
Computer modeling of integrating spheres

Blake G. Crowther

I present a Monte Carlo model for predicting the performance of integrating spheres as a function of
incident flux direction. The model was developed specifically to aid in the design of integrating spheres
used as cosine collectors but is of general applicability. I discuss a method of generating uncorrelated
random numbers. The probability density functions associated with uniform irradiance over a circular
entrance port and Lambertian reflectors or emitters are presented. A comparison of the model with
analytic equations predicting performance for an unbaffled integrating sphere is included. The average
of the data generated by the model agrees with the analytic solution for sphere throughput to better than
0.25% ~s 5 8.3%!. © 1996 Optical Society of America
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1. Introduction

Many irradiance measurements require a collector
with an angular throughput that is cosinusoidal with
the zenith angle of the source. An example of mea-
surements requiring a cosine zenith angle response is
the measurement of global solar irradiance at the
surface of the Earth. The cosine response is essen-
tial in this example if the collector is to imitate per-
fectly the cosine irradiance falloff experienced at the
surface of the Earth as the Sunmoves across the sky.1
A cosine response is especially important when global
or all-sky irradiance measurements are made. Any
deviation from a cosine response increases the diffi-
culty for proper measurements because of the un-
known angular distribution of the diffuse-sky
radiance.
At least three different types of cosine collector

have been designed and built over the years. One
general design type is based on the concept of mea-
suring the light transmitted by a scattering medium
such as a plastic resin or frosted glass.2,3 A typical
cosine collector of this type uses a diffuse transmis-
sive material that is shielded around the edges by an
opaque material. Once the incident flux passes
through the transmissive material, it generally
passes into some type of cavity where it is either
detected directly or conveyed through a fiber optic to
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a remote detector. These collectors have shown
promise in the visible, but performance is degraded
as the wavelength is increased. This degradation
with increasing wavelength is due to the wavelength-
dependent scattering of the transmissive material.
Another method for measuring global irradiance uses
a diffuse reflective panel and measures the reflected
flux with a nadir-viewing radiometer.4 A knowledge
of the bidirectional reflectance of the panel then al-
lows a correction to be made for the non-Lambertian
nature of the panel in the direct portion of the total
irradiance. Errors are still present in the global ir-
radiance measurement because the unknown angu-
lar distribution of diffuse radiance prohibits a
complete correction. A third design approach uses
some type of an integrating sphere as the collector.
The sphere has an entrance port, an exit port, and
usually some type of baffling in the interior.5 Be-
cause integrating spheres inherently are inefficient
due to the diffuse scattering nature of the sphere
walls, the sphere generally is constructed of, or
coated with, some type of highly reflective diffuse
material. This approach generally has a greater po-
tential for collecting irradiance over a wider spectral
range than the transmissive type of collector and is
more accurate than either of the methods mentioned
above. However, it is generally less efficient than
the other types of cosine collector currently in use.
Several types of integrating-sphere-based cosine

collector have been designed and built. Budde5 dis-
cussed three integrating-sphere designs and com-
pared their responses with each other and with the
responses of both magnesium oxide and barium-
sulfate-coated panels. He found that the spheres
outperformed the panels, and that a sphere with an



annular entrance port and externally baffled exit port
exhibited the best angular response. The through-
put, defined as the ratio of the flux exiting the exit
port to the flux entering the entrance port, of this
sphere is quite low at 0.01%. Other researchers suc-
cessfully used an internal conical baffle in an inte-
grating sphere with a barrier layer cell detector, but
Budde5 was unable to replicate their success with a
similar sphere and by imaging the bottom of the baffle
onto the entrance slit of a monochromator.
A major difficulty in designing baffled integrating

spheres for cosine collectors is the inability of one to
arrive at useful closed-form solutions for the angular
response of the sphere. Jacquez and Kuppenheim,6
Goebel,7 and Finkel8 developed analytic solutions for
determining total reflectance and efficiencies of sev-
eral different configurations, all without baffling and
without consideration for angular response. In
principle, integral equations could be developed to
predict the angular responses of baffled integrating
spheres, but their resultant complexity would pro-
hibit their usefulness in practice. Computer model-
ing is therefore a logical recourse for predicting the
angular response of baffled integrating spheres. A
Monte Carlo computer model is presented here. Al-
though the modeling is directed toward a particular
application of integrating spheres, the general
method can be used for any application. In this pa-
per I present a general theory applicable to modeling
integrating spheres, followed by a description of the
specific computer model and a test comparison with
analytic equations for an unbaffled integrating
sphere.

