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Chapter 0Introduction
0.1 What is Condensed Matter Physics?Matter is the physical expression of the laws of nature. In this course we aimto explain the properties of `condensed' matter, by which we mean matter witha density of � 10�3 kg m�3. Given the enormous diversity of materials, this isa tall order indeed, and so most of the time we will have to be content with aqualitative or semi-quantitative approach for just a few properties. I hope thatyou will be convinced that condensed matter physics is intellectually demanding,reasonably interesting, and is still an extremely active research area, particularlyat Edinburgh.There are three main components to the course:� Atomic structure (i.e. the spatial arrangement of atoms),� Lattice dynamics (i.e. how the atoms move), and� Electronic structure (i.e. how the electrons behave in condensed matter).Rather than present a systematic exposition of each, here we adopt an idiosyn-cratic approach. We will gain insight into mechanical, thermal and opticalproperties but will focus on the material property that shows the greatest vari-ation, namely electrical conductivity, �: that of the best conductors is about1030 times that of the worst. If we understand anything about condensed matterthen we must be able to explain this.1So profound is the variation in � that one might suspect that completelydi�erent conduction mechanisms are involved in di�erent materials, and it is so.The best electrical conductors, which we call metals, o�er the simplest startingpoint. We may suppose that for an electrical current to 
ow through a metalthere must be a collection of mobile electrons within these materials, and we willpursue this notion in the next chapter. The casual explanation for the existenceof insulators is that their electrons are tied up in rigid chemical bonds. We willsee that this is a rather super�cial (and in fact misleading) explanation.1It is worth noting at the outset that many of the properties of condensed matter appearto be linked. For example those solids which crystallise with what we call the diamond crystalstructure tend to be physically hard, electrically insulating with high melting points. Elementswhich exhibit close-packed structures are usually good conductors of heat and electricity, shiny,ductile, and rather soft. 1



2 CHAPTER 0. INTRODUCTION0.2 Some preliminary considerations0.2.1 A very many body problemWhether by classical or quantum mechanics, we are very good at solving prob-lems where a single particle is moving in an external potential (e.g. an electronmoving in an electric �eld) or when two particles interact with each other (e.g.the earth going round the sun). But we cannot in general solve the equations ofmotion for a system of only three interacting particles. Condensed matter com-prises lots of particles, all of which are interacting with each other. Althoughwe understand these interactions (and of the fundamental forces we shall haveneed only of the electromagnetic interaction) this \many-body" nature makestheoretical treatments hard. How then are we to approach condensed mattersystems? A good physicist must master the art of carefully applying approxi-mations.One approach is to focus on the movement of one particular particle. Wecan then assume that all the other particles give rise to some average potentialwhich acts upon our chosen particle. We can then compute the movement ofthis particle in the presence of this potential (which we must guess since wedon't know how all the other particles move of course). In this way we areapproximating the behaviour of the many-body system by that of a collectionof single particles which, though interacting, move independently. It turns outthat this simpli�cation enables us to understand and explain many things. Butoccasionally we �nd phenomena that can only be explained by looking at someof the correlation e�ects inside the many-body system. Superconductivity isone such example. Who would have guessed that an apparent lack of electricalresistance in a metal could be produced by electrons attracting each other? Weall know that electrons repel each other, but in a superconductor they appearto bound together in pairs.Such e�ects only emerge from the many-body system. We cannot predictthem by looking at how two particles interact or how a single particle moves in anexternal �eld. This disturbs the reductionist approach of trying to understandthe universe by dissecting it.0.2.2 Quantum or classical, particle or wave?Quantum mechanics can be tough, so can we get away without it? We knowthat when a beam of light is �red at a narrow slit then di�raction e�ects can beobserved - the wave nature of light is manifest. In fact the de Broglie relationtells us that any particle with momentum p can be thought of as a wave withwavelength � � h=p. But when we walk through a doorway we tend not to noticeany di�raction. So how can one decide if a particle will behave classically,2 orif its wave nature will dominate (requiring us to solve the Schr�odinger waveequation)?The important point is whether the de Broglie wavelength is comparable inmagnitude with the relevant physical size for the situation in question (whichmight be the width of a slit, the separation between two particles etc.). If thewavelength is negligible (e.g. when you walk through a doorway at 1 m s�1)2By \classical" we mean \non-quantum mechanical" here. We will probably not encounterany relativistic e�ects.



0.2. SOME PRELIMINARY CONSIDERATIONS 3then classical physics works, if not, then we must deal with waves. You mightbe a bit worried that if we su�ciently reduce the momentum of an object asit approaches an aperture, then it would always be possible to make the deBroglie wavelength signi�cant. However it is not always be possible to make thede Broglie wavelength arbitrarily large for a variety of reasons, and here we canlist three.Firstly, there may be no suitable allowed states.Secondly, an object with temperature T will have a random motion with energyof order � kbT , where kb = 1:38� 10�23 J K�1 and is known as Boltzmann'sconstant, and hence a \thermal wavelength" of � h=p2mkbT . The thermalwavelength of a snooker ball at room temperature is � 10�23 m, which is ex-tremely small on the length scale of the ball, and we con�rm that wave e�ects(i.e. quantum mechanics) should not be manifest during a game of snooker,no matter how slowly you strike the balls. On the atomic scale, where herethe natural length is 1 �A = 10�10 m, the same argument implies that at roomtemperature the molecules in water are bumbling around like classical parti-cles, while the electrons within the molecules demand a quantum mechanicaltreatment. It may seem that reducing T will eventually cause the de Brogliewavelength to explode, but there is a third point.The Uncertainty Principle requires that the de Broglie wavelength cannot ex-ceed �x, the spatial uncertainty. This implies that atoms in condensed mattercan usually be treated classically.0.2.3 StatisticsQuantum mechanics is not simply a matter of �nding the eigenstates of a Hamil-tonian. When we consider a system of many particles we must think aboutstatistics. Take, for example, the electrons in a piece of metal. If, using someapproximation, we describe this many body system using a collection of singleelectron states, it still remains for us to say how many electrons will go intowhich states. At T = 0 they will try to drop as low in energy as they can,and we call this the ground state. For T > 0 there will inevitably be thermalexcitations, and we also need to understand how this a�ects the occupations. Inclassical systems the probability that a particular state will be occupied is givenby Maxwell-Boltzmann statistics but in quantum mechanical systems thingsare more complicated. It is a remarkable fact that all systems of particles withhalf-integer spin obey one kind of statistics (Fermi-Dirac statistics), while thoseconsisting of integer spin obey another (Bose-Einstein statistics). This \spin-statistics theorem" is universal - no exceptions are known.Already we have touched upon some rather profound issues and it should beclear that if we are to get to grips with condensed matter then we will need tokeep our wits about us. Since condensed matter constitutes the raw materialsfor all manner of industries from food production to microelectronics to shipbuilding, the technological imperative for mastering this �eld can scarcely beoverstated.
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Chapter 1The free electron model ofmetalsIt is perhaps surprising that a hundred years ago there was virtually no un-derstanding of the physics of solids. The origins of modern condensed matterphysics can be traced back to attempts to account for the properties of metals.We will brie
y review the classical and semi-classical free electron theories ofthe metallic state dating from the turn of the century, and we will see bothsuccesses and failures. The free electron model provides a meaningful baselineagainst which the properties of real metals can be judged. More importantly,understanding the successes and failures of the free electron model will highlightthe central issues of this course.1.1 The classical free electron gas:The Drude-Lorentz modelAt the turn of the century, Einstein had not yet explained the photoelectrice�ect, Rutherford had not determined the size of the nucleus, Bohr had notspeculated on the discrete nature of electronic \shells" in atoms, and the for-mulation of quantum mechanics was still decades away. Although the structureof the atom was not known, Thomson had discovered the electron (1897), en-abling Drude (1900) and Lorentz (1905) to formulate a model to explain twoof the most striking properties of the metallic state, namely the conduction ofelectricity and heat.1.1.1 The physical model: collisionsDrude attributed conduction in the metallic state to the most loosely boundelectrons in atoms somehow becoming mobile. In fact these \conduction elec-trons" were assumed to move freely through space apart from collisions, not witheach other but rather with the much larger atomic cores, as shown in Fig. 1.1 onthe following page. Geometric considerations imply a mean free path between5



6 CHAPTER 1. THE FREE ELECTRON MODEL

Figure 1.1: The physical interpretation of the Drude model.collisions of ` � 1�R2N ; (1.1)where R is the core radius and N is the number of atoms per unit volume.Guessing that R is not that much smaller than the atomic radius, Drude de-duced ` to be a few �A. He assumed that after a collision a conduction electronhas random direction and a speed which does not depend on its velocitybeforehand, but is determined by the equilibrium distribution function.At this time, the most natural treatment of free electrons was provided bythe kinetic theory of the ideal gas, and so by analogy the collisions were assumedto be instantaneous and physical (billiard ball like). Since each atom contributesof the order of one conduction electron, the electronic density n is of the sameorder of magnitude as N (� 1029 m�3). Notice that the free electron gas is a\fake" many body problem. Although they are many in number these are non-interacting electrons, each moving independently and occassionally su�ering acollision with an ion core. Within these assumptions we are entitled to treatthem one at a time.� So what happens to the electron-electron and electron-nucleus in-teractions?We can postpone answering this question for a little while since the �rst jobof a model is to correctly reproduce observed behaviour. Only then do we haveto explain why the model works.A classical free particle is allowed to have any velocity. By analogy with theideal gas, the number of conduction electrons per unit volume with velocities inthe range v to v + dv is nvMBdv in the Drude-Lorentz model, where nvMB is theMaxwell-Boltzmann (MB) equilibrium velocity distribution function:nvMB(T ) = n� m2�kbT �3=2 exp��mv22kbT � (1.2)where m is the electron mass, and n is the total number of conduction electronsper unit volume, irrespective of their energies. Note that this expression has the



1.1. THE DRUDE-LORENTZ MODEL 7form of a normalising constant multiplied by a Boltzmann factor. In \velocityspace" (or \k-space", where k = mv=~), the MB distribution is sphericallysymmetric and centred on the origin.If we are only interested in the average speed v = jvj, then the distributionfunction becomesnvMB(T ) = n� m2�kbT �3=2 exp��mv22kbT � 4�v2: (1.3)Using this expression Drude calculated the average electronic speed is� 105 m/sat room temperature and deduced that � , the average time between collisions(also called the relaxation time) is between 10�14 and 10�15 s.If the electron gas is subject to some external force F , then the electronsaccelerate. However, in the Drude-Lorentz model an electron emerging froma collision does not \remember" if it had previously been accelerated or not.For a constant applied force the repeated \resetting" of the electron velocitiesprevents the electrons accelerating inde�nitely but results in the establishmentof a drift velocity vd in the direction of the applied �eld, superimposed on therandom thermal motion of the conduction electrons. (In k-space this amountsto shifting the spherically symmetric distribution away from the origin.) Sincethe collisions are e�ectively a means of damping, the equation of motion for thedrift velocity is mdvddt = F � mvd� : (1.4)1.1.2 Electrical conductivityConsider the electron gas in a spatially invariant DC electric �eld E. Whena steady state is established, dvd=dt = 0 and the electronic drift velocity isconstant, corresponding to the current density J = �nevd. It follows that thecurrent density is proportional to the applied �eld J = �0E (i.e. Ohm's law),where the DC conductivity �0 is given by�0 = ne2�m : (1.5)Using their estimate of the relaxation time � , Drude and Lorentz obtainedconductivities which were in quite good agreement with experiment. Noticethat without collisions, � !1 and so the conductivity becomes in�nite.In the presence of an AC �eld E(t) = E0e�i!t, the steady state drift velocitymust oscillate at the same frequency as the applied �eld, although not necessarilyin phase with it. It is easily shown that the AC conductivity is then�! = �01� i!� : (1.6)Playing around with some basic equations from optics and electromagnetic the-ory we will see in a Problem Sheet that free electron metals should be highlyre
ective in the visible region of the electromagnetic spectrum, but transparentto ultra-violet. This is indeed the case for many metals.



8 CHAPTER 1. THE FREE ELECTRON MODEL1.1.3 Thermal conductivityThe electrical conductivities of metals and insulators are profoundly di�erent.When it comes to thermal conductivity the distinction is much less dramatic, butmetals do tend to conduct heat about one hundred times better than insulatorsat room temperature. This is an early indication that there is a mechanism forthermal conduction which is not related to electrical conduction. But it alsosuggests that when metals conduct heat the electrons are doing most of thework.The electron gas model of metals explains thermal conduction as follows.Imagine holding a metal bar in a �re. The electrons in the end that is inthe �re tend to be travelling much faster than those in the end which we areholding. But some of the fast ones may happen to be travelling towards the endwe are holding. They travel a certain distance before being scattered in somerandom direction. Thus they carry thermal energy along the bar and beforelong it becomes too hot to hold. In the Drude-Lorentz model the heat 
ow isproportional to the tempertaure gradient1 and the constant of proportionality,i.e. the thermal conductivity � of the free electron gas, turns out to be� = 23 ���CVm (1.7)where �� is the average electron energy and CV is the heat capacity of the electrongas (the rate at which the energy density of the solid changes with T , keepingthe volume constant).To calculate �� we change the variable in Eq. 1.3 from speed to energy,obtaining the equilibrium energy distribution functionn�MB = 2np� (kbT )3=2p� exp(��=kbT ) (1.8)also known as the density of occupied energy levels per unit volume, or simplythe density of occupied energy levels. The average electron energy is then�� = 1n Z 10 � n�MB(T )d� = 3kbT2 (1.9)(the classical \equipartition" result for three degrees of freedom). Since theelectrons do not interact, the total energy of the electron gas is equal to thesum of energies of the individual electrons and it follows thatCV = n� @��@T �V = 3nkb2 ; (1.10)and so � = 3k2bnT�2m : (1.11)Eq. 1.11 gave thermal conductivities which again were in quite good agreementwith experiment.1This is known as \Fourier's law" and is the thermal equivalent of Ohm's law.



1.1. THE DRUDE-LORENTZ MODEL 9Better still, Eqs. 1.5 and 1.11 gave a \Lorenz number" L, de�ned by �=(�T ),of L = 32 �kbe �2 : (1.12)This explained the empirical observation of Wiedemann and Franz (1853) thatL is independent of T and varies very little from metal to metal. The equationalso reproduces the observed numerical value of L.1.1.4 Failure of the modelHidden behind this great triumph of the Drude-Lorentz model there was adi�culty: it predicts the contribution to CV due to free electrons is 3nkb=2.In fact CV has this approximate magnitude for both metals and insulators.2It must be concluded that (i) there is a contribution to the heat capacities ofall solids which we haven't yet identi�ed, and (ii) the electronic contributionpredicted by the Drude-Lorentz model for metals is not observed. The problemwas a serious and stubborn one and cast a shadow over the free electron modelfor the next twenty years.In fact there was an older puzzle. The work of Faraday, Amp�ere, Lenz etc.had shown that a current-carrying wire experiences a force (the Lorenz force)when placed in a magnetic �eld. In 1879 Hall tried to determine whether thisforce acted on the wire as a whole or on some substituent responsible for theelectric current. He predicted that the force would act upon the substituent (i.e.the electrons) and, since their path length through the wire would be parabolicinstead of straight (and therefore longer), an increase in electrical resistanceshould be observed. Hall failed to observe what we now call magneto-resistance(which is usually very weak), but found that a voltage built up across the wireperpendicular to the direction of the current.Hall quickly realised he had overlooked something. Initially the electrons aredrawn sideways by the magnetic �eld but then they build up on the edge of thewire. This creates an electrostatic repulsion that eventually balances the Lorenzforce, preventing the transverse motion of further electrons. Having explainedthe origin of this transverse voltage, Hall was in for another surprise. The `Hallvoltage' observed for Au, Cu, K and Na suggested that these metals have ap-proximately one free electron per atom. This all �tted with clues from chemistryabout the \monovalent" nature of these elements. But the Hall voltages for thedivalent metals Mg, Cd and Be and the trivalent metal Al were found to havethe wrong sign, as if the current were being transported by positively chargedparticles. This is not in keeping with our picture of conduction by free electrons.
2It is generally found that CV � 3Nkb works well for both metals and insulators.



10 CHAPTER 1. THE FREE ELECTRON MODEL1.2 Sommerfeld model of the free electron gasWe observed in the �rst lecture that there are only three basic ingredients tothe free electron model of the metallic state: the electronic states, the statisticsof how those states are occupied, and the damping e�ect caused by the conduc-tion electrons being scattered. The Drude-Lorentz model (based upon classicalphysics) had some success but could not be reconciled with all the experimentalfacts. Where did we go wrong? In this section we will start again but this timeusing a quantum mechanical approach. We'll do more of the maths but don'tbe put o� by that - there is only one important new idea. (The Pauli principle.)When puzzles like the black-body problem of electromagnetism and the heatcapacity problems for solids arose in the nineteenth century, doubts were raisedabout the understanding of statistical mechanics and thermodynamics. It wasclear that the \equipartition of energy" derived from the Boltzmann law3 wasnot universal. We now believe that the Boltzmann law does hold, the problemlay with the nature of matter itself.The 1920's saw the advent of a quantum mechanical description of atoms.The de Broglie wavelength for an electron with energy 13.6 eV (the kineticenergy of an electron in a hydrogen atom) is a few �A and this is of the samemagnitude as the interatomic separations in condensed matter. On this basisone might expect that electrons in solids will demonstrate di�raction and inter-ference. Perhaps we need to take this seriously. 4 Maybe we should also considerthe many body nature of the electron gas. In the \one-electron approximation"one replaces the true (unknown) wavefunction of the whole system which wedenote 	N(r1; r2; � � � ; rN ) by an approximate one built up from states whicheach describe only one electron:  1(r1);  2(r2); � � � ;  N(rN)). Maybe we shouldbe aiming to get 	N rather than considering each electron separately.We will return to these two issues when we get a bit more sophisticated, butSommerfeld brushed them aside by continuing to assume that the conductionelectrons in a metal do not interact with each other or with the ions. If theydon't feel the ions, they can't be di�racted by them. If they can't feel eachother, then the one-electron approximation is exact. Sommerfeld pointed outthat there is something more fundamental to grasp: the quantum statisticstheorem. This states that the wavefunction of a system of identical spin-halfparticles must be anti-symmetric with respect to interchange of any two of thesubstituent particles. Within the one-electron approximation it follows that notwo electrons can be in the same quantum state, and we usually call this thePauli principle. In a rather mysterious way the electrons in a metal would besomehow aware of each other even if there were no Coulomb force between them.We now need to (i) �gure out what are the states (using quantummechanics),then (ii) make sure we put only one electron in each.3This states that the probability of a system being in a state which has energy E isproportional to e�E=kbT .4In a few weeks we should realise that this is possibly the most important observationin the whole course - it will explain the occurrence in nature of metals, semiconductors andinsulators.



1.2. THE SOMMERFELD MODEL 111.2.1 The eigenstatesStarting with the time-dependent Schr�odinger equation we write the wavefunc-tion of a free electron as the product of a spatial function and a temporalfunction:  (r)T (t). It is straight forward to show that T (t) = exp(�i�t=~)where � and  are the eigenenergy and wavefunction in the time-independentSchr�odinger equation. States of this form are termed stationary states sincetheir probability density ( T )( T )� equals   � and is independent of time.5For a free particle the time-idependent Schr�odinger equation is simply� ~22mr2 (r) = � (r) (1.13)and one can easily show that  k(r) / eik:r (1.14)are eigenfunctions with energy �(k) = ~2k2=2m. Notice that the full wave-function of the free electron has the form exp i(k:r � �t=~), the equation fora plane wave with wavevector6 k. There are in�nitely many such solutions ofthe Schr�odinger equation and so we have distinguished them by writing k as asubscript on the wavefunction symbol.  k(r) is also an eigenfunction of the mo-mentum operator: �ihr k(r) = ~k k(r), and so each electron has well-de�nedmomentum given by ~k.7 Just as in the classical treatment, we have � = p2=2mand any momentum is allowed.All pieces of metal are �nite in size so one might wonder what happens tothe electrons as they encounter a surface. In any reasonably sized sample sur-face e�ects are negligible and we can largely avoid them by imposing periodicboundary conditions. Consider a macroscopic piece of metal in the shape of acube with linear dimension L and volume W = L3. Periodic boundary condi-tions mean that if an electron passes through any particular face of the cube itimmediately re-enters it cube through the opposite face. Mathematically thismeans  k(x+ L; y; z) =  k(x; y; z) etc: (1.15)Combining Eq. 1.14 and 1.15 we �nd that the components of k must be of theform kx = 2�L � integer etc: (1.16)Imposing boundary conditions has introduced an arti�cial restriction on theallowed k vectors (and hence momenta): they are evenly distributed with aspacing of 2�=L in the x; y and z directions. But by choosing L to be very largewe can ensure that the allowed k vectors are arbitrarily close together.5Stationary states have a precise energy and an in�nite lifetime in accord with the energy-time form of the uncertainty principle ���t & ~.6The wavevector of a plane wave has magnitude 2�=�, where � is the wavelength, andpoints in the direction of propagation of the wave.7We don't need to make a fuss about it but there is an important physical principle here:for every symmetry there is a corresponding conservation law. Whenever a particle moves in aconstant potential (i.e. the potential is translationally invariant) then its linear momentum isconserved. Similarly, if a particle moves in a central potential (i.e. the potential is sphericallysymmetric) then its angular momentum is conserved.



12 CHAPTER 1. THE FREE ELECTRON MODELA good thing about having a discrete set of allowed states is that it is easierto keep track when we have to count them. The volume (of k-space) aroundeach allowed k point is (2�)3=W , and the density of allowed momentum statesis therefore gk = W(2�)3 : (1.17)Clearly it is uniform, much the same as for the classical electron gas. Thecorresponding density of energy levels isg� = W4�2 �2m~2 �3=2p�: (1.18)It is conventional at this stage to multiply this result by a factor of 2 to accountfor spin degeneracy of the states, and to divide by W to give the density ofstates per unit crystal volume.1.2.2 Ground state of the quantum free electron gasNow let's consider how the states are occupied, starting with the T ! 0 limitwhich we call the ground state. In the classical electron gas the velocities (and� and k) collapse to zero, but the Pauli principle allows only two electrons (withopposite spin) to have k = 0 in the quantum electron gas. We must placethe rest of them in successively higher energy states. The highest occupiedlevel we call the Fermi level, denoting its energy �f and the magnitude of itswavevector kf . In k-space the levels are now uniformly occupied for k � kfand unoccupied outside this Fermi sphere. The Fermi energy is determinedsimply by the number of conduction electrons per unit volume and the availabledensity of states. For most metals �f is of the order of a few eV (where 1 eV =1:6� 10�19 J) and kf � 1011 m�1 = 10 �A�1, corresponding to a Fermi velocityof vf � 106 ms�1. It is vital to realise vf is the typical electron velocity in thequantum free electron gas at T = 0. It should be clear that the properties ofthe free electron gas are dominated by the Pauli principle and in this sense thefree electron gas is fundamentally quantum mechanical.1.2.3 The heat capacityWhen T > 0 there is a �nite chance that the available thermal energy will excitean electron into a state above the Fermi level. You will have seen last year thatthe probability of a state with energy � being occupied is now given by f �FD, theFermi-Dirac factor: f �FD(T ) = 1exp [(�� �(T ))=kBT ] + 1 : (1.19)For our purposes we can take the chemical potential �(T ) to be equal to theFermi energy �f .8 It is easy to show that f �FD(T ) � 1 for � . �f � kbT , andf �FD(T ) � 0 for � & �f + kbT .8Strictly speaking it is determined by the requirement R10 n�FD(T )d� = n. In fact, �(0) =�f , and �(T ) varies negligibly for temperatures below the melting points of most metals.
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Figure 1.2: Comparison of the density of occupied states at room temperature(solid curves) and T = 500 K (dotted curves) for an electron gas with the densityof metallic sodium. MB and FD refer to Maxwell-Boltzmann and Fermi-Diracstatistics respectively.At �nite temperature the density of occupied states in the quantum electrongas is n�FD(T ) = g�f �FD(T ) (1.20)where g� is just the density of states given by Eq. 1.18. At everyday tempera-tures (say less than 104 K) the Fermi-Dirac distribution is spectacularly di�erentfrom the Maxwell-Boltzmann distribution.9 n�FD and n�MB are compared in Fig.1.2.Recalculating �� (Eq. 1.9 on page 8) with FD statistics, Sommerfeld foundthat the heat capacity of the quantum free electron gas to beCV = �22 �kBT�f �nkB: (1.21)Since the Fermi energy is so much larger than usual thermal energies (at roomtemperature kBT � 0:02 eV), it is evident that the Sommerfeld model predictsa much lower heat capacity than its classical counterpart (typically a factor of� 50 smaller at room temperature).� What is the physical origin of this result?Increasing the temperature of the classical electron gas moves the whole dis-tribution of occupied states to higher energy, as can be seen in Fig. 1.2. In thequantum gas only those very few electrons within � kBT of the Fermi energycan be thermally excited because of the Pauli principle. At low temperature theSommerfeld model gives a reasonable estimate of the heat capacity of real met-als, although the experimental data for potassium in Fig. 1.3 on the followingpage reveals a contribution to CV which appears to scale with T 3. Near roomtemperature the heat capacity of most solids is of order nkb and the electronic9When kbT � �f , n�FD converges towards n�MB, i.e. we approach the classical regime. Wemight have deduced this by considering the electron thermal wavelength for T � �f=kb.
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Figure 1.3: Temperature dependence of the heat capacity CV of Potassium.The linear relation of CV to T predicted by the Sommerfeld model is quite wellreproduced by experiment at low temperature. However a cubic contribution(which dominates at higher temperature) can be seen by plotting CV =T againstT .contribution is completely swamped. Clearly there is another type of e�ect here,but at least we now understand the electronic contribution to the heat capacityof metals.1.2.4 Electrical conductivityIt is worth emphasizing that although Sommerfeld solved the Schr�odinger equa-tion to calculate the stationary states of the free electron gas, he appealed to acollision mechanism to explain electrical resistance just as his predecessors haddone. Since the Drude estimate of the collision time seemed to work (it gavethe correct room temperature electrical conductivity), this value � � 10�14 swas retained by Sommerfeld. But in the Sommerfeld model the average electronspeed at this temperature is about 10 times greater than Drude and Lorentz hadcalculated. We must therefore conclude that �, the average distance travelledbetween collisions, is � 10 times longer than Drude and Lorentz had supposedand this must cast doubt over the collision mechanism they had advanced.We should abandon the Drude collision mechanism at this stage, but some-thing must scatter electrons, and experimental measurements provide a fewsmall clues. It was well known that the conductivity of metals decreased steadilywith T . It was also found that it decreased suddenly upon melting (at constantT ). The conductivity of pure metals was found to be reduced when impuritieswere added. We're not quite ready to digest this information yet, but we'll tryto come back to it.Sommerfeld's retention of a classical description of electron dynamics (Eq.1.4) requires some justi�cation. How do the wave-like eigenstates of the quantummechanical free electron gas relate to the particle picture implicit in classicaldynamics? We'll tackle this matter in \Solid state physics" (SSP) next term,but in case you are interested: we must identify each electron with a wavepacket



1.2. THE SOMMERFELD MODEL 15of free electron waves. These are spatially localized on the scale of the collisionlength, but are delocalized on the scale of the atom.1.2.5 Thermal conductivityHow did Drude and Lorentz get good values for � when their calculated value ofthe electronic contribution to CV was so poor? By looking at Eq. 1.7 on page 8we see that Drude and Lorentz were very fortunate. By using MB statisticsthey overestimated CV but also underestimated the average electron energy bya similar factor. When Sommerfeld corrected CV and �� he obtained more orless the same � as Drude and Lorentz, which had already been found to be inagreement with experiment.1.2.6 SummaryThere are three main pieces to the Sommerfeld theory of the electron gas:� Solution of the Schr�odinger equation to get the allowed electronic states.� The use of Fermi-Dirac statistics to determine the population of the states.� Electron scattering: Appeal to some (unknown) scattering mechanism, andclassical electron dynamics (between collisions).After the work of Sommerfeld the free electron model was in much better shape.The electical conductivity, thermal conductivity, heat capacity and re
ectivitywere all quite well described, but a number of questions remained:10What is(are) the true mechanism(s) for electron scattering?How can the conduction electrons in a metal move seemingly unhindered oversuch long distances? (� in pure metal crystals can be increased to centimetresby lowering T .)What is the dominant contribution to the heat capacities of solids for T & 10K?Why does conduction of electricity in some metals appear to take place via thetransport of positively charged particles?To �nd the answers and to arrive at a more satisfactory description of met-als (and condensed matter in general) we must now consider what happens ifthe electrons are allowed to interact with the ion cores and with each other. Todo this we need to start taking an interest in where the ions in a metal are. Weturn therefore to the subject of atomic structure.10To the questions listed below we might add a number of deeper questions: Why are someelements metals and some not? What holds a metal together if the valence electrons do notform localized bonds like in a molecule? Why are some electrons free in the �rst place whileothers remain bound to the ion cores? These are di�cult questions to answer properly, butwe'll try in SSP.



Chapter 2Structure at the AtomicScaleThe discovery of electrolysis by Faraday in the nineteenth century was quitemomentous and showed that \chemistry is electricity". When atoms come to-gether and form chemical bonds it is electrons that are responsible. Given thepre-eminent position the electron seems to have, our ultimate aim is to constructa respectable theory of the electronic structure of condensed matter. Havingintroduced the free electron model we now have to account for the interactionsbetween electrons and the electron-ion interactions. This is di�cult, so we willstart to focus increasingly on the simplest form of condensed system, namelythe perfect crystal.1 But obviously we need to take an interest in atomic scalestructure, i.e. where the atoms actually are.But before we focus down in the next chapter, let's think more generallyabout the interactions present in condensed systems and (qualitatively at least)the relationship between chemical bonding and structural form. As well asconsidering ground state structures we will brie
y consider phase diagrams andthe nature of phase transitions. In x2.3-2.5 we will develop a systematic wayof describing the structure of condensed systems, before seeing the primarymeans of experimentally determining atomic scale structure (x-ray scattering)in x2.6-2.7.2.1 Chemical BondingWhen we bring various types of atoms together (e.g. a bunch of silicon atoms,a bunch of sodium atoms, a bunch of chlorine atoms, a mixture of sodium andchlorine etc.) rather substantial electronic rearrangements may take place. Weusually refer to this as chemical bonding, but in all cases it is only the outermostelectrons of an atom that can participate.2 The number and type of bonds that1It turns out that even this is di�cult.2The inner electrons remain tightly bound to the nuclei and are often called core electrons.On practical grounds we have no choice, but to say that core electrons play no role in bondingwould not be wholly true. For example, the group 4 elements carbon, silicon, germanium,tin and lead all have the same outer electronic con�guration but many di�erent properties.Carbon is very special, having a branch of chemistry all to itself. Subtle di�erences in the17



18 CHAPTER 2. ATOMIC STRUCTURE
Covalent

Molecular

Ionic MetallicFigure 2.1: Schematic representation of the charge density for the four maintypes of chemical bonding.may be formed depends on how many electrons each atom possesses, known inchemical circles as the theory of valency. The concept of chemical bonding dealslargely with the spatial redistribution of electron density when atoms combine,and this is what we will brie
y describe here. Only in the simplest cases can wewrite down meaningful expressions for interatomic potentials. In fact in somecases we will not even be able to o�er much of an explanation why the bondshold together at all. Some things that we are very familiar with are actuallyquite hard to explain.2.1.1 Molecular bondingWe start with the elements on the far right of the periodic table, the \noblegases": helium, neon, argon, krypton, xenon and radon. The atoms of thisgroup of elements are extremely inert. We will assume that the electron orbitalsthat are present when these atoms are isolated remain more or less intact underall circumstances. Since their electronic structure does not change, we can thentreat each atom as a composite particle.An \ideal" gas has an equation of state of the formPV / T (2.1)where P is pressure and V volume. You will remember that this doesn't quitework for real gases. Firstly, we must account for the fact that atoms have a�nite size and they can't interpenetrate each other. We can try to account forthis by making a correction to the V in Eq. 2.1. We also have to �ddle withP since the atoms of a real gas attract each other a little bit. We will squeezequite a lot out of these two observations.Consider two noble gas atoms denoted 1 and 2 separated by a distancer. Although each atom is spherically symmetric on average, at any particularcores of these elements are to blame.



2.1. CHEMICAL BONDING 19instant one of the atoms may have a dipole moment p1. This dipole will give riseto an electric �eld p1=r3 at the other atom, and this �eld will induce a dipolemoment with magnitude p2 = �p1=r3 in the second atom, where � is the atomicpolarisability. The electrostatic energy of the two dipoles is proportional to�p1p2r3 = ��p12r6 : (2.2)Although the time-average of each dipole is zero, their average interaction energyis non-zero since it depends on p12 which is always positive. This attractionbetween 
uctuating dipoles is known as the van der Waals or London force.Pauli repulsion of the electrons from adjacent molecules prevents molecularsolids from collapsing in on themselves. This \force" is extremely strong forsmall separations and so must have shorter range than the 
uctuating dipolarattraction. It is conventional to represent the Pauli repulsion by a potentialwhich varies inversely with the 12th power of r. The total potential energy fortwo molecules is then given byV (r) = 4V0 "� r̀�12 �� r̀�6# ; (2.3)known as the Lennard-Jones potential, plotted in Fig. 2.2. V0 gives the depth ofthe energy well, while ` is a length determining the range of the potential (theminimum of the curve occurs at 1:09`). Detailed analysis of the departure ofthe noble gasses from ideal behaviour yields the values V0 � 0:01 eV and ` � 3�A. The discussion above allows us to guess the preferred ground state (i.e. T =0) structures of the noble solids.3 We have seen that the origin of interatomicattraction is the 
uctuating dipole-dipole interaction, and this suggests that thenoble elements will crystallise with each atom having the maximum possiblenumber of neighbours. The more dipoles around, the greater the attraction andthe lower the energy. This is indeed the case - they adopt the face centred cubiccrystal structure (which we will discuss soon) where the packing is as dense aspossible with each atom having 12 nearest neighbours.We can also estimate the energy of the ground state of the noble solidsby assuming it can be expressed as a sum of interaction energies of Lennard-Jones form for all pairs of atoms in a crystal. We will do this properly in SSPnext term, but a good estimate can be made by further assuming that onlynearest neighbour pairs make a signi�cant contribution. We deduce the groundstate energy of the noble solids to be of order �0:1 eV per atom, where zerocorresponds to in�nite separation.4 Experimental measurements verify suchestimates, but the calculations are most successful for the heavier noble solidsand tend to overestimate the cohesion of the lighter ones.This discussion has focussed (for simplicity's sake) on the noble gases, butin fact these are a special case of \molecular bonding" in which the molecularsubunits are single atoms. There are many other systems (e.g. carbon dioxide,oxygen, methane etc.) which comprise molecules which attract via the van3We are making the reasonable assumption that the ground state will be a solid.4Minus the ground state energy is sometimes called the cohesive energy, given these de�-nitions.
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Figure 2.2: The Lennard-Jones potential energy as a function of the separationof two atoms.der Waals interaction, but whose internal molecular structure5 is perturbedonly negligibly by the weak intermolecular bonds. In general the structure of amolecular solid is determined by the shape of the constituent molecules as well asthe drive for close-packing caused by intermolecular van-der-Waals interactions.2.1.2 Covalent bondingThe distinguishing property of covalent bonding is the enhanced electron densityalong the lines joining adjacent atoms, usually referred to as directional bonds.In the crudest terms it is said that a covalent bond is formed by the sharingof a valence electron with a neighbouring atom which chips in an electron ofits own. In covalent systems the charge density of the participating atoms isusually considerably redistributed. Experiment shows that covalent bonds areextremely strong. It is not possible to put together a crude theory of the cohesiveenergy of covalent bonds, for that we need a quantum mechanical e�ort,6 butit is possible to understand the basic idea.The best starting point for discussing covalent bonding is the electronicstructure of molecules. We'll take the simplest possible one: the H+2 molecule.This consists of two protons and a single electron. We assume that the protonsare �xed at some particular distance apart and our task is to calculate the5The bonds within the molecules are strong and usually covalent.6We may return to this later in CMP, but you should see this in \Atomic and molecularphysics" or in SSP.



2.1. CHEMICAL BONDING 21wavefunction of the electron.7 With these assumptions and some fancy geometrythe electron wavefunction of H+2 can be solved analytically. We won't botherdoing that because (i) it is hard, and (ii) the procedure is not general. If wehave more electrons, we are back to insoluble many-body problems so we mayas well do an approximate treatment from the start.The \molecular orbital" (MO) of the electron in H+2 , which we denote j MOi,satis�es the Schr�odinger equation:H j MOi = � }22mr2j MOi+ UABj MOi = �MO j MOi: (2.4)Let's assume that j MOi can be well approximated by a linear combinationof  A and  B , 1s hydrogen wavefunctions centred on proton A and proton Brespectively:  MO = cA A + cB B : (2.5)Since the right hand side is a linear combination of atomic orbitals this ap-proach is called LCAO-MO. Inserting Eq. 2.5 into the Schr�odinger equation,pre-multiplying by  A, integrating over all space, and then repeating the proce-dure using  B , we �nd that the eigenenergies � of the molecular orbitals satisfy� HAA � � HAB � �SABHBA � �SBA HBB � � ��cAcB� = 0 (2.6)where Hij are the Hamiltonian matrix elements h ijH j ji, and Sij are theoverlap integrals h ij ji.Since UAB(r) = U(r �RA) + U(r �RB) (2.7)where RA and RB are the positions of atoms A and B, and U is the potentialwhich enters the Schr�odinger equation for the H atom, it follows thatHAA = �A + Z �A(r)U(r �RB) dr (2.8)where �A = j Aj2 and �A is the electron energy for a single H atom. The secondterm on the right hand side is negative and represents a lowering of the energyof an electron on atom A due to the tail of the potential on the nearby atom B.We will neglect this \crystal-�eld" shift since it is not essential to understandingthe covalent bond. We can also neglect the overlap integrals since these mustbe small. The key ingredient is HAB , which reduces toHAB = h B jU(r �RB)j Ai = HBA (2.9)and is usually called the bond integral,8 and denoted h. It is important to noticethat since the hydrogen 1s wavefunction is real and the potential U is negative(i.e. attractive), it follows that h < 0.7There is a lot of cheating here. By �xing the positions of the protons we have reducedthe three body problem to one involving the movement of a single particle (the electron) inan external �eld (that produced by the �xed protons).8By inserting Eq. 2.5 into the time dependent Schr�odinger equation it can be shown thatjhj also gives the transition rate for an electron hopping between the two atoms and hence his sometimes called the hopping integral.
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Figure 2.3: Wavefunctions and energies for the H+2 molecule.



