;
/∗∗ main method sums over points
c a l l s wTrap for trapezoid weight
c a l l s f (y) for integrand
@param N number of data points
@param A f i r s t endpoint
@param B second endpoint ∗ /

�

Here the comments begin with a /**, rather than the standard /*, and end with
the standard /*. As usual, Java ignores the text within a comment field. For this to
work, the comments must appear before the class or method that they describe and

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 16

computational science basics 17

TABLE 1.3
Tag Forms for javadoc

@author Loren Rose

@version 12.3

@parameter sum

@exception <exception name>

@return weight for trap integration

@see <class or method name>

Before class

Before class

Before method

Before method

Before method

Before method

must contain key words, such as @param. The documentation page in Figure 1.6 is
named TrapMethods.html and is produced by operating on the TrapMethods.java
file with the javadoc command

% javadoc DocDemo.java	 Create documentation

Not visible in the figure are the specific definition fields produced by the @param
tags. Other useful tags are given in Table 1.3.

1.5 Computer Number Representations (Theory)

Computers may be powerful, but they are finite. A problem in computer design
is how to represent an arbitrary number using a finite amount of memory space
and then how to deal with the limitations arising from this representation. As a
consequence of computer memories being based on the magnetic or electronic
realization of a spin pointing up or down, the most elementary units of computer
memory are the two binary integers (bits) 0 and 1. This means that all numbers are
stored in memory in binary form, that is, as long strings of zeros and ones. As a
consequence, N bits can store integers in the range [0, 2N], yet because the sign of
the integer is represented by the first bit (a zero bit for positive numbers), the actual
range decreases to [0, 2N−1].

Long strings of zeros and ones are fine for computers but are awkward for users.
Consequently, binary strings are converted to octal, decimal, or hexadecimal numbers
before the results are communicated to people. Octal and hexadecimal numbers
are nice because the conversion loses no precision, but not all that nice because our
decimal rules of arithmetic do not work for them. Converting to decimal numbers
makes the numbers easier for us to work with, but unless the number is a power
of 2, the process leads to a decrease in precision.

A description of a particular computer system normally states the word length,
that is, the number of bits used to store a number. The length is often expressed in
bytes, with

def	
−1

1 byte ≡ 1 B = 8 bits.	 0
1

ALLpup_06.04 — 2008/3/20 — Page 17

18 chapter 1

Memory and storage sizes are measured in bytes, kilobytes, megabytes, gigabytes,
terabytes, and petabytes (1015). Some care should be taken here by those who chose
to compute sizes in detail because K does not always mean 1000:

def1 K = 1 kB = 210 bytes = 1024 bytes.

This is often (and confusingly) compensated for when memory size is stated in K,
for example,

1 K
512 K = 29 bytes = 524, 288 bytes ×

1024 bytes
.

Conveniently, 1 byte is also the amount of memory needed to store a single letter
like “a”, which adds up to a typical printed page requiring ∼3 kB.

The memory chips in some older personal computers used 8-bit words. This
meant that the maximum integer was 27 = 128 (7 because 1 bit is used for the sign).
Trying to store a number larger than the hardware or software was designed for
(overflow) was common on these machines; it was sometimes accompanied by an
informative error message and sometimes not. Using 64 bits permits integers in
the range 1–263 � 1019. While at first this may seem like a large range, it really
is not when compared to the range of sizes encountered in the physical world.
As a case in point, the ratio of the size of the universe to the size of a proton is
approximately 1041 .

1.5.1 IEEE Floating-Point Numbers

Real numbers are represented on computers in either fixed-point or floating-point
notation. Fixed-point notation can be used for numbers with a fixed number of places
beyond the decimal point (radix) or for integers. It has the advantages of being able
to use two’s complement arithmetic and being able to store integers exactly.3 In the
fixed-point representation with N bits and with a two’s complement format, a
number is represented as

Nfix = sign × (αn2n + αn−12n−1 + + α020 + + α−m2−m), (1.1)· · · · · ·

where n + m = N − 2. That is, 1 bit is used to store the sign, with the remaining
(N − 1) bits used to store the αi values (the powers of 2 are understood). The
particular values for N,m, and n are machine-dependent. Integers are typically
4 bytes (32 bits) in length and in the range

−2147483648 ≤ 4-B integer ≤ 2147483647.