2. Theory

Central to any Monte Carlo modeling effort is a reli-
able random number generator and the means to
transform the uniform distribution on the interval
from 0 to 1 @U~0, 1!# into the desired probability den-
sity function ~PDF!.9 The theory on these topics as
applied to this research is presented below.

A. Random Number Generator

The randomnumber generator selected for use in this
research was the Sun Microsystems C library func-
tion random~!, a nonlinear additive feedback random
number generator that generates long integers in the
range of 0 to 231 2 1. Its period is approximately
163 ~231 2 1!, which is a very large number indeed.10
The simplest method of generating the U~0, 1! PDF
with this random number generator is to divide the
number returned by 231 2 1. This simple method of
generating the U~0, 1! PDF was found to be inade-
quate due to the correlation between two consecutive
random numbers. A shuffling routine is therefore
used to destroy the consecutive number correlation.11
The shuffling routine creates an array of numbers
and an array pointer, all of which are filled with
numbers generated by random~!. Each time the rou-
tine is called, the pointer indicates which number in
the array is to be selected, with the selected number
becoming the pointer. The number generated by
random~! then takes the place of the selected number
from the array. Press et al. suggest that thismethod
of generating random numbers should be adequate
unless the routine from which the original numbers
are generated produces nonuniformly distributed
numbers.11
The effectiveness of the shuffling routine in de-

stroying the correlation was tested by a comparison of
the reflectance of the nonshuffled with shuffled rou-
tines at normal incidence at an air–fiber interface
with an index of refraction of 1.46. The method of
determining the transmission or reflection of a pho-
ton, discussed in detail in Subsection 2.C, involves
the comparison of two consecutive random numbers.
It therefore provides an excellent test for the corre-
lation between consecutive numbers generated with
any pseudorandom number generator. For Fig. 1,
no shuffling was used to generate the top curve, but
the bottom curve was generated with the shuffled
routine. The error in reflectance seemed to stabilize
at approximately 2.5% without shuffling and asymp-
totically approached zero with shuffling.

B. Probability Density Functions

To generate random numbers that simulate observed
phenomena, they must be extracted from the appro-
priate PDF. Therefore the PDFmust be known, and
the numbers drawn from the available U~0, 1! PDF
must be transformed into the correct PDF. The gen-
eral procedure for transforming the U~0, 1! PDF into
the desired PDF was published previously by
Frieden.9 The procedure reduces to the transforma-
tion equation shown in Eq. ~1!, where u is a number
drawn from the U~0, 1! PDF, F~c! is the cumulative
probability function, and pc~c! is the PDF:

u 5 F~c! ; *
2`

c

pc~c9!dc9. (1)

In this model, the PDF required to produce uniform
entrance port irradiance and the PDF required to
produce an intensity distribution following Lambert’s

Fig. 1. Errors in the predicted reflectance at the air–fiber inter-
face with and without shuffling. Computations were done at nor-
mal incidence with a fiber index of refraction of 1.46.
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cosine law were developed. Equation ~2! is Lam-
bert’s cosine law that relates the intensity I at a
particular zenith angle u to the intensity I0 at a zenith
angle of zero. Any surface obeying this law is called
Lambertian1:

I~u! 5 I0 cos~u!. (2)

To test the angular response of an integrating sphere,
a photon is introduced through the entrance port of
the sphere at a random position, implying uniform
irradiance over the entrance port. A method of gen-
erating uniformly distributed photon entrance points
over the area of the entrance port of the modeled
integrating spheres was required to simulate the uni-
form irradiance condition. This requires that two
coordinates, either r and u or x and y, be selected.
The coordinates x and y are the most convenient de-
scriptors of the photon entrance position because the
motion of the photon is most easily described in rec-
tilinear coordinates. Therefore if r and u are gener-
ated from the U~0, 1! PDF, a transformation to x and
y is necessary. Because the irradiance is constant,
the total number of photons entering a circular aper-
ture of arbitrary radius is calculated easily with Eq.
~3!, assuming that the irradiance is monochromatic:

N~r! 5 pr2Eyhn, (3)

where E represents the constant irradiance, r is the
radius, n the photon frequency, N the number of pho-
tons, and h is Planck’s constant. Once the total
number of photons entering a circle of radius r is
known, the cumulative distribution function can be
written immediately with Eq. ~4!:

F~r! 5 r2yR2, (4)

whereR is the radius of the entrance port. The PDF
is the derivative of the cumulative distribution func-
tion and is shown in Eq. ~5!:

p~r! 5 2ryR2. (5)

Either p~r! or F~r! can be used to transform the num-
bers drawn from U~0, 1! into the desired PDF. The
more convenient of the two is F~r! because the inte-
gration of p~r! is one step in the process. Labeling
the random variable drawn from the U~0, 1! PDF as
u and solving the transformation equation yields Eq.
~6!:

r 5 RÎu. (6)

The irradiance incident on the entrance port shows
no preference for one angular region over the other,
so the PDF for u is just a uniform distribution for the
region of 0–2p. One can transform the numbers
drawn from the available U~0, 1! PDF to the PDF for
u by simply multiplying by 2p. With the relation-
ship between r and u and x and y, the final equations
for the generation of x and y, which will produce
uniform entrance port irradiance, are shown in Eqs.
~7! and ~8!, where u and v represent numbers drawn
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from the U~0, 1! PDF:

x 5 RÎu cos~2pv!, (7)

y 5 RÎu sin~2pv!. (8)

The other possibility for producing uniform irradi-
ance inside a circular aperture is a brute-force ap-
proach, in which both x and y are extracted from the
1yR*U~0, R! PDF, and points lying outside the circle
of radius R are thrown away. Approximately 21.5%
of all the points generated are discarded following
this method. Somewhat surprisingly, no apprecia-
ble difference in execution time was noted between
the two methods. This similarity in execution time
can be attributed to the relatively long time required
to compute the trigonometric functions. The results
of both methods can be seen in Figs. 2 and 3.
The interior surfaces of the integrating sphere and

baffle surfaces, if applicable, were modeled as Lam-
bertian surfaces. Directions for photons reflected
from these surfaces are required to be chosen from
PDF’s such that Eq. ~2! is satisfied. PDF’s for the

Fig. 2. Photon entrance points resulting from randomly generat-
ing x and y coordinates and throwing away those points outside the
entrance aperture. A total of 1000 points were generated, and an
entrance aperture of radius 1 unit was used.

Fig. 3. Photon entrance points resulting from the use of trans-
formation Eqs. ~7! and ~8! to generate the x and y coordinates. A
total of 1000 points were generated, and an entrance aperture of
radius 1 unit was used.



azimuth angle f and the zenith angle u were devel-
oped to give reflected photons the correct direction.
Because Lambert’s cosine law is independent of the

azimuth angle, photons can be reflected in any azi-
muth direction with equal probability. The proper
azimuth PDF is therefore just the uniform PDF over
the interval 0–2p. To transform the numbers gen-
erated from the U~0, 1! PDF to the proper azimuthal
PDF, one can multiply the number generated by 2p.
The total flux F reflected within the zenith angle

range 0–u by a Lambertian reflector can be found
when one integrates the intensity distribution in Eq.
~2! over the solid angle subtended at the angle u as
shown in Eq. ~9!:

F~u! 5 *
f950

2p

*
u950

u

I0 cos~u9!sin~u9!du9df9 5 I0p sin2~u!.

(9)

The zenith angle corresponding to an entire hemi-
sphere is 90°, resulting in a total reflected flux of pI0
W. Flux levels are converted to monochromatic pho-
ton counts when one divides the flux by Planck’s con-
stant and the frequency, which yields the total
number of photons emitted within the zenith angle
range 0–u. When this is divided by the total number
of photons emitted for the entire hemisphere, it yields
the cumulative probability distribution in Eq. ~10!:

F~u! 5 sin2~u!. (10)

Differentiating F~u! with respect to u, yields Eq. ~11!:

p~u! 5 2 sin~u!cos~u!. (11)

An independent method of finding p~u! developed in
consultation with Frieden12 gives the same result.
Once again the transformation equation, letting u be
the number extracted from the U~0, 1! PDF, is ap-
plied as shown in Eq. ~12!:

u 5 F~u! 5 sin2~u!. (12)

Solving for u yields Eq. ~13!, which can be applied to
the numbers generated by the U~0, 1! PDF.

u 5 a sin~Îu!. (13)

C. Photon Reflection Techniques

One can determine the possibility of a photon being
reflected at an air–fiber interface by first calculating
a polarization angle according to the U~0, 2p! PDF,
with the polarization angle of 0 being defined as p
polarized. In this research p polarization is referred
to as electromagnetic radiation in which the oscilla-
tions of the electric field are parallel to the plane of
incidence, and s polarization is referred to as radia-
tion in which the oscillations of the electric field are
perpendicular to the plane of incidence. The p and s
reflectances are then calculated with the standard
Fresnel formulas in Eqs. ~14! and ~15!13:

rp 5
nt cos~ui! 2 ni cos~ut!
nt cos~ui! 1 ni cos~ut!