2.1. CHEMICAL BONDING 23The MO energies are obtained by setting the determinant of Eq. 2.6 to zero,leading to the two solutions �MO = �� h: (2.10)Inserting these values back into Eq. 2.6 yields the result cA = �cB and hence MO =  A � B . The H+2 wavefunctions and energies are shown schematicallyin Fig. 2.3. The cA = cB solution leads to an increased density in between theprotons and a lowering of the energy. We therefore speak of this as the bondingstate and the internuclear charge as the bond. The other state is antibonding. Ifthe electron is in this state the molecule will fall apart.We have seen how combining atomic orbitals can lead to chemical bonding.The simple picture we have presented can be pushed a little further. Imaginenow adding a second electron. The Pauli Principle allows us to accommodatethis in the bonding orbital. There will be an electron-electron repulsion whichwould tend to destabilise the molecule a bit but we are entitled to expect theneutral H2 molecule to hold together. For basically the same reason we wouldexpect Li2 to be stable. Be2 is not stable because the Pauli principle would forceas many electrons into an antibonding state as there are in the bonding state.There is no net bene�t in the molecule forming. Clearly the origin of cohesion incovalent systems is the bonding states getting �lled and the antibonding statesremaining vacant. jhj is typically a few eV and so covalent bonding is strong.The covalent Group IV elements are slightly more complicated. As freeatoms their valence electron con�gurations are s2p2. Since the s subshell is�lled it would appear that only two covalent bonds can be formed. In factit is highly bene�cial to start by promoting the atom to the sp3 con�guration(which costs a small amount of energy) so that four bonds can be formed (whichreleases a lot of energy). The result when we bring group IV atoms togetheris tetrahedral coordination. In this case the usual atomic orbitals are not agood starting point for the variational optimization of the molecular orbitals.Instead one starts with \hybridized" orbitals (in this case sp3 hybrids) whichare linear combinations of orbitals on the same site, constructed so as to possesstetrahedral symmetry.2.1.3 Hydrogen bondingThe inter-molecule bonds in some condensed systems containing hydrogen arestronger than expected. Hydrogen atoms are special because when they par-ticipate in a covalent bond with an electronegative atom in a molecule theytend to look like bare protons from the outside. The negatively charged bitsof nearby molecules then tend to align themselves so as to maximize the elec-trostatic attraction with these exposed positive charges. Hydrogen bonding canalso occur within big molecules, such as DNA for example where it is responsiblefor holding the double helix together.2.1.4 Ionic bondingTo a good approximation, the ionic solid sodium chloride is e�ectively an arrayof weakly distorted ions, as shown in Fig. 2.1. Although the 
uctuating dipoleattraction is also present, it is negligible compared to the immense electrostatic
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Figure 2.4: Energetics of RbBr.forces between charged ions.9 The ions are again prevented from collapsing intoeach other by Pauli repulsion when the bond length becomes small.The preference for electron transfer is determined by the energetics of thefree atoms. Ionic crystals are formed when strongly electronegative and stronglyelectropositive ions are combined. This essentially limits the possibility to com-pounds containing group I, II, VI and VII elements.10 Let's consider RbBr. Itcosts 4.2 eV to remove an electron from a Rb atom, i.e. the energy of the Rbatom is 4.2 eV lower than that of the +1 Rb ion. However, the energy of theBr atom is 3.5 eV higher than that of the -1 Br ion, and so Br atoms wouldprefer to have an extra electron. At �rst sight it would appear that the bene�tof transfering an electron to the Br atom would be less than the cost of takingone o� the Rb atom. This is only true if the ions are an in�nite distance apart.In crystalline RbBr the bond length is 3.4 �A which gives an interaction energybetween adjacent ion pairs of �e2=4�"0r = �4:2 eV, which tips the balancestrongly in favour of bonding, as shown in Fig. 2.4.To estimate the cohesive energy we can assume that the dominant contribu-tion is the Coulomb energy of the ion array.11 This turns out to be a bit moredi�cult than we might expect, but we are all familiar with the result:Ecoh = � q24�"0r0 : (2.11)r0 is the nearest neighbour distance, and jqj is the net charge on each ion. TheMadelung constant � is determined by the crystal structure; for the cesiumchloride, sodium chloride and zincblende structures � is 1.7627, 1.7476 and1.6381 respectively. Using experimentally determined lattice parameters and9Typical ionic cohesive energies are of order 8 eV/molecule. The van der Waals interactionis also electrostatic in nature but is only present due to small temporal 
uctuations in chargedensity. The electrostatic forces between charged ions are very strong and time-independent.10Many covalent solids have polar bonds which may be thought of as mixed ionic-covalentbonding.11Since the ions are weakly perturbed we only consider inter-ion interactions. To be rigorouswe should include the dipolar attraction and the Pauli repulsion but these terms don't changethe picture that much.



2.2. PHASE DIAGRAMS 25the appropriate Madelung constant, Eq. 2.11, though a bit crude, predicts thecohesive energies of the alkali halides to within � 10%. The CsCl structure hasthe largest Madelung constant and so has the most favourable Coulomb energy.We are therefore entitled to wonder why all the alkali halides except CsCl, CsBrand CsI adopt the NaCl structure? The answer lies in some simple geometry,as we shall see in SSP.2.1.5 Metallic bondingWe are familiar with the model of the metallic state in which ion cores aresurrounded by a completely delocalized sea of conduction electrons, as shownin Fig. 2.1, but explaining the cohesion of metals is quite involved. We willsee later that the free electron model gives a surprisingly good description ofthe electronic structure of many metals, but it gives rather little insight intocohesion since it accounts only for the electronic kinetic energy. Allowing theelectron waves to be delocalized gives a reduction in their average kinetic energybut what is the attractive term which binds the atoms of a metal together?(Experiment tells us that metallic cohesive energies are � 1 eV per atom.) Asone moves to the left across the periods and down the groups of the periodictable the properties of the elemental solids become more metallic. We wouldalso like to explain this.One observation is useful however. We know that the maximum of thevalence level wavefunctions of the Cu atom, for example, is greater than theinteratomic distance in metallic copper. While the valence electrons in metalliccopper are not piled up in bonds, it would appear that many neighbouring atomscontribute to the bonding. In fact we might speculate that the metallic statefavours maximising the number of nearest neighbours.2.2 The phases of matter: The simple case ofargonIn the previous section we reviewed the basic types of chemical bonding, tryingwhere possible to anticipate the links between bonding and ground state struc-ture. Here we brie
y consider what happens for T > 0. Again we will focus onthe noble gases since for these systems we have an intermolecular potential en-ergy curve (i.e. the Lennard-Jones equation) which is valid for the solid, liquidand gaseous phases.2.2.1 Classical dynamics?Just as we used the Lennard-Jones potential to learn about the ground state ofargon in x2.1.1, so we should be able to use it to deduce the dynamics of argonatoms (and ultimately the phase diagram), just as we do for the bodies in thesolar system using our knowledge of the gravitational force, for example.� But is it valid to assume that argon atoms can be described by this clas-sical approach?1212Note that the ingredients of the Lennard-Jones potential are quantum mechanical inorigin. This is obviously true of the Pauli term, but the atomic polarisability and the average



26 CHAPTER 2. ATOMIC STRUCTUREA quick calculation of their thermal wavelength suggests that these atoms willbehave as classical particles at any remotely familiar temperature, such as roomtemperature. But is a classical description of argon atoms valid for T = 0? Asabsolute zero is approached, thermal agitation ceases and one may expect themomenta of the atoms to collapse. In this event the thermal wavelength of theatoms would inevitably exceed the interatomic spacing at low temperture. Sodo we need a quantum mechanical treatment?13 No, paradoxically, because ofa special quantum mechanical e�ect stemming from the Heisenberg uncertaintyprinciple (�x�p & }). This requires that an atom never come to rest sincethis would imply �x = �p = 0. Rather it must retain zero point motion. Ifthe noble elements form crystals then �x must, by de�nition, be less than theinteratomic spacing, and it follows that the de Broglie wavelength is also lessthan this spacing, and hence a classical description is adequate, provided thatwe remember that it misses out the zero point energy.As well as justifying our classical Lennard-Jones approach, we have juststumbled across something useful. The neglected zero point energy is� }22M(�x)2which scales inversely with atomic mass M . Taking �x to be of the order ofAngstroms we �nd that the zero point energy is just the right order of magni-tude to explain the calculated over-binding of the lighter noble solids mentionedabove. We should mention here that the zero point energy in He is so greatthat it prevents a crystal forming even at T = 0, unless considerable pressure isapplied. At low temperature helium is a very special quantum 
uid.2.2.2 The phase diagramAn ensemble of argon atoms may form a solid (high density, incompressible,rigid), a liquid (high density, incompressible, not rigid) or a gas (low density,compressible, not rigid) depending on the temperature T and the pressure P .This behaviour is usually represented using PV T phase diagrams, as in Fig. ??.You should be familiar with such things from the \Properties of matter" coursea couple of years ago, but let's take a quick look.The boundaries between the solid, liquid and gas phases are shown in the\P-T" diagram on the left. Imagine starting with the gas at temperature T1and squeezing it, keeping the temperature constant. We can see what happensby following the T1 isotherm in the P-V diagram on the right. At �rst the gas iscompressed (i.e. it takes up less volume), then it starts to spontaneously solidifyand we enter a region of gas-solid coexistence. In this region the squeezingdoesn't increase the pressure but rather it progressivley converts all the matterto the solid phase. When this process is complete we are left with an (almosttotally) incompressible solid and so the isotherm turns near vertical. For theT2 isotherm we see a more elaborate progression: gas to gas/liquid to liquid todipole moment are determined by wavefunctions and energies obtained from the hydrogenicSchr�odinger equation. We have used quantum mechanical insight to concoct the interatomicpotential V , we then imagine the atoms to move like classical particles under the in
uence ofthis potential.13Note that this was not the issue that drove us toward a quantum description of the electrongas, since the electrons were assumed to not interact with anything. Here we are assuming theatoms do interact, so perhaps we need quantum mechanics to correctly describe the interationbetween these waves.
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Figure 2.5: Schematic phase diagrams of argon. S means solid, L means liquidand G means gas. TP refers to the \triple point" where all three phases cancoexist, while CP is the \critical point" beyong which the liquid-gas phaseboundary diappears. The arrow shows that its is possible to go smoothly fromthe liquid to the gas phase (i.e. without experiencing a phase transtion).liquid/solid to solid. But then at higher temperature still (i.e. above the criticaltemperature Tc) the liquid phase seems not to be present.14Phase diagrams are determined by making experimental measurements butwe also know, in principle at least, how to calculate them: sum up the Boltzmannfactors for each con�guration of the system to get the partition function, formthe Helmholtz free energy, di�erentiate to obtain the equation of state. This isexceedingly di�cult. With some clever approximations, the phase diagram forthe Lennard-Jones potential can be computed and such calculations have beenable to reproduce experimental results quite well. Here we simply wish to showthat a good deal of insight can be gleaned from just the basic facts. We wouldjust like to understand the very basics of condensation (gas to liquid transition)and crystalization (the gas to solid or liquid to solid transition).At T = 0 a system adopts the state for which its energy (in thermodynamicswe usually call it the \internal energy" and use the symbol U) is minimized.At �nite temperature and with the system in contact with a thermal bath, it isthe Helmholtz free energy H = U �TS, where S in the entropy, which �nds itsminimum possible value. If the atoms are far apart then U becomes negligible.It follows that minimization ofH is achieved by maximizing the entropy (crudelyspeaking, the disorder). This is the gaseous state. In forming the liquid andsolid states we can see that a trade-o� takes place in which a loss of entropymust be outweighed by a lowering of U when the atoms are in close proximity.The simple notion that condensation is due to interatomic attraction appearsto be con�rmed by the observation that kbTc � V0, where Tc is the critical14When there is no perceptible gas-liquid phase transition one sometimes describes thesystem as a 
uid rather than a gas.



28 CHAPTER 2. ATOMIC STRUCTUREtemperature above which the liquid state does not exist. Condensation becomespossible when the average thermal energy becomes less than the interatomic welldepth V0. But why then does the solid form above Tc?
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Figure 2.6: Schematic phase diagram of a hard-sphere sysem.One might wonder what would happen in a system where the constituentsdon't attract each other at all. The simplest way to explore this is to consider acollection of hard spheres for which the interatomic potential consists of just anin�nite energy barrier for separations less than an atomic diameter (to preventoverlap) and zero otherwise.15 One might suppose that Tc would also be neg-ligible for hard spheres and for the phase diagram to simplify somewhat. Thephase diagram for such a system is shown in Fig. 2.6. What we see here is prettymuch all that we see above Tc for the noble elements. Squeezing a gas of hardspheres leads to steady compression until suddenly crystallization begins whenthe spheres occupy � 50% of the available volume. There is now insu�cientspace for individual spheres to migrate around - they are locked into their ownplace on a crystalline lattice. We can now conclude that crystallization is due tointeratomic repulsion, which may not be intuitively obvious. Conversion to thesolid phase is complete when the occupied volume fraction reaches � 55%. Thisis more or less what happens along a supercritical compression isotherm for realsystems like argon, which suggests that we have isolated the crucial physics ofcrystallization.There is one more puzzle, however. It is quite hard to explain the freezingof hard spheres from the free energy point of view. Since they don't interact,the system of hard spheres has no potential energy, U is therefore just kineticenergy. At a given temperature this is the same for the solid and the 
uid phases.It follows that H can only be lowered by raising the entropy. Intuition wouldtell us that the solid state would have lower entropy, so how can crystallizationoccur? The key is to realise that the maximum possible packing of hard sphereswould give an occupied volume fraction of 74%, signi�cantly denser than thefreezing/melting densities in the hard sphere phase diagram. Thus the balls inthe hard sphere solid still have a bit of space in which they can randomly jiggle.15Such systems can be realised in the mesoscopic regime where the constituent is a plasticball with radius � 10�6 m.



2.2. PHASE DIAGRAMS 29In fact for density fractions around 50% each ball in the solid is surrounded bymore free space than in the hard sphere gas. Jiggling of spheres in their \ownspace" allows for an increase in entropy upon freezing and hence a lowering inthe free energy, as required.16If we squeeze the hard sphere solid we tend to destroy its free local volumes.But we don't produce the zero entropy perfectly close-packed crystal by thismethod. As we squeeze the jiggling crystal we �nd that the balls get jammedtogether in a disordered (�nite entropy) fashion at an occupation fraction of64%. Bernal �rst demonstrated this random close packing phase by pouringsmall balls into a balloon until it was full, then pouring in glue to �ll up thegaps.2.2.3 Beyond Lennard-Jones?The simple \6-12" potential is good for argon and the like, but what aboutother systems? Let's consider just a few.Liquid crystalsIf the molecular subunits are not spherical then the intermolecular potentialcannot be \central" (i.e. sperically symmetric). For long, thin and rigid (i.e.rod-like) molecules17 we get an inetersting complication to the phase diagram.If we cool an isotropic liquid consisting of such molecules a new phase withproperties of both a liquid and a solid can be formed. Put crudely, such systemstend to freeze (order) in an anisotropic fashion. The molecular positions remainrandom but their directions are not. In this nematic phase all the long axis ofall the molecules tend to point in the same direction, known as the \director".The nematic state is characterised by the ability to 
ow like a liquid, as themolecules are not locked in position, but also a degree of order, like a crystallinesolid, and is therefore referred to as a liquid crystal phase.If a small number of chiral molecules18 are added to a nematic liquid crystalit is found that the director tilts slightly and also rotates as one moves alongits original direction. Depending on the concentration of the chiral componentand also the temperature the periodicity of the rotation is about a micron. Itfollows that these cholesteric liquid crystal phases Bragg re
ect in the visibleregion of the electromagnetic spectrum.Cooling down a nematic liquid crystal may cause the rods to form orderedlayers perpendicular to the director. If the molecules are still free to move withinthese layers, then we have the smectic phase.All this complexity stems from the shape of the constituent molecules ratherthan any elaboration of the underlying physics contained in the Lennard-Jonesequation.16We should note that in a real system where interatomic attraction is present the increasein average coordination number (i.e. the average number of nearest neighbours) upon freezingwill also tend to lower the Helmholtz free energy of the solid in comparison to the 
uid.17Similar e�ects follow for plate-like molecules.18These are molecules which are structurally inequivalent to their own mirror images. Theyhave right and left handed forms.



30 CHAPTER 2. ATOMIC STRUCTUREAllotropesChemical bonding can also greatly complicate phase diagrams. For example,a number of distinct cystalline forms (known as allotropes) of the solid statemay be observed as the external conditions are varied. The existence of bothgraphitic and diamond forms of carbon is possibly the most familiar example.Plastic crystals, quasicrystals ...While liquid crystals possess orientational order but only limited positional or-der, the molecules in plastic crystals have no orientational order but their centresof mass exhibit translational order.Condensed matter can exhibit self-similarity, which means that it looks thesame on all length scales. Such fractal-like structures are ordered since theyare determined by a well de�ned `rule'. Surprisingly complex (and visuallyimpressive) structures can result from such simple instructions. Examples fromeveryday life include the fern, snow
akes, the cauli
ower and some silica gels.Of course in the real world self-similarity is present over a limited range of lengthscales.Some solids, which we call quasicrystals, appear to have no periodicity butgive rise to di�raction patterns with �ve-fold symmetry, which was unthinkableuntil relatively recently.19 It is has been shown that aperiodic structures inthree dimensions can result from taking a 3D \slice" out of a structure which isperiodic in a 6D hyperspace. It is not really understood (by me at least) whatthe physics of this 6D space is.2.3 Systematic description of atomic structure:Describing disorderIn the previous section we talked qualitatively about the microscopic characterof solids, liquids and gases, and about their macroscopic PVT relations. Wenow start to develop the techniques for systematically describing microscopicstructure.2.3.1 FluidsIf we were able to take a snapshot of an ideal gas and discover the positions of allthe atoms we would �nd them randomly distributed. Knowing that there is anatom at a particular point does not help us predict where any of the other atomsare: we say their positions are uncorrelated. Real gasses behave in this way inthe high temperature and low density regime. As the temperature is loweredintermolecular attraction starts to become signi�cant as molecules prefer to benear each other. As T is lowered still further these density 
uctuations grow insize and live for longer and are more numerous, although the density of the gasremains uniform when the molecular distribution is averaged over a su�ciently19In fact the �rst experimental observation of �ve-fold symmetry was met with disbeliefand scorn.



2.3. DESCRIBING DISORDER 31large spatial region and time period. Eventually, lowering T will produce aliquid which is distinguished from a gas by its high density.20We tend to think of a liquid as an unstructured ensemble of molecules whichare continuously wriggling past each other and there is considerable truth inthis picture. However liquids are also distinguished from gasses by virtue ofmolecular correlation. A schematic representation of a snapshot of liquid argonis shown in Fig. 2.7 and it can be seen that, although long range order isnot established, and there also appear to be a few gaps, most argon atomshave an almost close-packed shell of nearest neighbours. Knowing that at aparticular instant there is an atom at a particular position allows us to predictwith good certainty that there will be approximately 5 or 6 (in 2 dimensions)other atoms about an atomic diameter away. Thus the atomic positions arestrongly correlated in a liquid.

Figure 2.7: Schematic representation of liquid argon.In order to allow quanti�cation of these 
uctuations in density about theglobal average, we now make a few de�nitions. The average number density20Strictly speaking we are being a little sloppy here when we make categorical statementsabout di�erences between liquids and gases. We already observed in 2.5 that it is possible toconvert a liquid to a gas and vice versa without any phase changes taking place. It is onlywhen the two phases coexist that we are truly able to distinguish them. In this case there isa visible \meniscus" separating the two phases.



32 CHAPTER 2. ATOMIC STRUCTUREfor the whole liquid � is just the total number of atoms I divided by the totalvolume W . If the density varies with position r, thenI = Z �(r) dr = Z � g(r)dr: (2.12)The second equality above de�nes the pair correlation function. This is just thenumber density in the vicinity of position r divided by the average density. Toobtain g(r) we use the expression� g(r) = hXi �(r � ri)i = 1I Xi6=j �(r � rij): (2.13)In essence we choose a particular atom to be at the origin. Then we performthe sum (over all atoms) of delta's in the second term above. It could be thatthe atom we chose as the origin was not wholly representative of the liquid andso the angle brackets indicate the need to average over all choices of origin.This is done explicitly in the third expression above. Since liquids and gasesare isotropic (the same in all directions), g(r) depends only on r and not onthe direction of r. In this case g(r) = g(r) is known as the radial distributionfunction (RDF).
g(r)

r in Angtroms

0

1

2

4 8 12Figure 2.8: The radial distribution function of liquid argon.To calculate the RDF of argon we can use the Lennard-Jones potential func-tion within a method called \molecular dynamics" as follows. One starts bygiving a computer a set of random atomic coordinates and velocities deter-mined by Maxwell-Boltzmann statistics. Given the L-J potential and Newton'ssecond law the computer can then �gure out what the atomic positions andvelocities will be in a small time later. Recalculating the forces for these newcoordinates, the process can be repeated until the average behaviour of the sys-tem stabilises. We then have a set of atomic coordinates to insert into Eq. ??.



2.3. DESCRIBING DISORDER 33Two snapshots of the same place in a liquid taken in rapid succession would becompletely di�erent, but the radial distribution function (which is a propertyof the whole system) would be the same. The simulated RDF for liquid argonnear its triple point is shown in Fig. 2.8. For small r, g(r) = 0 since the atomscannot overlap. A large peak can be seen near 4 �A, and it is clear that most ofthe atoms in liquid argon are surrounded by a well de�ned nearest neighbour\shell". In fact the remnants of several shells can be seen before g convergesto a constant value. We say that this liquid, and argon is quite normal in thisrespect, displays a degree of short range order. It is interesting to note that theRDF of the \hard spheres" model (�ctitious atoms which have no mutual at-traction but in�nite repulsion when they overlap), whose phase diagram we sawin Fig. 2.6, is very similar to that shown for argon. This is further con�rmationof our deduction that crystallisation (establishment of order) is fundamentallydue to interatomic repulsion.In most liquids the average number of nearest neighbours is slightly less thanin the corresponding ordered solid. Thus a decrease in density is observed uponmelting. Ice is exceptional in that its volume decreases upon melting. This isa consequence of hydrogen bonding. In an ice crystal the water molecules arearranged in a rather open structure. Some of the close-packing favoured bythe van-der-Waals interaction is relinquished so that each water molecule canform hydrogen bonds with four nearest neighbours. Upon melting this favouredordering breaks down, but the coordination number rises to nearer 5 and sothe density goes up. As the temperature is increased the normal tendency fornearest neighbour bonds to be lost in the liquid state asserts its authority andabove 4 Celsius the density of water diminishes.Melting is a rather tricky phenomenon to treat in general, but the simplenotions of a slightly reduced nearest neighbour co-ordination but a retention ofshort range order do capture the main essence of the formation of a liquid froma solid.2.3.2 Amorphous solidsIt turns out that the atomic coordinates in some solids is qualitatively similar towhat we see for liquids in that they have short range but not long range order.Such solids, illustrated schematically in Fig. 2.9, are known as amorphous. Themost important distinguishing feature is that two snapshots in rapid successionwould look the same in amorphous solids, but not liquids. The emphasis hereis on the \rapid succession" since the atoms in amorphous solids are mobile ifgiven su�cient time.21Since usually there is a local bonding geometry with a lower energy thancompetitor geomtries, it follows that all atoms will adopt this geometry in thetrue ground state, giving a perfectly ordered crystal. One might then wonderwhy amorphous solids exist at all. This is a demonstration of kinetics defeatingenergetics. The atoms may want to move to a lower energy con�guration butthey may not have su�cient thermal energy to surmount an activation barrier.Even if there is no barrier the energy gradient driving crystallisation may berather shallow. It is sometimes useful to think of amorphous solids as extremelyviscous liquids.21In fact this is true of the atoms in any solid at T > 0 as we will see in SSP.



34 CHAPTER 2. ATOMIC STRUCTURE
distance

g(
r)

Figure 2.9: Schematic comparison of crystalline and amorphous solids. Alsoshown is radial distribution function g(r) for the black sites. The well de�nedcoordination shells of the crystal (dotted lines) are smeared out in the amor-phous solid.2.4 Systematic description of atomic structure:CrystallographyIn contrast to 
uids, crystals are perfectly ordered, with subunits which repeatin all directions. To allow for the most general description of crystals and theirproperties it is vitally important to make a clear distinction between the subunitand the way that it is repeated:� A crystal structure is a Bravais lattice of points each of which is `decorated'by a basis consisting of one or more atoms.To make an analogy, we could say that if we were tiling a wall with identi-cal tiles so as to produce a regular pattern, then the basis corresponds to themotif on a single tile, while the Bravais lattice would be the set of positionswhere a tile is placed.Before reviewing some of the more common crystal structures we will spendsome time considering the Bravais lattices.2.4.1 General properties of Bravais latticesA bravais lattice is an in�nite array of points which looks the same from whicheverof the points the array is viewed.Alternatively,A set of points constitutes a Bravais lattice if we can choose any two latticesites A and B and rigidly translate the entire lattice such that A is now whereB used to be, but the lattice looks exactly as it did before.
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60
o

square

honeycomb oblique

rectangular rhombic

hexagonalFigure 2.10: A set of six lattices. The dots indicate lattice sites; there are noatoms. All are Bravais lattices except for the honeycomb. Primitive vectors arealso shown.We can cast these rather wordy de�nitions into mathematical form by statingthat the points of a Bravais lattice R must satisfyR = la+mb+ nc (2.14)where l;m; n take all integer values (positive as well as negative), and a; b; c arethree independent vectors which we call primitive vectors. We can illustrate therelevant properties of Bravais lattices more easily by recourse to two dimensions.Two dimensionsSix arrays of points are shown in Fig. 2.10. The honeycomb lattice looks quiteregular but is it a Bravais lattice? The answer, which is negative, can be deducedmost directly from the second de�nition above. The others, on the other hand,are all good Bravais lattices. In fact they are the only �ve Bravais latticesthat exist 2D. Oblique is the most general. Square is a special case of eitherrectangular or rhombic, and hexagonal is a special case of rhombic.Primitive vectorsFor a given Bravais lattice, the primitive vectors are not uniquely de�ned. Twovalid choices are shown for the oblique lattice in Fig. 2.10. Very often thesymmetry of a lattice suggests an \obvious" choice however.Unit cells of a Bravais latticeA primitive unit cell is a volume of space which when translated through alllattice vectors of the form give by Eq. 2.14 exactly �lls all space (i.e. there are



36 CHAPTER 2. ATOMIC STRUCTUREno overlaps or gaps). The unit cell corresponds to the shape of a single tile inthe analogy we introduced above. For a given Bravais lattice there are many(in fact an in�nite number of) valid primitive unit cells, each of which containsprecisely one lattice site. It is evident that the parallelopiped spanned by threeprimitive vectors (or the parallelogram spanned by two primitive vectors in 2D)will generate a primitive unit cell.
X X
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X X
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X

Figure 2.11: Construction of the Wigner-Seitz cell for a 2D Bravais lattice.For each Bravais lattice a primitive unit cell can be obtained by the Wigner-Seitz construction. This is usually de�ned by (i) drawing lines from one latticepoint to all others, (ii) bisecting each of these lines with perpendicular planes,and (iii) taking the smallest polyhedron within these planes. A 2D illustrationis shown in Fig. 2.11 All this amounts to is a way of determining the regionof space that is closer to the chosen lattice point than to any other latticepoint. Since there is nothing in this de�nition concerning any particular choiceof primitive vector, the Wigner-Seitz cell has the full symmetry of the Bravaislattice.Sometimes it is quite hard to visualise a lattice by looking at a primitive unitcell, and so larger (non-primitive) unit cells are often used. These \conventionalunit cells" �ll space (when translated through a subset of lattice vectors) butcontain more than one lattice site. In this way the rhombic lattice shown in Fig.2.10 is sometimes referred to as the \centred rectangular" lattice and picturedwith a rectangular unit cell, as shown in Fig. 2.12. Looking at the solid rect-angle, it should be apparent that the rectangular unit cell contains two latticssites - one in the centre and with the four corner points contributing a quartereach (since they are each shared equally among four idenitcal rectangles). Thisis perhaps more obviously shown by the dashed rectangle.Lattice directionsSuppose the components of a Bravais lattice vector are u0; v0; w0 (which arenecessarily integers of course) along the a; b; c primitive vectors.22 If u0; v0; w022Note that it is technically necessary to specify which Bravais lattice and which set ofprimitive vectors are being assumed. For most lattices there is an obvious choice.
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Figure 2.12: Construction of the Wigner-Seitz cell for a 2D Bravais lattice.are each divided by their highest common denominator to reduce them to theset of smallest integers u; v; w, then the direction of the vector is denoted [u v w].A complete set of directions equivalent to [u v w] by symmetry is written hu v wi.Lattice planesWe can decompose any Bravais lattice into a series of parallel planes, eachcontaining the same density and arrangement of lattice points. We can do thisin an in�nite number of di�erent ways, each producing a distinct set of planes.Our task here is to devise a means of labelling any such set of planes. This canbe done by �rst identifying that plane which passes closest to the origin withoutactually passing through it. This plane will intersect the axes de�ned by theprimitive primitive cell axes at ua; vb and wc, and the reciprocal quantities1=u; 1=v; 1=w will be a set of integers. (Of course u; v and w are not necessarilyintegers.) We use these integers, which we will call h; k; l, to label the set ofplanes (h k l).We can also decide to �nd the intercepts u0; v0; w0 of any of the planes. Inthis case we multiply the reciprocal quantities 1=u0; 1=v0; 1=w0 by the smallestfactor requited to scale them up to integers h; k; l.The integers h; k; l are called the Miller indices of the plane and are depen-dent on the choice of primitive vectors. A few examples are shown in Fig. 2.13for the primitive cubic Bravais lattice where we have chosen primitive vectorsalong the cartesian axes.23 For this system the direction [h k l] is then perpen-dicular to the plane (h k l), and if the unit cell has length L then the interplanarspacing dhkl is L=ph2 + k2 + l2.It is possible that certain sets of planes are equivalent due to the symmetryof the Bravais lattice. A complete set of equivalent planes is denoted fh k lg.2.4.2 Bravais lattices three dimensionsThere are 14 distinct Bravais lattices in 3D, and crystallographers often groupthem into 7 classes according to their symmetry properties.24 The Bravais23Note that negative Miller indices are conventionally written with a bar over the number.24A symmetry operation is an operation which when performed on a Bravais lattice leavesthe lattice looking exactly the same as it did before. By de�nition, each Bravais lattice hastranslational symmetry. The set of all symmetry operations is said to constitute the spacegroup of a Bravais lattice. Rather than considering all the space group, crystallographersoften concern themselves with only those symmetry operations which leave one point of the
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Figure 2.13: Lattice planes for the \primitive cubic" Bravais lattice.lattices are enumerated in most reasonably advanced texts on the physics ofsolids, but we will only need to be familiar with a few of them.The primitive cubic (or simple cubic) Bravais latticeThis can be generated25 by the primitive vectors Lx̂; Lŷ; Lẑ. The conventionalunit cell is the cube of side L, as is the Wigner-Seitz cell in this case.The body centred cubic Bravais latticeThe conventional unit cell for this Bravais lattice is shown in Fig. 2.14. It is acube of side L with lattice points at the eight corners and one at the centre ofthe cube. Clearly this is a non-primitive unit cell since it contains 2 lattice sites(one in the middle and eight corners sites each with weight 1/8), but drawingit this way helps us understand the relationship between the lattice sites. TheWigner-Seitz cell for this lattice, a truncated octahedron, is also shown. Thebody centred cubic Bravais lattice can be generated by the primitive vectors(x̂+ ŷ � ẑ)L=2; (x̂� ŷ + ẑ)L=2; (�x̂+ ŷ + ẑ)L=2.The face centred cubic Bravais latticeThe face centred cubic Bravais lattice is like the primitive cubic but with anextra lattice site at the centre of every face of the cubes, and it can be generatedlattice �xed. There are only 7 distinct point groups that a Bravais lattice can have, and soit is conventional to divide them into 7 crystal systems. In this course we will only exploittranslational symmetry, and so we don't need to get into group theory.25There is no unique choice of primitive vectors for a given Bravais lattice. But a particularset of primitive vectors generates a unique Bravais lattice.
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Figure 2.14: Unit cells for the body centred cubic (top), face centred cubic(middle), and simple hexagonal (bottom) Bravais lattices. The Wigner-Seitzunit cell for the BCC Bravais lattice is also shown.by the primitive vectors (x̂ + ŷ)L=2; (ŷ + ẑ)L=2; (ẑ + x̂)L=2. The conventionalunit cell for this lattice contains four sites (8 corner sites, each worth 1/8, plus6 face sites, each worth 1/2) and is shown in Fig. 2.14. The Wigner-Seitz cellis a rhombic dodecahedron and is a bit tricky to draw.The simple hexagonal Bravais latticeThis lattice is generated by the primitive vectors x̂a; x̂a=2 + ŷp3a=2; ẑc. Theprimitive cell is a \toblerone" with length c and triangle of side a, again shownin Fig. 2.14.



40 CHAPTER 2. ATOMIC STRUCTURE2.4.3 Some common crystal structuresBefore some real crystal structures we will again drop down to two dimensionsjust to get the hang of things. It's quite simple really: \crystal = Bravais latticewith a basis".The basisUp to this point we have only been speaking of lattice sites. A crystal wasde�ned above as a Bravais lattice with each lattice site given an identical basisof atoms. The basis is simply a group of atoms (possibly only one atom) witha de�nite spatial relationship. When there is more than a single atom in thebasis we must clearly specify what and where: the atomic number or element ofeach of the atoms, together with their coordinates. It is often convenient to giveatomic coordinates in terms of fractions of the conventional unit cell, known asfractional coordinates.

Figure 2.15: A 2D crystal comprising black and white atoms.



2.4. CRYSTALLOGRAPHY 41Fig. 2.15 shows a 2D crystal comprising black and white atoms. Quiteobviously it is not possible to describe such a crystal using a single atom basis;we need a basis with at least one black and one white atom. Two possibilitiesare shown in the �gure, the upper one comprising a four atom basis and thelower one a two atom basis. In each case the corresponding Bravais lattice is alsoshown. While we note that the expression of a crystal structure as a particularBravais lattice with a particular basis is not unique, we will see that the mostcompact and simplest description is the one with the smallest possible basis.An apparent shortcoming of the small unit cell in the lower left hand corner isthat it contains fractions of atoms. Rather than try to keep track of all thesebits it is easier to imagine tugging the unit cell down a little, as shown by thedotted square, so that it contains two complete atoms. We can then specify thebasis as: a black atom at (0,0) and a white atom at (0.5,0.5).
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��Figure 2.16: The 2D honeycomb structure is shown on the left. This can beviewed as a hexagonal Bravais lattice, shown on the right, together with the twoatom unit cell indicated by the dotted lines.It is less obvious that a multiatom basis is required when all the atoms areof the same type, such as the example in Fig. 2.16. Although each atom (shownas a black circle) has an identical bonding environment, the atomic sites do notconstitute a Bravais lattice since they do not satisfy Eq. 2.14, as we observedwhen considering 2.10 on page 35. We should view the honeycomb crystal asa hexagonal Bravais lattice, shown on the right of Fig. 2.16, with a two atombasis. We will see that a number of the common 3D crystal structures mustsimilarly be described with a multi-atom basis despite their apparent simplicity.The simple cubic crystal structureContrary to the billing of this section, this is an exceedingly rare crystal struc-ture in nature with only one element (polonium) adopting it. The simple cubicstructure shown in Fig. 2.17. It should be obvious that this structure can sim-ply be described as a primitive cubic Bravais lattice with spacing L and a singleatom at each lattice site. There is no point in doing so, but we could also re-gard this structure as a primitive cubic Bravais lattice with spacing 2L togetherwith an eight atom basis with atoms at fractional coordinates (0; 0; 0), (0; 1=2; 0),(0; 0; 1=2), (1=2; 0; 0), (1=2; 1=2; 0), (1=2; 0; 1=2), (0; 1=2; 1=2) and (1=2; 1=2; 1=2).
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Figure 2.17: The simple cubic crystal structure.Alternatively, we could describe it as a face centred cubic Bravais lattice withcube dimension 2L, together with a basis with atoms at (0; 0; 0) and (1=2; 0; 0).The body centred cubic crystal structureThe simplest description of this structure is as a body centred cubic Bravaislattice with a one atom basis.The face centred cubic crystal structureThe simplest description of this structure is as a face centred cubic Bravaislattice with a one atom basis.The diamond crystal structureThis is the structure adopted by diamond, silicon, germanium and one form oftin, and shown in Fig. 2.18. We can see that each atom is bonded to four othersand they occupy chemically equivalent environments. But do the atoms fall onthe sites of a Bravais lattice? No, this is the 3D equivalent of the honeycombstructure we saw earlier. This time we need to specify a multi-atom basis bynecessity.It's rather hard to really understand the relative positions of the atoms byjust looking at the conventional unit cell (the cube). To make it a little easierthe conventional unit cell is also shown in the �gure as a series of slices. You maynow be able to appreciate that the diamond crystal structure can be expressedas an FCC Bravais lattice and a basis consisting of an atom at (0; 0; 0) andanother at (1=4; 1=4; 1=4), where the fractional coordinates are in terms of theconventional unit cell.Packing fraction and coordination numberEarlier in this chapter we re
ected on the fact that the noble elements shouldprobably form crystal structures in which the atoms as densely packed as possi-ble. If we were to imagine the atoms in the four crystal structures considered sofar to be spheres packed as closely as the structure will allow, as shown in Fig.2.19, then a little geometry would reveal that the fraction of space occupied by
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Figure 2.18: The tetrahedral bonding arrangement in the diamond structure isshown on the left. On the right, the conventional unit cell is shown.