3 The two’s complement of a binary number is the value obtained by subtracting the number
from 2N for an N -bit representation. Because this system represents negative numbers
by the two’s complement of the absolute value of the number, additions and subtractions
can be made without the need to work with the sign of the number.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 18

computational science basics 19

tr
un

ca
tio

n

0

O
ve

rf
lo

w

O
ve

rf
lo

w

Underflow

-10+38 -10-45 10-45 +10+38

Figure 1.7 The limits of single-precision floating-point numbers and the consequences of

exceeding these limits. The hash marks represent the values of numbers that can be stored;

storing a number in between these values leads to truncation error. The shaded areas

correspond to over- and underflow.

An advantage of the representation (1.1) is that you can count on all fixed-point
numbers to have the same absolute error of 2−m−1 [the term left off the right-hand
end of (1.1)]. The corresponding disadvantage is that small numbers (those for
which the first string of α values are zeros) have large relative errors. Because in the
real world relative errors tend to be more important than absolute ones, integers
are used mainly for counting purposes and in special applications (like banking).

Most scientific computations use double-precision floating-point numbers
(64 b = 8 B). The floating-point representation of numbers on computers is a binary
version of what is commonly known as scientific or engineering notation. For
example, the speed of light c = +2.99792458 × 10+8 m/s in scientific notation and
+0.299792458 × 10+9 or 0.299795498 E09 m/s in engineering notation. In each of
these cases, the number in front is called the mantissa and contains nine significant
figures. The power to which 10 is raised is called the exponent, with the plus sign
included as a reminder that these numbers may be negative.

Floating-point numbers are stored on the computer as a concatenation
(juxtaposition) of the sign bit, the exponent, and the mantissa. Because only a finite
number of bits are stored, the set of floating-point numbers that the computer can
store exactly, machine numbers (the hash marks in Figure 1.7), is much smaller than
the set of real numbers. In particular, machine numbers have a maximum and a
minimum (the shading in Figure 1.7). If you exceed the maximum, an error condi­
tion known as overflow occurs; if you fall below the minimum, an error condition
known as underflow occurs. In the latter case, the software and hardware may be
set up so that underflows are set to zero without your even being told. In contrast,
overflows usually halt execution.

The actual relation between what is stored in memory and the value of a
floating-point number is somewhat indirect, with there being a number of spe- −1
cial cases and relations used over the years. In fact, in the past each computer 0
operating system and each computer language contained its own standards 1

ALLpup_06.04 — 2008/3/20 — Page 19

20 chapter 1

TABLE 1.4
The IEEE 754 Standard for Java’s Primitive Data Types

Name Type Bits Bytes	 Range

boolean Logical 1

char String 16

byte Integer 8

short Integer 16

int Integer 32

long Integer 64

float Floating 32

double Floating 64

1 true or false 8

2 ’ \u0000’ ↔ ’ \uFFFF’ (ISO Unicode characters)

1 −128 ↔ +127

2 −32, 768 ↔ +32, 767

4 −2, 147, 483, 648 ↔ +2, 147, 483, 647

8 −9, 223, 372, 036, 854, 775, 808 ↔ 9, 223, 372, 036,
854, 775, 807

4	 ±1.401298 × 10−45 ↔ ±3.402923 × 10+38

8	 ±4.94065645841246544 × 10−324 ↔

±1.7976931348623157 × 10+308

for floating-point numbers. Different standards meant that the same program
running correctly on different computers could give different results. Even though
the results usually were only slightly different, the user could never be sure if the
lack of reproducibility of a test case was due to the particular computer being used
or to an error in the program’s implementation.

In 1987, the Institute of Electrical and Electronics Engineers (IEEE) and the
American National Standards Institute (ANSI) adopted the IEEE 754 standard
for floating-point arithmetic. When the standard is followed, you can expect
the primitive data types to have the precision and ranges given in Table 1.4.
In addition, when computers and software adhere to this standard, and most do
now, you are guaranteed that your program will produce identical results on dif­
ferent computers. However, because the IEEE standard may not produce the most
efficient code or the highest accuracy for a particular computer, sometimes you
may have to invoke compiler options to demand that the IEEE standard be strictly
followed for your test cases. After you know that the code is okay, you may want
to run with whatever gives the greatest speed and precision.