, (14)

rs 5
ni cos~ui! 2 nt cos~ut!
ni cos~ui! 1 nt cos~ut!

. (15)

The symbols ni and nt refer to the incident and trans-
mitted index of refraction, respectively, and ui and ut
refer to the incident and transmitted angles, respec-
tively. These component electric-field reflectances
are combined appropriately in Eq. ~16! and yield a
reflectance that is valid for irradiance at a particular
polarization angle and incident angle13:

R 5 rp
2 cos2~up! 1 rs

2 sin2~up!. (16)

In this case, up refers to the polarization angle. A
random number from the U~0, 1! PDF is compared
with this reflectance and the photon reflected if the
number is less than or equal to the reflectance.
Themethod of determining the absorption of a pho-

ton at the surface of the diffuse sphere wall and baffle
surfaces is much simpler because these surfaces are
modeled as Lambertian. The absence of specular
reflection allows the possibility of absorption to be
determined by a comparison of a random number
from the U~0, 1! PDF to the value for the reflectance
without concern for polarization and incident angles.
Once again, if the number drawn from the U~0, 1!
PDF is less than or equal to the reflectance, then the
photon is reflected.

3. Model Description

The theory described above and the general proce-
dure of tracing the complex path of a photon within
the integrating sphere are applicable to any Monte
Carlo sphere model. The validity of the model is
tested by a comparison of the modeled data with the
predictions of analytic equations for an unbaffled
sphere with an attached fiber-optic cable.

A. General Model Procedure

The user specifies the dimensions of the sphere,
entrance port, exit port, and baffles, as well as the
desired photon entrance directions. It is assumed
that a fiber-optic cable is used in the exit port so
that a numerical aperture ~NA! and an index of
refraction ~n! are also specified by the user. This is
not a limitation because values of 1 NA and n 5 1
can be used for the case in which no fiber exists at
the exit port. The user also specifies photon en-
trance directions, from which direction cosines are
calculated.
The photon entrance position within the entrance

port is chosen according to the theory described
above. This entrance point, combined with the di-
rection cosines, yields parametric Eqs. ~17!, ~18!, and
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~19!, describing the linear motion of the photon:

x1 5 x0 1 at, (17)

y1 5 y0 1 bt, (18)

z1 5 z0 1 gt, (19)

where subscript 1 denotes the new position coordi-
nate, and subscript 0 denotes the original coordinate
position. The x-direction cosine is given by a, the
y-direction cosine by b, the z-direction cosine by g,
and t is the common parameter. These parametric
equations are used, along with equations describing
the geometry of the internal surfaces, to find solu-
tions for parameter t. The solutions for t are then
substituted into the parametric equations to find the
intersections of the photon path with the sphere wall
and other internal surfaces. These intersection
points are checked against the limits of the internal
surfaces, and the point is disqualified if it lies outside
the surface boundaries. An intersecting point is also
disqualified if t is negative or so close to the origina-
tion point that it is judged to be the same point. The
collision point is selected as the intersection point
associated with the smallest value of t.
Once the collision point is known, four possible

conditions for which the lifetime of the photon within
the sphere expires are examined. The first two con-
ditions are simple, and the latter two are relatively
complex. One condition consists of checking to as-
sure that a predetermined number of maximum col-
lisions is not exceeded, guarding against an infinite
loop. The second photon expiration condition is that
of escape by way of the entrance port. Here, the
collision point is examined to see if it lies on the part
of the sphere corresponding to the entrance port. At
least one collision is required before a photon can
escape out the entrance port because the initial di-
rection of travel is to enter the entrance port.
The possibility of a photon colliding with the fiber