44 CHAPTER 2. ATOMIC STRUCTUREthe atoms would be 0.52, 0.68, 0.74 and 0.34 for SC, BCC, FCC and diamondcrystal structures respectively. Thus the noble elements, which are observed tocrystallise with the FCC structure do indeed appear to have maximized theirpacking, each atom surrounded by 12 nearest neighbours.

Figure 2.19: The conventional unit cells of the simple cubic, face centred cu-bic, body centred cubic and tetrahedral structures drawn to illustrate packingdensity.The FCC structure is said to be close-packed. Although it may not beimmediately obvious, the atoms are as close together as geometry allows, asFig. 2.20 attempts to illustrate. Here a 2D plane of densely packed atoms arerevealed. The FCC structure can be viewed as a series of such planes of atomsstacked on top of each other with the atoms of one plane nestling in the hollowsof the adjacent planes. A little thought reveals that any two planes can be �ttedtogether in two ways - if the lower plane is \A", then the upper plane can be\B" or \C" type, as shown in Fig. 2.21. With reference to Fig. 2.20 we see thatthe FCC structure is \ABCABC...".
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Figure 2.20: Close-packing in the FCC structure.

Figure 2.21: Di�erent ways of stacking of close-packed planes.What about metals? Many (such as Pd, Cu, Al, Ni, Ag, Au, Rh, Pb) areFCC and many are BCC (such as Li, Na, K, Rb, Cs, Ba, Fe, V, W, Ta) at roomtemperature, and quite a few switch as T is varied. It seems that close-packingis favoured but a delicate balance exists between 12-fold coordination (FCC)and 8-fold (BCC). The second nearest neighbours in the BCC structure are notthat further distant than the nearest neighbours so this makes sense.The hexagonal close-packed crystal structureReturning to the stacking of close-packed layers, it is clear that any sequence ofA, B and C will lead to close-packing. ABABAB... is what we call hexagonalclose-packing. It is easily shown that the atoms in this structure do not lieon a Bravais lattice - again it is like the honeycomb situation. The simplestdescription is as a hexagonal Bravais lattice with a basis of atoms at (0; 0; 0)and (1=3; 1=3; 1=2). For true close-packing the c=a ratio (see Fig. 2.14) equals1.63 but this can vary without changing the Bravais lattice. About thirty of theelements adopt this structure under normal conditions.



46 CHAPTER 2. ATOMIC STRUCTURE

Figure 2.22: The GaAs, NaCl and CsCl structures.The gallium arsenide crystal structureThis structure shown in Fig. 2.22 is like diamond but with half the atoms Gaand half As. To describe this structure we simply need to repeat the descriptionof diamond but state that the atom at (0; 0; 0) is Ga, and that at (1=4; 1=4; 1=4)is As.The sodium chloride crystal structureHere it is easy to mess up because this looks so much like the simple cubicstructure. But think: what is the Bravais lattice and what is the basis? Clearlywe need at least a two atom basis. But notice that the Na ions are arrangedin an FCC structure, and so are the Cl ions. So we can describe this structureas an FCC Bravais lattice with conventional cube dimension L, together with abasis with an Na ion at (0; 0; 0) and a Cl ion at (1=2; 0; 0).The Cesium chloride crystal structureAgain it is easy to be seduced here, this time by the similarity with the BCCcrystal structure. In fact we have a simple cubic Bravais lattice with a basiscomprising a Cs ion and a Cl ion.2.5 The reciprocal latticeIn the previous section we introduced the notion that a crystal structure isde�ned by a Bravais lattice convoluted with a basis. This all seems a bit heavyhanded at �rst, but it is worthwhile in the long run since this scheme o�ers themost compact description of crystals that can be devised. We need only specifythe contents of the basis and instructions for how to duplicate this throughoutall space.



2.5. THE RECIPROCAL LATTICE 47In this section we will add to the formal machinery by introducing the re-ciprocal lattice. We will see that this concept provides an extremely compactdescription of di�raction, but it gives us the appropriate framework to handlewaves of any kind within a crystal. In passing, we mentioned in Chapter 1 thatfor every symmetry there is a corresponding conservation law. In a crystal wedo not have translational invariance, but translational periodicity. We will see(mainly in SSP next term) that in such circumstances the conservation of elec-tron momentum, witnessed in the free electron gas, is replaced by a more subtleconservation law in which the reciprocal lattice plays a role. Given your exper-tise with Fourier's theorem, it will come as no surprise that reciprocal latticevectors enter the equations when we consider basically any property of crystalssince they are, by de�nition, periodic and hence so are their properties. Let'sstart with a quick recap and a de�nition.2.5.1 Periodicity and the Fourier expansionAny function which is periodic:f(x) = f(x+ L) (2.15)can be expressed as a Fourier series:f(x) = +1Xn=�1 fnein2�x=L (2.16)where n can be any integer, and the Fourier coe�cients fn are given byfn = 1L Z L0 f(x)e�in2�x=L dx: (2.17)Alternatively, we could write Eq. 2.16 asf(x) =XK fKeiKx; K = 2�L � n: (2.18)The Fourier expansion works because the complex exponentials are also periodicwith period L, and they are a complete orthonormal set of functions.Moving to 3D things are very similar. Any periodic functionf(r) = f(r +R) (2.19)where R = ua + vb + wc with u; v and w integers (i.e. R is a set of Bravaislattice vectors) can be expressed as a Fourier series:f(r) =XK fKeiK:r: (2.20)But what are the vectors K in this case?As in the 1D case, these must have the periodicity of the R lattice.26 The setof all vectorsK which correspond to plane waves with wavevectorsK having the26Note that in Chapter 1 we introduced periodic boundary conditions and we saw thatthis meant that the allowed vectors in the free electron gas are quantised. This was just anarti�cial device to allow us to count the states. The period in this case is extremely large,macroscopic in fact. Here we are talking about the periodicity from unit cell to unit cell in acrystal. The period is of the order of atomic dimensions.



48 CHAPTER 2. ATOMIC STRUCTUREperiodicity of a given R lattice is known as its reciprocal lattice. Mathematicallythis means eiK:(r+R) = eiK:r (2.21)or simply eiK:R = 1 ) K:R = 2� � (integer) (2.22)for any R in the Bravais lattice. In other words, a reciprocal lattice vectoris the wavevector of a plane wave that has the same value at all points ofthe direct Bravais lattice. In fact, a plane wave takes the same value on aplane perpendicular to its wavevector (and at all such planes separated by anintegral number of wavelengths), alerting us to the intimate relationship betweenreciprocal lattice vectors and planes of lattice sites in the direct lattice.Having de�ned a \reciprocal" lattice, one sometimes refers to the original asthe \direct" lattice.2.5.2 Primitive vectorsIf a; b; c are primitive vectors of a lattice in real space (the direct lattice), thevectors de�ned by a� = 2� b� ca:(b� c) = 2�V b� cb� = 2� c� ab:(c� a) = 2�V c� a (2.23)c� = 2� a� bc:(a� b) = 2�V a� bwhere V is the volume of the unit cell of the direct lattice, are primitive vectorsof the reciprocal lattice. The reciprocal lattice vectors have the formK = ha� + kb� + lc� (2.24)where h; k and l are integers.Eq. 2.23 is very useful in 3D. An alternative de�nition which also works indi�erent dimensional spaces is �:�� = 2���� (2.25)where � and � can each be a; b or c.It is important to appreciate that although the primitive reciprocal latticevectors one obtains depend on the particular choice of primitive vectors a, b, c,the reciprocal lattice they generate (Eq. 2.24) does not. This must be so sinceno such choice enters the de�nition of the reciprocal lattice given by Eq. 2.22.



2.5. THE RECIPROCAL LATTICE 492.5.3 Properties1. The reciprocal lattice is itself a Bravais lattice (and so one can construct itsreciprocal).2. The reciprocal of the reciprocal lattice is just the original direct lattice.3. If V is the volume of the unit cell of the direct lattice, the volume of the unitcell of the reciprocal lattice is V � = (2�)3=V .4. Reciprocal lattice vectors have dimensions of \inverse length", or (length)�1(hence the name).2.5.4 Examples1DIn one dimension vector notation becomes redundant. The direct Bravais lattice\vectors" are uL, where u is the set of all integers and L de�nes the length scale.The corresponding reciprocal lattice \vectors" are just h 2�L , where h is the setof integers. Notice that wide spacing in real space (i.e. large L) leads to narrowspacing in reciprocal space.2D
b

a a*
b*

Direct lattice Reciprocal lattice

Figure 2.23: A 2D Bravais lattice and its reciprocal lattice. Primitive vectorsare indicated in each case.A 2D example is shown in Fig. 2.23. Notice that a� is perpendicular to b,and b� is perpendicular to a. This means that a� is in general not perpendicularto a.Simple cubic direct Bravais latticeThe obvious choice of primitive vectors for the simple cubic crystal structureare a = L x̂; b = L ŷ and z = L ẑ, where L is the lattice constant (the lengthof the cube sides), and x̂; ŷ; ẑ are unit cartesian axis vectors. Eq. 2.23 yieldsa� = 2�=L x̂; b� = 2�=L ŷ and c� = 2�=L ẑ, and so the reciprocal lattice of the



50 CHAPTER 2. ATOMIC STRUCTUREsimple cubic direct lattice of side L is just another simple cubic lattice but withside 2�=L.Face-centred cubic and body-centred cubic direct Bravais latticesPrimitive vectors for the FCC lattice are provided by a = L=2 (ŷ + ẑ), b =L=2 (ẑ+ x̂), and c = L=2 (x̂+ ŷ), where L is the lattice constant (de�ned to bethe length of the sides of the conventional FCC unit cell). Applying Eq. 2.23 we�nd a� = 2�=L (�x̂+ ŷ+ ẑ), b� = 2�=L (x̂� ŷ+ ẑ), and c� = 2�=L (x̂+ ŷ � ẑ).These are primitive vectors for a BCC lattice with lattice constant (de�nedas the length of the sides of the conventional BCC unit cell) 4�=L. Thus thereciprocal of the FCC lattice is a BCC lattice, and vice versa.2.5.5 Brillouin zonesThe Wigner-Seitz cell of the reciprocal lattice is usually called the �rst Brillouinzone. In other words, it is the set of points lying closer to K = 0 than to anyother reciprocal lattice point. It can be constructed in exactly the same way asthe Wigner-Seitz cell of the direct lattice: draw the perpendicular bisectors ofall the vectors which join the central reciprocal lattice point to all others, the�rst Brillouin zone is the volume of reciprocal space that can be reached fromthe origin without crossing any of these bisecting planes.We will start using the �rst BZ quite a lot before too long, and you willstart seeing the high symmetry points in it given funny symbols like �; X;� etc.Don't worry about this. They are meaningful in the sense that their origin liesin group theory, but we can treat them as labels without worrying about theirmeaning.In reciprocal space we call these bisecting planes Bragg planes for reasonsthat will soon become apparent. The second BZ is that set of points that isseparated from the origin by one Bragg plane. Similarly, the ith BZ is the set ofpoints that is separated from the origin by i�1 Bragg planes. It is important torealise that, despite their variety of strange shapes, each BZ is a primitive cellof the reciprocal lattice. This follows from the fact that each point in reciprocalspace 27 has a uniquely de�ned ith nearest neighbour, and so belongs to the ithBZ of precisely one lattice point. Convince yourself that this works for the 2Dsquare lattice shown in Fig. 2.24.It is worth pausing here to make an observation. Let's take the simplecubic Bravais lattice with lattice constant L. The �rst BZ is just a cube side2�=L centred on K = 0. So the minimum distance from the origin to the �rstBZ boundary, which we can call kBZ , is �=L. In the free electron model theconduction electron density n, which is of order L�3, is equal to k3f=(3�2). Itfollows that kBZ � kf . So what? This looks rather unpromising, but will turnout to be exceedingly important.2.5.6 Lattice planes and Miller indices revisitedEarlier we mentioned the way Miller indices of planes are obtained. Here wewill generate an alternative (but consistent) de�nition. A Bravais lattice can bedivided into families of parallel equally spaced planes of lattice sites, as shown27Except those points on BZ boundaries.
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Figure 2.24: Construction of Brillouin zones for the 2D square lattice.in Fig. 2.25 on the following page. The intimate relationship between reciprocallattice vectors and crystal planes is embodied in the theorem:For any family of lattice planes separated by d, there are reciprocal lattice vectorsperpendicular to the planes, the shortest of which have length 2�=d. Conversely,for any reciprocal lattice vector K there is a family of lattice planes normal to Kand separated by a distance d, where 2�=d is the length of the shortest reciprocallattice vector parallel to K.This rather cumbersome theorem will be useful when we consider x-ray di�rac-tion.To specify the orientation of a plane one usually quotes a vector normal toit. Since we know that there are reciprocal lattice vectors which are normal toany family of lattice planes, it is natural to use the smallest suitable reciprocallattice vector to represent the normal. We could de�ne the Miller indices ofa plane to be the components (in terms of primitive reciprocal lattice vectorsa�; b� and c�) of the shortest K vector normal to the plane. Thus:A plane with Miller indices (h k l) is normal to the reciprocal lattice vectorK = ha� + kb� + lc�.Is this consistent with our earlier de�nition? The equation of a plane normalto K is K:r = A, where A is some constant. Since the planes contain latticepoints, A = 2�� integer, and for the plane closest to the origin (without includ-ing it) we have simply A = 2�. The intercepts of this plane on the axes givenby the primitive vectors of the direct lattice we denote u; v; w (not necessarilyintegers), which implies uK:a = vK:b = wK:c = 2�: (2.26)



52 CHAPTER 2. ATOMIC STRUCTURE

a

bb

O

v=2

a

u=1

d

*

= [ 2 1 0 ]

*

KFigure 2.25: A slice through a 3D Bravais lattice (which is called \monoclinic"but don't worry about that) which we have decomposed into (2 1 0) planes,shown by the solid lines. Also shown is a plane wave with wavevector perpen-dicular to the planes and with magnitude equal to 2�=d.Since K = ha� + kb� + lc� and using Eq. 2.23 on page 48, it follows thatu = 1=h; v = 1=k; w = 1=l: (2.27)This is precisely our earlier de�nition.2.6 Di�ractionSo far we have discussed some of the common crystal structures and how theycan be described. Most of our detailed knowledge of the structure of condensedmatter has come from experiment and in this section we will see how (andEdinburgh has an unparalleled reputation in this �eld) quite soon.In 1912 Max von Laue pointed out that since crystals are periodic theyshould act as di�raction gratings for incident radiation with wavelength com-parable to interatomic distances. For electromagnetic radiation the disper-sion relation E = hc=� suggests the use of x-rays with energy around 10keV. For (non-relativistic) beams of massive particles the dispersion relationis E = p2=2m = ~2k2=2m, implying energies of 100 eV and 20 meV are suitablefor electron and neutron di�raction respectively. X-rays and neutrons interactquite weakly with solids and are able to penetrate relatively long distances. Adescription in terms of single scattering events is therefore appropriate. Elec-trons on the other hand interact strongly with solids, penetrating only a fewnm and making electron di�raction an important technique in surface physics.Here we concentrate on the di�raction of x-rays.Before we start, we should mention a few assumptions.� We will take a quantum mechanical view solely in the sense that x-rays (orneutrons or electrons) have a wave-like nature.



2.6. DIFFRACTION 53� We assume that each photon scatters o� only one unit cell.28� We have not identi�ed any mechanism for the crystal to absorb any on theenergy of the x-ray beam, and so the scattering must be elastic i.e. the photonenergy (or wavelength) of incident and scattered x-rays is the same.2.6.1 Bragg formulationIn 1913, W.H. and W.L. Bragg discovered that crystalline solids gave quitecharacteristic patterns of re
ected x-rays in which strong re
ected beams wereobserved for speci�c wavelengths and for speci�c crystal orientations. Thesewere accounted for by assuming that(i) x-rays are specularly re
ected from lattice planes, and(ii) successive planes give rise to constructive interference.By considering the rays re
ected from two successive lattice planes (see Fig.2.26) one can see that the `Bragg condition' means that the path di�erence forthe two rays must be an integer multiple of the wavelength:n� = 2d sin � (2.28)where n is called the order of the re
ection.
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Figure 2.26: Bragg re
ection from a family of lattice planes. (The dots representlattice sites, not atoms.)2.6.2 Von Laue formulationIn this approach we consider the scattering from each unit cell. We expect strongre
ections for those wavelengths and geometries which give rise to constructiveinterference from all unit cells of the Bravais lattice. We start by consideringjust two lattice sites separated by a (real space) Bravais lattice vector R, asshown in Fig. 2.27. The path di�erence in this case is R:(n̂ � n̂0), which again28This is sometimes known as the \kinematic approximation". It corresponds to the �rstBorn approximation of quantum mechanical scattering theory.
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Figure 2.27: The path di�erence for re
ection from two lattice sites separatedby Bravais lattice vector R.must be an integer multiple of wavelengths for constructive interference. Thisleads to the Von Laue condition:2�m = R:(k � k0) (2.29)where k and k0 are the incident and outgoing wavevectors respectively, and mis an integer. If we consider the full lattice, Eq. 2.29 must apply for all Bravaislattice vectors. Comparison with Eq. 2.22 on page 48 shows that the Von Lauecondition for di�raction is simply that the change in wavevector k � k0 is areciprocal lattice vector K. This being the case, we can label a di�racted beamwith the h; k; l indices of the K vector relevant to that di�raction condition.2.6.3 Bragg planesThe Von Laue scattering condition can be expressed in a more graphic way byrecalling that we have assumed elastic scattering (i.e. jk0j = jkj). Equating jk0j2with jkj2 leads to k:K̂ = 12K (2.30)where K̂ is a unit vector in the direction of K. This means that the componentof k in the direction of K is equal to half the magnitude of K. In other words,the Laue condition means that the tip of the incident wavevector must lie on aplane which bisects a reciprocal lattice vector, i.e. on a Brillouin zone boundary,as shown in Fig. 2.28 on the facing page.The equivalence of the Bragg and Von Laue formulations can be seen bynoting that from Fig. 2.28 the magnitude of K is 2k sin � which according to ourearlier theorem is also equal to 2n�=d where d is the interplanar spacing. A Lauedi�raction peak corresponding to a change in wavevector equal to reciprocallattice vector K corresponds to a Bragg re
ection from the family of directlattice planes perpendicular to K. The order of Bragg di�raction n is given byK divided by the shortest reciprocal lattice vector parallel to K.
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k’θ
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Figure 2.28: Geometric interpretation of the Von Laue di�raction condition.The tip of k must lie on a Brillouin zone boundary.The perpendicular bisectors (i.e. the Brillouin zone boundaries) we also callBragg planes as these are parallel to the lattice planes which Bragg assumedwould produce specular re
ection.
k

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

O

Figure 2.29: The Ewald construction. For arbitrary k and crystal orientationthe di�raction conditions need not be met.2.6.4 The Ewald constructionIf we direct a monoenergetic x-ray beam onto a randomly oriented single crys-tal then the incident wavevector will probably not fall on a Bragg plane andso (unless we are lucky) we will not get any di�racted beams. This is easilyvisualised using the Ewald construction, shown in Fig. 2.29. First the reciprocallattice points are drawn. We then choose a site to be the origin and draw onthe incident wavevector k with its tip at the origin. After drawing a circle ofradius k centred on the other end of k, a little thought reveals that the VonLaue di�raction condition is satis�ed if and only if the sphere hits another re-ciprocal lattice point (as well as the origin). In general there need be no such



56 CHAPTER 2. ATOMIC STRUCTUREpoints. The objective of an experimental x-ray di�raction method is to �ddlewith the geometry so as to `engineer' the di�raction condition so that structuralinformation can be extracted.
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Figure 2.30: The Ewald construction illustrating the Laue (left) and the rotatingcrystal (right) methods.2.6.5 Experimental x-ray di�ractionLaue methodThe crystal orientation is held �xed but the incident x-ray beam contains a bandof wavelengths between �1 and �2. The Ewald construction for this methodshown in Fig. 2.30 consists of two spheres (each of which cuts the origin) withradii 2�=�2 and 2�=�1. All those k-points which lie within the outer sphere butnot the smaller sphere will give rise to di�racted beams.Rotating crystal methodHere the crystal is rotated about some axis (possibly several axes). Since theprimitive vectors of the direct lattice are rotated, then so are the reciprocallattice vectors and the reciprocal lattice itself. It is clear from Fig. 2.30 thatdi�racted beams will be created for particular k-points at particular angles ofrotation.Powder (Debye-Scherrer) methodIn this approach the crystal must �rst be ground into a powder. Each polycrys-tal is large compared to the atomic scale (so di�raction occurs), but is so smallthat in a macroscopic sample all possible crystal orientations will be present.Di�raction rings are produced for deviation angles 2� (see Fig. 2.26).Whichever of these methods is used to engineer di�raction beams one mustarrange for an x-ray detector (e.g. a photographic plate) to record the direc-tions of these beams relative to the incident x-ray beam. This information allowsus to determine k0 � k and so the reciprocal lattice of the sample (and henceits direct Bravais lattice). But identifying the Bravais lattice of a crystal is not



2.7. SCATTERING THEORY: CRYSTALS 57enough - we also need to know the basis if we are to determine the structureof an unknown crystal. This information is contained in the intensities of thedi�racted beams. The di�raction condition speci�ed in either the Bragg or vonLaue form gives only the directions of the di�racted x-ray beams. To understandtheir intensities we need a more sophisticated approach.2.7 Scattering Theory: crystalsThe aim of this section is to understand the intensities of beams of x-raysdi�racted from crystals. For now we continue to consider only perfect crystals29but the scattering theory introduced here will also allow treatment of amorphoussolids and liquids.At the start of Sec. 2.6 we introduced three assumptions. In this moregeneral treatment of the scattering of waves by a crystal we will have to retaintwo of these, namely the \semi-classical" approach (the probe beam is wave-likebut the scattering is treated classically) and the \kinematic approximation" (theprobe beam is scattered only weakly so multiple scattering can be neglected).Consider �rst a small volume of a crystal at position r, as shown in Fig.2.31. If a source with angular frequency !0 emits spherical waves from positionrs then, provided rs is su�ciently big, plane waves with amplitudeA(r; t) = A0 ei[k:(�rs+r)�!0t] (2.31)where A0 is a constant, will be incident on our scattering volume. This will thenbe a secondary source of spherical waves and the scattered amplitude reachingthe detector at rd will beA0(rd; t) = A(r; t)� �(r; t)� eik0jrd�rjjrd � rj � A0 ei(k0:rd�k:rs�!0t)rd �(r; t) ei(k�k0):r(2.32)which is clearly just the product of a spherical wave, the incident plane wave,and a scattering density30 �. Now we assume31 that the lattice is rigid andso �(r; t) ! �(r). This means that the time-dependence of the scattered wavemust be exp(�i!0t), and it follows that the photon energy of both incident andscattered waves is }!0. For the rigid lattice we have elastic scattering - theenergy of the x-rays must be conserved since there is no mechanism by which itcould be otherwise.32To �nd the amplitude at the detector on account of scattering from the entire29Note that our decomposition of a crystal into a perfectly regular Bravais lattice and abasis precludes the possibility of atomic vibrations. In e�ect we dealing with something likethe T = 0 limit. But more about that in the next chapter.30This is the density of whatever produces the scattering of the incident wave.31In \Macromolecular Physics" next term you will see a more general treatment of scatteringwhich shows how dynamical information can be obtained.32This is not totally true. When x-rays undergo Bragg re
ection their momentum perpen-dicular to the Bragg planes is reversed and so the crystal must recoil. A crystal is so heavythat the energy it takes away by recoiling is extremely small compared to the photon energy.
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Figure 2.31: Scattering of waves from a crystal. � is the Bragg angle.crystal we must integrate over its volume,33 whereby we obtainA0(Q) / Zsample �(r) e�iQ:r dr: (2.33)Note that we are now labelling the detector position by Q = k0 � k, known asthe scattering vector (see Fig. 2.31). According to Eq. 2.33,The amplitude of the scattered wave reaching the detector is (proportional to)the Fourier Transform of the scattering density,and this brings a number of thoughts to mind:33Remember that the kinematic approximation means that we don't need to account forthe scattered waves in one part of the sample getting scattered again in another region. If theprobability of scattering is low then that of double scattering can reasonably be neglected.



2.7. SCATTERING THEORY: CRYSTALS 591. It appears that after measuring A0, a simple inverse Fourier transform willgive us the distribution of scattering density. Unfortunately one can only mea-sure the intensity of x-rays reaching the detector (which is jA0j2), and so onecan't \ invert". Instead we must adopt the \indirect" process of guessing �(r),calculating jA0j2, and then comparing with the experimental results. Notice thattwo structures may give rise to the same amplitude for a particular di�ractedbeam, so to distinguish between them we must analyse all the beams that canbe measured.2. Eq. 2.33 has the form of Fermi's golden rule: Amplitude � houtjÔjini.3. We can rewrite Eq. 2.33 asA0(Q) / Zsample �(r) e�iQ:r dr = �Zunit cell �(r) e�iQ:r dr�� 24 XR2BL e�iQ:R35= �Zunit cell �(r) e�iQ:r dr�� 24Zsample XR2BL �(r �R) e�iQ:R dr35 : (2.34)This looks like the F.T. of the contents of a unit cell (i.e. the basis) multipliedby the F.T. of the Bravais lattice vectors. This is an example of the convolutiontheorem you met last year.4. The scattering density of a crystal is periodic and so can be expressed as aFourier series: �(r) =XK �K eiK:r: (2.35)Inserting this in Eq. 2.33 yieldsA0(Q) /XK Zsample �K ei(K�Q):r dr =XK �K �Zsample ei(K�Q):r dr� : (2.36)You may recognise the integral in the curly brackets as the delta function�(K � Q), which means that scattered amplitude only reaches the detectorif the scattering vector equals a reciprocal lattice vector.34We have now derived two important results:(i) the von Laue di�raction condition:Q = K; (2.37)(ii) the amplitude of each di�racted beam is just the corresponding Fouriercomponent of the scattering densityA0(K) / �K : (2.38)34To be precise, this is only the delta function if the integral is over all space. Since realspecimens are �nite, the di�racted beams are produced for a very small but non-zero rangeof Q.



60 CHAPTER 2. ATOMIC STRUCTURENotice that we have all these concepts in the di�raction of light from a di�rac-tion grating. The Fourier components of the aperture play the role of �K , thetotal width of the grating determines the width of the di�racted beams, andthe spacing between the di�racted beams is determined by precisely the samedi�raction condition.2.7.1 The structure factor and the atomic form factorIn the di�raction world �K is often referred to as the structure factor, but it isnothing other than the inverse FT of �(r):�K = 1V Zunit cell �(r) e�iK:r dr: (2.39)We can divide the scattering density into contributions from each atom withinthe unit cell:�K = 1V X� e�iK:r� �Zatomic radius ��(r) e�iK:r dr� = 1V X� e�iK:r�b�(K):(2.40)The term in curly brackets describes the scattering from atom alpha in theunit cell and it is usually called the atomic form factor and is denoted b(Q) forscattering vector Q.The time has come to be more speci�c about the nature of the scatteringdensity. X-rays are scattered by the charges in a solid. Standard scatteringtheory shows that the strength of this interaction scales inversely with the massof the charged particle involved. Thus we need only consider x-ray scattering bythe electron distribution (i.e. �(r) is simply the distribution of electrons) andtwo important observations follow. Firstly, x-ray di�raction is much better atlocating atoms with high atomic number. For example, hydrogen is a factor of36 harder to see than carbon. Secondly, since only the very outermost electronsparticipate in chemical bonding the atomic form factor is approximately inde-pendent of chemical environment. This means the form factor can be computedfor each atom from a Hartree-Fock calculation.35Since atoms are spherical, the atomic form factor is given byb(Q) = Z �(r) 4�r2 sin(Qr)Qr dr: (2.41)For Q = 0 (i.e. � = 0, see Fig. 2.31), b is equal to the atomic number Z.But as the length of the scattering vector Q increases (or equivalently, as k sin �increases), b(Q) falls away, as shown in Fig. 2.32. We can readily understandthis �gure. We know that the electron density of an atom is roughly 2 �A wideand so we expect its Fourier transform to be 2�=2 �A�1 wide in Q space. Thisis what we see. The fading away of di�raction intensities at high Q can be a bitfrustrating as it makes it hard to measure some of the di�racted beams.Neutrons are scattered by the nuclei of the atoms in a solid. These are ex-tremely small on the scale of the neutron wavelength in typical neutron di�rac-tion experiments and so the atomic form factor for neutron scattering is essen-tially independent of Q (the FT of a delta function is a constant). Another35This is just a method for calculating the wavefunctions of the electrons in atoms, asdiscussed in \Atomic and Molecular Physics".
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−1oFigure 2.32: The atomic form factor of carbon for x-ray scattering.advantage of neutron di�raction is that the form factors of most elements aresimilar in magnitude. We can't o�er a simple explanation for this, but it meansthat neutrons are good at �nding light atoms. We will see yet another appealingaspect of neutron di�raction in the next chapter.2.7.2 Absent re
ectionsWe noted in Sec. 2.4.3 that when expressing a crystal structure as a Bravaislattice and a basis their is no unique choice. If we choose two di�erent Bra-vais lattices (each with an appropriate basis) for a given crystal structure, thesechoices will lead to di�erent reciprocal lattices. The di�raction condition statesthat di�racted beams are produced when the scattering vector Q equals a re-ciprocal lattice vector. But a given crystal structure will give rise to a uniquedi�raction pattern. How do we reconcile these facts? The answer lies in thestructure factor.Let's consider the simple cubic crystal structure. Suppose we decide to usethe most obvious choice - a simple cubic Bravais lattice with a separation of Lin each direction. We can choose the set Lx̂; Lŷ; Lẑ to be our primitive vectors,and we can use a basis consisting of one atom at the origin of the unit cell.The reciprocal of our Bravais lattice is a simple cubic lattice with sides 2�=L, andso the reciprocal lattice vectors have the form K = ha� + kb�+ lc� where h; k; lare integers and the primitive reciprocal lattice vectors are a� = 2�=Lx̂; b� =2�=Lŷ; c� = 2�=Lẑ.We get di�raction whenever the change in wavevector k� k0 is equal to a recip-rocal lattice vector K. Since we have only one atom per unit cell, the structurefactor is the same for all K.Now let's take a unit cell with dimension 2L. We can choose the set2Lx̂; 2Lŷ; 2Lẑ to be our primitive vectors. The Bravais lattice is again sim-ple cubic, but now the basis is consists of eight atoms at coordinates:(0; 0; 0); (L; 0; 0); (0; L; 0); (L;L; 0); (0; 0; L); (L; 0; L); (0; L; L); (L;L; L).



62 CHAPTER 2. ATOMIC STRUCTUREThe reciprocal of the Bravais lattice is now a simple cubic lattice with sides2�=2L = �=L. (Remember that a larger direct unit cell gives a smaller re-ciprocal lattice unit cell.) Primitive vectors for the new reciprocal lattice area� = �=Lx̂; b� = �=Lŷ; c� = �=Lẑ.We get di�raction whenever the change in wavevector k� k0 is equal to a recip-rocal lattice vector K. This is a bit worrying because we now have 8 times asmany reciprocal lattice vectors as we had before. Does this mean we should get8 times as many di�raction beams?Let's �nish the job and calculate the structure factor. Using Eq. 2.39 we get�Kb(K) = exp(0) + exp[�i�(100):(hkl)] + exp[�i�(010):(hkl)] + exp[�i�(110):(hkl)]+ exp[�i�(001):(hkl)] + exp[�i�(101):(hkl)] + exp[�i�(011):(hkl)] + exp[�i�(111):(hkl)]= 1 + exp[�i�h] + exp[�i�k] + exp[�i�(h+ k)] + exp[�i�l] + exp[�i�(h+ l)]+ exp[�i�(k + l)] + exp[�i�(h+ k + l) (2.42)where b is the atomic form factor and a shorthand notation has been used forthe vectors in the exponentials. Unless h; k and l are all even, �K equals zero.This means that all the extra di�racted beams have zero intensity.Although it is a bit worrying that we have choice in which unit cell to use(in fact there is an in�nite number of alternative unit cells), the di�ractionproperties don't depend on the choice.Another example: the BCC crystal structureWe can treat the BCC crystal structure as a simple cubic Bravais lattice witha two atom basis. To be more speci�c we have the Bravais lattice vectors a =Lx̂; b = Lŷ; c = Lẑ and a basis consisting of atoms at d1 = 0; d2 = (x̂+ŷ+ẑ)L=2.We know that the reciprocal lattice is simple cubic with side length 2�=L but wemust now evaluate the structure factor associated with each Bragg re
ection.In this case, �Kb(K) = e�iK:0 + e�iLK:(x̂+ŷ+ẑ)=2: (2.43)Since all the reciprocal lattice vectors of a simple cubic Bravais lattice have theform K = 2�L �hx̂+ kŷ + lẑ� (2.44)it follows that �K = f �1 + e�i�(h+k+l)� : (2.45)�K equals 2f if h+ k+ l is an even number, and equals 0 if h+ k+ l is odd, andso half of the expected di�raction beams will be absent.To understand why this should be, recall that the condition for di�ractionis that the change in wavevector must be equal to a reciprocal lattice vector.



2.8. SCATTERING THEORY: NON-CRYSTALLINE MATTER 63The reciprocal of the simple cubic Bravais lattice with sides of length L is itselfa simple cubic lattice but with lattice parameter 2�=L. The reciprocal latticepoints with non-zero structure factor form an FCC lattice with lattice parameter4�=L. This is precisely the reciprocal lattice we would have obtained by treatedthe BCC crystal structure as a BCC Bravais lattice with a single lattice site perunit cell.2.7.3 Almost absent re
ections(These are explored in detail in Problem Sheet 2.)The e�ect of the atomic form factor can be seen by considering di�raction fromCsCl. This compound is simple cubic with a two atom basis. The only di�erencebetween this and the BCC structure is that the two atoms in the basis are ofdi�erent elements. Although the exponentials in the structure factor will tendto cancel beams when h+k+l is odd (as for the BCC structure), the cancellationis not perfect since Cs and Cl have di�erent atomic form factors. However, ifwe had chosen CsI then the cancellation is almost perfect since Cs+ and I� areiso-electronic and so have very similar atomic form factors.In problems like this remember that the intensity of d�racted beams is whatis actually measured, not the amplitude.2.7.4 Accidental absencesThe absences discussed in Sec. 2.7.2 arose when we decided to deal with non-primitive unit cells. These systematic absences are the result of destructiveinterference from identical atoms in each non-primitive unit cell.Accidental absences in the di�raction patterns of crystals can occur if theprimitive unit cell contains more than one atom of the same type. But noticethat even atoms of the same type in a multi-atom primitive unit cell are not(by de�nition) crystallographically equivalent. If they were then the unit cellwould not be primitive. On account of this crystallographic inequivalence, theatomic form factors of the atoms in the primitive unit cell are not rigorouslyidentical, but, since the atoms are of the same type, very nearly so. As a resultcertain di�raction beams have negligible intensity, but if the atomic form factorsare su�ciently di�erent some accidental \absences" do show up as very weakbeams.2.8 Scattering theory: non-crystalline matterIn the previous section we saw that di�raction is the result of constructiveinterference of waves scattered from each unit cell in a crystal. In fact weonly considered the extreme case of perfect in�nite crystals with strictly rigidatomic positions. One might guess that allowing the atoms to jiggle around abit will lead to a slight spoiling of the di�raction patterns expected for rigidcrystals. This is basically correct, but we will see an additional feature in thenext Chapter. In this section we will try to understand if scattering experimentscan provide any information on the structure of non-crystalline matter.