There are actually a number of components in the IEEE standard, and different
computer or chip manufacturers may adhere to only some of them. Normally a
floating-point number x is stored as

xfloat = (−1)s × 1.f × 2e−bias , (1.2)

that is, with separate entities for the sign s, the fractional part of the mantissa f ,
and the exponential field e. All parts are stored in binary form and occupy adjacent
segments of a single 32-bit word for singles or two adjacent 32-bit words for doubles. −1
The sign s is stored as a single bit, with s = 0 or 1 for a positive or a negative sign. 0

1

ALLpup_06.04 — 2008/3/20 — Page 20

computational science basics 21

TABLE 1.5
Representation Scheme for Normal and Abnormal IEEE Singles

Number Name Values of s, e, and f Value of Single

Normal 0 < e < 255 (−1)s × 2e−127 × 1.f

Subnormal e = 0, f �= 0 (−1)s × 2−126 × 0.f

Signed zero (±0) e = 0, f = 0 (−1)s × 0.0

+∞ s = 0, e = 255, f = 0 +INF

−∞ s = 1, e = 255, f = 0 –INF

Not a number s = u, e = 255, f �= 0 NaN

Eight bits are used to stored the exponent e, which means that e can be in the
range 0 ≤ e ≤ 255. The endpoints, e = 0 and e = 255, are special cases (Table 1.5).
Normal numbers have 0 < e < 255, and with them the convention is to assume that
the mantissa’s first bit is a 1, so only the fractional part f after the binary point is
stored. The representations for subnormal numbers and the special cases are given
in Table 1.5.

Note that the values ±INF and NaN are not numbers in the mathematical sense,
that is, objects that can be manipulated or used in calculations to take limits and
such. Rather, they are signals to the computer and to you that something has gone
awry and that the calculation should probably stop until you straighten things
out. In contrast, the value −0 can be used in a calculation with no harm. Some
languages may set unassigned variables to −0 as a hint that they have yet to be
assigned, though it is best not to count on that!

The IEEE representations ensure that all normal floating-point numbers have
the same relative precision. Because the first bit is assumed to be 1, it does not
have to be stored, and computer designers need only recall that there is a phan­
tom bit there to obtain an extra bit of precision. During the processing of numbers
in a calculation, the first bit of an intermediate result may become zero, but this
is changed before the final number is stored. To repeat, for normal cases, the
actual mantissa (1.f in binary notation) contains an implied 1 preceding the binary
point.

Finally, in order to guarantee that the stored biased exponent e is always positive,
a fixed number called the bias is added to the actual exponent p before it is stored
as the biased exponent e. The actual exponent, which may be negative, is

p = e− bias. (1.3)

1.5.1.1 EXAMPLE: IEEE SINGLES REPRESENTATIONS

There are two basic, IEEE floating-point formats, singles and doubles. Singles or
floats is shorthand for single- precision floating-point numbers, and doubles is shorthand
for double-precision floating-point numbers. Singles occupy 32 bits overall, with 1 bit
for the sign, 8 bits for the exponent, and 23 bits for the fractional mantissa (which

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 21

�

22 chapter 1

gives 24-bit precision when the phantom bit is included). Doubles occupy 64 bits
overall, with 1 bit for the sign, 10 bits for the exponent, and 53 bits for the fractional
mantissa (for 54-bit precision). This means that the exponents and mantissas for
doubles are not simply double those of floats, as we see in Table 1.4. (In addition,
the IEEE standard also permits extended precision that goes beyond doubles, but this
is all complicated enough without going into that right now.)

To see this scheme in action, look at the 32-bit float representing (1.2):

s e f

Bit position 31 30 23 22 0

The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the
fractional part of the mantissa f is in bits 22–0. Since 8 bits are used to store the
exponent e and since 28 = 256, e has the range

0 ≤ e ≤ 255.

The values e = 0 and 255 are special cases. With bias = 12710, the full exponent

p = e10 − 127,

and, as indicated in Table 1.4, for singles has the range

−126 ≤ p ≤ 127.

The mantissa f for singles is stored as the 23 bits in positions 22–0. For normal
numbers, that is, numbers with 0 < e < 255, f is the fractional part of the mantissa,
and therefore the actual number represented by the 32 bits is

Normal floating-point number = (−1)s × 1.f × 2e−127 .

Subnormal numbers have e = 0, f = 0. For these, f is the entire mantissa, so the
actual number represented by these 32 bit is

Subnormal numbers = (−1)s × 0.f × 2e−126 . (1.4)

The 23 bits m22–m0, which are used to store the mantissa of normal singles,
correspond to the representation

Mantissa = 1.f = 1+ m22 × 2−1 + m21 × 2−2 + + m0 × 2−23 , (1.5)· · ·

with 0.f used for subnormal numbers. The special e = 0 representations used to
store ±0 and ±∞ are given in Table 1.5.