face at the exit port is examined next. If a collision
at the air–fiber interface does occur, several other
checks must be made. First, the polarization of the
photon is determined and the reflectance calculated
as described previously. In the event of transmis-
sion into the fiber, a calculation ismade to check if the
photon is traveling within the specified NA of the
fiber. If the transmitted photon is within the fiber
NA, then it is counted as having been transmitted by
the fiber to the detector. The event of Fresnel re-
flection requires that a new set of direction cosines be
calculated according to the laws of specular reflec-
tion. The only direction cosine to require modifica-
tion in this case is the one corresponding to the
perpendicular to the fiber face. The modification
consists of one negating that particular direction co-
sine, after which the process is repeated, beginning
with the determination of new parametric equations.
The only difference is that the direction cosines and
point of origination have been calculated by the pro-
gram instead of being supplied by the user.
The final photon expiration condition to be exam-
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ined is that of absorption of the photon by the walls of
the sphere or baffles. If the calculation reveals that
the photon is not absorbed, then new direction co-
sines are calculated in the local coordinates according
to the law of reflectance obeyed by a Lambertian
reflector. The sphere axes are constructed such that
the z axis passes through the center of the entrance
port and the x axis passes through the center of the
exit port on the side of the sphere, if an exit port
exists at that location. If no defining features exist,
then the choice of direction for the x axis is arbitrary.
The x axis always corresponds to a zenith angle of 90°
and the z axis a zenith angle of 0°. The local axes are
chosen such that the local z direction corresponds to
the sphere -r direction ~which is the outward normal
of the inside of the sphere!, the local y direction cor-
responds to the sphere f direction, and the local x
direction corresponds to the sphere -u direction.
These local or primed coordinates are expressed in
terms of the sphere coordinates in Eqs. ~20!, ~21!, and
~22!14:

x̂9 5 2û 5 2cos~uax!cos~fax!x̂ 2 cos~uax!sin~fax!ŷ

1 sin~uax!ẑ, (20)

ŷ9 5 f̂ 5 2sin~fax!x̂ 1 cos~fax!ŷ, (21)

ẑ9 5 2r̂ 5 2sin~uax!cos~fax!x̂ 2 sin~uax!sin~fax!ŷ

2 cos~uax!ẑ. (22)

The new or primed direction cosines are calculated
from the local azimuth and zenith angles generated
from the governing Lambertian reflector PDF’s. The
local direction cosines are then transformed into the
sphere coordinates by one dotting the sphere axes with
the local or primed axes in Eqs. ~23!, ~24!, and ~25!:

a 5 x̂ z x̂9á 1 x̂ z ŷ*b́ 1 x̂ z ẑ*ǵ, (23)

b 5 ŷ z x̂9á 1 ŷ z ŷ9b́ 1 ŷ z ẑ9ǵ, (24)

g 5 ẑ z x̂9á 1 ẑ z ŷ9b́ 1 ẑ z ẑ9ǵ. (25)

The direction cosines are now known in the sphere
coordinates, and the collision point becomes the new
origin point. Therefore the process begins again
with new parametric equations. Just as in the case
of the specular reflection above, the direction cosines
and origin point are calculated by the program in-
stead of being supplied by the user.
The process just described is repeated for as many

photons as desired at each entrance angle. The pro-
cess is intense computationally but gives reasonable
predictions without building and testing candidate
spheres.

B. Model Example

The first sphere model is a 10.16-cm-diameter sphere
with a diffuse reflectance of 0.99. A 2.54-cm-
diameter entrance port is located at the top of the
sphere, perpendicular to the z axis. The axis of the
exit port is located at a 90° angle from the axis of the
entrance port, along the x-sphere axis. A fiber-optic



cable with a diameter of 0.254 cm, a NA of 0.28 ~half-
field view angle of 16.26°!, and an index of refraction
equal to 1.46 is coupled to the exit port. No baffling
is used with this sphere design. This sphere is
shown as a cross section in Fig. 4.
The sphere model was tested at zenith angles of 0°

through 80° in 10° increments. Azimuth angles of 0°
through 345° in 15° increments were used at each of
the zenith angles except 0°, where the azimuth angle
is irrelevant. A total of 106 photons were traced at
each zenith and azimuth angle combination. This
resulted in an effective irradiance increase of
1ycos~u!, so the output of the sphere should have
remained constant at all incident angles if it were a
true cosine collector. Several photons were traced
by hand to verify that the model functioned as de-
signed before the final tests were run.

4. Results

The number of photons entering the fiber-optic cable
is graphed as a function of azimuth angle at zenith
angles of 10° through 80° in Figs. 5, 6, and 7. Figure
5 shows that the output of the sphere remains rela-
tively constant at zenith angles of 10° through 30°.
The output is highly nonuniform at zenith angles of

Fig. 4. Unbaffled integrating sphere with an incorporated fiber-
optic cable at the exit port. The axes of the entrance and exit
ports correspond to the z and x axis, respectively.