64 CHAPTER 2. ATOMIC STRUCTURE2.8.1 \Everyday" scatteringWhen a wave travels through a homogeneous medium nothing very interestinghappens - it just keeps going with speed determined by the properties of the ma-terial (the refractive index in the case of electromagnetic waves). In the Huygensapproach to optics this is just scattered \wavelets" interfering constructively inthe forward direction. When a new material is encountered the interferenceof the wavelets gives rise to re
ected and refracted rays at the interface. Soalthough water is clear we can still detect its presence in a cup or glass due tothe \meniscus" at the water-air interface. This idea that scattering is producedby variations in refractive index is quite general.Of course all matter exhibits variations when one looks on a su�ciently�ne scale; the important question is whether the material is homogeneous onthe scale of the wavelength of the incident wave. Thus water (or any solution)appears homogeneous to a light wave. Milk on the other hand contains dropletsof fat which are comparable in radius to � for visible light (in fact a bit larger).As far as light waves are concerned milk is not homogeneous and since the fatdroplets are not ordered light scattering gives rise to a characteristic \milky"appearance. Similarly fog appears inpenetrable and clouds appear white.In the nineteenth century Tyndall found that for the special case of a mediumwhich is inhomogeneous on the scale of � but when the particle size is small onthis scale the scattered light tends to be slightly bluish while the transmittedbeam is slightly red. Rayleigh did the mathematics and found that the scatteringrate in the small particle regime varies as ��4. Rayleigh scattering (sometimescalled the \Tyndall e�ect") explains why light scattered by molecules in therare�ed upper atmosphere produces blue skies and red sunsets, why babies'eyes are blue at birth, and why cigarette smoke has a bluish tinge.As well as revealing the length scale of density variations, a detailed analysisof scattering can also yield quantitative information on particle distributions.For colloidal systems particle sizes are around the micron scale and so visiblelight scattering is rather informative, as exempli�ed by the Soft Condensed Mat-ter research group, and Dr Egelhaaf's lectures next term. But to get structuralinformation at the atomic scale we must resort to x-rays again.2.8.2 Clusters and polycrystalsConsider now x-ray scattering from a �nite sized crystal. The integral on thefar right of Eq. 2.36 on page 59 is now no longer a strict delta function but isbroadened a bit. The broadening scales inversely with the crystal size and, aswe mentioned at the bottom of page 59, this e�ect has a precise anologue inordinary ruled di�raction gratings of classical optics.A polycrystalline sample or a powder could be considered to be a very largecollection of clusters. The di�raction pattern from such a sample would then bethe patterns of each crystal superimposed on each other. Instead of di�ractedbeams in particular directions we would expect continuous di�raction rings asdescribed in Sec. 2.6.5 under \Debye-Scherrer". Now the size of the cluster willdetermine the sharpness of the rings: the smaller the clusters the more blurredwill be the rings, and one might then wonder what would happen if the clusterswere exceedingly small, say just a few atoms across. In fact this is a reasonablemodel of a liquid. Liquids are not periodic so they shouldn't give di�raction



2.8. SCATTERING THEORY: NON-CRYSTALLINE MATTER 65spots, but they are not totally devoid of structure, as we observed in Sec. 2.3.1on page 30. Can we learn anything useful by scattering x-rays o� liquids?2.8.3 amorphous solids and liquidsFor notational simplicity we will consider in this section non-crystalline mattercomprising N identical atoms, and we'll imagine freezing the atoms in place.The \dynamic" version can be seen in \Macromolecular Physics" next term.We start be rewriting the expression for the scattering amplitude in the �rstline of Eq. 2.34 on page 59 in the formA0(Q) = �Zatom �(r) e�iQ:r dr�� " NXi=1 e�iQ:ri# (2.46)where the index i labels the atoms and ri are the atomic coordinates.36 Thescattered intensity is then I(Q) = jA0(Q)j2. Using our earlier de�nition of theatomic form factor f(Q) we can writeI(Q) / jb(Q)j2 � �����Xi e�iQ:ri �����2 = jb(Q)j2 � "Xi e�iQ:ri#� 24Xj e+iQ:rj35= N jb(Q)j2 � 24 1N Xi;j e�iQ:(ri�rj)35 : (2.47)The term in brackets on the far right hand side is usually called the \liquidstructure factor",37 denoted S(Q). Using the integral form of the delta functionwe could express S asS(Q) =Xi;j Z e�iQ:r � 1N �(r � [ri � rj ])� dr= 1 +Xi6=j Z e�iQ:r � 1N �(r � [ri � rj ])� dr: (2.48)The sum of delta functions here looks reminiscent of the de�nition of the radialdistribution function (Eq. 2.13 on page 32), and we can make this explicit byfurther manipulation:S(Q) = 1 +Xi6=j Z e�iQ:r � 1N �(r � [ri � rj ])� 1� dr + Z e�iQ:r dr= 1 + Z [g(r)� 1] e�iQ:r dr + �(Q): (2.49)36Notice that we reserve the symbol R for the Bravais lattice vectors.37Notice that the \structure factor" for a crystal, earlier denoted by �Q, is a scatteringamplitude while the liquid structure factor S(Q) is an intensity. Unfortunately the researchliterature for liquids and crystals use inconsistent terminology.



66 CHAPTER 2. ATOMIC STRUCTUREThe delta function means that we see a strong x-ray intensity when the scatter-ing vector Q is zero. This is the unscattered beam arising from our assumptionof weak scattering. The important message in the above expression is that theliquid structure factor, and hence the scattering intensity, measure the Fouriertransform of g(r)�1, i.e. the departure from homogeneity.38 Taking the Fourierinverse gives the RDF.The experimental liquid structure factor for liquid argon is shown in Figure2.33 and can be seen to be dominated by a single peak. Thus the scatteringpattern of a typical liquid is one reasonably well de�ned ring. S at small Q is ameasure of the long wavelength structure in the RDF: for a liquid there is noneand so S is negligible. The peak in S occurs when 2�=Q equals the nearestneighbour distance.
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Chapter 3Crystal dynamicsWe started the course with the free electron gas model of the metallic state, theclassical version of which led us into some trouble. It predicted a contributionof some 32nkb, where n is the electron density, to the heat capacity of metalsand a zero contribution to non-metals. At room temperature the heat capaci-ties of metals and non-metals alike are of order 3Nkb, where N is the numberof atoms per unit volume. Clearly the electronic contribution is much smallerthan predicted and there is a large contribution which we have not explained.We �gured out the problem with the electronic contribution (with Fermi-Diracstatistics the predicted contribution is much smaller), and we saw some experi-mental data that supported our revised theory. This data also showed that thesecond contribution to the CV of metals (the sole contribution in non-metals)varies as T 3 at low temperature. We need to understand the origin of this e�ectsince it appears to be the dominant mechanism for the thermal excitation ofsolids under most circumstances.On the subject of thermal properties, we have yet to understand how non-metals conduct heat. It is clear that the conduction electrons do most of thejob in metals but non-metals do conduct heat to some extent. How?Our understanding of electrical resistance also su�ered a knock in Chapter1. We started by attributing the scattering of electrical currents to collisionsbetween the electrons and the much larger ions. After accounting for FD statis-tics we deduced a mean distance between collisions which was a factor of 25 orso too big for this mechanism to make sense. So what scatters the conductionelectrons in metals?To establish a basis for a more sophisticated treatment of electrons in solids,and in particular the electron-ion interactions, we spent some time in Chapter2 getting to grips with the structure of condensed matter. We will return toelectronic structure in the next chapter where we hope that some explanationof the existence of metals, insulators, semiconductors and superconductors willemerge. As well as using our understanding and knowledge of crystal structuresin attempting to describe the behaviour of electrons in condensed matter, onemight also hope to understand why particular elements adopt particular struc-tures in the �rst place. This is a job for \Solid state physics", but thinkingalong these lines will enable us to advance the story here as well.We saw in the last chapter that the potential energy of two noble gas atomsas a function of their separation is reasonably well-described by the Lennard-63



64 CHAPTER 3. CRYSTAL DYNAMICSJones equation. Taking the minimum of the L-J well we found that we couldget a good understanding of the bond lengths and cohesive energies of the noblesolids. So much for the ground state. What happens when T > 0? Of coursewe know that the atoms are no longer con�ned to the bottom of the L-J well,but rather they jiggle around. The greater the T , the more jiggling goes on.The Lennard-Jones potential is of rather limited use, but one may still expectthat the potential energy of any crystal as a function of the interatomic distancewould look qualitatively similar, i.e. like a well centred on the ground state. Inthis chapter we will not be too concerned about the detailed form of this well.We will �nd that many of the properties of vibrating crystals can be understoodwithout such detailed knowledge. In fact we will explore the main conceptsusing a simple model of atoms connected together to nearest neighbours bysprings. It is tempting to associate these springs with chemical bonds, but sucha physical interpretation is not always appropriate. Nor is it necessary sincemore complicated theories which account for longer range interactions lead tosubstantially similar results.The notion of vibrations in crystals seems like a very promising avenue for usnow. These vibrations should be able to store energy and so should be relevant tothe heat capacity problem. Furthermore, if we displace an atom then we wouldexpect the disturbance to spread through the crystal like a wave. In other words,we have a mechanism for thermal conduction. The thought that crystals are notrigid requires no great leap of the imagination. After all it accounts for the factthat crystals have a �nite compressibility, rigidity and shear strength. In e�ectwe are exploring the origins of these macroscopic phenomena. But the subtleinterplay between crystal vibrations and other types of waves (electromagnetic,neutrons and electrons) will give us some new physics as well.Before we start the serious business, one more observation is appropriate:condensed matter conducts sound waves. These waves have wavelengths whichare enormous compared to the size of atoms and they are usually treated usingmacroscopic elastic theory (Hooke's law etc.). This shows that the displacementu induced by longitudinal sound waves satis�es an equation of the formC� @2u@x2 = @2u@t2 (3.1)where x is distance in the direction of the wave, C is the modulus of elasticity(something like Young's modulus) and � is the density of the crystal, and so thespeed of sound is pC=�. This is typically of order of a few thousand ms�1.We might also note here that for plane waves exp(ikx�!t) the wave velocity(sometimes called the phase velocity) is !=k. For sound waves this is independentof wavelength. Whatever � (or k), the wave velocity is the same. This is ratherlike the behaviour of light in vacuum, but di�erent to what we saw for freeelectron waves, for which ! = �=} = }k2=(2m). In general we call the relationbetween ! and k a dispersion relation. For dispersive waves (for which thephase velocity depends on k) the energy of a superposition of component wavesis transported at the group velocity, given by d!=dk. Obviously the group andphase velocities are equal for a non-dispersive wave.



3.1. THEMANY-BODY PROBLEM, COUPLEDOSCILLATORS AND \NORMALMODES"653.1 The many-body problem, coupled oscilla-tors and \normal modes"The simpli�ed view of a solid as an array of balls connected by springs is notso simple mathematically since to understand its vibrations we need to describethe simultaneous movements of all its particles. They are interacting and sothis is a many-body problem. A good strategy in many-body physics is to tryto re-arrange the coupled equations of motion for the N interacting particles togive a set of independent equations. This \canonical transformation" gives usequations of motion for N �ctitious non-interacting particles which we can solveone at a time. In the language of many-body physics these �ctitious entities arecalled \elementary excitations".1In reality, the best one can usually do is to �nd �ctitious entities that areweakly interacting. This at least allows approximate methods such as pertur-bation theory to be tried. But you may already be aware that our ball andspring model is a special case, provided we can assume all the forces actingbetween atoms are harmonic, i.e. the forces are proportional to the atomic dis-placements. Mathematically, this means that we truncate the Taylor expansionfor the potential energy of the crystal after the second order derivatives. Thepotential energy of two atoms at separation r becomesV (r) � V (a) + (r � a)�dVdr �r=a + (r � a)22 �d2Vdr2 �r=a (3.2)where a is the interatomic separation in the ground state. It is easy to see thatthe linear term also disappears since �(dV=dr)r=a is the force on the atomsat the ground state which must be zero. (The potential is always 
at at thebottom on an energy well.) So we readily obtainF = �dVdr = �(r � a)�d2Vdr2 �r=a (3.3)which is the well known equation for \simple harmonic motion". The secondderivative of the interatomic potential energy near the bottom of the well givesus the \spring constant".We have shown that, provided the displacement from a is small, Taylor's the-orem always allows us to approximate interatomic forces by harmonic springs.This is reassuring, but the best part of it is that when we couple together lotsof balls using harmonic springs it is always possible to rearrange the coupledequations of motion of the balls to give a set of uncoupled equations. Thesedescribe the normal modes of the system of coupled oscillators. If you havenever been through a course on coupled oscillations don't worry - it is enoughto appreciate that:(i) in the harmonic approximation the equations of motion can always be de-coupled so as to describe independent modes, and(ii) since the normal modes don't interact, the excitation energy of a system ofcoupled oscillators is just the sum of the energies of the normal modes.1If they resemble particles, they are often called quasiparticles, while wavelike entities arecalled collective oscillations.
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Figure 3.1: Two masses connected between �xed walls by harmonic springs.Before considering vibrations in solids we can make a simple demonstrationof the general idea of normal modes. Consider the situation shown in Fig. 3.1of two bodies of mass m connected to each other and two stationary walls bymeans of three harmonic springs with spring constant S (i.e. the force exertedby each spring is �S times its extension). Newton's second law gives us twoequations of motion: m�u1 = S(u2 � u1)� Su1 (3.4)m�u2 = �Su2 + S(u1 � u2) (3.5)where u1 and u2 are the displacements of the particles from equilibrium. Theproblem with these equations is that they each contain the displacements ofboth particles as well as a derivative: we say the equations of motion of theparticles are coupled. If the middle spring were cut then each particle wouldindependently execute simple harmonic vibrations when displaced from equilib-rium. This does not in general happen for the coupled system but one mightwonder whether it could happen in certain special cases. For this to happen it isself evident that the two particles would have to vibrate at the same frequencyand it also seems likely that their vibration amplitudes and phases would havea special relationship. Let's suppose that the particle displacements during thisspecial \mode" of vibration have the formu1 = A1e�i!t; u2 = A2e�i!t (3.6)where A1 and A2 can be complex. Substituting into the equations of motion we�nd that ! must take either of the two values:!a =r Sm; !b =r3Sm : (3.7)For the a mode we �nd A1 = A2; the particles move in phase with equalamplitude, while for the b mode A1 = �A2 and the particles move in antiphase.In these two modes of vibration the balls execute SHM at the same frequency(the natural frequencies of the system) and we call them normal modes. Itis important to appreciate that these are collective oscillations of the coupled
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Figure 3.2: A chain of N atoms in one dimension connected by springs.system as a whole. While we observed the equations of motion of the particlesare coupled it is possible to de�ne new vaiables qa = u1 + u2 and qb = u1 � u2.It can easily be shown that substituting these expressions into the equations ofmotion produces two simpler equations of the form:�qa + !2aqa = 0; �qb + !2bqb = 0 (3.8)which are clearly just uncoupled oscillations at the angular frequencies !a and!b. For an arbitrary disturbance of the system we can represent the resultingmotion of the two particles as a superposition of the two normal modes.This simple example demonstrates the general principle:the normal modes of a harmonic system do not interact. We will now follow thesame analysis for vibrations in solids, limiting ourselves to the case of crystals.3.2 Crystal vibrations in one-dimensionAll the important features of lattice waves in real crystals conveniently emergefrom simple one dimensional models. In each case our aim is to �nd the normalmodes.3.2.1 The monatomic chainA simple model of a crystal with a single atom basis is shown in Fig. 3.2.We have N balls of mass M connected by springs with spring constant G.The equilibrium separation is a and each ball is labelled by an index j. If thedisplacements of the atoms from their equilibrium positions are as de�ned in the�gure, then the forces on atom j are G(uj+1�uj) to the right and G(uj�uj�1)to the left. Writing out Newton's second law, we obtainM �uj = G(uj+1 � 2uj + uj�1): (3.9)
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Figure 3.3: Displacements of atoms in a one dimensional chain (plotted astransverse waves for ease of viewing) for k = 0:8�=a and k = �1:2�=a, where ais the length of the unit cell. The arrows indicate the direction of travel of eachwave.The maths is easier if all atoms are equivalent, but we only have a �nite numberof atoms so we must decide what to do about the atoms on the ends of the chain.The most convenient course of action is to use periodic boundary conditions:uj+N = uj , which amounts to connecting the ends of the chain together. Wenow have N coupled ordinary di�erential equations like Eq. 3.9, one for eachatom, but they all have the same form.As before, in a normal mode all the atoms move with the same angularfrequency and their vibration amplitudes and phases have a special relationship.You may have already seen elegant matrix methods for decoupling these kindsof equations, but here we are going to anticipate the answer by looking forwavelike solutions with the form:uj / ei(kx0j�!t) = ei(kja�!t) (3.10)where x0j = ja is the position of the jth atom when none of the springs arecompressed or stretched. Notice that this wave is a little strange in that it isonly de�ned at positions corresponding to the undisplaced atomic sites.Applying the periodic boundary condition to Eq. 3.10 we �nd thateikNa = 1 ) k = 2�Na � integer = 2�L � integer (3.11)where L is the length of the entire chain. Clearly if we add 2�=a (notice thatthis is a reciprocal lattice \vector" for the one dimension Bravais lattice) onto k
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Figure 3.4: Dispersion relation for the normal modes of a harmonic 1Dmonatomic chain including only nearest neighbour interactions. !(k) is periodicin k with period equal to the width of the �rst Brillouin zone.then the displacement given by Eq. 3.10 is una�ected. This is illustrated by thedisplacements plotted in Fig. 3.3 for waves with k = 0:8�=L and k = �1:2�=L.It follows that there are only N distinct allowed values of k and these can betaken between ��=a < k 6 �=a, which is the �rst Brillouin zone.Substituting Eq. 3.10 into Eq. 3.9 we obtain�!2M = �eika + e�ika � 2�G = [cos(ka)� 1] 2G (3.12)) !2 = 4GM sin2(ka=2) (3.13)which is the dispersion relation for the normal modes, shown in Fig. 3.4. Foreach value of k there is a normal mode with a certain frequency. A number offeatures are worthy of comment:1. In the long wavelength limit (� � a, i.e. k � 2�=a), ! is linear in k andadjacent unit cells move in phase; the classical limit is correctly reproduced.22. Dispersion (non-linearity of ! in k) is observed when the wavelength ap-proaches the atomic dimensions. This is characteristic of discrete media.3. There is a maximum allowed !, called the cut-o� frequency.4. The dispersion relation is periodic in k with period 2�=a, as we predicted.5. The group velocity d!=dk is zero at the Brillouin zone boundaries. Adjacent2Since � = M=a and C = Ga for the 1D chain, the wave velocity is (C=�) in the longwavelength limit, as it should be.
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Figure 3.5: The Bragg di�raction condition in one dimension.unit cells move out of phase. To elucidate this result, consider the Bragg con-dition for di�raction. If we set � = �=2 and identify the plane spacing shownin Fig. 3.5 with a, di�raction is expected when k = n�=a. Thus we have astanding wave produced by the interference of lattice waves within the crystal,and so the group velocity must vanish.So far we have considered only nearest neighbour couplings. Accounting formore distant interactions changes the detailed form of the dispersion relationbut all the qualitative features discussed above remain.It is important to remember that if the monatomic chain is distrurbed fromequilibrium then the atoms will start to vibrate in a non-simple way, i.e. ingeneral the disturbance won't correspond to one of the normal modes of thesystem. However we can express an arbitrary disturbance of the chain wj ,where as before the j subscript labels the atoms, as a superposition of normalmodesPk Akuj since the chain hasN degrees of freedom and there are preciselythis many independent normal modes.3.2.2 The diatomic chainThe diatomic chain is shown in Fig. 3.6. It consists of N unit cells eachcontaining an atom of mass M1 and one of mass M2. We assume again thateach atom is connected to its nearest neighbours by harmonic springs of strengthG, but the interatomic spacing is now a=2. If uj;� is the displacement of the�th atom in the jth unit cell, then the equations of motion areM1�uj;1 = G(uj;2 � 2uj;1 + uj�1;2)M2�uj;2 = G(uj+1;1 � 2uj;2 + uj;1): (3.14)For each unit cell we have two equations of this form, giving a total of 2N coupledordinary di�erential equations. As before we anticipate wavelike solutions:uj;1 = ei(kja�!t); uj;2 = �ei(kja�!t) (3.15)
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Figure 3.6: The 1D diatomic chain.where � is a complex quantity allowing a di�erent phase and amplitude for uj;1and uj;2.3 The equations of motion now become� !2 � 2G=M1 (1 + e�ika)G=M1(1 + eika)G=M1 !2M2=M1 � 2G=M1��1�� = 0: (3.16)To obtain a non-trivial solution we require the determinant of the matrix tovanish, and it follows that!(k)2 = G(M1 +M2)M1M2 �Gs�M1 +M2M1M2 �2 � 4M1M2 sin2(ka=2): (3.17)Again we �nd periodicity in k with a period of 2�=a, so we need only considerthe �rst Brillouin zone, but on account of the � sign we now have two normalmode frequencies for each allowed k, giving a total of 2N distinct modes, asrequired.The dispersion relation for the diatomic chain is shown in Fig. 3.7. Thetwo branches have quite distinct character. The lower frequency branch is non-dispersive at low k (i.e. ! / k) and � equals 1, meaning all atoms are moving inphase. This corresponds to the propagation of sound and accordingly the lowerbranch is designated acoustic. For the upper branch we �nd for k = 0 that� = �M1=M2 and hence the two masses in the unit cell vibrate out of phasewith each other and with amplitude which scales inversely with their masses.In ionic crystals this kind of motion produces an oscillating electric dipole. Youwill probably see in \Atomic and Molecular Physics" that an oscillating electricdipole leads to strong coupling to electromagnetic radiation. For this reason theupper branch is known as the optical branch. Resonant vibrations are createdin the solid by incident electromagnetic waves with angular frequency equal toq 2G(M1+M2)M1M2 . Since typical angular frequencies for the normal modes in solids3But the frequency ! is common to the whole system for a normal mode.
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Figure 3.7: Dispersion relation for the 1D diatomic chain including only nearestneighbour interactions, assuming M2 = 1:3M1.are of order 1013 rads/sec, this leads to a sharp increase in re
ectivity of ionicsolids in the infra-red region of the electromagnetic spectrum.3.3 Three dimensionsThe generalization to 3D is best achieved using a notation-intensive matrixformulation. There are no real surprises. For solids with one atom per unitcell there can be one longitudinal and two transverse normal modes, possiblywith di�erent speeds. If there are p atoms per unit cell there are 3 acousticbranches (one longitudinal and two transverse) and 3(p � 1) optical branches(p� 1 longitudinal and 2p� 2 transverse).The important thing is that we get accustomed to seeing how dispersionrelations are represented for 3D crystals. This is a bit tricky at �rst since theBrillouin zone is now a 3D volume, usually with a strange shape. The waywe proceed is by plotting ! vs k along certain directions in the Brillouin zone,as shown in Fig. 3.8. You will have noticed that !(k) in 1D is the same forpositive and negative k. In 3D many other symmetries become apparent so itis conventional to only bother plotting dispersion relations over an irreduciblewedge of the Brillouin zone (i.e. we don't bother repeating stu� which is thesame).The normal mode frequencies for a few more crystals are shown in Fig. 3.9.A number of features are apparent:1. The vibrational frequencies appear to increase along the series argon to lead
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Figure 3.8: The dispersion relation along high symmetry points of the BZ ofsilicon. The crystal structure of silicon is most simply expressed as a face-centredcubic Bravais lattice with a two atom basis. The reciprocal lattice is thereforea (suitably scaled) body centred cubic lattice and the �rst BZ is the truncatedcubo-octahedron sketched above. Since there are two atoms per primitive unitcell there are acoustic and optical branches.
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Figure 3.9: The vibrational dispersion relations for Argon, Lead and Copper.Each of these materials crystallises with the face centred cubic crystal structure.
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Figure 3.10: Heat capacity of solid Xe. The dashed line indicates the DulongPetit result.to copper. From our linear ball and spring equations we can interpret this interms of an increase in the spring sti�ness along the series. While we are not toofamiliar with the properties of solid argon we can happily accept that copper ismore rigid than lead. Looking back to Fig. 3.8 we see that silicon is more rigidstill (its vibrational frequencies are even higher) which also makes sense.2. Along certain directions the transverse modes are doublely degenerate dueto the high symmetry of the Bravais lattice.3. While crystals of silicon, argon and the metals lead and copper are heldtogether by quite di�erent chemical bonds their vibrational spectra are surpris-ingly similar (except that silicon, having a two atom basis, has optical branches).This justi�es our qualitative considerations of balls and springs.We will soon see how the vibrational modes of real materials can be discov-ered experimentally.3.4 Normal modes and PhononsEarlier we stated that the energy of a crystal above its ground state energyis given by the sum of the energies of its normal modes. Since each normalmode represents an independent oscillator (having both kinetic and potentialenergy), the equipartition theorem states that the energy density of the crystalat temperature T will be 3NkbT above its ground state value on account ofthermal excitation of the normal modes, where here N is the number of atomsper unit volume. This is just what we need to make sense of the observed heatcapacities of most solids measured at room temperature. This is the Dulong-Petit law, known since the middle of the nineteenth century.Comparison of the Dulong-Petit result and the experimentally measured



76 CHAPTER 3. CRYSTAL DYNAMICSheat capacity of Xe is shown in Fig. 3.10. There is disappointing news here.The most obvious di�culty is the apparent collapse of the heat capacity at lowtemperature. It looks like we are totally missing an important concept here. Athigh temperature things are much better, but on close inspection the Dulong-Petit limit does not appear to be exactly reproduced by experiment. In theface of these observations we must re-assess the validity of any assumptions orapproximations we have made.The Dulong-Petit result does not require any restriction to only nearestneighbour interactions. So long as only harmonic forces are present, the dy-namics of an N particle solid can be exactly mapped onto the dynamics of Nindependent harmonic oscillators. Here we have our clues - the problems liewith the assumption of harmonic forces and with the type of dynamics we used(i.e. Newtonian).In our analysis of the normal modes of vibration in crystals we derived therelation between angular frequency ! and wavevector k, but at no point did weexplicitly consider the amplitude of the vibrations. Classical dynamics says thatthe energy of a harmonically oscillating mass is Mr2!2 where r is the vibrationamplitude. Thus the average square amplitude of thermally excited vibrationsshould be proprtional to kbT . At low T we have small amplitude vibrations andso Taylor's theorem tells us the harmonic approximation should work ratherwell.4 So the harmonic approximation cannot explain the low T problem, butit probably has something to do with the high T problem since true interatomicpotentials are not really harmonic and this becomes apparent at high T .5The low T heat capacity problem signals a rather fundamental problem -in fact the complete breakdown of classical physics. Just as in the \black-body problem" of electromagnetism, the normal mode oscillators of a harmoniccrystal can only vibrate with certain allowed amplitudes such that their energycomplies with the Planck hypothesis:E = (j + 1=2)}! j = 0; 1; 2; 3; � � � : (3.18)This simple expression brings a number of thoughts to mind:(i) A crystal cannot have zero vibrational energy. There is at least }!=2 ofzero-point energy in each mode. (We have already appealed to this phenomenonwhen we discussed the cohesive energy of the noble gas solids.)(ii) Each normal mode can only gain or lose energy in units of }!.(iii) We can adopt similar quantum terminology as used in electromagnetism.Instead of referring to an oscillator in branch s with wavevector k being in itsjth excited state, we say there are j phonons of type s with wavevector k in thecrystal. When an oscillator is converted from its jth1 to its jth2 excited state, wesay that j1 � j2 phonons have been emitted or absorbed by the oscillator.(iv) One can see that the thermal properties of solids will depend on the relationof kbT to }!. If kbT is greater than } times the typical normal mode frequencyof a crystal then their quantised nature should not be apparent. On the otherhand, if it is smaller, then a quantum theory will be essential.4In fact the harmonic approximation is exact in the T ! 0 limit.5Generally it is harder to push atoms together than it is to pull them apart. Whatever theirprecise nature, interatomic (or interionic) attractive forces are always longer range than thePauli repulsive force so the potential energy curve is not a parabolic function of interatomicseparation.



3.5. THE HEAT CAPACITY OF CRYSTALS 77From Fig. 3.10 one can conclude that the transition from the quantum tothe classical regime occurs at � 50 K.6 This implies that the characteristic an-gular frequency of lattice vibrations (in xenon at least) is of order 1012 rads/sec,corresponding to a phonon energy of just a few milli-electron volts. If we wereto have plotted CV against T for a di�erent solid, say copper or diamond, thenwe would have seen almost exactly the same shape of curve. This is anotherexample of the fact that vibrations in crystals are much of a muchness. It seems like we can characterise the vibrational properties of a particular solid bysimply one number: the characteristic vibrational frequency, or equivalently acharacteristic temperature.3.5 The heat capacity of crystals3.5.1 Thermal energy of a single quantum harmonic oscil-latorConsider a single quantum harmonic oscillator in thermal equilibrium with aheat reservoir at temperature T . We know that the energies of the oscillator inits jth excited state are (j+1=2)}!. We don't know which state the oscillatorwillbe in, but the Boltzmann law tells us that the probability Pj that the oscillatorwill be in its jth excited state isPj / e�Ej=(kbT ): (3.19)The constant of proportionality can be determined by the fact that the sum ofall these probabilities must be 1, leading toPj = e�j}!=(kbT ) �1� e�}!=(kbT )� : (3.20)The average energy of the single oscillator is thereforehEi = 1Xj=0 PjEj = }!�12 + 1e}!=(kbT ) � 1� : (3.21)This expression is very similar in form to the equation for the excited statesof the oscillator. We can therefore deduce that the average value of the quantumnumber j for an oscillator in thermal equilibrium with a heat bath ishji = 1e}!=(kbT ) � 1 : (3.22)We can interpret the energy hEi as comprising a zero point contribution }!=2and a contribution }! for each of the hji phonons that are present (on average).You will recognise this expression as the Bose-Einstein distribution function f!BEwhich gives the number of bosons with energy }! in equilibrium at temperatureT . 6The equivalent temperature in the free electron gas theory was the \Fermi tempertaure"Tf = �f=kb. We saw that this is many thousands of degrees Kelvin and so electrons are �rmlyin the quantum regime for most purposes. This is not so for phonons.



78 CHAPTER 3. CRYSTAL DYNAMICS3.5.2 The Einstein modelWhen Planck made the crucial breakthrough in explaining the black-body \UV-catastrophe", Einstein realised that the same basic idea of quantised oscillatorswas also relevant to the heat capacity problem of solids.7 Einstein assumedthat the vibrational properties of a crystal of N atoms could be modelled by3N independent harmonic oscillators with angular frequency !E , known as theEinstein frequency. The energy density of the solid is then given byU = 3N}!EW �12 + 1e}!E=(kbT ) � 1� (3.23)where W is the volume of the crystal, and so the heat capacity8 isCV = �@U@T � = 3NkbW �}!EkbT �2 e}!E=(kbT )�e}!E=(kbT ) � 1�2 : (3.24)Consider �rst the high T regime, by which we mean kbT � }!E . To simplifythe algebra it is conventional to de�ne the Einstein temperature �E :�E = }!Ekb (3.25)and so \high temperature" means T � �E . We can write the Bose-Einsteinfunction as hji = T�E �1� 12 �ET + � � �� (3.26)and so the energy density of the crystal becomesU ! 3Nkb�EW �12 + T�E � 12� = 3NkbTW : (3.27)Thus the high temperature limit of the Einstein model reproduces the Dulong-Petit heat capacity, i.e. CV ! 3Nkb=W .The variation of the Einstein heat capacity with T is plotted in Fig. 3.11.Comparison with experimental data for Xe shown earlier strongly suggests thatthe Einstein model has corrected the most 
agrant failures of the classical the-ory. The Dulong-Petit limit is reproduced and CV collapses to zero at lowtemperature. The physics of the low T region can be put into words: whenT � �E the available thermal energy is not su�cient to excite (with appre-ciable probability) the oscillators from their ground state. A small increase inT in this region increases the likelihood of excitation only a negligible amountand so the energy density of the solid increases negligibly, i.e. the heat capacityvanishes in the low T limit.Closer inspection of Eq. 3.24 shows that in the Einstein model CV vanishesexponentially as T tends to zero. On the contrary we saw in Chapter 1 thatat low temperature the (vibrational contribution to the) heat capacity varies asT 3. The Einstein model contains the essential physics, but it gets the detailwrong. The problem is not di�cult to spot - we have assumed that the crystalconsists of independent harmonic oscillators all with the same frequency, !E .We know that this is not true.7Although we haven't got time to go into it, we should also mention that similar problemsexisted in explaining the heat capacities of molecular liquids.8In the harmonic approximation CP = CV , but don't worry about that.
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Figure 3.11: Heat capacity of a crystal in the Einstein and Debye models.3.5.3 The vibrational density of states (modes)In sections 3.1-3.3 we saw that crystals can vibrate with a spectrum of fre-quencies. We must now graft together our classical discussion of the normalmode frequencies of a crystal and the quantum theory of the heat capacity. Thesimplest way to proceed is by introduction of the density of vibrational states.The normal mode solutions of the equations of motion of the vibrating har-monic crystal are wave-like, each mode having a particular wavevector k. Themathematics of counting these modes is very similar to that for counting thestates in the wave-like solutions of the Schr�odinger equation for the free electrongas from Chapter 1. In particular, we will need to �gure out (i) how many states(i.e. modes) are allowed, and (ii) what is the probability that these states areoccupied (i.e. how many phonons are there).The application of periodic boundary conditions for a crystal with volumeW leads to a density of allowed phonon wavevectors given bygk = W(2�)3 : (3.28)There is an important di�erence however - we need only consider k to lie withinthe �rst Brillouin zone. The de�nition of gk requires gk�k to be the number ofallowed modes with wavevector in the range k to k + �k. Similarly, g!�! givesthe number of allowed modes with angular frequency in the range ! to !+ �!.Given a complete knowledge of the dispersion curves !s(k) of a crystal then wecan deduce g!. This is shown in Fig. 3.12 for copper. Notice that peaks in g!are observed whenever the branches are 
at since this ensures there are manymodes in a small energy range.If we are to calculate the energy density of a crystal at temperature T wemust now supplement our knowledge of the allowed modes of a crystal by spec-ifying the extent that these modes will be excited. In other words, we mustspecify how many phonons of type s (i.e. in branch s), with wavevector k and
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Figure 3.12: The vibrational density of allowed states g! for silicon. The dashedcurve is the Debye approximation.energy }! will be present at temperature T . This is given by the Bose-Einsteinfunction. Finally, the vibrational energy density of the solid can now be writtenU = Z g! f!BE }! d! = Z g! �12 + 1e}!=(kbT ) � 1� }! d!: (3.29)3.5.4 The Debye modelIn the previous subsection we showed the formal link between the spectrum ofvibrational modes of a crystal and its heat capacity. Plots of !s(k) throughoutthe Brillouin zone of a crystal look rather messy and it is hard to interpret whatthey actually mean. In order to understand the qualitative behaviour of the heatcapacity it is enough to consider a simple model for the density of vibrationalstates. We saw above that the Einstein model, for which g! / �(! � !E), is abit too simplistic. However, inspection of Fig. 3.2 suggests the approximation! / k, originally proposed by Debye, might be useful. This assumption neglectsthe dispersion due to the discrete structure of the crystal.To compute the density of allowed vibrational states for the Debye model weagain proceed in the manner seen in Chapter 1 for the free electron gas. Firstwe consider the volume of k-space lying between the spheres with radii k andk + �k. The number of allowed modes with wavevector within this region is byde�nition gk �k. But this is also equal to gk �k, where �k is the chosen k-spacevolume, and it follows that gk = W(2�)3 4�k2: (3.30)



3.5. THE HEAT CAPACITY OF CRYSTALS 81To convert gk to g! we play the same trick:g! d! = gk dk: (3.31)For the Debye model we have ! = ck, where c is something like the speed ofsound, and so we obtaing! = gkd!=dk = W(2�)3 4�k2c = W2�2 !2c3 : (3.32)There are a few things we have to do to this expression:(i) It is conventional to divide by the crystal volumeW , so we are really dealinghere with a density of states per unit crystal volume.(ii) We must multiply by a factor of three, since there are three acoustic branchesfor a three dimensional solid.9(iii) We might worry about what to do about the optical branches for crystalswith a multi-atom basis. Fig. 3.5 shows that these are quite 
at and so theyare often modelled by a single oscillator frequency as in the Einstein model. Wecould do this, but for simplicity we will side-step the problem by consideringonly crystals with a one atom basis.Even with these modi�cations and quali�cations, the density of allowed vibra-tional states given by Eq. 3.32 is de�cient in one important respect. We notedearlier that for a crystal with N unit cells there are N distinct allowed wavevec-tors. In 3D there are therefore 3N allowed modes (for a monatomic crystal).We need to specify a cut-o� frequency !D (called the Debye frequency) suchthat the integral of Eq. 3.32 yields the correct total number of allowed modes:3NW = Z !D0 g! d! = 32�2c3 Z !D0 !2 d! ) !3Dc3 = k3D = 6�2 NW :(3.33)The Debye approximation for g! of copper is shown in Fig. 3.12.Clearly !D is the characteristic vibrational frequency in the Debye model.It is also useful to de�ne the Debye temperature �D = }!D=kb and the Debyewavevector kD = !D=c. We could view the Debye model as the replacement ofthe true phonon spectrum of a crystal !s(k), where k has N allowed values inthe �rst Brillouin zone, with the dispersion relation !s(k) = ck, where k has Nallowed values within the \Debye sphere" k < kD.Putting everything together, the Debye expression for the energy density ofa monatomic crystal isU = 3}2�2c3 Z !D0 !3�12 + 1e}!=(kbT ) � 1� d!: (3.34)Di�erentiating this expression to obtain the heat capacity yields the result shownin Fig. 3.11. Again the Dulong-Petit limit is attained for high T (i.e. T � �D),but what about the low T limit? Making the substitution x = }!=(kbT ) weobtain CV = 9NkbW � T�D�3 Z �D=T0 x4ex(ex � 1)2 dx: (3.35)9Strictly speaking we should be taking the constant c as an average for the three acousticbranches, but this is an annoying detail.



82 CHAPTER 3. CRYSTAL DYNAMICSAt low T we can take the upper limit of integration to be in�nite, whereuponthe integral takes the value 4�4=15. At last we are left with the desired T -cubedbehaviour at low temperature.We saw above that within the Debye model, the energy density of a crystalat a given T is determined by a single parameter, namely the Debye temperatureof the material �D. One is entitled to ask whether this is reasonable. Fig. 3.12shows that while the Debye approximation misses some of the details it gets theessential features of the phonon spectrum i.e. the correct behaviour near ! � 0,a reasonable upper bound and (by construction) the correct total number ofmodes. Since the vibrational density of states only enters the expression for theenergy density in integral form (see Eq. 3.30) the precise details get washedout.The Debye temperatures for aluminium, lead, neon and diamond are 394,88, 63 and 1860 K. What do these numbers mean? The frequency of a harmonicoscillator ispG=M and so we would expect that heavy atoms would have lowerfrequencies than light ones. The comparison of aluminium and lead bears outthis expectation. Both these elements are metallic (and so one might expect asimilar \spring constant"), but lead atoms are much heavier than aluminiumatoms. Equating the G with the second derivative of the energy with respect toatomic displacement, one expects that crystals with high cohesive energies willhave a high \spring constant" and hence a high Debye temperature. Diamondis a prime example of this, while neon demonstrates the converse. In summary,solids with a high �D tend to have a high cohesive energy, to be rigid, andincompressible.The Debye temperature in lattice dynamics plays a similar role to the Fermitemperature in the free electron gas theory. Both separate regions where quan-tum statistics apply from regions where classical statistics are valid. Since theFermi temperature is so high (� 105 K) we only encounter the quantum me-chanical regime in free electron theory. For most solids TD is of order 102 K andso both classical and quantum regimes of lattice dynamics are readily accessible.3.6 Di�raction from a vibrating crystalIn this section we are considering again scattering, i.e. the probe is not ab-sorbed10 but rather survives interaction with matter, possibly su�ering somemodi�cation in the process.Consider the following expression:A0(q) / e�i!0tXj e�iq:(Rj+uj(t)): (3.36)This is Eq. 2.34 (which gives the amplitude of waves scattered by a solid) for acrystal with a single atom basis but with three modi�cations. We have explicitlyincluded the factor exp(�i!0t) arising from the time dependence of the incidentwave, suppressed the atomic form factor, and allowed the atomic coordinates10When we looked the optical branches of crystals with a two atom basis we saw that itis possible for a photon to be converted to a phonon and vice versa provided there is anoscillating electric dipole in the corresponding normal mode vibration. Energy and \crystalmomentum" must also be conserved, as we will see below. It is also possible for a photon toannihilate in the production of multiple phonons.