To see how this works in practice (Figure 1.7), the largest positive normal floating- −1
point number possible for a 32-bit machine has the maximum value for e (254) and 0

1

ALLpup_06.04 — 2008/3/20 — Page 22

computational science basics 23

the maximum value for f :

Xmax = 01111 1111 1111 1111 1111 1111 1111 111
= (0)(1111 1111)(1111 1111 1111 1111 1111 111), (1.6)

where we have grouped the bits for clarity. After putting all the pieces together, we
obtain the value shown in Table 1.4:

s = 0, e = 1111 1110 = 254, p = e − 127 = 127,

f = 1.1111 1111 1111 1111 1111 111 = 1 + 0.5 + 0.25 + · · · � 2,

(−1)s × 1.f × 2p=e−127 � 2 × 2127 � 3.4 × 1038 . (1.7) ⇒

Likewise, the smallest positive floating-point number possible is subnormal (e = 0)
with a single significant bit in the mantissa:

0 0000 0000 0000 0000 0000 0000 0000 001.

This corresponds to

s = 0, e = 0, p = e − 126 = −126
f = 0.0000 0000 0000 0000 0000 001 = 2−23

(−1)s × 0.f × 2p=e−126 = 2−149 � 1.4 × 10−45 (1.8)⇒

In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal
places of significance and magnitudes in the range

1.4 × 10−45 ≤ single precision ≤ 3.4 × 1038

Doubles are stored as two 32-bit words, for a total of 64 bits (8 B). The sign
occupies 1 bit, the exponent e, 11 bits, and the fractional mantissa, 52 bits:

s e f f (cont.)

Bit position 63 62 52 51 32 31 0

As we see here, the fields are stored contiguously, with part of the mantissa f stored
in separate 32-bit words. The order of these words, and whether the second word
with f is the most or least significant part of the mantissa, is machine- dependent.
For doubles, the bias is quite a bit larger than for singles,

Bias = 11111111112 = 102310,

so the actual exponent p = e − 1023.
The bit patterns for doubles are given in Table 1.6, with the range and

precision given in Table 1.4. To repeat, if you write a program with doubles, then
−1

0
1

ALLpup_06.04 — 2008/3/20 — Page 23

�

24 chapter 1

TABLE 1.6
Representation Scheme for IEEE Doubles

Number Name Values of s, e, and f Value of Double

Normal 0 < e < 2047 (−1)s × 2e−1023 × 1.f

Subnormal e = 0, f = 0� (−1)s × 2−1022 × 0.f

Signed zero e = 0, f = 0 (−1)s × 0.0

+∞ s = 0, e = 2047, f = 0 +INF

−∞ s = 1, e = 2047, f = 0 −INF

Not a number s = u, e = 2047, f = 0 NaN

64 bits (8 bytes) will be used to store your floating-point numbers. Doubles have
approximately 16 decimal places of precision (1 part in 252) and magnitudes in the
range

4.9 × 10−324 ≤ double precision ≤ 1.8 × 10308 . (1.9)

If a single-precision number x is larger than 2128, a fault condition known as
an overflow occurs (Figure 1.7). If x is smaller than 2−128, an underflow occurs. For
overflows, the resulting number xc may end up being a machine-dependent pat­
tern, not a number (NAN), or unpredictable. For underflows, the resulting number
xc is usually set to zero, although this can usually be changed via a compiler option.
(Having the computer automatically convert underflows to zero is usually a good
path to follow; converting overflows to zero may be the path to disaster.) Because
the only difference between the representations of positive and negative numbers
on the computer is the sign bit of one for negative numbers, the same considerations
hold for negative numbers.

In our experience, serious scientific calculations almost always require at least 64-bit
(double-precision) floats. And if you need double precision in one part of your calcu­
lation, you probably need it all over, which means double-precision library routines
for methods and functions.

1.5.2 Over/Underflows Exercises

1. Consider the 32-bit single-precision floating-point number

s e f

Bit position 31 30 23 22 0

Value 0 0000 1110 1010 0000 0000 0000 0000 000 −1
0
1

ALLpup_06.04 — 2008/3/20 — Page 24

�	 �

�

under = under /2.
over = over ∗ 2 .
wri te out : loop number , under , over

computational science basics	 25

a.	 What are the (binary) values for the sign s, the exponent e, and the

fractional mantissa f . (Hint: e10 = 14.)

b. Determine decimal values for the biased exponent e and the true expo­

nent p.

c.	 Show that the mantissa of A equals 1.625000.
d. Determine the full value of A.