Fig. 5. Photons entering the fiber-optic cable of the unbaffled
sphere as a function of azimuth angle at zenith angles of 10°, 20°,
and 30°. 106 photons were traced at each input direction.
40° and 50°, and slightly nonuniform at 60° as shown
in Fig. 6. This nonuniformity is a result of the un-
symmetric nature of the sphere with respect to azi-
muth angle. The exit port and fiber are placed at
zenith angles of 90° along the x axis as shown in Fig.
4. This construction allows a clear view of the op-
posite side of the sphere along the -x axis. In fact,
photons must originate from a point within the se-
lected NA to enter the fiber. The photons that col-
lide with the sphere wall opposite the exit port on the
first collision, therefore, have a higher probability of
entering the fiber than photons that collide with
other portions of the sphere on the first collision. As
expected, the output became more constant as the
zenith angle was increased, as shown in Fig. 7.
The output of a basic sphere such as the one dis-

cussed above can also be estimated with Eq. ~26!15:

Fpf 5
rFpepAf~NA!2~1 2 R!

AsH1 2 rF1 2 SAf 1 Aep

As
DGJ , (26)

Fig. 6. Photons entering the fiber-optic cable of the unbaffled
sphere as a function of azimuth angle at zenith angles of 40°, 50°,
and 60°. 106 photons were traced at each input direction.

Fig. 7. Photons entering the fiber-optic cable of the unbaffled
sphere as a function of azimuth angle at zenith angles of 70° and
80°. 106 photons were traced at each input direction.
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whereFpf is the photon flux entering the fiber, r is the
sphere wall diffuse reflectance ~0.99!, Fpep is the pho-
ton flux entering the entrance port ~106!, Af is the
cross-sectional area of the fiber ~0.0507 cm2!, NA is
the numerical aperture ~0.28!, R is the fiber reflec-
tance ~estimated as the Fresnel reflectance at normal
incidence of 0.035!, As is the surface area of the
sphere ~324.29 cm2!, and Aep is the area of the en-
trance port ~5.067 cm2!. The calculation of Eq. ~26!
yields an estimated output photon flux of 456.5 pho-
tons. This estimate assumes the photons hit the
wall of the perfectly diffusely reflecting sphere but
does not take into account any directionality. The
average number of photons entering the fiber-optic
cable at each zenith entrance angle is listed in Table
1 along with the standard deviation and the percent
difference from the 456.5 photon estimate. The av-
erage number of photons entering the fiber from all
the zenith and azimuth angle combinations is per-
haps the best comparison with the analytic results
because the directionality is nullified by the averag-
ing. The overall average estimated by the model is
calculated to be 455.4, with a standard deviation of
37.9. Thus the overall average of the model results
in a difference of 20.24% from the theoretical esti-
mate.

5. Conclusions

Extensive effort has been applied to derive analytical
solutions for performance criteria of integrating
spheres over the years. Closed-form mathematical
solutions for throughput as a function of incident
angle have not been derived even for simple integrat-
ing spheres. Because of the unavailability of closed-
from mathematical equations to evaluate baffled
integrating spheres, designs must be based on mod-

Table 1. Statistics on the Number of Photons Entering the
Fiber-Optic Cablea

Zenith
Angle ~deg! Average

Standard
Deviation

Percent
Difference

0 429 nyab 26.02
10 446.17 15.45 22.26
20 455.96 20.87 20.12
30 447.13 29.99 22.05
40 471.58 55.56 13.30
50 469.21 68.58 12.78
60 456.79 27.39 10.06
70 449.04 27.92 21.63
80 448.38 18.51 21.78

aThe statistics for all zenith angles except 0° include azimuth
angles 0° through 345° at 15° increments. At 0°, the azimuth
angle used was 0°.

bnya means not available.
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eling or experimentation. Monte Carlo modeling
can be used to predict the angular throughput,
thereby guiding integrating sphere design. I used
such modeling techniques successfully to model sev-
eral integrating spheres coupled with fiber-optic ca-
bles. The model predictions of baffled spheres will
require experimental verification from designs cur-
rently under construction. The basic integrating
sphere modeled for this research was compared with
theory, with excellent results that are consistent with
the predictions of analytic equations developed in
earlier research to better than 0.25% overall.
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