3.6. DIFFRACTION FROM A VIBRATING CRYSTAL 83to vary with time. If we now approximate exp(�iq:u(t)) using the binomialexpansion to �rst order, and if we write the displacements uj(t) in the formused in Eq. 3.10, we �nd that the intensity of the Bragg peaks is reduced bya factor exp(�q2hu2i=3), where q is the magnitude of scattering vector and theterm in angled brackets denotes the mean square displacement. The intensityremoved from the Bragg spots by this \Debye-Waller" factor turns up as adi�use background.After the leading (elastic) term we obtain an inelastic term of the forme�i(!0�!(k))tXj ei(q�k):Rj : (3.37)While our scattering theory introduced in Chapter 2 was semi-classical, there isan obvious quantum mechanical interpretation of the term above: when scat-tered from a crystal incident particles can absorb/create a phonon with energy}!(k) and wavevector k.For liquids, where u(t) is not wavelike, the spectrum of inelastically scatteredwaves can also yield information on molecular dynamics. We haven't got timeto got into this however.3.6.1 Conservation laws and \crystal momentum"The elastic scattering considered in the previous chapter, for which the energyof the probe (which could be photons or neutrons) is conserved:E0probe = Eprobe (3.38)can be considered as zero-phonon scattering. (Here we add the \probe" subscriptto distinguish between the energy and wavevector of the neutrons or photons andthose of the phonons.) In addition we have the von Laue di�raction condition:k0probe = kprobe +K (3.39)although we did not think of this as a conservation rule. When a phonon isdestroyed (positive sign) or created (negative sign) when a particle11 is scatteredin a crystal these equations becomeE0probe = Eprobe � }!s(k) (3.40)}k0probe = }kprobe � }k + }K: (3.41)If we regard }k as the momentum carried by the phonon, this last expressionlooks very much like the conservation of linear momentum.This is not quite correct however. Consider a phonon travelling through thecrystal before the di�raction experiment begins. Momentum is only a constantof motion when a particle moves through a constant potential. If a ball rollsdownhill or across the corrugations of a sheet of corrugated iron it is obviousthat the momentum of the ball is not a constant of its motion. The potential11The single scattering theory we developed in Chapter 2 is suited to the description ofneutron or x-ray scattering.
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Figure 3.13: Schematic representation of the conservation rules in the di�ractionof neutrons by a crystal. The right hand circle is centred on K + k and hasradius determined by energy conservation.within a crystal is not constant, and so its stationary states are not momen-tum eigenfunctions and in general }k does not correspond to true kinematicmomentum.12But the potential in a crystal is periodic, and for every symmetry there is acorresponding conservation law. In periodic systems }k is conserved, but withan uncertainty of }K, where K is a reciprocal lattice vector. Since }k playsa similar role in periodic systems as momentum plays when the potential isconstant, we often refer to it as the crystal momentum of the phonon. Theconservation of crystal momentum makes sense because we have already seenthat a phonon in branch s and with wavevector k+K is indistinguishable froma phonon in branch s and with wavevector k.3.6.2 Phonon spectroscopyIt should now be clear that measuring the inelastic scattering from a crystalwill allow its phonon spectrum to be investigated. X-ray scattering is not wellsuited for this purpose however since phonon energies are of order 10�3 eVwhile the photon energy of x-rays used in di�raction experiments is of order104 eV. It is extremely di�cult to distinguish elastic from inelastic scatteringin the x-ray regime since it is extremely di�cult to create an x-ray beam whichis su�ciently monochromatic (i.e. with a su�ciently narrow spread of photonenergies) and su�ciently intense. The visible region of the electromagneticspectrum (Eprobe � 1 eV) is much easier to deal with since lasers, which areboth intense and extremely monochromatic, are cheap and readily available.The catch is that the wavevector of these photons is � 107 m�1 = 10�3 �A�1,which is extremely small on the scale of the Brillouin zone of solids. Thusinelastic scattering in the visible region probes only those phonons with k = 0(known as Brillouin scattering if an acoustic branch is probed, and Ramanscattering for the optical branch).In phonon spectroscopy it is neutrons that steal the show. Neutrons withde Broglie wavelength comparable to the interatomic spacing of solids have en-12We will see a spectacular demonstration of this principal in the next chapter.



3.7. DYNAMICS IN NON-CRYSTALLINE SYSTEMS 85ergy of only � 0:02 eV, and it is therefore relatively easy to resolve inelasticallyscattered neutrons. One can proceed as follows:(i) Choose the wavevector and energy of the incident neutrons, kprobe and Eprobe.(This means specifying the speed and direction of the neutrons, but we neednot won't worry about how this is done, we'll just take it for granted that it canbe.)(ii) Select k, the wavevector of the phonons we are interested in.(iii) Select q, the scattering vector of the neutrons (remember this is just k0probe�kprobe). q is equal to K + k, where K is a particular reciprocal lattice vector ofthe crystal.(iv) Measure the energy spectrum of neutrons scattered in the direction de�nedby q. For the chosen q and arbitrary kprobe, Eq. 3.40 will probably not besatis�ed and so no scattered neutrons will be observed for this geometry.(v) Keeping Eprobe constant, change kprobe and measure the neutron spectrumagain. When the energy conservation rule is satis�ed there will be a peak in thescattered neutron spectrum at energy Eprobe � }!s(k).Thus the energies of the observed peaks13 together with Eq. 3.40 give thephonon energies for the chosen k. In this way the phonon branches can bemapped throughout the Brillouin zone. The geometry of this method is shownschematically in Fig. 3.13.Of course neutron di�raction can also be used to look for the elastic Braggpeaks for the purpose of crystal structure determination, just as for x-ray di�rac-tion. Here too neutrons have some advantages. They are scattered primarilyby interaction with the nuclei in solids14 which can be considered point likeon the scale of interatomic distances. As a result the atomic form factor forneutron di�raction (i.e. the Fourier transform of the distribution of nucleons inan atom) is roughly independent of scattering vector and so di�raction inten-sities do not fade away at high q. We have already noted that the scatteringstrength for neutrons does not vary that much across the periodic table and soneutron di�raction does not have any trouble �nding very light atoms, unlikex-ray di�raction.Given the advantages of neutron di�raction in structure analysis as well asthe capability to map out the entire phonon spectrum of a solid, one mightwonder why anyone would bother with x-ray di�raction at all. The answer ismainly a matter of practicality. It is rather easy to generate, monochromate(i.e. energy select) and detect x-rays. Neutrons are much harder to come by.While there are dozens of x-ray sources in the University of Edinburgh alone,neutron di�raction can only be performed at extremely expensive custom builtnational facilities.3.7 Dynamics in non-crystalline systemsLet's pause brie
y to consider the possibility of vibrations in non-crystallinematter. (See also Dr. Egelhaaf's \Macromolecular Physics" lectures next term.)13Experimental results reveal the inelastic peaks, though distinct, to be broadened somehow.14Since neutrons have spin there is also a weak coupling to the magnetic moments of theelectrons, but this is only signi�cant in magnetic materials.



86 CHAPTER 3. CRYSTAL DYNAMICSFirstly we could wonder what the e�ect of impurities might have. These mightcome in the form of chemical impurities, isotopic impurities, or missing atomsfor example. When a vibration spreading through a crystal reaches an impurityit will get messed up. The impurity will attempt to vibrate in slightly thewrong way. This is a bit like trying to push a swing at the wrong moment - theamplitude of the swing will probably be degraded. Thus impurities lead to adamping of lattice vibrations, and we might expect a similar e�ect from othertypes of defect (by which we mean departure from perfect crystallinity, grainboundaries, surfaces, etc.). There is a very important concept here: disorderleads to localisation.The localisation of a vibration means, according to the uncertainty principle,the wavevector of the wave will be spread out. The more con�nement in realspace, the more uncertain will be the wavevector. It is then quite natural toassociate a phonon of wavevector k with a wavepacket, i.e. a superposition ofwaves with wavevectors centred on k.In amorphous solids the disorder is more thorough. For longwavelengthvibrations (i.e. where the wavelength greatly exceeds the atomic scale) thedetails of atomic scale geometry are irrelevant and the material behaves asan elastic continuum, supporting well de�ned modes. For shorter wavelengths(larger k), disorder leads to such a smearing in wavevector that �k � k andhence dispersion relations have no validity.3.8 AnharmonicityWe have seen that the harmonic approximation leads to a surprisingly simpletheory of the vibrating lattice. Taylor's theorem reassures us that we are onquite solid ground with this approximation, for small amplitude vibrations atleast. Eq. 3.22 on page 77 tells us that as T ! 0, hji ! 0 and so there are nophonons about.15 Equivalently, we could say that the normal mode oscillatorsin a crystal are in their ground states and only zero point motion is presentat absolute zero. There must always be a range of temperature which thevibrational amplitudes are su�ciently small for the harmonic approximation tobe valid, but outside this region the atoms vibrate su�ciently for them to noticeanharmonicity. We have already seen that the failure of CV to approach theclassical (Dulong-Petit) limit is an example of this.One might think that anharmonicity is an annoying departure from math-ematical simplicity which merely messes up the �ne details. In fact this is notthe case - there are a few quite obvious physical e�ects which are wholly deter-mined by anharmonicity, thermal expansion coming immediately to mind. Aquick discussion of thermal conduction illuminates the main points.The normal modes of a purely harmonic lattice are independent and, oncecreated, a vibration will persist inde�nitely. In other words phonons don't inter-act with each other. Now one can send pulses (i.e. phonons) across a solid andhence transport thermal energy and this is the basis of an explanation of ther-mal conductivity, but it's incomplete since non-interacting phonons give rise toinde�nite thermal currents and hence in�nite thermal conductivity.16 However15Note that this behaviour is in stark contrast to what we saw for the electron gas for whichthe total number of particles is constant.16We observed earlier that impurities and defects could lead to damping of harmonic vibra-



3.9. SUMMARY 87the phonons of a real crystal are not quite true stationary states of the exactHamiltonian which contains an anharmonic potenial. Experimental observationof single phonon loss/gain peaks in the inelastic neutron scattering17 suggeststhat the phonon picture is substantially correct and therefore a good startingpoint for a perturbation theory treatment. In �rst order perturbation theoryit can be shown that the cubic (and quartic etc.) terms in the Taylor expan-sion of the interatomic potential give rise to processes in which the occupationnumber of 3 (4 etc.) modes change. In other words the most important typesof phonon-phonon interactions lead to either the decay of one phonon to createtwo new ones, or the combination of two phonons to form one new one.A schematic diagram of the former is shown in Fig. 3.14a. Since the prin-ciples of energy and crystal momentum do not rely upon the harmonic approx-imation they must apply here. It follows that the direction and magnitude ofphonon momentum is unchanged by the interaction in Fig. 3.14a and hencethermal currents are not degraded by such processes. The collision shown inFig. 3.14b is signi�cant because the resulting phonon has wavevector lying out-side the �rst BZ. We know that this must correspond precisely to a normal modewith wavevector inside the �rst BZ, shown by the dotted line in the Figure. Thisis perfectly consistent with the law of crystal momentum which requires k to beconserved give or take a reciprocal lattice vector K. The result of these Umk-lapp collisions (the other type are simply called \normal"), is that the phononmomentum can be reversed and hence thermal currents are degraded. We havediscovered the origin of thermal resistance.183.9 SummaryThis chapter has explored the properties and consequences of \deformationwaves" in solids. In the long wavelength limit (or short wavevector limit)these are just sound waves. We know solids transmit sound because they are\springy", i.e. both stretchable and compressible. Compressibility, rigidity,Hooke's law etc. all belong to the �eld of continuum elasticity theory, but wefound that looking into the atomic origins of these e�ects leads to some newphysics. We saw this by modelling a vibrating crystal by a one dimensionalchain of balls connected by harmonic springs. Displacement of an atom causesits neighbours to be displaced and so on down the chain like a wave. The crucialpoint here is that the deformation of the \solid" is only de�ned at the atomicpositions, and so it only makes sense to speak of waves with wavevector k withinthe �rst Brillouin zone. For any wave with k outside the �rst BZ we can always�nd another one with k 2 1stBZ which gives exactly the same atomic displace-ments. This is not a quantum mechanical e�ect - it is simply because a crystaltions. Thermal conductivities of real materials are a�ected by such factors, yet they remain�nite even when one makes bigger and better specimens.17We noted earlier that these inelastic peaks are mysteriously broadened. Now we canexplain why - a phonon with energy }! is not a true eigenstate of the crystal Hamiltonianand so decays with time. This \localisation in time" implies delocalisation in energy, i.e. itsenergy is not precise.18Recall that metals conduct heat much better than non-metals and so the \free" electronswhich allow electric currents to 
ow must also be the primary means of thermal conduc-tion in metals. We might suppose that the electron scattering mechanisms (which we haveyet to specify) giving rise to electrical resistance must also contribute to thermal resistance.Nonetheless phonon-phonon scattering occurs in metals and non-metals alike.
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Figure 3.14: Combination of phonon wavevectors during phonon-phonon colli-sions in a simple cubic lattice. a) shows a normal process while b) shows anUmklapp process. The �rst Brillouin zone is also shown.



3.9. SUMMARY 89is made up of discrete atoms rather than a continuum.Applying periodic boundary conditions we found that a system of N atomssupports wave-like modes of vibration with N distinct wavevectors. Solving theNewtonian equations of motion we obtained the corresponding allowed angularfrequencies !. We recovered the appropriate continuum limit as jkj � kBZ =�=a and found that ! tails o� to a maximum (cut-o�) frequency as k approachesthe Brillouin zone boundary. We noted that the group velocity19 at this pointis zero, and we interpreted this in terms of standing waves caused by the Braggdi�raction condition.20For the diatomic linear chain a new e�ect emerged. With N units cells westill have N allowed wavevectors which we can again choose to lie in the �rstBZ, but this time there are two solutions to the equations of motion for each k,giving two branches. In the lower branch the atoms within each unit cell tendto move in phase with each other, while in the upper one they tend to moveout of phase. The lower branch was designated \acoustic" since it behaves as asound wave as k ! 0, while the upper one was termed \optical" since the out ofphase oscillation of chemically distinct atoms gives rise to an oscillating electricdipole which strongly interacts with electromagnetic waves.The new feature of three dimensional systems was polarization, i.e. thereare waves with the displacement perpendicular to as well along the direction oftravel. ForN unit cells and periodic boundary conditions we still haveN allowedwavevectors. If there are p atoms in the basis, then there are 3p branches. In realsolids one expects that one needs to account for more than nearest neighbourinteractions. We dodged this issue by noting that so long as only harmonicforces are present it is always possible to convert the equations of motion of thesystem to give a set of equations describing independent harmonic oscillators.21To explain the heat capacity of solids, the main motivation for this chapter, aquantummechanical treatment of the harmonicmodes of vibration was required.We quoted the basic result from Quantum Physics 3 that the allowed energiesof the quantum harmonic oscillator have the form (j+1=2)}!. When kbT � }!the energy levels are so �nely spaced that it doesn't really matter that they arediscrete, but when kbT � }! there is a profound change in behaviour. It is nolonger possible to thermally excite an oscillator (with signi�cant probability)and the heat capacity vanishes. We saw that the Einstein model, which buildsin this basic idea, is a bit too crude to reproduce the detailed behaviour of CVas T ! 0. The Debye model accounts for a distribution (albeit an approximateone) of allowed vibrational modes and reproduces the experimentally observedT 3 behaviour in the low T limit.We noted some similarities between the Debye model for lattice vibrationsand the qunatum theory of the free electron gas. In each case we are consideringwaves in a crystal subject to periodic boundary conditions. But we should beclear about a few things.� A lattice vibration involves the collective motion of all the atoms in the crystal19A wavepacket made up of a number of waves with wavevectors distributed about a par-ticular k transports energy at the group velocity at this wavevector.20In three dimensions the group velocity vanishes as k approaches the BZ boundary in adirection perpendicular to it.21A more sophisticated treatment of this issue would point out that the appropriate canon-ical transformation is provided by expressing the atomic displacements as Fourier transforms.Eq. 3.10 is a simpli�cation of the general case.



90 CHAPTER 3. CRYSTAL DYNAMICSwhile the free electron wavefunctions considered in chapter 1 each described asingle electron.� The allowed k vectors are spaced by 2�=L in each dimension for both electronand lattice waves, but kD sets an upper bound on the allowed wavevectors oflattice waves. For electron waves there is no cut-o� in the allowed wavevectors.� The Fermi wavevector kF sets an upper bound on the occupation of the allowedstates when T = 0 to account for the Pauli principle. There is no such restric-tion of the occupation of the allowed states of the quantum harmonic oscillators.We had hoped to learn more about the origins of electrical resistance ofmetals, i.e. the agents that scatter conduction electrons. Could phonons playa role? The answer is \yes", but �rst we need to understand more about theinteraction of electrons with the static lattice of a crystal. We have seen no hintof it yet but we may see at the end of the course that phonons can play a spec-tacular and totally unexpected role in determining the electrical conductivity ofsome solids by making rather subtle interventions in the interactions betweenelectrons.We should also note that we in Sec. 3.6 we brie
y considered phonon-photoninteractions. Extending our semi-classical treatment of di�raction we stumbledacross an important conservation law: the conservation of crystal momentum.\Crystal momentum" is simply the name given to the quantity }k, where kis the wavevector of an allowed wave in a crystal, but you should be able tosee some resemblance to true momentum. Don't worry about the origins ofcrystal momentum too much, but know that it is conserved to within }K. Norshould you worry about the details of neutron di�raction. It is enough to knowwhy neutrons are suitable for both di�raction (elastic scattering) and phononspectroscopy (inelastic scattering), while photons (x-ray and visible) are less so.Having discussed the structures of crystals and how the atoms within themcan move we should have the basis for understanding most of the mechanicalproperties of solids. The simplest mechanical experiment, however, still givesus some surprises. Imagine stretching a solid. All solids obey Hooke's law upto a point, but then metals tend to \yield" while non-metals tend to break.This makes some sense in terms of our discussion of chemical bonding. As westress a metal there comes a point where planes of atoms start to slide past eachother. Metals are not so fussy about the precise location of their neighbours,just that there be as many of them as possible, so distorting their structure doesnot cost a great deal of energy. Knowledge of some basic parameters, such asthe cohesive energy of a metal, allows its shear strength to be estimated. Evensophisticated calculations get this wrong by four to �ve orders of magnitude!Planes of atoms slip past each other extraordinarily easily in metals. Covalentsolids on the other hand rely on strong directional bonds for their cohesion.If we distort a covalent solid beyond a critical amount the atoms wind up inthe wrong geometry for the bonds to work and the solids fractures. But thistoo happens in real samples far more easily than we can explain. There is animportant concept (largely) missing from our discussion of crystal dynamics inthis chapter.



Chapter 4

Introduction to band theory

and the electronic structure

of solids

We started the course by pondering the enormous diversity of condensed matter,
with particular reference to electrical conductivity. Even among perfect crystals
of elemental solids the range is quite extraordinary. In this chapter we will find
the reason for this.

A discussion of the behaviour of electrons in solids can be conveniently con-
ducted in two parts, as we saw in Chapter 1. Firstly we must consider solving
the Schrödinger equation to obtain the stationary states of the system. While
we solved the Schrödinger equation for free electrons in Chapter 1, a more real-
istic and general approach is now needed. The second ingredient is the inclusion
of scattering effects.1

The term electronic structure refers to the energy levels of electrons and
their distributions in space and momentum. Their characterization, calculation
and experimental investigation are central goals of condensed matter physics,
materials science and chemistry. We start this chapter with a discussion of some
quite fundamental points:

1. We will assume that only the outermost electrons of atoms are of inter-
est when a solid is formed. The inner or “core” electrons remain tightly bound
to the nucleus, which together constitute the ion core. While only the outer or
“valence” electrons participate in chemical bonding, the core electrons play an
indirect but spectacular role. This can be seen by comparing diamond, silicon,
germanium, tin and lead. These elements are all in Group 4 of the periodic
table and their atoms each have an ion core with charge 4+ and four valence
electrons. Does it follow that these solids have the same properties? No. Dia-
mond is an extremely hard, covalently bonded insulator, silicon and germanium
are covalent but conduct electricity (though poorly) at room temperature, tin
exists as either a metal or a semiconductor, while lead is a very soft metal. We

1Of course we would like to put absolutely everything into the Schrödinger equation, but
it is hard enough to solve even for a perfect (non-vibrating) crystal. The things we neglect at
the Schrödinger equation level and have to be cobbled on afterwards.

91



92 CHAPTER 4. BAND THEORY AND ELECTRONIC STRUCTURE

will see that these profound differences can be attributed in large part to the
influence of the core electrons.

2. We will assume that the ion cores in a crystal are arranged with perfect
periodicity, and are therefore stationary. This sits rather uncomfortably with
the previous chapter. By the same token it seems a bit strange that one can
study lattice dynamics without the slightest regard for the role of electrons.
This dichotomy in condensed matter physics between those properties that can
be explained by atomic vibrations and those attributed to electrons requires
some justification. Electronic and core motions are separable2 to a good ap-
proximation because the mass of the electron m is extremely small compared to
ion core masses M (m/M is between 10−4 and 10−5 in most cases). It follows
that electrons move extremely quickly compared to core motions and so they
very rapidly adapt to changes in atomic position. The assumption that the
electrons are always in the ground state appropriate to the instantaneous ionic
configuration (regardless of whether the ions are moving) is called the Born-

Oppenheimer approximation or the adiabatic approximation. The separation is
not perfect, as we shall see.

3. There remains the basic question raised in Chapter 1 regarding the ex-
tent to which the electrons are independent of each other. Certainly it is very
convenient to regard each electron as having its own wavefunction and as be-
ing in a definite quantum state. However, the idea of describing an interacting
system in terms of individual wavefunctions is incorrect. Formally, when the
Hamiltonian of a system contains interactions between particles the Schrödinger
equation does not separate and the wavefunction of the system cannot be built
up from single particle wavefunctions. Likewise, one cannot hope to learn much
about the game of chess simply from a knowledge of how the individual pieces
are allowed to move on an empty board.

Despite these quite discouraging remarks, the naive idea that each electron
should have its own wavefunction and eigenenergy turns out to be extremely
useful. This is a subtle but very important point: a “one electron” approach
does not necessarily require there be no interactions at all between electrons.
Rather it requires them to influence each other only through the establishment
of an average potential.3 In this chapter we will assume that an electron in
a solid feels a periodic potential (due to all the other particles in the system)
which depends solely on its position. Solving the Schrödinger equation for an
electron in this potential will give us a set of energy levels which we will succes-
sively fill up in accordance with the Pauli principle. The majority (though not
all) of experimental results and observed phenomena can be explained in these
terms.

4. In the previous chapter we saw that room temperature can usually be consid-
ered “high” when considering lattice vibrations. On the other hand we saw in
Chapter 1 that typical electronic energies are rather large compared to normal
thermal energies. We may therefore expect that all temperatures of interest are

2Formally we can express the wavefunction of a solid as the product of an electronic part
and a part describing how atomic motions, as we shall see later.

3Perhaps we should have used the analogy of a chess piece participating in a game in which
all other pieces are spread over their average positions.
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“low” as far as the electrons in solids are concerned. This is substantially true,
with one very important exception.

These “introductory” remarks are not minor preliminaries to be quickly
dismissed, but are some of the fundamental issues in condensed matter physics.

4.1 Electrons in condensed matter

The Schrödinger equation for a crystal is4
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(4.1)
where the first sum is over all the electrons in the solid, the R sum is over Bravais
lattice points,5 and the third sum is over all pairs of electrons in the solid. In
writing down this equation we are assuming that we know where the atoms
are located and we are assuming that they are stationary. The wavefunction
Ψ describes only the electrons in the solid, but it includes all of them. Clearly
we have a many body problem which we cannot solve. To make progress we
make the one electron approximation (OEA) and assume that the wavefunction
for the whole electronic system can be expressed as a product of wavefunctions
which each describe only one electron. If the two potential energy terms in Eq.
4.1 can be written
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This means that each electron i is assumed to move under the influence of
a potential U(ri). The important thing here is that the potential for elec-
tron i depends only on the position of that electron and not explicitly on the
positions of the others. This means that the electronic motions are uncor-

related and we should be able to use the old mathematical trick of “separa-
tion of variables”. The true electronic wavefunction is an unknown function of
the coordinates of all the electrons which we could write as Ψ(r1, r2, r3, · · · ),
but if the electrons are uncorrelated then we can replace Ψ with the product
ψ1(r1)ψ2(r2)ψ3(r3) · · · , where each ψ describes only one electron. In this way
the many body Schrödinger equation separates into a number of one electron
Schrödinger equations with the form:

−
~

2

2m
∇2ψ(r) + U(r)ψ(r) = ǫψ(r). (4.3)

Notice that we have not neglected the electron-electron and electron-nucleus
interactions, rather they enter Eq. 4.3 in some kind of approximate way. (Note
that if the electrons do not interact then the OEA is exact and the total elec-
tronic energy E is the sum of the single electron eigenvalues ǫi, but in general
this is not true.)

4We are ignoring lattice dynamics so Ψ describes only the electronic degrees of freedom.
5We assume a single atom basis for notational brevity.
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Before we get too carried away with this simplification we should remember
that it really is an approximation. Take a hydrogen molecule, for example. If
at a particular instant the first electron happens to be on atom A, then we
would strongly suspect that the second electron will be on atom B. But in the
scheme outlined above we have stated that the whereabouts of electron two are
determined solely by the potential U(r2) which is independent of the position
of electron one at the moment in question. In the one-electron approximation
it is equally likely for the electrons to be on the same atom as it is for them
to be on different atoms! Electron motions really are correlated - they must be
because electrons repel each other and therefore move in such a way as to avoid
each other.

But we need not despair on account of the rather extreme example referred
to above. The trick is to construct the potential U so that it accounts for
electron-electron correlations as best we can. This task is rather hard since
the ingredients of U are the electron-ion interactions and the electron-electron
interactions,6 and to estimate the repulsion any particular electron experiences
from all the other electrons would require us to know the wavefunctions of all
the others, which one does not know at the outset. The way to proceed is to
guess the ψi at the start, construct U , solve Eq. 4.2 to get new estimates of the
ψi, then check for consistency with the old wavefunctions. We must go round
this self-consistency loop until the wavefunctions we get out are consistent with
the one we use to compute the electron-electron interactions.

The self-consistent field method is shown schematically in Fig. 4.1 and we
must think about its implementation. Let’s postpone that for now and simply
assume that we somehow know the self-consistent potential U , concentrating
on how to solve Eq. 4.3 for electrons in a crystal and the properties of the
wavefunctions we obtain.

4.2 The empty lattice approximation

It is instructive to first consider a crystal where the potential U is so weak it
is vanishingly small. This so-called empty lattice approximation is clearly just a
form of free electron model, so what’s the point of it? It serves to introduce the
way we display electron states in crystals.

We saw in Chapter 1 that the electron energies and wavefunctions for the
free electron model are ǫ = ~

2k2/2m and ψ(r) ∝ eik.r respectively. We may
ask which of these states is occupied (at T = 0). In Section 1.2 we showed
that the density of allowed electron wavevectors in a crystal is W/(2π)3, where
W is the volume of the entire crystal. Since each k-state can accommodate 2
electrons (because of spin degeneracy) the first Brillouin zone contains sufficient
k points to label the wavefunctions of 2W/V electrons,7 where V is the volume
in real space of the unit cell. We sometimes simply say that “each BZ can
accommodate 2W/V electrons”. Higher order BZ’s each have the same volume
as the first, and so each can accommodate 2N electrons. 2W/V is equal to 2N ,
twice the number of primitive cells in the crystal, and so if there are two valence

6It is essential to appreciate that neglecting electron-electron correlations is not the same
as neglecting electron-electron interactions. We include the later approximtely by including
an electron-electron repulsion contribution to U .

7Recall that the volume of the primitive unit cell of a reciprocal lattice is equal to (2π)3/V .
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Figure 4.1: The steps in calculating the electronic states of a solid.

electrons per primitive cell then there are enough to fill the first Brillouin zone.
The 1D free electron dispersion relation is shown as the solid line in Fig. 4.2.

If there is one electron per unit cell then the first BZ will be half full, assuming
the states fill up starting with the lowest energy first. For two electrons per cell
the first BZ is full, and so on. This representation is called the extended zone

scheme. For compactness it is often convenient to map all states into the first
BZ by translation by the appropriate reciprocal lattice vector. In this reduced

zone scheme, also shown in Fig. 4.2, the dispersion relation has the form

ǫ(k) =
~

2(k −K)2

2m
(4.4)

where K is a reciprocal lattice vector. When k is confined to the first BZ,
ǫ(k) becomes a multi-valued function and it is therefore necessary to label each
portion of ǫ(k) or band with a different band index: ǫn(k).8 Since in the extended
zone scheme each BZ can hold 2N electrons, each band in the reduced zone
scheme also holds up to 2N electrons.

8We can assign band indices according to which reciprocal lattice vector is required to
translate the band into the first BZ, but this is not the only way.
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Figure 4.2: Free electron energy levels for a 1D chain with atomic spacing d.
The solid curve shows the extended zone representation. Also shown is the
reduced zone scheme constructed by translating all portions of the ǫ(k) curve
by a reciprocal lattice vector so as to confine k to the first Brillouin zone. We
call the dashed and dot-dashed lines the second and third bands.

The representation of the electron energy bands in the reduced zone scheme,
as shown in Fig. 4.2, looks reminiscent of the phonon frequency branches from
Chapter 3, but we should again stress the important differences.
(i) Notice that there is no cut-off energy for the electronic states. There are an
infinite number of energy bands.
(ii) We showed that a lattice vibration with k outside the first BZ gives exactly
the same atomic displacements as a mode with wavevector within the first BZ.
We have not made the same claim for electrons. Our use of the reduced zone
scheme must be viewed solely as a convenience, at this stage at least.
(iii) The occupation of the vibrational modes is determined by the Bose-Einstein
function, while the occupation of the electronic states follows Fermi-Dirac statis-
tics.

The filling of the energy bands in more than one dimension can lead to some
surprises. Energy bands and the Fermi sphere in the first two Brillouin zones
of a 2D square lattice with two valence electrons per atom are shown in Fig.
4.3 in both the extended (on the left) and reduced (on the right) schemes. The
first thing to note is that the radius of the Fermi sphere has roughly the same
dimensions as the first Brillouin zone. In fact they have the same area (i.e.
contain the same number of states) since for the particular case shown there are
two valence electrons per primitive cell. But because their shapes are different
the first BZ is not completely filled. It could accommodate two electrons per
cell, but it doesn’t since there are parts of the second zone with lower energy.
This figure is extremely important - we will see why in the next section.

For a 3D system, the task of displaying ǫ(k) vs k, called the band structure of
a crystal, is difficult since there are four independent components (three for the
components of k and one for energy). This is usually accomplished by plotting
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Figure 4.3: The first two Brillouin zones of the 2D empty square lattice with
sufficient electrons to fill precisely one zone.

ǫ(k) vs k in the reduced zone scheme for k along just a few directions across
the first BZ.9 The complexity of this representation can be surprisingly great,
even for the empty lattice, as shown in Fig. 4.4 for the FCC structure. As one
should expect, many of these bands are degenerate due to the high symmetry
of the chosen directions and the free electron states.10

4.3 Nearly free electron model

4.3.1 The allowed states

Now let’s consider what happens when the crystal potential U is non-zero, but
weak. It is natural to expect that the free electron picture of the empty lattice
approximation will have to be modified slightly. We can anticipate the physics
of the nearly free electron model (NFEM) by wondering what would happen to a
free electron propagating through a crystal with a weak crystal potential. In fact
we have already considered this situation (i.e. a plane wave interacting weakly
with a crystal) in another guise - x-ray diffraction. For brevity we consider the
1D case (with spacing a) for which the reciprocal lattice vectors are K = 2jπ/a,
where j is any (positive or negative) integer, and the Bragg condition is just
k = jπ/a. Let’s just consider first order diffraction for now. Since θ = π/2 for
a 1D system (see Fig. 4.5), the incident and reflected waves combine to form
standing waves.

9To be more precise, we usually plot the band structure between symmetry points in an
irreducible “wedge” of the first BZ.

10When the crystal potential is non-zero some of these degeneracies are lifted.
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Figure 4.4: Free electron energy levels for the FCC Bravais lattice along certain
directions in the Brillouin zone using the reduced zone scheme. The horizontal
dotted lines denote the Fermi energies for the indicated numbers of electrons
per primitive unit cell. The roman numerals indicate the degeneracy of each
band. The BZ is shown on the right. The Γ point is at the centre of the BZ.

Different standing waves can be formed depending on the relative phase of
the component waves. The two extremes are shown in Fig. 4.6 and given by

ψ1(x) = eiπx/a + e−iπx/a = 2 cos(πx/a)

ψ2(x) = eiπx/a − e−iπx/a = 2i sin(πx/a). (4.5)

In the free electron model the electron density for each level ψ∗(x)ψ(x) is in-
dependent of position, since there is nothing to make it otherwise. Once the
electrons can “feel” the lattice potential things are different. ψ1 has most of its
density at the ion sites, while ψ2 has its density concentrated in between them,
as shown in Fig. 4.6. The electron-nucleus interaction is attractive and so ψ1

has the lower energy. Can we quantify this?
Since we are postulating a weak crystal potential we can be optimistic about

correcting the energies of the free electron model by recourse to first order
perturbation theory, for which the energy correction is

∆ǫ =
〈ψ|U |ψ〉

〈ψ|ψ〉
(4.6)

where the ψ are the unperturbed wavefunctions (i.e. free electron plane waves).
The potential U(x) is periodic with period a and so can be expressed as a Fourier
series (Physical Mathemtics from last year?):

U(x) =
∑

K

U(K) eiKx. (4.7)

It is instructive to use a rather short Fourier expansion:

U(x) ≈ U0 + 2U1 cos(2πx/a) (4.8)
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Figure 4.5: Bragg reflection in 1D. The Bragg “planes” become single sites while
the incident angle must be π/2.
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Figure 4.6: Schematic representation of the potential U(x) for a 1D chain of
atoms and its first Fourier component (a cosine function). The standing waves
ψ1 and ψ2 produced by Bragg reflection are shown, as well as the corresponding
electron densities |ψ1|

2 and |ψ2|
2.
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Figure 4.7: Schematic representation of the energy levels for the nearly free
electron model in the extended and reduced zone schemes. (Note d should be a
for consistency with text.)

where U0 and U1 = U(2π/a) = U(−2π/a) are negative constants. It would
appear to be a simple matter to combine Eq. 4.6 and 4.8 but the result is
strange: we get ∆ǫ = 0, while second and higher order corrections are infinite.
The problem here is a technical one. The wavefunctions exp (±iπx/a) have
the same energy and so we must use degenerate perturbation theory. The rule
here is that one must start with unperturbed eigenfunctions which are also
eigenfunctions of the perturbation. In the present case, the linear combinations
given in Eq. 4.5 make suitable zero-order wavefunctions, giving first order energy
corrections U0 ± U1.

It can be shown that the ǫ(k) curve approaches the lower energy solution
as k approaches the first BZ boundary from the interior of the zone (i.e. as
k → π/a for the first energy band in the reduced zone scheme). Approaching
the first BZ boundary from outside (i.e. as k → π/a for the second energy band
in the reduced zone scheme), ǫ(k) converges to the higher energy solution. In
other words, there is a range of energies, known as a band gap for which there
are no allowed electronic states.

Since ψ1 and ψ2 are standing waves, the group velocity (1/~)dǫ/dk is zero
at Brillouin zone boundaries. Non-zero higher order Fourier components also
give rise to discontinuities in the dispersion relation when k lies on higher order
Brillouin zone boundaries. These results are summarized in Fig. 4.7.

4.3.2 Occupation of the states

As before we use the Pauli principle i.e. fill the lowest energy states first, putting
only one electron per state. Remember that strictly speaking this is only correct
for T = 0, but since kbT << ǫf for any relevant T , then the T = 0 limit seems
appropriate.

In one dimension things are simple. For one electron per unit cell the first
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Figure 4.8: Filling of the energy bands for the 2D square lattice when there are
two electrons per unit cell. Three different strength of crystal potential U are
considered.

band is half filled, for two electrons per unit cell the first band is filled, for
three electrons per unit cell the second band is half filled, etc. In two and three
dimensions things are not so simple. Certainly for an odd number of electrons
per unit cell we will have unfilled bands. But for an even number of electrons
per unit cell we can get qualitatively different behaviour depending on the size
of U , as illustrated in Fig. 4.8. If the crystal potential is very weak (and hence
the band gaps at the BZ boundaries are very small) then the “empty lattice”
picture is not significantly modified. However, if U is sufficiently strong it can be
seen that the energy bands can become completely filled or completely empty.
The crucial issue is the size of the gaps. Now let’s discuss the significance of
Fig. 4.8.

4.3.3 Metals and Insulators

There is no greater concept in solid state physics than that of the band gap. It is
the basis of our understanding of the distinction between metals and insulators
(and semiconductors).

Metals

Cast your mind back to Chapter 1 where we started to think about the con-
duction of electricity in the free electron gas. We had a quantum mechanical
description of the electronic states but a classical description of electron dynam-
ics in the presence of an external force. Electrical conduction was explained in
terms of a balance between the acceleration of the free electrons by an external
DC electrical field and the damping effect of some kind of scattering mecha-
nism(s). Implicit in this picture is the assumption that the conduction electrons
can have their velocities increased. In the free electron gas we imagine the Fermi
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sphere tending to shift so that it is no longer centred on the origin, as shown in
Fig. 4.9. (Of course electron scattering limits this shift and a dynamic steady
state is set up.) Since the energy bands in the free electron gas are continu-
ous, it is certain that for an infinitesimal shift of the Fermi sphere there will
be empty states which are only an infinitesimal energy above the Fermi energy.
Thus the energy cost of producing an electron distribution which corresponds
to a current-carrying state is infinitesimal. We should also observe at this point
that we are confidently associating the wavevector (and hence momentum) of a
free electron with its velocity, give or take some constants. This seems totally
sensible but we will have more to say on that soon.