2. Write a program to test for the underflow and overflow limits (within a factor

of 2) of your computer system and of your computer language. A sample

pseudocode is

under = 1 .

over = 1 .

begin do N times

end do

You may need to increase N if your initial choice does not lead to underflow

and overflow. (Notice that if you want to be more precise regarding the limits

of your computer, you may want to multiply and divide by a number smaller

than 2.)

a.	 Check where under- and overflow occur for single-precision floating-point

numbers (floats). Give answers as decimals.

b. Check where under- and overflow occur for double-precision floating-

point numbers (doubles).

c.	 Check where under- and overflow occur for integers. Note: There is no

exponent stored for integers, so the smallest integer corresponds to the

most negative one. To determine the largest and smallest integers, you

must observe your program’s output as you explicitly pass through the

limits. You accomplish this by continually adding and subtracting 1.

(Because integer arithmetic uses two’s complement arithmetic, you should

expect some surprises.)

1.5.3 Machine Precision (Model)

Amajor concern of computational scientists is that the floating-point representation
used to store numbers is of limited precision. In general for a 32-bit-word machine,
single-precision numbers are good to 6–7 decimal places, while doubles are good to 15–
16 places. To see how limited precision affects calculations, consider the simple
computer addition of two single-precision words:

7 + 1.0 × 10−7 = ? 	 −1
0
1

ALLpup_06.04 — 2008/3/20 — Page 25

26 chapter 1

The computer fetches these numbers from memory and stores the bit patterns

7 = 0 10000010 1110 0000 0000 0000 0000 000, (1.10)

10−7 = 0 01100000 1101 0110 1011 1111 1001 010, (1.11)

in working registers (pieces of fast-responding memory). Because the exponents
are different, it would be incorrect to add the mantissas, and so the exponent of
the smaller number is made larger while progressively decreasing the mantissa
by shifting bits to the right (inserting zeros) until both numbers have the same
exponent:

10−7 = 0 01100001 0110 1011 0101 1111 1100101 (0)

= 0 01100010 0011 0101 1010 1111 1110010 (10) (1.12)

· · ·

= 0 10000010 0000 0000 0000 0000 0000 000 (0001101 · · · 0

⇒ 7 + 1.0 × 10−7 = 7. (1.13)

Because there is no room left to store the last digits, they are lost, and after all this
hard work the addition just gives 7 as the answer (truncation error in Figure 1.7).
In other words, because a 32-bit computer stores only 6 or 7 decimal places, it
effectively ignores any changes beyond the sixth decimal place.

The preceding loss of precision is categorized by defining the machine precision
�m as the maximum positive number that, on the computer, can be added to the
number stored as 1 without changing that stored 1:

1c + �m
def= 1c, (1.14)

where the subscript c is a reminder that this is a computer representation of 1.
Consequently, an arbitrary number x can be thought of as related to its floating-
point representation xc by

xc = x(1 ± �), |�| ≤ �m,

where the actual value for � is not known. In other words, except for powers of 2
that are represented exactly, we should assume that all single-precision numbers
contain an error in the sixth decimal place and that all doubles have an error in the
fifteenth place.And as is always the case with errors, we must assume that we do not
know what the error is, for if we knew, then we would eliminate it! Consequently,
the arguments we put forth regarding errors are always approximate, and that is
the best we can do.

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 26

� �

�

�

computational science basics 27

1.5.4 Determine Your Machine Precision

Write a program to determine the machine precision �m of your computer system
(within a factor of 2 or better). A sample pseudocode is

eps = 1 .

begin do N times

eps = eps /2. / / Make smaller
one = 1 . + eps / / Write loop number , one , eps

end do

A Java implementation is given in Listing 1.5, while a more precise one is
ByteLimit.java on the instructor’s CD.

�

/ / Limits . java : Determines machine precis ion

p u b l i c c l a s s Limits {

p u b l i c s t a t i c v o i d main (S t r i n g [] args) {
f i n a l i n t N = 6 0 ;
i n t i ;
d o u b l e eps = 1 . , onePlusEps ;
f o r (i = 0 ; i < N; i = i + 1) {

eps = eps / 2 . ;
onePlusEps = 1 . + eps ;
System . out . p r i n t l n ("onePlusEps = " +onePlusEps+" , eps = "+eps) ;

} } }
�

Listing 1.5 The code Limits.java determines machine precision within a factor of 2. Note

how we skip a line at the beginning of each class or method and how we align the closing

brace vertically with its appropriate key word (in italics).