Figure 4.9: Shifting of the Fermi sphere of a free electron gas by an external
potential.

The NFEM results may have also alerted you to an explanation of the exis-
tence of electrical insulators. Consider a crystal (for which the NFEM is valid)
with one electron per unit cell. There are enough electrons to exactly half fill a
single electron energy band (which means enough to occupy half of the k states
in a band). Since energy bands are continuous, such a system must be a con-
ductor since there are empty states an infinitesimal distance above the Fermi
energy. In fact we can state with certainty that any crystal with an odd number
of valence electrons per unit cell must be metallic since it must have at least
one partially filled band.

In metals there will be a surface in k-space separating the occupied and
unoccupied states of the partially filled bands. These are called Fermi surfaces

and are a generalization of the Fermi sphere of the free electron gas. In the
final Problem Sheet we will explore the Fermi surface within the NFEM. In
particular we will see how Fig. 4.2 is modified by the crystal potential.

Semi-metals

There is the possibility of a metal having an exceedingly small Fermi surface (i.e.
all the partially filled bands are either very nearly full or very nearly empty).
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Such solids tend to conduct poorly and so are frequently called semi-metals.
Here we see a criterion for quantifying electrical conductivity: The greater the
Fermi surface, the greater the electrical conductivity.

Insulators

Figure 4.10: Energy bands for a one dimensional system. The system on the left
has a single electron per unit cell. There is no energy gap between the highest
occupied state and the lowest empty state so we have a conductor. For the case
illustrated on the right there are two electrons per unit cell. There is a large
energy cost preventing the formation of a current-carrying state.

Now consider the case of an even number of electrons per unit cell combined
with a strong crystal potential. We have seen that these conditions lead to a
complete absence of partially filled energy bands; each band is either filled or
empty. There is a distinct energy gap between the highest occupied state and
the lowest empty state, as illustrated in Fig. 4.10. By definition, such solids do
not have a Fermi surface since they do not have partially filled bands. Although
an extremely strong electric field may be capable of ripping an electron from
a filled band and promoting it to a previously empty band, a process known
as dielectric breakdown, electric currents cannot be produced by connecting a
battery to a wire of the material. The energy required is far too great.

Semi-conductors

If the energy gap ǫg between the highest occupied and lowest unoccupied levels
is of order 1 eV, then we find room temperature conductivities intermediate
between those of typical metals and insulators. We usually refer to narrow-
band-gap insulators as semiconductors. At room temperature ǫg/kbT ∼ 40 and
there is a non-negligible probability of thermal excitation of an electron from
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Figure 4.11: The density of states for a fictitious metal, semi-metal, semicon-
ductor and insulator.

the highest occupied to the lowest unoccupied band.11

The density of energy levels

We have seen how electron energy bands are plotted. When we are only inter-
ested in electron energies and not their wavevectors, it is convenient to compress
thr full band structure information into the form of a density of levels (or states)
g, as we did for free electrons in Chapter 1 and for phonons in Chapter 3. Ap-
plying Born-Von Karman (periodic) boundary conditions to Eq. 4.11, it follows
that the volume (in k-space) of each allowed k-point is (2π)3/W , and hence
gk = W/(8π3), just as in the free electron model. We can then equate gǫdǫ with
twice the number of allowed k states with energy in the range ǫ to ǫ+ dǫ.

The four classes of solids discussed above are easily distinguished accord-
ing to their density of states, as illustrated by Fig. 4.11. But note that the
distinctions between metals and semi-metals and between semiconductors and
insulators are not fundamental.

11Incidentally, many insulators have conductivities which, although exceedingly small, are
still too large to be explained by thermal promotion across the band gap.
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4.4 Electrons in a periodic potential

The NFEM provides an explanation for the distinction between metals and non-
metals, but provokes further questions:

• The electronic states resemble a single plane wave in the free electron limit,
and a superposition of two plane waves near the BZ boundaries in the NFEM.
What is the general form of an electronic state in a crystal?

• Can we better justify use of the reduced zone scheme?

• Why is the crystal potential weak for certain crystals?

We tackle the first of these in the next subsection.

4.4.1 Bloch’s theorem

Consider a one dimensional chain of atoms with positions given by R = ja where
j can be any integer. Since every atom in the chain is identical one expects some
kind of periodicty to emerge in the electron wavefunctions of the system. Let’s
start by considering the value a particular wavefunction takes at the origin
R = 0, which we will denote ψ(0) = z. It is tempting to suppose that the
periodicity of the system requires ψ(a) = z, but this is not the case. Certainly all
physical properties must be periodic, but ψ is not a physical quantity. However
the electron density (|ψ|2 = ψψ∗) is, and so this must be periodic implying ψ(0)
and ψ(a) can differ only by a phase factor: ψ(a) = z eiθ, and in general

ψ(R) = z eiθR/a. (4.9)

It appears that θ/a play the role of wavevector here, and we can write

ψ(R) = const.× eik.R. (4.10)

This is all fine if we are only interested in the values of ψ at the atomic
positions R. This is the case for lattice vibrations which we studied in §3.
In such cases we can readily justify the reduced zone scheme since adding a
reciprocal lattice vector K = (2π/a) × integer onto k in the previous equation
does not change the value of ψ(R). Thus wavefunctions that are only defined
at the positions R are periodic in k-space.

Electron wavefunctions are continuous functions in real space and this com-
plicates things a little. The key is to notice that the argument given above can
be repeated for positions r = h + ja, where h is some constant. As h varies,
z must also vary, but with periodicity a. We have more or less proved12 the
one-dimensional version of Bloch’s theorem:

The eigenstates of the one electron Schrödinger equation for a periodic potential

have the form of a plane wave times a function which has the periodicity of the

Bravais lattice

ψk(r) = eik.r uk(r) (4.11)

12We’ll do a more respectable mathematical in a problem sheet.
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where uk(r +R) = uk(r) for any Bravais lattice vector R.

These Bloch waves are planes waves modulated by some function which has
the periodicity of the lattice.

4.4.2 Properties of Bloch functions

Crystal momentum

Bloch’s theorem introduces a wavevector k which turns out to play the same
role for electrons in a periodic potential as the free electron wavevector plays
in the Sommerfeld model. Note that in the free electron gas ~k is the electron
momentum p, but this is not so for Bloch electrons. Indeed, the eigenstates
of a periodic potential are not momentum eigenstates (i.e. momentum is not
a constant of the electron motion). Nonetheless, ~k is a natural generalization
of momentum for a periodic potential and to reinforce the point it is usually
referred to as the crystal momentum.

Electron velocity

The average velocity of a Bloch electron is given by 〈v〉 = ∇kǫ(k)/~.13 This
may seem surprising. It implies that electrons in solids can travel indefinitely,
without any degradation of their (average) velocity. This is far removed from
the Drude-Lorentz or Sommerfeld descriptions of electron velocities.

Real space periodicity

Eq. 4.11 implies

ψk(r +R) = eik.R ψk(r). (4.12)

Thus Bloch waves are not periodic in real space (although their density ψk(r)ψ∗
k(r)

is).
It can also be shown (see Problem Sheet 1) that Eq. 4.12 implies Eq. 4.11,

and so the two statements are equivalent.

Boundary conditions

Applying Born-Von Karman (periodic) boundary conditions to Eq. 4.12, it
follows that the volume (in k-space) of each allowed k-point is (2π)3/W , where
W is the volume of the entire crystal, just as in the free electron model.

Plane wave expansion

The function uk(r) in Eq. 4.11 has the periodicity of the direct lattice and so
can be written as a Fourier series (i.e. as a sum over reciprocal lattice vectors):

uk(r) =
∑

K

B
k
K eiK.r (4.13)

13Compare this with the classical result for a free particle in 1D: v = dǫ/dp. (∇k means
grad in k-space.)
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and so the plane wave expansion of a Bloch wave takes the form

ψk(r) =
∑

K

B
k
K ei(K+k).r. (4.14)

In other words, a Bloch wave with wavevector k is a superposition of plane
waves with wavevectors k +K.

A periodic crytsal potential only mixes those planes wave states whose wavevec-

tors differ by reciprocal lattice vectors.
This observation should make us a little more comfortable about the reduced

zone scheme. In general a Bloch wave with wavevector k will not necessarily
resemble the plane wave with wavevector k, and so there is no compelling reason
to associate it with any particular BZ.

4.4.3 k-space periodicity and the reduced zone scheme

Up to now we have justified the reduced zone scheme for electronic states solely
on the basis of convenience, but Bloch’s theorem allows a rigorous justification.
It is often stated that Bloch waves are periodic in reciprocal space. Inspection of
the free electron wavefunction ψk = eik.r (which is a perfectly good Bloch wave)
shows that this is not quite right. The correct justification for the reduced zone
scheme is slightly more subtle.

Let’s take a Bloch wave ψk
1
(r) with wavevector k1 outside the first zone.

There must be a reciprocal lattice vector that we can add to k1 to get a new
vector k2 which is inside the first zone. Now we define a new wavefunction,
which we can decide to call φk

2
(r), by the expression

φk
2
(r) = eik

1
.ruk

1
(r) = eik

2
.re−iK

0
.ruk

2
+K

0
(r). (4.15)

The new wavefunction has the form eik
2
.r multiplied by a more complicated

function which we can call vk
2
(r). This function has the periodicity of the

lattice since

vk
2
(r +R) = e−iK

0
.(r+R)uk

2
+K

0
(r +R) = e−iK

0
.ruk

2
+K

0
(r) = vk

2
(r). (4.16)

This means φk
2

is a Bloch wave with wavevector k2.

• We have proved that for any Bloch wavefunction with wavevector outside the

first zone we can find an equivalent one which has wavevector inside the first

zone.

But we still have a notational difficulty. Each time we replace a wavefunction
from outside the first zone with one inside it we have to give the new wavefunc-
tion a distinct name.14 We can’t call it ψk because there are already Bloch
waves in the first zone. So when we replace one from outside with a new one
inside we simply give the new wavefunction a new band index n. (Of course we
could have called the new function φk, as we did above, but we soon run out of
symbols.) For the free electron model we have the set of wavefunctions:

ψk, k ∈ [all k space]. (4.17)

14ψ and φ have a different k dependence and are therefore distinct functions.



108 CHAPTER 4. BAND THEORY AND ELECTRONIC STRUCTURE

In a crystal we have the set

ψnk, k ∈ [1 BZ], n = 1, 2, 3 · · · . (4.18)

Band indices are usually allocated to ensure symmetry of the energy bands
(i.e. such that ǫn(k) = ǫn(−k) ). We will see later that this helps us to visualize
electron trajectories.

4.5 Solving the Schrödinger equation

We saw in the previous section that the wavefunctions for electrons moving
in a periodic system are Bloch waves. That Bloch waves can be conveniently
expanded as superpositions of plane waves leads one to a Fourier approach to
solving the Schrödinger equation. We will see how this is done below, but
remember that we are still assuming that we already know the self-consistent
crystal potential U .

4.5.1 The Schrödinger equation in matrix form

Substituting the plane wave expansion of the Bloch wavefunction (Eq. 4.14
on the preceding page) into the one-electron Schrödinger equation (Eq. 4.3 on
page 93) it follows that

{

~
2

2m
(K + k)2 − ǫ(k)

}

B
k
K +

∑

K′

UK−K′ B
k
K′ = 0 (4.19)

where the Bk are the plane wave coefficients, and the crystal potential U(r) has
been written as the Fourier series:

U(r) =
∑

K

UK eiK.r. (4.20)

For each value of k 15 Eq. 4.19 gives an infinite set of equations (one for each
reciprocal lattice vector K). We can rewrite Eq. 4.19 in the form

∑

K′

{[

~
2

2m
(K ′ + k)2 − ǫ(k)

]

δKK′ + UK−K′

}

B
k
K′ = 0 (4.21)

which now looks a bit like a matrix equation. The term in the curly brackets
corresponds to a matrix (with rows and columns numbered by K and K′ re-

spectively), while the B
k
K′ are the components of a vector. Non-trivial solutions

of a matrix equation with the form Mv = 0 (where M is a matrix and v is a
column vector) only occur when the determinant of the matrix ‖M‖ is zero. In
the present case we require

∥

∥

∥

∥

[

~
2

2m
(K′ + k)2 − ǫ(k)

]

δKK′ + UK−K′

∥

∥

∥

∥

= 0. (4.22)

15In fact we need only consider an “irreducible wedge” of the first BZ. Remember from
CMP that we always try to avoid wasting effort by considering two or more k points which
are equivalent.
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Figure 4.12: Solutions of the secular equation 4.24 on the following page.

We denote the energies which give this condition as ǫn(k), and the n subscript
which distinguishes the different energies is the band index introduced above.
For each band index we have a set of Bk coefficients which give us the wave-
function ψnk. As we vary k in the first BZ the energies ǫn(k) vary smoothly,
mapping out a series of curves - the “energy bands”. Thus the problem of calcu-
lating energy bands is equivalent to solving the determinantal (sometimes called
secular) equation 4.22.

4.5.2 The NFEM revisited

It should be obvious that the ease with which this can be done is determined
by the size of the matrices, i.e. how many reciprocal lattice vectors are included
in the plane wave expansion of the Bloch waves and the potential (Eq. 4.14 on

page 107 and 4.20). If we keep only one (all the B
k
K are zero except B

k
0 ) then we

just get the free electron result ǫ(k) = (~k)2/2m. A slightly more difficult case
is the nearly free electron model (NFEM) in 1D which we considered earlier. If
we keep the three reciprocal lattice vectors K−1 = −2π/d,K0 = 0,K1 = 2π/d,
then Eq. 4.19 becomes the set

[

~
2

2m
(K−1 + k)2 − ǫ(k)

]

Bk
−1 + U0B

k
−1 + U−1B

k
0 = 0

[

~
2

2m
(K0 + k)2 − ǫ(k)

]

Bk
0 + U1B

k
−1 + U0B

k
0 + U−1B

k
1 = 0

[

~
2

2m
(K1 + k)2 − ǫ(k)

]

Bk
1 + U1B

k
0 + U0B

k
1 = 0. (4.23)
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Figure 4.13: Plane wave coefficients for the bands shown in Fig. 4.12.

This can be arranged as the matrix equation







~
2

2m (k +K−1)
2 + U0 − ǫ(k) U−1 0

U1
~
2

2m (k +K0)
2 + U0 − ǫ(k) U−1

0 U1
~
2

2m (k +K1)
2 + U0 − ǫ(k)











Bk
−1

Bk
0

Bk
1



 = 0

(4.24)
Setting the determinant to zero gives

[

~
2

2m
(k +K−1)

2 + U0 − ǫ(k)

]

×

[

~
2

2m
(k +K0)

2 + U0 − ǫ(k)

]

×

[

~
2

2m
(k +K1)

2 + U0 − ǫ(k)

]

−

U1U−1

[

~
2

2m
(k +K−1)

2 +
~

2

2m
(k +K1)

2 + 2U0 − 2ǫ(k)

]

= 0 (4.25)

The energy bands satisfying this equation16 are shown in Fig. 4.12 on page 109.
As k varies we see three distinct curves, the energy bands, and we label each
one with a different band index. For the first band we find that Bk

0 is the only
significant plane wave component near the centre of the BZ i.e. we just have a

16The values U(K1) = U(K
−1) = −0.03, U(K0) = 0.2 (in the units shown in Fig. 4.12)

have been used.



4.6. REAL MATERIALS 111

free electron with wavevector k. But near k . π/d we find Bk
0 ≈ Bk

−1 ≫ Bk
1

for the first band and −Bk
0 ≈ Bk

−1 ≫ Bk
1 for the second band. This is precisely

the NFEM we considered earlier, except here we did things properly. Note that
we only got the first three bands because a 3 × 3 matrix can only have three
independent eigenvectors. Notice also that no band gap emerged between the
second and third bands, simply because the corresponding Fourier coeffiecient
of the crystal potential was implicitly zero. Including the zeroth-order Fourier
component of the potential (i.e. a constant) just shifted the zero of the energy
bands.

4.6 Real materials

We have seen how a weak crystal potential affects free electrons, but one must
ask how relevant the NFEM is to real materials. To rephrase this question we
could ask “What is U really like in real solids?” There is a very good indication
in the ionization energies of the elements. (The ionization energy is the energy
required to pull of an electron off an atom.) Although Li, Na, K atoms are
similar to the H atom in having a single outer electron, their ionization energies
are considerably less than 13.6 eV. Furthermore we know that the trend is for the
ionization energy to increase down the group. So when we notice the conduction
electrons in metallic sodium appear to pay little regard to the charged ions, we
are in a sense merely rediscovering the same physics beneath the ionization
energy trend. This same trend is observed in Group 4 of the periodic table.
The crystal potential is strong at the top of the Group so here we find electrical
insulators. The ionization energy and the band gap each steadily decrease down
the group until we get to tin and lead which are metals.

4.6.1 The problem with plane waves

The spirit of the nearly free electron model can be summed up as “try to get
away with as few plane waves as possible”. It turns out that the alkali metals
are quite NFE-like. This is in itself quite hard to explain, but our aim here is
quite ambitious - we want a scheme capable of describing any (periodic) solid,
and with quantitative accuracy. We have no reason to suspect that the crystal
potential is always weak. We have seen already the general form of electron
wavefunctions in a crystal (i.e. the Bloch form) but let’s try to see what these
actaully look like for real solids.

The “core” electrons (the ones deep within atoms which do not particupate
in bonding) in a crystal must obey Bloch’s theorem. As seen below this can
be achieved by making linear combination of truly atomic core wavefunctions,
which we will assume are known. It follows that while their wavefunctions
are concentrated near the nuclei, they are modulated by a plane wave factor,
as shown in Fig. 4.14. A typical valence wavefunction is also shown in Fig.
4.14. Since the eigenstates of a Hamiltonian must be orthogonal to each other,
the valence wavefunction displays rapid oscillations near the nucleus to ensure
orthogonality with all the core electrons.17 Although the valence wavefunction

17The wiggles can also be qualitatively understood on energetic grounds: Both core and
valence electrons experience an extremely large and negative potential energy when near the
nucleus. Since core levels have lower energy than valence levels this means that while near
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is quite plane wave like between each atomic sites, a Fourier expansion that
does justice to the wiggles would require far too many plane waves for practical
calculations to be attempted.

core

Re ψ
valence

Re ψ

Figure 4.14: Characteristic spatial dependence of valence and core level wave-
functions in a solid.

Since the core electrons are not involved in the formation of chemical bonds
they are not of primary interest to us. Rather, we are concentrating our efforts
on finding the valence Bloch functions. Thus we have regarded the crystal
potential U which enters the one-electron Schrödinger equation as a combination
of a repulsive term between pairs of valence electrons and a net attractive term
due to the interaction between each valence electron and each atomic core (i.e.
nucleus plus core electrons). The first term, the electron-electron repulsion, is
a many body term which we have not yet addressed. We will come to that
shortly. At the moment we must concentrate on the problem arising from the
electron-core term: how to accurately expand the wavefunctions yet retain a
manageable number of basis functions.18

The problem can be alleviated by modifying either

the nucleus the valence levels must have the larger kinetic energy. Since the velocity operator
is −(i~/m)∇ it follows that valence levels have the more rapidly varying wavefunction when
near the nucleus.

18We are assuming that we already know the atomic core wavefunctions. If these are largely
unperturbed in the crystal, save for the phase factors required to satisfy Bloch’s theorem,
then we know in advance the core Bloch functions. This means that the (valence) electron-ion
potential term is not a many body potential.
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(i) the basis functions, or
(ii) the potential used in the Schrödinger equation.
We now consider some of the dominant methods currently in use.

4.6.2 The orthogonalized plane wave method

In the previous subsection we noted the fundamentally different character of
what we call core and valence electrons. The former are those electrons in
inner shells which are tightly bound to the nucleus and which are therefore
largely oblivious to the local chemical environment (i.e. they are insensitive to
the chemical bonds formed by the atom on which they are trapped). Valence
wavefunctions are substantially redistributed when atoms bond together, but
they must still remain orthogonal to the core states, a condition which requires
them to be wiggly in the core region.

While these considerations make plane waves unsuitable as a basis set for
expanding Bloch waves, Herring (1940) devised a simple modification of this
idea. Herring’s method, the orthogonalized plane wave method (OPW), is based
on the suggestion that a wave function of the form

φk(r) = eik.r +
∑

c

Ak
cψ

c
k(r) (4.26)

where ψc
k are the core level wavefunctions of the solid and the sum is over all core

levels, is likely to give a rather good representation of a valence wavefunction
in all regions of space. The OPWs φk are required to be orthogonal to the core
levels, a condition implying

Ak
c = −

∫

dr
[

ψc
k(r)

]∗

eik.r. (4.27)

Although the core levels (by definition) are not involved in the bonding of solids,
we cannot just use atomic core level wavefunctions in these expressions since
they don’t satisfy Bloch’s theorem. But we can easily give them Bloch form by
using the superposition:

ψc
k(r) =

∑

R

eik.R ψc(r −R) (4.28)

where ψc(r) is the corresponding level in a free atom.19 Since the core wave-
functions are localized around atomic sites, as shown in Fig. 4.14, each OPW
has both a component which oscillates near the nuclei as well as a plane wave
component where the potential is much weaker. On this basis one expects that
an expansion of the valence Bloch waves of the form

ψk(r) =
∑

K

C
k
K φk+K (4.29)

will yield a good approximation even with only a few components.

19In a problem sheet we will soon show that strictly speaking the core states of solids form
flat energy bands which are fully occupied.
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For comparison with 4.19 on page 108, where the potential and wavefunctions
were written as plane wave expansions, the Schrödinger equation for the OPW
method can be written

[

~
2

2m
(K + k)2 − ǫ(k)

]

C
k
K +

∑

K′

WK,K′ C
k
K′ = 0. (4.30)

It is tempting to imagine that this expression describes plane wave coefficients
for an electron moving in the potential W . In fact the OPW matrix elements
WK,K′ are much smaller than the equivalent terms UK−K′ in Eq. 4.19. The
physical interpretation of this is as follows: the orthogonalization terms intro-
duced in the OPW construction tend to cancel the potential well of the nuclei.20

In other words the Pauli repulsion between the core and valence electrons pre-
vents the valence electrons “seeing” the full nuclear potential. Indeed for the
free electron metals the valence electrons hardly even notice that there are nuclei
around.

Thus the OPW method clarifies why the alkali metals are free electron like.
It also prompts the question: is there a potential (a pseudopotential) that gives
the same energy bands as the true crystal potential but which is “softer” and
so easier to represent as a plane wave expansion?

4.6.3 Pseudopotentials

The way the pseudopotential idea is usually implemented is as follows. We take
a free atom, for which the electronic structure is well known, and calculate its
valence level wavefunctions and energies. We wish to cut out the nucleus and
core electrons and replace them with a pseudopotential which gives the same
valence level energies and the same valence wavefunctions (beyond the core ra-
dius). As hinted at above, one can reformulate the OPW method to provide a
pseudopotential recipe, but there are better ways. Having determined a pseu-
dopotential that works for an atom we can use it for solids. The smoothness
of both pseudopotentials and pseudowavefunctions, such as those shown in Fig.
4.15 for Si,21 means that they can be efficiently expanded using plane waves.

Notice that the pseudopotential method (by construction) only gives a de-
scription of the electronic states involved in the chemical bonding within a solid.
The statement that core levels do not participate in chemical bonding tends to
suggest that they are completely irrelevant, but it is vital to appreciate that
this is not the case. We can see this by comparing the solids carbon, silicon,
germanium, tin and lead. Each of these elements is in group 4 of the Peri-
odic Table and each has four valence electrons, but their properties (electrical,
chemical, mechanical, optical) are strikingly different. How can this be? The
answer is their cores are very different. The core electrons themselves are of
little interest but they play a decisive role in determining the behaviour of the
valence electrons. We will return to this important point later on.

20We will demonstrate this explicitly in a Problem Sheet.
21Note that the pseudopotential in Fig. 4.15 is weaker than the potential for the 4+ ion so

it’s not simply a matter of cancelling some protons in the nucleus with some core electrons.
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Figure 4.15: A pseudopotential and pseudowavefunction for Si. Also shown is
the Coulomb potential of a 4+ ion (dashed line).

4.6.4 Augmented plane waves

One can simplify the potential in a different way. U(r) is assumed to be spher-
ically symmetrical within some radius (called the muffin tin (MT) radius), and
constant in the interstitial region, as shown in Fig. 4.16. It is then natural
to construct an Augmented plane wave as a spherically symmetric (atomic-like)
orbital within the MT sphere matched to a plane wave in the interstitial region.
APWs offer another efficient basis set for the expansion of valence wavefunctions
in solids, and incidentally, the APW method can also be cast into pseudopoten-
tial form.

4.6.5 Multi-atom unit cells

In a footnote at the start of §1 we decided to consider band calculations for a
single atom unit cell. Here we briefly mention how things go with a multi-atom
unit cell. The total potential U is written as a sum over the atoms in the unit
cell. The Fourier components of this potential then take precisely the same form
as the structure factors we saw in x-ray diffraction - each is a sum over the j
atoms in a unit cell of an “atomic form factor” (determined by the type of atom
j), multiplied by a phase factor (determined by the position of atom j).

Bloch’s theorem applies only to periodic solids, but can we do anything for
non-periodic solids? We can think of non-periodic solids as crystals with an
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True potential

Muffin tin potential

Figure 4.16: The shaded areas denote the spherically symmetrically region
within MT spheres. The MT potential, shown on the right, is constant in
the interstitial regions.

infinite unit cell. This notion is, of itself, little use but it is useful to go a
step further by saying that the unit cell is merely “large”. We can then ap-
ply Bloch’s theorem to this large supercell. These days ab initio calculations
can be performed for cells containing over 1000 atoms, so it is likely that for
many purposes the supercell approximation is reasonable. This is just a trick,
however. We will try something with more physical insight later, if we have time.

We have now seen the general form of the Schrödinger equation and its eigen-
states in a periodic solid and we have seen methods designed to compute them.
To implement these methods we need to be specific about the potential U . We
have seen that the interaction between the ion cores and the valence electrons
is amenable to simplification by the pseudopotential method, for example. The
missing ingredient is the interactions between the valence electrons. This is the
subject of the following section.
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4.7 The electron-electron interaction

In §4.1 we noted that the Schrödinger equation for the electronic wavefunction
of a solid represents an insoluble many body problem. The one electron approxi-
mation (OEA) simplifies the situation considerably, yielding a manageable set of
equations each describing only a single electron. The development of a reliable
OEA has been one of the most important achievements in solid state physics
(and chemistry) in the last few decades. In this section we have to be more
specific about the nature of this approximation, how it might be implemented,
and how it can be justified.

For notational convenience we will make two unimportant simplifications
in this section. Firstly, we again assume a single atom basis. Secondly, we
adopt the pseudopotential method, assuming the interaction between a valence
electron and a particular ion core can be represented by some function UPS .
We are lumping the core electrons and nuclei together. We are left with the
task of accounting for the interactions between valence electrons.

4.7.1 The Hartree potential

The fundamental idea of the OEA is to associate a specific wavefunction ψ with
each electron. These ψ, each a function of the coordinates of a single electron,
are then used to form Ψ, the wavefunction for the system as a whole. If electrons
did not interact with each other then the position of any particular electron
would not affect the position of any other.22 This means that the motion of the
electrons is statistically independent and we can write

Ψ(r1, r2, · · · , rN ) = ψ1(r1)ψ2(r2) · · ·ψN (rN ) =

N
∏

1

ψi(ri) (4.31)

where the ψi are the N single electron wavefunctions with the lowest energy,
filled up in accord with the Pauli principle.23

Aware as we are of the Coulombic force between electrical charges, we must
regard the notion of non-interacting electrons as totally inadequate. If we are
to insist upon retaining a wavefunction of the form given by Eq. 4.31 then we
can at best account for electron-electron repulsion in an average way. We can
do this by first building up the (valence) charge density of the system

n(r) =
∑

i

|ψi(r)|
2. (4.32)

This quantity tells us where the electrons can be found on average, but tells us
nothing about where any particular electron is located at any particular instant.
We now assume that a particular (valence) electron, “electron one” say, in the
system feels the repulsion that would arise if all the other electrons adopted the
average distribution n(r). This average electron-electron repulsion is usually

22You may object to this on symmetry grounds in relation to the Pauli principle, but we’ll
come to that soon.

23Remember that we are dealing here with the valence electrons only.



118 CHAPTER 4. BAND THEORY AND ELECTRONIC STRUCTURE

referred to as the Hartree potential UH and is given by24

UH(r) = e2
∫

n(r′)

4πε0 |r − r′|
dr′. (4.33)

The one electron Schrödinger equations are now of the form
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2

2m
∇2ψi(r) +

{

∑

R

Ups(r −R)

}

ψi(r) +







∑

j

∫

dr′
e2|ψj(r

′)|2

4πε0 |r − r′|







ψi(r) =
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~

2

2m
∇2ψi(r) +

{

∑

R

Ups(r −R)

}

ψi(r) + UH(r)ψi(r) = ǫiψi(r) (4.34)

known as the Hartree equations. There are some appealing features to this
expression.

It “looks right”. In fact we have written down the Hartree equations largely
on the basis of plausibility.25

On the down side, the Hartree equations are coupled - the equation for
electron i depends on the wavefunction of all the other electrons. The equations
must be solved iteratively starting with a suitable guess for the wavefunctions
and hence Hartree potential. We then solve the Hartree equations to obtain
new wavefunctions and a new Hartree potential. We repeat this cycle until
the wavefunctions and potential are self-consistent. For this reason the Hartree
method is called the self-consistent field method.

The Hartree method is a good starting point for the discussion of electron-
electron interactions, but we must always bear in mind its deep-rooted short-
coming: we have assumed that at any particular instant an electron does not
care where any of the others actually are - only where they are on average. The
technical term for this is the neglect of correlation. In reality electron motions
are correlated for two reasons:

1. Coulomb Correlation

Since electrons repel each other they will keep as far apart from each other as
possible. If we take the example of the hydrogen molecule from we can easily
accept that at any instant it would be highly unlikely for both electrons to be
“on” the same atom. If we know where electron one is then we can predict with
good certainty where electron two is, just on the basis of electrostatics. In the
Hartree approximation we assume that any particular electron does not know
where any other electron is at any moment, but only their time-averaged po-
sitions. As a result the Hartree approximation allows electrons to occasionally
come very close to each other, a configuration with a high energy cost. Thus
the Hartree approximation slightly overestimates electron-electron repulsions,
but it is rather hard to systematically improve the method.

24We are being a bit sloppy here since we have accidentally allowed each electron to repel
itself. For solids, including the repulsion due to one extra delocalized charge among say 1023

others makes a negligible difference, but this is not true for an atom.
25In a Quantum Mechanics course you have derived this result from the variational principle.

The Hartree equations produce the best possible solution to the Schrödinger equation that
can be written in the form of Eq. 4.31.



4.7. THE ELECTRON-ELECTRON INTERACTION 119

2. Exchange

In the discussion above we have been speaking about “electron one” and so on
as if we could distinguish them. Of course we can’t and this gives us a second
source of correlation usually referred to as the exchange effect. The Hartree
wavefunction given by a product of one electron wavefunctions (Eq. 4.31) is
consistent with the usual statement of the Pauli principle: each ψ(r) cannot
be multiply occupied, apart from a double occupation due to spin degeneracy,
but there is a stronger requirement. Since electrons are not distinguishable and
have half-integer spin, the wavefunction of an N electron system must change
sign on interchange of any two of its particles:

Ψ(r1s1, · · · , risi, · · · , rjsj , · · · , rNsN ) =

−Ψ(r1s1, · · · , rjsj , · · · , risi, · · · , rNsN ) (4.35)

where s is spin. Writing each one electron wavefunction as the product of a
“space function” and a “spin function”, it can be shown that this fundamental
requirement introduces a special form of electron correlation: electrons with
parallel spins tend to avoid each other. Each electron is said to carry around an
exchange hole, a region in which other electrons with the same spin are excluded.

4.7.2 Hartree-Fock

We can account for antisymmetry by writing Ψ as a Slater determinant of one-
electron wavefunctions. This construction leads to the Hartree-Fock one electron
equations:
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∇2ψi(r)+
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∑

R

Ups(r −R)

}

ψi(r)+
∑

j

∫

dr′
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∑
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}

ψ(r)+

∫

UHF (r, r′)ψi(r
′) = ǫiψi(r). (4.36)

This expression is just Eq. 4.34 with an exchange term tagged onto the end of
the right hand side. It is now explicit that the antisymmetry of Ψ produces a
spatial separation of electrons with the same spin, effectively reducing the net
electron-electron repulsion.

Like the Hartree case, solution of the Hartree-Fock (HF) equations requires
iteration to self-consistency but the equations are somewhat more difficult to
solve since the HF operator is non-local. While the Hartree equation (Eq. 4.34)
for ψi(r) can be solved for each r separately, the corresponding HF equation
contains the value of ψi at all other positions r′. This is a non-trivial complica-
tion. At this point we must resort to a system simple enough to yield soluble
HF equations, and it is to the free electron gas to which we must turn. Though
apparently a retrograde step, consideration of the free electron gas played a piv-
otal role in the historical development of the theory of many-electron systems,
and it is quite surprising that it remains very much at the heart of today’s most
successful electronic structure calculations.
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4.7.3 HF theory of the free electron gas

The first question we must address is: where are the ion cores? The free electron
model assumes the electrons to experience a constant potential, which is often
simply set to zero. For this to be the case the positive charge of the ion cores
must be uniformly distributed throughout space, and this is usually referred to
as the jellium model. Now can we just “see” the solutions to the HF equations?
We might guess that plane waves will do, since these ensure a uniform electron
density and hence a uniform potential. Substituting plane waves into the HF
equations leads to eigenenergies satisfying

ǫk = ǫ0k −
2kfe

2

π

{

1

2
+
k2

f − k2

4kkf
ln |

kf + k

kf − k
|

}

(4.37)

where ǫ0k = ℏ
2k2/(2m), and kf is the Fermi wavevector. Clearly the first term

on the right hand side is the electronic kinetic energy term familiar to us from
CMP. Since an elemental charge in jellium will experience equal and opposite
electrostatic forces from the positive ion cores and negative electrons, both of
which are homogeneous distributions, the complicated looking second term must
come the exchange term in the HF equation. Although the electron density is
homogeneous on average, at any particular moment an electron will be sur-
rounded by an exchange hole. The effect of this correlation effect is to lower
the electron’s energy since there is now more positive charge than negative in
the vicinity of the electron. When electron-electron interactions are explicitly
considered, the free electron gas is often referred to as the homogeneous electron

gas.
We are now starting to address a long-running embarrassment. Earlier we

claimed that many metals are free-electron-like, while noting that the free elec-
tron model contains only the kinetic energy term ǫ0k, which is positive. It is
not possible to understand the cohesion of metals within this framework. What
holds a metal together? A free electron metal should spontaneously expand so
that its energy can be lowered, the energy tending to zero as the electron density
approaches zero. In fact better still, the metal should spontaneously form indi-
vidual atoms, each of which would have negative energy. The HF result for the
homogeneous electron gas shows that the exchange energy stabilizes a metal.

We can use the HF energy bands from Eq. 4.37 to compute the total energy
of the homogeneous electron gas. This is not simply a matter of summing ǫk
since the exchange term is a “two-body” interaction energy. If we were to simply
sum ǫk for k ≤ kf then we would get the kinetic energy part correct but we
would double count all the electron-electron interaction terms. The total energy
is therefore
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(4.38)
It is conventional to express this result in terms of rs, the radius of the sphere
whose volume is equal to the volume per conduction electron in a metal:

rs =

(

3

4πn

)1/3

(4.39)
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where n is the number of conduction electrons per unit volume. Making this
substitution we obtain

E

N
=

30.1

(rs/a0)2
−

12.5

rs/a0
(4.40)

where a0 = 0.53 Å is the Bohr radius. Using sensible values of rs/a0 (e.g.
3) we obtain an energy of the order of ∼ −1 eV per electron. This number
seems reasonable but it is now clear that any quantitative study of the cohesion
of metals must include a good treatment of the rather awkward many-body
effects. We should also note that the above expression does not distinguish one
metal from another.

There is one more useful observation we can make about the HF treatment
of the homogeneous electron gas. Given the extreme difficulty of solving the
HF equations for real systems, Slater struck upon the idea of adding a local
correction to the Hartree equations which would give an approximate treatment
of the exchange effect. Noticing that the exchange contribution to the total
energy of the homogeneous electron gas scales with the inverse of rs, and hence
as n1/3, Slater suggested that for real materials one might add a local potential
UX ∝ n(r)−1/3 to the Hartree potential, and this became known as the Hartree-
Fock-Slater method. There followed some dispute regarding the appropriate
weighting of the approximate exchange term. It transpired that the “correct”
weight did not give optimum results as compared with experimental data. Slater
responded by writing the exchange term as

UX(r) = Xαn(r)1/3 (4.41)

where Xα is a free parameter to be varied at one’s discretion, and this approach
became known as the Xα method.

This sounds quite unsatisfactory, but the idea of focussing on the electron
density (and in particular on the local electron density) was to be highly signif-
icant.

4.7.4 Density functional theory

The Hohenberg-Kohn theorem

The ground state energy of a system is a unique functional of the electron den-

sity.

This is the Hohenberg-Kohn theorem(1964). Kohn and Sham (1965) went
on to show that it is then possible to map exactly the problem of the interacting
electron gas onto that of a set of self-consistent single particles moving in an
effective potential:
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





ψi(r) = ǫiψi(r) (4.42)

where Uxc(r) = δExc[n(r)]/δn(r), and Exc is the “exchange-correlation func-
tional”. These are the Kohn-Sham equations and the approach generally is
referred to as density functional theory. It may seem as though we have just
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bundled together all the difficult terms together into this mysterious exchange-
correlation term. To some extent that is true, but it is a huge step to be able to
show that we are allowed to reduce the many body problem to the Kohn-Sham
one-electron equations.