1. Determine experimentally the precision of single-precision floats.
2. Determine experimentally the precision of double-precision floats.

To print out a number in decimal format, the computer must make a conversion
from its internal binary format. This not only takes time, but unless the number is
a power of 2, there is a concordant loss of precision. So if you want a truly precise
indication of the stored numbers, you should avoid conversion to decimals and
instead print them out in octal or hexadecimal format (printf with \0NNN).

1.6 Problem: Summing Series

A classic numerical problem is the summation of a series to evaluate a function. As
an example, consider the infinite series for sin x:

sin x = x − x
3!

3
+

x

5!

5
− x

7!

7
+ · · · (exact).

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 27

∣∣∣∣

∣ ∣∣∣

�

28 chapter 1

Your problem is to use this series to calculate sin x for x < 2π and x > 2π, with an

absolute error in each case of less than 1 part in 108. While an infinite series is exact

in a mathematical sense, it is not a good algorithm because we must stop summing

at some point. An algorithm would be the finite sum

N ∑ (−1)n−1x2n−1
sin x �

(2n − 1)!
(algorithm). (1.15)

n=1

But how do we decide when to stop summing? (Do not even think of saying, “When

the answer agrees with a table or with the built-in library function.”)

1.6.1 Numerical Summation (Method)

Never mind that the algorithm (1.15) indicates that we should calculate

(−1)n−1x2n−1 and then divide it by (2n − 1)! This is not a good way to compute. On

the one hand, both (2n − 1)! and x2n−1 can get very large and cause overflows, even

though their quotient may not. On the other hand, powers and factorials are very

expensive (time-consuming) to evaluate on the computer. Consequently, a better

approach is to use a single multiplication to relate the next term in the series to the

previous one:

(−1)n−1x2n−1 2 (−1)n−2x2n−3

=

−x

(2n − 1)! (2n − 1)(2n − 2) (2n − 3)!
2−x⇒ nth term =

(2n − 1)(2n − 2)
× (n − 1)th term. (1.16)

While we want to ensure definite accuracy for sin x, that is not so easy to do. What

is easy to do is to assume that the error in the summation is approximately the last

term summed (this assumes no round-off error, a subject we talk about in Chapter 2,

“Errors & Uncertainties in Computations”). To obtain an absolute error of 1 part in

108, we then stop the calculation when

nth term
< 10−8 , (1.17)

sum

where “term” is the last term kept in the series (1.15) and “sum” is the accumulated

sum of all the terms. In general, you are free to pick any tolerance level you desire,

although if it is too close to, or smaller than, machine precision, your calculation

may not be able to attain it. A pseudocode for performing the summation is

�

term = x , sum = x , eps = 10^(−8) / / I n i t i a l i z e do
do term = −term∗x∗x / ((2 n−1)/(2n−2)) ; / / New wrt old
sum = sum + term / / Add term
w h i l e abs (term/sum) > eps / / Break i t e r a t i o n

�

−1
end do

0
1

ALLpup_06.04 — 2008/3/20 — Page 28

computational science basics 29

1.6.2 Implementation and Assessment

1. Write a program that implements this pseudocode for the indicated x
values. Present the results as a table with the headings

x imax sum |sum − sin(x)|/sin(x)

where sin(x) is the value obtained from the built-in function. The last column
here is the relative error in your computation. Modify the code that sums
the series in a “good way” (no factorials) to one that calculates the sum in a
“bad way” (explicit factorials).

2. Produce a table as above.
3. Start with a tolerance of 10−8 as in (1.17).
4. Show that for sufficiently small values of x, your algorithm converges (the

changes are smaller than your tolerance level) and that it converges to the
correct answer.

5. Compare the number of decimal places of precision obtained with that
expected from (1.17).

6. Without using the identity sin(x + 2nπ) = sin(x), show that there is a range
of somewhat large values of x for which the algorithm converges, but that
it converges to the wrong answer.

7. Show that as you keep increasing x, you will reach a regime where the
algorithm does not even converge.

8. Now make use of the identity sin(x + 2nπ) = sin(x) to compute sin x for large
x values where the series otherwise would diverge.

9. Repeat the calculation using the “bad” version of the algorithm (the one that
calculates factorials) and compare the answers.

10. Set your tolerance level to a number smaller than machine precision and
see how this affects your conclusions.

Beginnings are hard.
—Chaim Potok

−1
0
1

ALLpup_06.04 — 2008/3/20 — Page 29