The local density approximation

If the exchange-correlation energy functional were known we would have a
scheme for computing exactly the energy and charge density of a solid. Un-
fortunately, the Hohenberg-Kohn theorem tells us such a functional exists and
that it is unique, but it doesn’t tell us what the functional actually is! The
most widely used approach is to use the local density approximation (LDA).
The LDA assumes that the exchange correlation potential at point r in a solid
is given by that of a homogeneous electron gas which has the same density as
the real system at the point concerned.26 It is an approximation, but the LDA
makes DFT calculations practical, and it seems to work pretty well.27 In fact
the vast majority of electronic structure calculations these days employ DFT in
the LDA.28 There are no theorems or a priori arguments to explain why DFT
in the LDA should work. Nonetheless it does, and a widespread acceptance of
the method has emerged on this basis over the last decade or so. Although we
have skipped over some of the details, we have now seen how band structure
calculations are done today. The steps are summarized in Fig. 4.17.

Incidentally, we can now see why an “incorrect” value of Xα gives opti-
mum results. The “error” is accidentally accounting for correlation as well as
exchange. The Xα method is therefore just a very crude version of density
functional theory.

Limitations

We should briefly remind ourselves of the limitations of the application of den-
sity functional theory. Without being exhaustive, we can point to
1. The Hohenberg-Kohn theorem relates only the energy of the ground state of
a system of electrons to its charge density. Quite often we will be concerned
with excitations of the ground state. Formally, density functional theory is not
valid in this case, but often it seems to still work.
2. We can never perform exact density functional calculations. We must always
make some guess at the real exchange-correlation potential.
3. This is a subtle point. The Kohn-Sham equations are mathematical con-
structs which describe fictitious particles, and not necessarily real electrons.
The only requirement is that the fictitious particles give the correct ground
state energy and charge density. We have no right, therefore, to expect the
spectrum of one-electron levels in a density functional calculation to resemble
reality in any way. Despite points 1 and 3, density functional calculations of-
ten give spectra of one-electron levels which resemble experimental excitation
spectra quite closely.

Let’s now look at just a few examples of real materials.

26Exact results are available for an electron gas.
27In fact it worked much better than its proponents expected: Kohn and Sham stated “we

do not expect an accurate description of chemical bonding”.
28This accounts in part for the recent award of a Nobel prize to Kohn.
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Figure 4.17: Flow diagram illustrating the steps of an ab initio electron structure
calculation.
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The alkali metals

These metals all adopt the bcc crystal structure. We can view the bcc crystal
structure as a bcc Bravais lattice with a one atom basis and with primitive
vectors a = L/2 (−x̂ + ŷ + ẑ), b = L/2 (x̂ − ŷ + ẑ), and c = L/2 (x̂ + ŷ − ẑ),
where L is the lattice constant (defined to be the length of the sides of the
conventional bcc unit cell), and x̂, ŷ, ẑ are unit cartesian vectors. The reciprocal
of this lattice is an fcc lattice with lattice parameter 4π/L.

In a truely free electron metal the surfaces of constant energy are concentric
spheres. Experimental determination of the Fermi surfaces of the alkali metals
reveal deviations from sphericity of only ∼ 0.1%. We can attribute this outcome
to the fact that the crystal potentials in these metals are weak. Nonetheless one
might have expected band gaps at BZ boundaries as seen in the NFEM. This
is indeed the case, but since each alkali atom contributes only 1 electron per
atom to the electron gas (and so 1 electron per primitive bcc unit cell) there
are only sufficient electrons to half fill the first BZ, and so only the free electron
like portions of the energy bands are occupied.

We saw in Problem sheet 1 that the conduction electron density in a free
electron gas n is related to the Fermi energy ǫf by

n =
2

3

1

2π2

(

2m

~2

)3/2

ǫf
3/2 =

1

3π2
kf

3 (4.43)

where kf is the Fermi wavevector, and so the radius of the Fermi sphere can be
expressed

kf =
(6π2)1/3

L
=

(

3

4π

)1/3
2π

L
= 0.62

2π

L
. (4.44)

The shortest distance from the centre of the first BZ to a zone face, which we
will call kBZ , is (see Fig. 4.18)

kBZ = ΓN =
2π

L

√

(

1

2

)2

+

(

1

2

)2

= 0.707
2π

L
. (4.45)

From Eq. 4.44 and 4.45 we see that the Fermi sphere of an alkali metal is
entirely contained within the first BZ. Evidently the crystal potential does not
distort the sphere appreciably.

Group 4

Diamond is a very good insulator, Si and Ge are semiconductors, Sn is a semi-
conductor or a metal, and Pb is metallic. As we go down group 4, the band gap
decreases from 5.4 eV in diamond, 1.1 eV in Si, 0.7 eV in Ge, and disappears
altogether in Sn. There is also a structural trend - the insulators and semicon-
ductors adopt the diamond crystal structure in which each atom forms bonds
with four nearest neighbours, while the metals prefer more close packing.

A minor point which we might also mention here is that although the band
gap of Si is 1.1 eV, its threshold for optical absorption is 2.5 eV.
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Figure 4.18: The free electron Fermi sphere of a monovalent bcc metal shown
within the primitive unit cell of the reciprocal lattice. The H points lie at the
centre of the faces of the conventional cube, the N points are on the midpoints
of lines joining two H points, and the Γ point is at the centre of the cube. H and
N lie on the first BZ boundary. Also shown is the energy bands for a monovalent
bcc metal in the nearly free electron approximation. Although a band gap has
opened up on the BZ boundary, the occupied bands are not significantly modified
from free electron form. (We will discuss the arrow later.)
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Figure 4.19: Band structures of typical group IV, III-V, II-VI and I-VII solids.
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Compounds

The evolution of the band structure from a group IV semiconducting solid to
a I-VII ionic crystal is shown in Fig. 4.19. The III-V and II-VI compounds all
exhibit tetrahedral bonding (in either the “zinc-sulphide” or “wurzite” crystal
structures). In the ionic extreme one finds very narrow bands. In the limit
of complete charge transfer the valence charge density resides exclusively on
the anion sites. As we go across the series from group IV to I-VII it becomes
energetically more favourable to transfer charge and so the band gap widens.

4.7.5 Successes, Failures and Gaps

In this section we have made considerable progress in understanding the diverse
nature of solids. Although rather simplistic, the NFEM revealed the origin of
the distinction between electrical conductors, semi-conductors and insulators,
and a link was established between the occurrence of band gaps and the physics
of diffraction.

It would appear that band theory has not taught us anything about the
nature of electron scattering mechanisms in metals, nor the anomolous Hall
effect measurements we briefly mentioned in the first Problem Sheet.29 We will
try to sort out that stuff in the next few sections where we will take a close look
at how electrons move in solids.

As well as explaining the mechanism of electron scattering, we must also
explain why the scattering rate increases with T . In contrast, the conductivity
of semiconductors increases with T , but this will be relatively easy to explain.
Much more puzzling is the occurrence of superconductors, materials which ap-
pear to offer no electrical resistance at all.

29This is not true, as we shall soon see.
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4.8 Electron dynamics:

Periodic potentials and the effective mass

In this section we will try to address the question:

How do Bloch electrons move between collisions?

To be more precise we will be interested in their behaviour in the absence and
presence of external forces. For now we will forget about electron scattering
effects.

The first bit of trickery is to treat the dynamics of the electrons in a solid
using the equations of Newtonian dynamics. How can the electron be both a
particle (obeying a classical equation of motion) and also a wave (satisfying the
Schrödinger wave equation)? We had exactly the same problem with the quan-
tum free electron gas, and the resolution of the dilemma is lurking at the end
of Chapter 1 (Sec. 1.2.4). We have to take the Heisenberg uncertainty princi-
ple seriously here: if we specify position exactly, then momentum is completely
uncertain, and vice versa. The semi-classical model of electron dynamics in a
solid asserts that reality lies somewhere between these extremes for an electron
moving through a solid. For classical dynamics to be valid the electron must
be spread over a distance ∆x which is very small compared to the length scales
of all the processes relevant to its equation of motion (i.e. the mean free path
between collisions and the spatial variation of any externally applied fields).
For band theory to be meaningful it is necessary for the corresponding uncer-
tainty in wavevector ∆k to be much less than the dimensions of the first BZ, or
else the energy bands would be smeared beyond recognition. Fortunately, since
kBZ ∼ 2π/a and the collision length is typically 102a, the uncertainty principle
can be satisfied without disturbing either band theory or Newtonian electron
dynamics, for most situation sof interest at least.30

4.8.1 Electron velocity

Given the comments above it should now be clear why we have been repeatedly
referring to the group velocity of waves in a crystal. Partial localization in
real space means partial delocalization in k-space and so Bloch waves are to
be associated with wavepackets. We noted earlier that the group velocity of a
wavepacket of Bloch waves with wavevector centred on k is given by:31

vg =
1

ℏ
∇kǫ(k). (4.46)

It is time that we looked at some of the implications of this expression.

1. For free electrons the surfaces of constant ǫ are spheres in k-space. The gradi-
ent ∇kǫ(k) is therefore parallel to k. In general, however, the group velocity will

30In this paragraph we have been sloppily equating the Bloch wavevector with electron
momentum. Very soon

we will see that this really is bad practice, but I am just trying to sketch out the need for
a wavepacket approach here, so don’t worry too much.

31Remember that the t dependence of (stationary) quantum mechanical wavefunctions is in
the exp(−iǫt/ℏ) factor which comes from the time-dependent Schrödinger equation, i.e. we
take the angular frequency of the wave as ω = ǫ/ℏ.
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not be parallel to the Bloch wavevector, since constant energy surfaces are not
necessarily spherical. This can lead to unexpected dynamical behaviour, very
different from that predicted for a free electron, and sometimes counterintuitive.

2. The group velocity of a wavepacket is the velocity at which the wavepacket
transports energy through a system. It also gives the average velocity of a Bloch
electron.32 Drude would have found this point rather unpalatable. Although
the electron velocity varies as it travels across a unit cell in a crystal, its average
velocity is not degraded by collisions with the ions, in stark contrast with the
Drude-Lorentz or Sommerfeld models. We ended Chapter 1 feeling suspicious of
the Drude model of electron scattering in metals. Now we can be quite clear on
the matter. The Drude mechanism of electron scattering is wrong - the ion cores
in a crystal do not scatter Bloch electrons. Bloch electrons are stationary states

of the Schrödinger equation with the electron-ion interaction fully accounted for.

3. The non-zero velocity of Bloch electrons also makes a nonesense of the com-
monly held belief that electrical insulators are the result of electrons being “tied
up” in immobile bonds. Bloch electrons travel quite freely through crystals - it
is the fact that there is no scope for changing the distribution of velocities with
an external electrical field that confers insulating properties on a solid. How-
ever, inspection of Fig. 4.19 shows that in the ionic 1-7 compounds the energy
bands are almost flat. This means electron velocities are approximately zero.
This makes perfect sense - we know the electrons in ionic solids are essentially
stuck on a specific ion rather than moving freely through the solid. This is not
the case for non-ionic insulators such as diamond.

4. The fact that it is vg that describes the motion of the Bloch electron through
real space should reassure us of the usefulness of the reduced zone scheme. Al-
though translating an energy band from outside the first zone into it changes
the magnitude of k, it does not change ∇kǫ(k).

4.8.2 Force and crystal momentum

Consider applying an external force F ext to a Bloch electron. For ease of dis-
cussion we can take the specific case of an applied DC electric field Eext, for
which we can write

F ext = eEext = −e
∂φext

∂r
(4.47)

where φext is the electric potential of the external field. However the Bloch
electron responds to the field, energy will be conserved:

ǫ(k) − eφext(r) = constant (4.48)

where the position r and wavevector k of the electron will change with time t.
Differentiating this expression with respect to t yields

F ext = ℏ
dk

dt
. (4.49)

32Remember that a Bloch function is not an eigenfunction of the velocity operator iℏ∇/m.
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Figure 4.20: Effective mass for the 1D NFE model.

This looks rather like Newton’s second law, but we should not be lulled
into thinking that the applied force equals the rate of change of the electron

momentum since this quantity is given by all the forces acting on the electron.

On the other hand, we know that Newton’s second law must apply somehow.
An externally applied force does not act only on a single electron but rather on
the crystal as a whole. In the light of Eq. 4.49 it should now seem quite sensible
that ℏk is called “crystal momentum”.

4.8.3 Electron acceleration and the effective mass

For notational simplicity it is convenient to take the one dimensional case. The
electron acceleration caused by an external force is

a =
dvg

dt
=

1

ℏ

dk

dt

d2ǫ

dk2
= F ext

(

1

ℏ2

d2ǫ

dk2

)

. (4.50)

This equation has the form of Newton’s second law a = F/m∗ provided we
interpret ℏ

2/(d2ǫ/dk2) as an effective mass m∗. By relating the external force to
the electron acceleration we are again ignoring the force exerted on the electron
by the crystal. If we insist on doing this we must fiddle the electron’s mass. In
other words, a Bloch electron moves under the action of an external force as if it
has mass m∗ in general different from the true electronic mass so as to account
for the effect of the crystal potential.

m∗ is shown in Fig. 4.20 for the 1D NFEM. Near k = 0, m∗ does equal the
true electron mass. As we already know, here the bands are free electron like and
the electron doesn’t notice the crystal potential. We can accept the fact that
m∗ increases with k since this would appear to reflect the fact that the crystal
potential holds onto the electron making it more resistant to acceleration. But
the occurrence of negative effective mass is harder to stomach at first, since this
means that an electron may accelerate in the opposite direction to the applied
force! In fact we already know the explanation for this effect. As an external
force drives an electron towards a Bragg plane there is an increasing likelihood
that it will be Bragg-reflected back in the opposite direction.
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Figure 4.21: The lowest energy band in the 1D NFEM and the corresponding
group velocity as a function of k. The migration of the Bloch electron at k = 0
upon application of a DC electric field (with the oriention shown) is also shown.

4.9 Electron dynamics: DC Electrical Field and

Holes

Now that we have seen the rules of the game, let’s continue thinking about
the effect of a DC electric field in the 1D NFEM. (But note that we are not
talking about electrical conductivity here - that requires both a description of
the motion between collisions and a description of the collisions. Here we are
only talking about the former.)

This section provides a more sophisticated version of our explanation of
electrical conduction in Sec. 4.3.3. In a sense we will just be expanding upon
and justifying comments made there, but there is a degree of subtlety to be
mastered.

4.9.1 A single electron

Consider a single electron in the lowest NFEM band of a crystal. If a DC electric
field is applied for a time t then, from Eq. 4.49, it follows that

k(t) = k(0) −
eEextt

ℏ
. (4.51)

Clearly the effect of the electric field is to move the electron along the energy
band, as shown in Fig. 4.21. Suppose the electron starts off at position A
at the bottom of the band. As the field drives the electron along the energy
band from A to B we see a linear increase in the electron velocity. This is free
electron behaviour. But as the electron approaches C the acceleration drops
and the electron reaches a maximum velocity. With further application of the
external force, the electron velocity starts to decrease, returning to zero at the
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point D at the BZ boundary. This is the negative effective mass in action. At D
we know that the Bloch wavefunction is the superposition of plane waves with
wavevectors ±π/a. This is also true at point D’, and so the Bloch waves at D
and D’ are identical. The electron appears to have left the BZ on the right and
re-entered it on the left.

4.9.2 Filled Bands

When more electrons are present in an energy band, they all move along the
band like a train. As it crosses the BZ boundary on one side of the zone the
train re-emerges on the opposite side, as we saw for the single electron. If the
band is completely filled then we can no longer tell if the electrons are shuffling
along the band or not. We conclude that filled bands are inert. A DC electric
field can provoke no response from them.

It may worry you that we are overlooking the possibilty of an electron being
promoted to a higher energy band. As we mentioned in Sec. 4.3.3 an extremely
strong electric field can do that. In fact any field can do it in the free electron
limit since successive bands are continuous, as can be seen by comparing Figs.
4.2 and 4.7. Thus interband transitions must be accounted for if the field is
extraordinarily strong (e.g. lightening) compared to U .

4.9.3 Almost filled bands and holes

We have seen how an almost empty band responds to a DC field and we have
seen that a filled (or completely empty) band is inert. It is also important to
consider what happens to a band which is almost full, let’s say it has space
for just one more electron. We can consider such a band to be the sum of a
completely filled band together with a single positive charge (to cancel out the
extra electron we added). This positive particle is usually called a hole. Fig.
4.22 shows that partially filled bands (on the left) can be thought of as a few
electrons below the Fermi energy plus a few holes above it instead (on the right).

When the DC field is applied to the nearly filled band the electrons move
round the BZ as discussed above and the hole moves in the same direction. Since
it has opposite charge to the electron and yet moves in the same direction under
the action of an electric field then it must also have the opposite mass to the
electron: m∗

h = −m∗. In a real solid holes tend to occur at the maxima of energy
bands where the curvature d2ǫ/dk2 is negative, as shown schematically in Fig.
4.22. This means m∗ < 0 and so holes tend to have positive mass. Similarly,
when bands are only partially filled d2ǫ/dk2 is positive and so the few electrons
in these states have positive mass. It follows that one can usually describe DC
electrical conduction in terms of the transport of two types of carriers: electrons
with negative charge and holes with positive charge, but both have positive
effective mass.33 Herein lies the explanation for the strange Hall coefficients of
many metals, referred to in Sec. 1.1.4 and Problem Sheet 1 - you have to count
the number of electrons and holes since in general RH = −1/[e(ne − nh)].

33For any particular partially filled band one has to decide whether to consider it as either

(i) an empty band plus some electrons, or (ii) a filled band plus some holes. But you don’t
have to use the same convention for every band.
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Figure 4.22: Schematic representation of band filling in a solid. The lower
band is almost filled while the upper band is almost empty. The electron-hole
representation is shown on the right hand side.

4.10 Electron dynamics: Optical properties

Colour can be produced by a variety of physical effects, e.g.
the sky is blue because of the λ−4 Rayleigh scattering law,
the sodium lamp is orange because of transitions between its atomic energy
levels,
metals are silvery because of the free oscillation of the electron gas,
thin films (such as oil films and soap bubbles) are muliticloured on account of
interference,
and so on. There are many solids with charactersitic colours such as copper,
gold, ruby, saphire, diamond. Can we explain these?

4.10.1 Metals

The colour of a material is determined by R(ω), the frequency dependent reflec-
tivity, which in turn is determined by σ(ω), the AC conductivity. The important
equations are

[nr(ω) + iκ(ω)]
2

= ε(ω) = 1 +
iσ(ω)

ωε0
(4.52)

where nr, κ and ε are the refractive index, extinction coefficient and dielectric
function respectively. The reflectivity is related to nr and κ by the Fresnel
equations. For normal incidence we obtain

R =
(nr − 1)2 + κ2

(nr + 1)2 + κ2
. (4.53)

The reflectivity of the free electron gas is shown in Fig. 4.23 where param-
eters appropriate to metallic Al have been used. The electron gas is highly
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Figure 4.23: The dielectric function ε = ε1 + iε2, refractive index nr, extinc-
tion coefficient κ and reflectivity R for the free electron gas (with parameters
appropriate for Al). Also shown is the experimental reflectivity of metallic Al
(dotted curve).

reflective below a certain frequency, the plasma frequency, but is transparent
beyond it. The physics here is relatively simple. At low frequency the electric
field of an electromagnetic wave causes the Fermi sphere of the electron gas to
oscillate back and forth. The energy absorbed by this processes subsequently
re-radiated according to Maxwell’s equations, so we have (almost) perfect re-
flection. But if the field tries to drive the electron gas at a frequency which
is higher than it is able to respond, then nothing happens. The electron gas
becomes transparent. In Problem Sheet 1 we estimated the plasma frequency
for the free electron gas, finding it to lie in the UV for typical electron densities
found in metals. Fig. 4.23 shows that the free electron model gives a rather
good description of the optical properties of Al, but there is the hint of some
structure near 2 eV. What else might happen?

We can think of optical radiation as a supply of photons with energy ℏω and
momentum ℏq. A free electron cannot absorb a photon since the conservation

of both energy (~2k′2/2m = ~
2k2/2m + ~ω) and momentum (~k′ = ~k + ~q)

is not possible.34 However a Bloch electron can, since the conservation law for
crystal momentum is

~k′ = ~k + ~q + ~K (4.54)

where K is a reciprocal lattice vector, as we saw in Sec. 3.5.1. In effect the
crystal can recoil to allow the conservation laws to be balanced.

34The most a free electron can do is to absorb some of the photon’s energy. This inelastic
scattering of light by free electrons is called Compton scattering. This effect leads to a diffuse
background of inelastically scattered x-rays in diffraction measurements.
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Figure 4.24: The dielectric function ε = ε1 + iε2, refractive index nr, extinction
coefficient κ and reflectivity R of metallic Cu.

In the reduced zone scheme we only specify the wavevector of a Bloch wave
to within a reciprocal lattice vector, i.e. we plot all the bands in the first BZ.
It follows that Eq. 4.54 describes the transition of an electron with wavevector
k in a particular band to a level with wavevector k′ = k+ q in a different band.
These are termed inter-band transitions. Typical optical wavelengths are of the
order ∼ 10−6 m giving a momentum ∼ 10−27 kg m s−1. This is four orders
of magnitude smaller than ~kf or ℏkBZ and so the change in Bloch wavector
when a photon is absorbed is negligible. For this reason the transitions are
called direct or vertical.

Inter-band transitions don’t play much of a role in the alkali metals but
they are important in the noble metals. The threshold for exciting the 4s
level of Cu (the long arrow in Fig. ??) is about 4 eV, but only 2 eV for
the d-band. Excitation of the d levels gives rise to strong absorption and the
characteristic colour of Cu.35 The role of shallow valence d levels also accounts
for the distinctive colour of Au. The 4d band of Ag on the other hand is a
bit too far below the Fermi level to produce a colouring in the visible portion
of the electromagnetic spectrum. The imaginary part of the complex dielectric
function ǫ2 is closely related to the absorption coefficient. The strong absorption
between 2 and 5 eV derived from the Cu 3d band can clearly be seen in the
dielectric function of Cu plotted in Fig. 4.24.

4.10.2 Insulators

We saw in Chapter 3 that solids (except monatomic solids) interact with elec-
tromagnetic radiation by creation/destruction of phonons. Experimental inves-

352 eV is around the red-orange part of the electromagnetic spectrum.
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tigation bears out this claim, but since phonon energies are exceedingly small
(of order 10−3 eV) this mechanism cannot give rise to optical effects in the vis-
ible region (where the photon energy is of order 1 eV). Interband transitions
are the other chief suspects. However the band gaps of diamond, ruby, saphire
for example are several eV giving interband transitions well into the UV. The
colours of these gemstones must remain a mystery as far as this course is con-
cerned, but we could at least conclude that the explanation must lie with the
breakdown of an assumption made at the very beginning of Chapter 4.

4.10.3 Semiconductors

We haven’t got time to say much about the optical properties of semiconductors.
We could just return to the point made in Sec. 4.6.7 that the band gap for
silicon is 1.1 eV whereas the threshold for interband transitions is 2.5 eV. There
is nothing surprising about this - the band gap of sodium is zero but there is
a non-zero threshold for interband transitions, as we saw in Problem Sheet 4.
But other semiconductors, such as GaAs have the highest occupied state and
the lowest empty state at approximately the same position in the BZ. These are
direct semiconductors. While it is “hard to get light out of silicon”, compound
semiconductors such as GaAs are extremely useful for making lasers and LEDs.

Semiconductors exhibit photoconductivity. They conduct much better when
light falls on them we will see why later.

4.11 Collisions revisited

In Sec. 4.4-4.6 we explored the dynamics of electrons in the absence of collisions.
This was treated with a subtle fusion of a sophisticated quantum mechanical the-
ory (“band theory”) and the more familiar dynamics of Newton. But to explain
the conductivity of real metals we return to the Drude collision mathematics (if
not Drude’s mechanism).

To get some clues as to the origin of electron scattering in metals we can
consider some experimental facts.
1. The resistivity of metals increases significantly when they melt.
2. The resistivity of metals increases with the density of structural defects and
chemical impurities.
3. The resistivity of metals increases with T . (Linearly at high T?)

4.11.1 Electron-ion scattering

The electron-ion interaction is already included in the Schrödinger equation.
Bloch functions are the result of the constructive interference of the electrons
in the crystal lattice.

But returning to the approximations at the start of Chapter 4 we see that
this argument only holds for a perfect crystal. If the crystal melts, contains
impurities or has structural defects then electron-ion scattering will increase
the electrical resistance. These effects cannot be the whole story however. It is
clear from Fig. 4.25 that the dominant effect is T dependent.
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Figure 4.25: Resistivity of pure and impure Na specimens as functions of T .

4.11.2 Electron-electron scattering

The keen observer may have noticed that even the most modern treatments of
the electron-electron interactions in solids are fundamentally approximate. We
put the electron-electron into the Schrödinger as best we can, but maybe the
residual effects we neglect could provide a scattering mechanism. This turns
out to be the case (and we will discuss this in SSP) but it’s not the dominant
effect.

4.11.3 Electron-phonon

Lattice vibrations are to blame, but we will only present circumstantial evidence
here. Clearly lattice vibrations perturb the structural perfection of a crystal.
The number of phonons incareses linearly with T above the Debye frequency
(as we showed in Q5d on Problem Sheet 3) and the resistivity of metals also
increases linearly in this regime. Making the case for the defence, you might
appeal to Born and Oppenheimer. But the Born-Oppenheimer theorem is only
an approximation. It is good for most purposes, but since the atomic and elec-
tronic motions in a solid are not rigorously separate phonons do scatter electrons.

We now understand metals pretty well, but there is plenty more physics to
be discovered by considering the electrical conductivity of insulators, semicon-
ductors and superconductors. We’ve run out of time so we’ll concentrate on
semiconductors on account of their importance in electronics.

4.12 Semiconductors

In contrast to metals, the resistivity of semiconductors decreases with T and
they are said to have a negative coefficient of resistance. It was this anomalous
behaviour that got nineteenth century physicists such as Faraday interested in
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semiconductors. By the turn of the century semiconductors had been found
to exhibit photoconductivity (an increase in conductivity when light when a
solid is exposed to light), an extremely large Seebeck effect (an electric field
generated by a thermal gradient), strange rectifying effects at the junctions
of dissimilar semiconductors, and strange Hall coefficients. The experimental
study of these materials was initially rather confusing, with inconsistent results
frequently obtained by different researchers. We will be able to explain this,
but first let’s think about the basics.

4.12.1 Charge carriers in semiconductors

At T = 0 semiconductors have no partially filled bands, but for T > 0 there
is a finite probability that electrons can be thermally excited across the band
gap.36 It is therefore much more convenient to treat semiconductors using the
electron-hole formalism illustrated on the right hand side of Fig. 4.15. For
semiconductors, electrons can only exist above the Fermi level while holes can
only exist below it. Of course the extent to which thermal excitation can occur is
determined by the energy gap between the “valence band” and the “conduction
band”.37 The electronic properties of semiconductors are determined by these
few electrons promoted to the lowest conduction band and the holes left behind
at the top of the valence band. In the region of the band extrema we can
approximate the bands by parabolae.

It can be shown that in this limit the conductivity formula reduces to Drude-
like form, provided we account for both conduction by holes and electrons:

σ = e2τ

(

n

m∗
n

+
p

m∗
p

)

(4.55)

where n and p are the number of conduction electrons and valence holes per
unit volume, and the m∗ are the appropriate effective masses. This equation is
often rewritten

σ = neµn + peµp (4.56)

since this makes a separation between the quantity of carriers and their mobility

µ given by eτ/m∗. The full band structure of Si is shown in Fig. 4.19 on
page 125. Notice that the valence band maximum occurs at the Γ point where
bands with different curvature meet, so we have some “heavy” and some “light”
holes which therefore have different mobilities.

The carrier densities n and p are strongly dependent on temperature. As we
saw in Chapter 1, these quantities can be expressed as integrals:

n =

∫ ∞

ǫCB

gǫ
CB f

ǫ(T ) dǫ p =

∫ ǫV B

−∞

gǫ
V B [1 − f ǫ(T )] dǫ. (4.57)

36At the start of Chapter 4 we stated that only the T = 0 limit is of any interest when
it comes to electronic structure. For metals the Fermi temperature is so high that room
temperature, for example, may as well be considered as T = 0. But T is of the utmost
importance in semiconductor physics.

37We have previously used the term valence levels to mean those levels derived from the
outermost electronic shells of atoms in a solid. The term conduction electron in the context of
metals referred to those free electrons giving rise to the conduction of electricity. In insulators
we adopt a more careful terminology, reserving the term valence level for those states which
are filled at T = 0, and the term conduction level for those states which are unoccupied at
T = 0. In addition the term “valence band” in semiconductor physics is taken to mean all
the valence energy bands, and similarly for the term “conduction band”.
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Figure 4.26: Fermi-Dirac function and density of energy levels in a semiconduc-
tor. The Fermi level is determined by the requirement n = p.

In the parabolic approximation, the densities of energy levels are given by:38.

gǫ
CB =

1

2π2

(

2m∗
n

~2

)3/2 √
ǫ− ǫCB, ǫ > ǫCB (4.58)

gǫ
V B =

1

2π2

(

2m∗
p

~2

)3/2 √
ǫ− ǫV B, ǫ < ǫV B (4.59)

The temperature dependence of n and p is derived from the occupation factor
f . This is just the Fermi-Dirac distribution, but a problem with this is: what
do we take as the Fermi level in a semiconductor? We know that the VB holes
in a (pure) semiconductor are created when electrons are promoted to the CB,
and so n and p must be equal. This condition determines ǫf as illustrated in
Fig. 4.26.

Since the Fermi energy of a (pure) semiconductor falls roughly in the middle
of the band gap, it follows that the occupation factor f is rather small. In fact
it can easily be shown that since ǫ− ǫf ≫ kbT

1

exp[(ǫ− ǫf )/(kbT )] + 1
≈ exp

(

−
ǫ− ǫf
kbT

)

≪ 1 (4.60)

which means the Fermi-Dirac distribution approaches the Maxwell-Boltzmann
one. Physically this just means that the CB-electron and VB-hole occupation
probabilities are so low in a semiconductor that there is no danger of ever
violating the Pauli principle. It is then easy to show that

n = 2

(

2πm∗
nkbT

~2

)3/2

exp

(

−
ǫCB − ǫf
kbT

)

p = 2

(

2πm∗
pkbT

~2

)3/2

exp

(

ǫV B − ǫf
kbT

)

.

(4.61)

38From Chapter 1, ǫ ∝ k2 ⇒ gǫ ∝
√

ǫ
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Figure 4.27: n as function of reciprocal temperature for P doped Ge.

A loose end which we can dispense with now is the observation of photo-
conductivity in semiconductors (an increase in conductivity upon exposure to
light). Band theory simply explains this in terms of the creation of charge
carriers, i.e. VB holes and CB electrons, upon absorption of light. This effect
is quite useful, for example in making sensors etc.

4.12.2 Dopants

The typical room temperature carrier densities obtained by the above equa-
tions are ∼ 1016 m−3, which is too small for practical semiconductor devices
to operate. We can increase the electron/hole concentrations by adding small
quantities of pentavalent/trivalent atoms to a Si crystal. Such dopants are re-
ferred to as donors and acceptors respectively. A semiconductor with a net
excess of electrons is referred to as n-type while that with an excess of holes is
called p-type. To understand the effect of dopants, let’s consider what happens
to a P impurity in Si. The P atom takes the place of a host atom, using four
of its valence electrons to bond to four neighbouring Si atoms. The remaining
electron is relatively loosely bound. It’s not totally free since the extra nuclear
charge of the P atom keeps hold of it. We can estimate just how bound the
donor electron is by regarding the P impurity as a hydrogen atom embedded in
a dielectric medium. It follows that the ionization energy of the extra electron
are (in eV)

I =
13.6

i2
m∗

n

m

1

κ2
Si

(4.62)

wherem∗
n is the effective mass of a CB electron in Si, m is the true electron mass,

κSi is the dielectric constant of Si, and i is the principal quantum number. This
shows that P impurities create donor levels which are only ∼ 0.05 eV below ǫCB.
Occupation of these donor levels leads to movement of the Fermi level. In n-type
semiconductors it moves up towards the CB edge, while in p-type material it
moves down towards the VB edge. This simple model works surprisingly well.
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Figure 4.28: Energy levels of p and n-type semiconductor and the pn junction.
Also shown is the pn junction under forward bias.

We can now see why the early measurements on semiconductors were plagued
by inconsistencies - the conductivity of such materials is inordinately sensitive
to minute quantities of impurites. The carrier density of Ge doped with P
is shown in Fig. 4.27. Three distinct regions are observed. At low T only
some of the donor electrons are ionized and this is called the freeze-out regime.
On increasing T increasing numbers and eventually all of them are ionized -
the saturation regime. Further increase in T leads to an increase in n due to
thermal excitation of electrons from the VB - the intrinsic regime.

4.12.3 Semiconductor devices

Here we have time to mention only the most simple semiconductor devices, but
given their monumental impact on all forms of human activity it is important
to at least make a start.
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The pn junction

Consider first two dissimilar metals. In general these will have different Fermi
energies, so let’s suppose that metal A has a higher Fermi energy than metal B.
When we place samples of A and B in contact there will be electrons in occupied
states on metal A which have a higher energy than some of the empty states on
metal B. Electrons will then flow from A to B until the Fermi level is uniform
across the boundary. This charge redistribution creates a potential difference
at the junction of the two metals called the contact potential.

Now let’s consider two dissimilar semiconductors in contact, let’s say p-type
Si in contact with n-type Si, as shown in Fig. 4.28. Electrons from the n-type
side and holes from the p-type side diffuse across the boundary so as to balance
the Fermi levels either side of the boundary. But the electrons and holes in the
vicinity of the boundary can annihilate each other (known as “recombination”)
leading to a net reduction in charge carriers in this region which is therefore
known as the depletion region. In the depletion region the excess nuclear charges
remain, and we can think of the potential step they cause across the boundary
to be analogous to the contact potential at the boundary two metals.

When there is no externally applied field, electrons prefer to reside in the CB
on the n-type side of the junction since here their potential energy is lower than
it would be on the p-type side. However, if we apply a battery to the junction
such that the positive terminal is connected to the p-type side of the junction
(known as “forward bias”) then electrons on the n-type side start to become
tempted to move across, as shown in Fig. 4.28, and so a current can flow.
Alternatively, reverse biasing the pn junction makes this process less tempting
and so no current flows. A similar discussion can be made for the movement of
holes. We should note that we have only been concentrating on the majority
carriers - ideally we should also recognise that for T > 0 there are a few electrons
in the CB of p-type Si and also some holes in the VB on n-type Si. Nonetheless
our simplified treatment has allowed us to see that the pn juction acts as a
“rectifier” or “diode”: it only allows current to pass in one direction.

The transistor

Transistors can are made by suitably joining two pn junctions back to back. We
haven’t got time to go discuss their operation (see “Semiconductor Physics” next
term) but we can note that transistors can be used as current amplifiers or as
electronic switches. This later application allows electronic digital computation.

The transistor must rank as one of the most significant inventions of the
twentieth century, but its vast impact on society was not really felt until other
technology, molecular beam epitaxy (MBE) and related techniques, was devel-
oped. MBE allows semiconductor devices to be constructed one atomic layer
at a time, allowing extraordinary control and purity. Once techniques were de-
veloped for patterning surfaces (e.g. to etch away areas, fill them with metal
to make tiny wires, or with insulators etc.) on a microscopic scale it became
possible to imagine single integrated devices each containing vast numbers of
individual components. VLSI (very large scale integration) as much as the tran-
sistor itself has given birth to the IT revolution.

We live in interesting times from this point of view, as current state of the art
microelectronic devices use components at the nanoscale. We have been used to
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exponential growth of computing power (known as “Moore’s Law”), but there
is little scope for further shrinkage of conventional solid state electronics. So
what will come next?

4.13 Insulators

In Problem sheet 4 we found that the observed conductivity of insulators cannot
be explained by the thermal excitation mechanism of semiconductors. This,
along with the optical properties of insulators, will remain a mystery.

4.14 Superconductivity

Superconductivity is spectacular. The characteristic properties of this class of
material are:
(i) Lack of DC electrical resistance. It is not small, it is completely absent.
(ii) Perfect diamagnetism, although we have discussed what this is.
(iii) An apparent energy gap at the Fermi level.
This is quite spectacular, and the explanation is extremely subtle and highly
specialised, but superconductors are not rare. A large number of the elements
display superconducting states.

It should be clear, even from the meagre information given above, that su-
perconductivity cannot be explained by refining our understanding of metals.
Rather a complete revolution is needed. It turns out that superconductivity re-
lies on electrons being bound in pairs. This seems somewhat unlikely. It is also
fundamentally beyond the scope of band theory which relies on the one-electron
approximation. We can’t go into this here.

4.15 Summary

In this Chapter we have assumed that
(i) we know where the atoms in a particular crystal are located (i.e. we know
the crystal structure), and
(ii) the atoms are stationary.
We would like (eventually) to offer a more fundamental treatment of solids but
here we built up a theory of electronic structure only. Our approach was based
on the One Electron Approximation which allows us to treat only one electron
at a time, assuming it moves in some (periodic) potential U .

The wavefunction of an electron moving in a periodic potential must have
the form given by Bloch’s theorem: ψk(r) = uk(r) exp(ik.r), where u has the
periodicity of the direct lattice.39 Application of periodic boundary conditions
shows that the density of allowed allowed k vectors is exactly the same as in
the free electron model, but since Bloch waves are not momentum eigenstates
it is not yet clear how the Bloch wavevector k relates to kinematic momentum.
We showed that for any Bloch wave with wavevector k1 outside the first BZ it
is always possible to find an equivalent one with wavevector k2 (where k1 and

39Bloch’s theorem must be true for both core and valence electrons but we are particularly
interested in the latter since these are responsible for the bonds which give rise to the solid
state.
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k2 differ by a reciprocal lattice vector) inside the first zone. Thus we adopt the
reduced zone scheme - it is only necessary to consider k to lie in the first BZ.

Expanding the Bloch wavefunctions and the crystal potential using Fourier
series we get the “k-space Schrödinger equation” which can be viewed as a
matrix equation which we must solve at each k-point. The thing to notice here
is that we must truncate the Fourier series of uk(r) in Eq. 1.11 and U(r) in Eq.
1.18 so that the matrix equation has finite size (i.e. a finite number of rows and
columns). If we are to truncate the Fourier series of U and u then it is essential
that they converge rapidly in reciprocal space. It is not at all clear that this will
be the case since the Coulombic potential between an ion core and a valence
electron decays only as 1/k2 in reciprocal space. In fact the problem is much
worse than we may have supposed since orthogonalising the valence levels to
the core levels requires the wavefunctions of the former to be extremely rapidly
varying in the core region.

In effect the orthogonality constraint (the Pauli principle), by expelling the
valence electrons from the core region of an atom, tends to partially cancel the
strong Coulombic attraction between valence electron and core. Consideration
of the importance of this effect for particular atoms leads us to an understanding
of the chemical trends we observe in the Periodic Table of elements, and in
particular why some elements give rise to free-electron-like metallic states in
which the valence electrons appear to feel no attraction for the ion cores at all.
If we limit ourselves to finding the valence electron wavefunctions outside of the
core region then we can adopt the pseudopotential method in which the core
electrons (and hence the orthogonality problem) are totally removed from the
calculation. Instead we assume the valence electrons move subject to a weak
potential, the pseudopotential . This is constructed such that the wavefunction
inside the core region is wrong but smooth, and is correct outside the core.40

The potential U comprises not only
∑

UPS but also a term arising from
electron-electron interactions. The repulsive energy between an electron and
the average charge density produced by all the others is called the Hartree
energy. This term includes electron-electron repulsions in an average way but
the repulsion an electron really feels at any particular instant is determined
by the positions of all the others at that instant. To be technical, we have
assumed that electron motions are not correlated. We know that this cannot be
correct because of (i) antisymmetry (the “exchange effect”), and (ii) Coulomb
correlations, but the assumption is highly convenient since it allows us to attack
the Schrödinger equation just one electron at a time. Even this is not as simple
as it sounds since the Hartree potential depends on the wavefunctions of all the
electrons in the solid, which one does not know at the outset, so we must adopt
an iterative approach in order to achieve self-consistency.

One can go beyond the Hartree approximation by trying to patch in exchange
and correlation terms to the one-electron Schrödinger equation. This can be
done exactly for the exchange term to give the Hartree-Fock equations and
these can be solved for the homogeneous electron gas. The exchange effect gives
rise to a negative contribution to the total energy of the system (sometimes
called “jellium”), suggesting the origin of cohesion in metals. It is important to
notice that the HF electron gas is homogeneous on average, but at any instant

40Since the pseudopotential is determined by the nucleus and core electrons it can be found
for a particular element by performing calculations for a single atom for which the answers
are known.
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there is a region around each electron in which other electrons with the same
spin alignment are forbidden - the exchange hole. The HF model leads to the
electronic states being spread over a much wider energy range than predicted
by the free-electron model (which neglects all electron-electron and electron-ion
effects, or assumes that they cancel each other out).

There are some other strange consequences of the HF electron gas model
which render it quite unpallatable. The lesson here is that it is not always
worth putting in one effect exactly if one neglects other effects which may be
equally important. The way forward here is to approximate both exchange and
correlation together. In fact both can be treated exactly for the homogeneous
electron gas, prompting the local density approximation to density functional
theory, as discussed in the previous section.

We now have a scheme for computing the electronic structure of crystals from
the Schrödinger equation (see Fig. 4.17). Before we elaborate this framework
further we need to see if it actually works. Since we have made a number of cru-
cial approximations and assumptions it is also important to convince ourselves
that the scheme should work. Since electron-electron interactions are strong and
their motions correlated one might not expect the one-electron approximation
to work very well. We can perhaps anticipate an explanation: by including
an exchange-correlation potential in the one-electron Schrödinger equation we
are effectively replacing the strongly interacting and correlated electron system
with weakly interacting uncorrelated quasiparticles.



Chapter 5

Bringing it all together

So far we covered essentially three topics: crystal structure, atomic dynamics,
and electronic structure. One may wonder how the three main strands of this
branch of physics fit together. We studied structure in considerable depth,
discussing the types of structure which form, how one describes then in the
most compact way, how one could experimentally determine the structures of
unknown materials, and we tried to discuss in a qualitative way why a particular
material adopts a specific structure. We discussed the vibrational properties of
crystals, with the primary motivation of explaining the thermal properties of
crystals. This we achieved using a “ball and spring” model in the belief that
in some vague way the chemical bonds in a solid constitute the springs. We
then contemplated the behaviour of electrons in a crystal, but notice that the

atoms were assumed stationary in some predetermined structure. We discovered
an explanation for the occurrence of metals insulators and semiconductors in
nature and with the pseudopotential idea we tried to explain trends observed
in the Periodic Table.

It is clear that the three main concepts mentioned above must be related.
Electrons are the glue binding atoms together. The electronic structure of a
material must therefore play a major role in determining its total energy and
hence the crystal structure it favours, the stability of that structure, as well as
the “spring constants” which determine the atomic dynamics. We aim now to
arrive at a unified theoretical formalism that treats the three strands of solid
state physics in a coherent and self-contained manner. In this way we will not
only arrive at an appreciation of how it all fits together, we will also assemble
all the knowledge and techniques necessary for computing the properties of a
material the Schrödinger equation.

That this can be done is quite remarkable. We will have the ability to
predict, for example, that silicon should adopt the diamond crystal structure
with an interatomic bond length of 2.35 Å. Experimental observation shows that
it is indeed so, giving us confidence to use the same methods to predict what
will happen to silicon at extra-ordinarily high pressure or temperature where
doing the experimental measurements may be either hazardous, expensive, time-
consuming or even impossible. Similarly we will have the power to invent new
materials and explore their properties, eliminating useless ones without wasting
time fabricating and testing them in real life.

Physicists are very good at devising clever and robust theoretical frameworks

145
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such as this, but we are not satisfied with just churning numbers out with a
computer. We want to be able to understand why the numbers come out as
they do. Can we look a little deeper and appreciate why silicon adopts the
diamond structure while lead (in the same chemical group) does not? Why do
the metals Mn, Fe, Co, Ni (adjacent in the Periodic Table) each have a different
crystal structure? We need some qualitative insight to go with our computing
power. Indeed it is worth pointing out that the methods we have at our disposal
for the simulation of material properties seem to work far better than we have a
right to expect. Explaining why these methods work at all is therefore a major
challenge.

It should be mentioned that our powers are limited and some things just
come out wrong. We are defeated for a variety of reasons. Certain mechanical
properties of solids deviate enormously from our predictions because of the
existence in the real world of defects. Such phenomena are not necessarily the
result of sloppiness on the part of the scientist preparing samples for study.
Rather their existence is dictated by the laws of nature (thermodynamics in
fact). It is not easy to come to terms with this since our theoretical results and
computer programs tend to work best for perfect crystals where every unit cell
is rigorously identical.

There are fundamental obstacles of a different kind. Quite simply our as-
sumptions and approximations fail in grand style on occasions. Thus modern
solid state physics is a mixture of experimental investigations, quite difficult
theoretical ideas, state-of-the-art numerical simulation techniques, and simple
models that help us understand what it all means.

5.1 Cohesion: Qualitative Observations

To predict the crystal structure of a solid we need to calculate the structure for
which Etot

gs , the ground state total energy of the solid, is the lowest. To quantify
the strength with which atoms are bonded together in a solid we define the
cohesive energy:

Ecoh =
1

N

(

Etot
∞ − Etot

gs

)

(5.1)

where Etot
∞ is the total energy when the solid is disassembled into its N con-

stituents. In words this equation says:

• The cohesive energy is the energy required to disassemble a solid into its con-

stituent parts divided by the number of constituents.

For different classes of solid it is appropriate to consider different types of con-
stituent.

5.1.1 Homo-nuclear systems

Solids comprising a single type of atom must adopt either the covalent, metallic
or Van der Waals (also known as “molecular”) bonding strategy. We saw in
§2.1.2 that the covalent concept is based upon the formation of so-called “bond-
ing” and “anti-bonding” molecular orbitals, the former having lower energy than
the corresponding atomic orbitals while the latter have higher energy. These
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energy differences were quantified by the “hopping integral”, h, defined in Eq.
2.9. This equation shows that the deeper the energy wells felt by the valence
electrons (see Fig. 4.6), the greater the magnitude of h, The covalent strategy
works in molecules when there are more electrons in the bonding than the anti-
bonding states, and the same argument applies in extended solids (except that
the molecular orbitals are broadened into energy bands).

In §4.6.3 we discussed briefly an insightful approach to understanding trends
in the strength of these atomic potential wells. We noted that in principle H, Li,
Na, K, Rb and Cs can each be viewed as a positive ion surrounded by a single
valence electron, however the ionization potential (the energy required to rip off
the valence electron) decreases significantly down this group, as if the potential
felt by the electron is getting weaker. We explained this trend by recalling that
the valence electron in a Cs atom, for example, resides in the 6s shell and its
wavefunction must be orthogonal to the 1s, 2s, 3s, 4s and 5s wavefunctions.1

To achieve orthogonality (i.e.
∫

ψ∗
nsψmsdr = δmn) to these inner shells the 6s

wavefunction contains 5 radial nodes (where the radial wavefunction has zero
amplitude) in the inner region of the atom. Since the wavefunction is “wiggly”
in the core region the electron travels very quickly2 there. In effect the valence
electron of Cs is prevented from lingering in the region where the Coulomb
attractive is strong. It is as if it cannot “feel” the nucleus. This is why free
electron type behaviour decreases down the Periodic Table. Moving across the
Periodic Table on the other hand increases the nuclear charge but brings no
additional orthogonality requirements, thus Ups increases across the Periodic
Table.

These considerations suggest that metals should be formed by elements to
the lower left of the Periodic Table. Elements towards the upper right will tend
to have strong Ups and will occupy fewer anti-bonding than bonding states,
so covalency rules. Elements to the extreme right (the “noble gases”) exhibit
strong Ups but covalency is not favoured since as many electrons will be in
anti-bonding as bonding states. Only the Van der Waals bonding mechanism
remains. As we saw in §2, the potential energy for two molecules is given by
the Lennard-Jones potential 3

V (r) = 4V0

[

(

ℓ

r

)12

−

(

ℓ

r

)6
]

. (5.2)

The constants ℓ and V0 represent the range and strength of the potential. To
calculate Ecoh we must consider the mutual interactions of all molecules (in this
case atoms). Let’s take the origin to be the position of molecule 1. The energy
of interaction between the molecule at the origin and all the others in the solid
is then the sum of Vi(ri), where i labels all the other molecules and ri are their
distances from the origin. To get the total energy of a molecular solid we need
to multiply this quantity by N , the total number of molecules, and divide by 2,

1It is automatically orthogonal to all p and d shells on account of the angular part of the
wavefunction.

2The velocity operator is proportional to d/dr.
3Since the molecules in a van der Waals solid are only weakly perturbed, we can get a

rough understanding of cohesion by setting the intra-molecular energy (i.e. Etot
∞

in Eq. 5.1)
to zero and equating the total energy of the solid by the inter-molecular interaction energy.
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to avoid double counting. The cohesive energy is therefore

Ecoh = −
1

2

∑

i6=1

Vi(ri) (5.3)

which can be written in the form

Ecoh = −2V0

[

A

(

ℓ

a

)12

− C

(

ℓ

a

)6
]

. (5.4)

where a is the nearest neighbour distance and A and C are structure dependent
constants defined by

A =
∑

i6=1

(

a

ri

)12

, C =
∑

i6=1

(

a

ri

)6

. (5.5)

Since van der Waals interactions are short range, only the first few nearest
neighbours contribute to the sums defining A and C. Evaluating these quantities
reveals that van der Vaals bonding favours close packed structures, as we may
have guessed.

At this point we should consider whether metals should form at all. In
§2.1.5 we noted that delocalization allows a lowering of electron kinetic energy.
However this is a positive energy, whereas an electron on an atom has negative
energy (i.e. is bound). Why do the atoms stick together? Part of the answer
was revealed in §4.7.2. There we briefly considered the Hartree-Fock treatment
of a homogeneous electron gas, sometimes referred to as “jellium”. In jellium
the positive charge of the ions is assumed to be smeared out uniformly. The
electron charge density must therefore also be uniform since there is no reason
for it to be otherwise. If the electronic motions are assumed to be uncorre-
lated (i.e. the Hartree model is assumed) the only contributions to the total
energy are the KE of the electrons (the positive charge is assumed immobile),
the e-e repulsion, the ion-ion repulsion and the e-ion attraction. For uniform
distributions the electrostatic terms cancel leaving only the electron KE. The
Hartree-Fock model adds the constraint of Fermi-Dirac statistics (i.e. the wave-
function of the electron system must be anti-symmetric) leading to a reduction
in the e-e repulsion. Effectively electrons with parallel spin repel each other less
than Hartree assumed by because they are forbidden from getting close to each
other. The HF energy of jellium was given in Eq. 4.40. Accounting also for
Coulomb correlation as well as the exchange effect, it can be shown that the
total energy of jellium is (in eV per electron)

Etot =
30.1

(rs/a0)2
−

12.5

(rs/a0)
− (1.56 − 0.42 ln(rs/a0)) (5.6)

where the three terms on the right represent kinetic energy, exchange energy
and correlation energy respectively. a0 is the Bohr radius (0.53 Å) and we are
again using the variable rs which is just the radius of the sphere whose volume
is equal to the volume per conduction electron in the metal. rs is related to the
electron density n by the relation

1

n
=

4

3
πr3s . (5.7)
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We can see that jellium is stabilised by the exchange-correlation terms, the min-
imum energy per electron of -2.2 eV occurring for rs = 2.2 Å. The “exchange-
correlation hole” surrounding each electron allows it to enjoy a net attraction
from the underlying positive charge.

There are a couple of problems with this:

(i) Values of rs for real free-electron-like metals lie in the range 1 to 3 Å. The
value predicted by the jellium calculation is therefore quite sensible, but what
makes rs for one metal quite different to that for another?
(ii) Experiment tells us that it takes ∼ 1 eV per atom to pull metals like sodium
apart into individual atoms (i.e. Ecoh ∼ 1 eV). But the sodium atom still has
some energy, just as the energy of the hydrogen atom is -13.6 eV. For sodium
this number, the negative of the ionisation potential, is ∼ −5 eV. Clearly if
Etot

∞ ∼ −5 eV and Ecoh ∼ 1 eV then it follows from Eq. 5.1 that Etot
gs should

be about −6 eV. The jellium model is missing an important contribution to the
total energy of real metals.

You can probably guess the problem - we need to do something more realis-
tic than smearing the positive charge out uniformly.

The simplest way of doing this is to replace the smeared out positive jellium
charge with ions embedded in the electron gas at the correct places. In a metal,
each Wigner-Seitz cell will be neutral and so we need only consider the inter-
actions within the WS cell. We can estimate the energetics by making a few
simple and quite plausible assumptions:
(i) We assume that the electron density is approximately homogeneous.
(ii) We replace the true WS cell (a polygonal volume) with a sphere (of radius
RWS which has the same volume.
(iii) At each ion position we place the appropriate pseudopotential .
(iv) We assume for simplicity that there is only one atom per unit cell.
The total energy of the metal (in eV per atom) is then

Etot = Z

{

30.1

(rs/a0)2
−

12.5

(rs/a0)
− (1.56 − 0.42 ln(rs/a0))

}

−

∫

WS

ρ(r)Ups(r) dr +
1

2

e2

4πε0

∫

WS

∫

WS

ρ(r)ρ(r′)

|r − r′|
dr dr′ (5.8)

where there are Z valence electrons per atom. Now we assume that the pseu-
dopotential Ups can be described by

Ups(r < Rc) = 0, Ups(r > Rc) = −
Ze2

4πε0r
, (5.9)

known as the Ashcroft empty core pseudopotential. We have argued previously
that the Coulomb attraction due to the core is largely cancelled by the “Pauli
repulsion” and so this expression benefits from both mathematical simplicity
and good underlying physics (if a little crudely expressed). Inserting this pseu-
dopotential and evaluating the integrals we obtain

Etot = Z

{

30.1

(rs/a0)2
−

12.5

(rs/a0)
− (1.56 − 0.42 ln(rs/a0))

}

−
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40.8Z2

(RWS/a0)

[

1 −

(

Rc

RWS

)2
]

+
16.3Z2

(RWS/a0)
(5.10)

again in eV per atom.
This expression has a number of features that are worthy of note. Consider

sodium, for which Z = 1 and hence RWS = rs.
(i) The Hartree repulsive energy between electrons is to a large extent cancelled
by the exchange and Coulomb correlation energies.
(ii) The magnitude of the electron-ion term is several eV. This is precisely the
contribution we needed to make sense of the cohesive energy of metals, as dis-
cussed at the end of “jellium” section above.
(iii) The magnitude of the electron-ion attractive term falls as the core radius
increases. Thus we can predict that the total energy Etot

gs of metals will increase
down a group of the Periodic Table. This is indeed the case.

Differentiating Eq. 5.10 with respect to RWS to find the minimum energy,
yields an expression relating the ground state value of RWS and the core radius
Rc. Inserting the experimentally observed WS radii we can then extract the
Ashcroft core parameters Rc and also deduce the ground state energy. We find
that the core radius Rc increases down a group and decreases across a period,
just as we expect from rudimentary knowledge of atomic physics.

Putting in the ion cores using the WS sphere approximation allowed us to
make significant progress. Our brief flirtation with the Ashcroft pseudopotential
turns out to be extremely useful. We have just seen that we can explain trends
in the density of metals and predict total energies semi-quantitatively. But
notice that our expression for the total energy of the metal depends on RWS

(i.e. the density) but not the crystal structure. It’s quite tricky to get this final
bit of the puzzle, but we can make a simple argument to get the main point.
We expect that the ions embedded into the electron gas would like to be as far
away from each other as possible. For a given atomic density, this is achieved
best by the BCC structure, then FCC then HCP. Thus we have explained why
metals favour close-packed structures. Notice that the pseudopotential concept
has provided a basis for uderstanding both the electrical properties of metals
as well as their structural properties. Metals are also ductile, have low melting
points, form a wide range of alloys and are soft. Can we relate these physical
properties to their crystal structure?

It is not immediately obvious however that metals are crystalline at all.
In 1864 Sorby showed that if you strip off the top few layers of a polished
metal surface, grains typically 10−4 m in diameter are revealed. Each grain is a
small crystal but they are randomly oriented with respect to one another - an
arrangement we call polycrystalline. It appears that metals are not particularly
fussy about forming specific bonds with specific atoms and having specific bond
angles - they just want close packing. This tendency explains why metals are
comparatively heavy.

As a liquid metal freezes, different seed crystals grow with a variety of ori-
entations. The lack of specificity of metallic bonding means that when these
grains meet there is no great problem. So long as the atoms at the grain bound-
aries can still have as many neighbours as possible, the loss of periodicity does
not have a very high energy cost. This lack of specificity also accounts for the
willingness of metals to form many alloys (precise chemical formulae need not
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Figure 5.1: The packing of spherical ions in the (110) plane of the CsCl structure.
Anions are white, cations are black.

be adhered to), their willingness to be welded together, and their low melting
points.

5.1.2 Hetero-nuclear systems

For a binary AB system we distinguish three cases:
i) UA

ps and UB
ps are both weak.

In this case we expect the formation of metallic alloys.
ii) UA

ps is strong and UB
ps is weak.

In this case B will have a low ionization energy and will readily form positive
ions while A will be pleased to accept an additional electron (i.e. it will have a
large “electron affinity”). Ionic bonding will result. In §2.1.4 we predicted the
cohesive energy (per ion pair) of a binary A+B− compound to be

Ecoh(r) = α
q2

4πε0r0
. (5.11)

r0 is the nearest neighbour (i.e. anion-cation) distance, and |q| is the net charge
on each ion. The Madelung constant α is determined by the crystal structure;
for the cesium chloride, sodium chloride and zincblende structures α is 1.7627,
1.7476 and 1.6381 respectively.

• So why do all the alkali halides except CsCl, CsBr and CsI adopt the NaCl

structure?
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To answer this question we must go back to our earlier observation that in the
solid state the alkali halides can be considered as arrays of weakly perturbed
ions. Let’s assume the radii of the alkali cations rc and halide anions ra are con-
stants independent of the salt.4 Electrostatic attraction will pull these charged
balls together as closely as possible, but we assume that the ions can’t overlap.
A (110) plane of the CsCl structure is shown in Fig. 5.1. When rc ≈ ra the
oppositely charged ions can touch each other and so the anion-cation distance
is rc + ra. If we now keep ra fixed but allow rc to shrink then it can be seen
that the crystal as a whole will also shrink as the ions are allowed to get a bit
closer (see Fig. 5.1). As a result the Madelung energy becomes more negative,
as shown in Fig. 5.2. But if rc is reduced beyond rc < 1.37ra the crystal is
prevented from shrinking because the anions are now in contact as shown in the
lower right panel of the figure, and so the Madelung energy cannot fall any fur-
ther. When this situation prevails oppositely charged ions are prevented from
getting as close to each other as they would like.5 It can then be beneficial to
adopt a more open structure which allows the oppositely charged ions to get
closer together, despite the penalty of a slightly lower Madelung constant, as
shown in Fig. 5.2. The critical ratios for the NaCl and zincblende structures
are 2.41 and 4.45 respectively.

This line of reasoning explains why only CsCl, CsBr and CsI can adopt the
CsI structure. It also explains why the nearest neighbour distances in LiCl, LiBr
and LiI are not equal to rc+ra. In these salts ra/rc ∼ 3 which exceeds the critical
value for the NaCl structure and so the anions and cations no longer touch. The
size disparity is not quite sufficient to favour the zincblende structure, however.

iii) UA
ps and UB

ps are both strong (but with A stronger than B).
Here, again with the exception of the noble gases, we expect covalent bonding.
The mathematics should follow the discussion of the hydrogen molecule in §2.1.2
except that we must now acknowledge the distinct chemical identities of atoms
A and B. For the “hetero-dimer” Eq. 2.4 for the Schrödinger equation remains
valid with the potential energy term given by Ups

A (r −RA) + Ups
B (r − RB) and

we again seek “molecular orbital” solutions with the form |ψMO〉 = cA|ψA〉 +
cB|ψB〉, where ψA and ψB are atomic orbitals corresponding to the potentials
Ups

A and Ups
B respectively. We find eigenenergies given by

ǫ± = ǭ∓
1

2

√

4h2 + (∆ǫ)2 (5.12)

where

ǭ =
ǫA + ǫB

2
, h = 〈ψB |Ū |ψA〉, Ū =

Ups
A + Ups

B

2
, ∆ǫ = ǫA − ǫB. (5.13)

The corresponding wavefunctions are given by |ψMO〉 with coefficients

c±A =
1
√

2

√

1 ±
δ

√
1 + δ2

, c±B = ±
1
√

2

√

1 ∓
δ

√
1 + δ2

(5.14)

4This turns out to be a very good approximation. Generally, cations, having lost their
valence electrons, are significantly smaller than anions, which are slightly bloated due to their
excess electrons.

5There are a few cases where the cations are larger than the anions. In this case we just
reverse the roles of rc and ra.
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where δ = ∆ǫ/(2|h|). As seen for the homonuclear case considered in §2.1.2
we see here the formation of a bonding state with lower energy than ǭ and
an antibonding state with higher energy. Notice that now we have an ionic
contribution to the bonding-anti-bonding splitting (Eq. 5.12). Also the bonding
state has greater electron density on atom A (with the stronger pseudopotential)
whereas the anti-bonding state has more density on the less favoured B site.
Thus we have mixed ionic-covalent bonding.

It is interesting to compare the isolelectronic solids Ge (Group IV), GaAs
(III-V), ZnSe (II-VI), and CuBr (I-VII). Ge is totally covalent and adopts the di-
amond crystal structure, each atom forming four covalent bonds with its nearest
neighbours. The III-V and II-VI solids also tend to exhibit fourfold coordination
but are slightly ionic, and this is reflected by the increased band gaps (shaded
pink regions) in Fig. 4.19. For the I-VII compounds the bonding is predomi-
nantly ionic in character and to a good approximation all the valence electrons
reside on the halide ions. The covalent bonding charge is so depleted that it
can no longer hold the four-fold coordinated structures together. As we have al-
ready seen, ionic salts adopt structures which maximise their Madelung energy.
It is observed that δ = 1.24 separates all the binary compounds into four-fold
coordinated (δ < 1.24) and ionic structures (δ > 1.24).

The bonding in most ceramics and minerals has a significant covalent compo-
nent. Although covalent solids have well-defined chemical formulae, a surprising
range of structures are observed for many compounds, and we can explain this.
We have already said many times that Si likes to bond to four other atoms,
forming little tetrahedra. Tetrahedra can link together in a variety of ways.
E.g. SiO2 subunits can link to form a fibrous chain (as in asbestos), or lam-
inar structures (as in talc or mica), or as 3D structures (as in quartz). Each
has a well defined chemical structure, but the flexibility of the tetrahedral unit
explains the diversity of forms silicon dioxide can take.

The nature of covalent bonding dictates the formation of molecules and solids
with specific chemical compositions and bond angles. The strength of these
bonds (∼ 1 eV per bond) explains the high melting points of many ceramics,
and their directionality means that any attempt to distort such a crystal will
meet with extreme resistance, i.e. covalent solids are very rigid. Planes of
atoms are unable to slip past each other since the energy barrier for sheer
distortion is extremely high. If a sufficiently strong force is applied to cause
significant distortion then the chemical bonds are broken and the solid fractures
i.e. covalent solids are brittle.

5.2 A “first principles” approach to cohesion

This section is not really difficult but requires us to think carefully about what
we have been doing. To start with look again at Eq. 4.1, the Schrödinger equa-
tion for the electronic system of a solid. This gives an eigenvalue equation for
Ψ, the wavefunction of the electronic system, with electronic energy eigenvalue,
E. But this is not the whole energy of the solid since it does not include the
potential energy due to the ion-ion repulsion or the ionic kinetic energy. Fur-
thermore we have assumed the set of atomic positions {R} is known, and that
they don’t vary. Let’s go back a step and try to clarify the relation between the
electronic and ionic degrees of freedom.
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5.2.1 The Schrödinger equation and Born-Oppenheimer

separation

The Schrödinger equation describing both the electrons and the nuclei of a solid
is

HΦ({r}, {R}) =







∑

j

−
~

2

2M
∇2

j +
1

2

∑

k,j(k 6=j)

Z2e2

4πε0|Rj −Rk|
+H







Φ({r}, {R})

= EtotΦ({r}, {R}) (5.15)

where Φ is the wavefunction of the entire system, M and Ze are the mass and
charge on the ions6, {r} is the set of electron coordinates, {R} is the set of ion
coordinates.7 The first two terms in the second equality are the ionic kinetic
energy and the inter-ion potential energy, and H is the electronic Hamiltonian
(see Eq. 4.1) for a particular set of ion positions:

H =
∑

i







−
~

2

2m
∇2

i −
∑

j

Ze2

4πε0 |ri −Rj |







+
1

2

∑

i,j(i6=j)

e2

4πε0 |ri − rj |
. (5.16)

Notice that in general the wavefunction of a solid depends on the coordinates
of all its electrons and all its ions. If both electrons and ions are moving, the
concept of electronic structure is strictly speaking not well-defined. In practice,
electronic and ionic motions are separable to a good approximation since the
mass of the electron m is extremely small compared to ionic mass M (m/M is
between 10−4 and 10−5 in most cases). The Born-Oppenheimer approximation
claims that since electrons can respond much faster than ion cores, then even
if the ions are moving the electrons instantaneously adjust. In other words,
the electronic system is in the ground state appropriate for the particular ion
configuration at any particular instant. In quantum mechanics the smooth
variation of an external potential is known as an adiabatic perturbation and
leads to a smooth evolution of the eigenstates of a system and not a mixing of
the eigenstates.

Born-Oppenheimer separation, often called the adiabatic approximation, sug-
gests that we look for eigenstates of the full Schrödinger equation (Eq. 5.15)
which have the form

Φ({r}, {R}) = Ψ({r}, {R})Υ({R}) (5.17)

where Ψ is the wavefunction of the electronic system for a given ionic configu-
ration, and Υ is the wavefunction of the ions. Inserting this expression into Eq.
5.15 we obtain






∑

j

−
~

2

2M
∇2

j +
1

2

∑

k,j(k 6=j)

Z2e2

4πε0|Rj −Rk|
+ E({R})







Υ({R})Ψ({r}, {R}) =

6As previously we are lumping the nucleus core electrons of an atom together to form an
ion. For notational simplicity we consider here solids which contain only one type of atom.

7These are not necessarily Bravais lattice points since the ions can move.



156 CHAPTER 5. BRINGING IT ALL TOGETHER

Ψ({r}, {R})
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= EtotΥ({R})Ψ({r}, {R}) (5.18)

where E({R}) is determined by




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

 Ψ({r}, {R})

= E({R})Ψ({r}, {R}). (5.19)

Now consider the final two terms on the left hand side of Eq. 5.18. If we
ignore them then the ionic wavefunction satisfies






∑

j

−
~

2

2M
∇2

j +
1

2

∑

k,j(k 6=j)

Z2e2

4πε0|Rj −Rk|
+ E({R})







Υ({R}) = EtotΥ({R})

(5.20)
While the two are clearly inter-related, we have achieved a separation of the
ionic and electronic motion. To be explicit:

The ionic coordinates are parameters in the electronic Schrödinger equation.

The energy from the electronic Schrödinger equation acts as a potential term

in the Schrödinger equation describing the ionic motion.

E({R}) is the adiabatic contribution of the electrons to the total energy. It
describes the electronic ground state appropriate to the prevailing ionic con-
figuration denoted by the set {R}, and is independent of the ionic velocities.
Returning now to the neglected non-adiabatic terms we note that in FOPT
these terms do not affect the total energy and we are justified in omitting them.
However, they do affect the wavefunction, or equivalently they cause transi-
tions between the adiabatic eigenstates. This is the electron-phonon scattering
process which we spoke of in the previous chapter.

5.2.2 The potential energy hypersurface

The two potential energy terms in Eq. 5.18 give the Born-Oppenheimer potential

energy hypersurface V BO:

V BO =
1

2

∑

k 6=j

ZiZje
2

4πε0|Rj −Rk|
+ E({R}). (5.21)

Here we are primarily interested in determining the cohesive energy and so
we take T = 0. Neglecting the zero point motion of the ions, we can assume
Etot(gs) is given by the minimum of the BO potential, so to find the ground
state energy of a solid we must find the ionic coordinates corresponding to the
energy minimum of the Born-Oppenheimer potential energy hypersurface.
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5.2.3 The ground state energy

Since the ion-ion term in Eq. 5.21 is straightforward, it remains only to recall
an expression for the electronic energy E. Unfortunately we never actually de-
rived such an expression since the Schrödinger equation for the whole electronic
system is a many-body problem and therefore insoluble. We made progress by
making the one-electron approximation, which meant solving simpler equations
for ψ, the wavefunctions of single electrons, and ǫ, the corresponding eigenen-
ergies. Now we need to specify how the one-electron eigenenergies relate to the
total electronic energy. Since the electrons interact, this is not trivial. The
equations we need are

E = Tel. + Vel.−ion + Vel.−el., Ebs =
∑

j

ǫj = Tel. + Vel.−ion + 2Vel.−el..

(5.22)
If we sum the one-electron eigenvalues to obtain the “band-structure energy”
Ebs then we count each electron-electron interaction twice.8 It follows that

Etot
gs = Ebs + Vion−ion − Vel.−el.. (5.23)

Vel.−el. is already part of the band structure calculation and Vion−ion is rel-
atively easy to deal with and so we can readily adapt our band structure flow
diagram from §1 so as to obtain Etot

gs by varying the set {R} (i.e. we vary of the
crystal structure and nearest-neighbour distance). An extended flow diagram is
shown in Fig. 5.3 and results of such a calculation for Si are shown in Fig. 5.4.
A lot of information can be deduced from this figure:
(i) The diamond crystal structure is predicted.
(ii) The energy minimum occurs at an atomic volume in extremely good agree-
ment with experiment (i.e. we can predict the bond length).
(iii) Subtracting Etot

∞ from the ground state energy of the solid (see Eq. 5.1)
gives a cohesive energy of 4.67 eV per atom, in excellent agreement with the
experimental value of 4.63 eV/atom.
(iv) The curvature of the energy curve near the ground state (i.e. the second
derivative with respect to volume) is essentially the stiffness of the bonds which
in turn determines vibrational frequencies and the bulk modulus. These quan-
tities are also also turn out to be in excellent agreement with experiment.
(v) Under compression (i.e. on reduction of the atomic volume by application
of an external force) the diamond structure is not necessarily favoured. Thus
we have a method for calculating the phase diagrams of solids from first princi-
ples. The pressure-induced transition to the β-tin structure has been confirmed
experimentally for silicon.

The original motivation for the development of band theory in the 1930’s
was the desire to explain the cohesion of solids. Although band theory has
long been able to describe non-equilibrium phenomena (e.g. optical absorption,
electrical conduction etc.), the calculational scheme described in this section
has only yielded quantitative predictions of the cohesive energies of solids in the
last decade or so. We can see two major reasons for this. Firstly, the success

8The one-electron Schrödinger equation for electron i contains the interaction from electron
j, and the one-electron Schrödinger equation for electron j contains the interaction from
electron i. The many-electron Schrödinger equation contains the interaction between electron
i and electron j only once.
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Figure 5.4: Total energy calculations for Si in a variety of crystal structures as
functions of density.

of density functional theory in representing electron-electron interactions was
only apparent at around 1980. Secondly, supercomputers are needed in order
to perform the enormous number of self-consistent calculations represented in
Fig. 5.4.

5.2.4 Atomic dynamics

It is well worth repeating the point from §5.2.1 that the electronic energy E,
together with the inter-ion repulsion, creates the potential which controls the
atomic dynamics in a solid. The flow diagram in 5.3 is therefore a single theo-
retical framework describing electronic structure, crystal structure and crystal
dynamics, the three main branches of solid state and condensed matter physics.

• We now have a truly first principles quantum theory of the solid state.

This subsection is a digression, but we can include a few other bits and pieces
here for completeness.

The Hellmann-Feynman theorem

Consider first a ball which can move in the xy plane. Suppose we calculate V (r)
the potential energy of the ball at each point in the plane and find the results
illustrated by the contour map in Fig. 5.5. Since we know the energy at each
point we can deduce the force the ball would experience at each point using the
expression

F = −
dV

dr
. (5.24)

This means that the force on the ball at some point tends to accelerate it in the
direction for which the energy decreases fastest at that point. Knowing V (r),
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Figure 5.5: Potential energy contours for a ball moving in the xy plane. The
potential energy decreases with the radius of the contours. The path shown is
a zero temperature quench, not a physical trajectory.

it should then be possible, given an initial position and velocity, to calculate
trajectories of the ball moving across the plane. Suppose the ball starts at
position r0 at time t0 with velocity v0. A small time ∆t later, the position and
velocity of the ball will be

r1 = r0 −
(∆t)2

2M

(

dV

dr

)

r=r
0

, v1 = v0 −
∆t

M

(

dV

dr

)

r=r
0

. (5.25)

We can then calculate the force on the ball at the new position and so predict
its position after a second time step. In this way we can plot the trajectory of
the ball, provided small time steps are used.9

In fact we can be much more economical than this. Rather than calculating
V at all positions in advance, let’s just start by calculating it in the vicinity of
r0. This is all the information we need to determine the trajectory during the
first time step. Having determined r1 we then calculate V around this point,
and so on. Thus, to calculate the trajectory of the ball we only need to do en-
ergy calculations along the trajectory itself and very close to it, not everywhere.

We can apply the same procedure to calculate atomic motions, assuming
they satisfy Newtonian dynamics. The force on atom i is

F i = −
dV

dRi

= −
∂V

∂Ri

−
∂V

∂Ψ

dΨ

dRi

. (5.26)

Notice that the use of the total derivative in the first equality suggests that we
must allow for the relaxation of the electrons produced by changes in atomic co-
ordinates, as explicitly shown in the second equality. According to the Hellmann-
Feynman theorem this is not necessary after all, because we can start by cal-
culating the force at some point the Born-Oppenheimer surface, i.e. when the

9Eq. 5.25 assumes that the acceleration is constant during each time step. This approxi-
mation deteriorates as ∆t increases.
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electronic system is in its ground state for a given set of nuclear coordinates
(which means ∂Ψ/∂Ri = 0). Under these circumstances the second term in the
second equality above must be zero, and we obtain

F i = −
∂V

∂Ri

. (5.27)

This means that to calculate the force at some point on the Born-Oppenheimer
surface we need only determine how the energy changes with respect to vari-
ation of the atomic coordinates at that point without the need to keep relax-
ing the electrons. As soon as we move the atoms a finite distance according
to their Hellmann-Feynman forces we in evitably move away from the Born-
Oppenheimer surface and so we lose accuracy. It is therefore necessary to reg-
ularly update the electronic wavefunctions, but not at every timestep.

The dynamics of diffusion, chemical reactions, lattice vibrations etc. can all
be studied from first principles in this way, but it is extremely computationally
demanding.

Spring constants and empirical potentials

In §3 we explored lattice dynamics with rather crude ball and spring models. We
now have the means to determine the spring constants needed for these models.
Of course we can do better by using the real Born-Oppenheimer potential energy
surface in place of the model. A particularly useful approach is to use the full
computational machinery in Fig. 5.3 to deduce empirical interatomic potentials.
These can then be used to predict atomic dynamics in systems too complex for
full electronic structure calculations to be viable. In this way one can hope to
combine the speed of a model calculation with the accuracy of the full machinery
(since the quantum mechanics is in some sense built into the empirical potential).

Finding the ground state

We saw above that the calculation of atomic dynamics from first principles is
made computationally tractable by the Hellmann-Feynman theorem and by only
performing calculations along the trajectory itself. If we are only interested in
finding the ground state we can make much greater economies.

Let’s consider the ball again. If we calculate the energy at every point we
can decide what is the lowest energy position. In Fig. 5.5 the ground state is
the point G. This is analogous to predicting the ground state structure of Si
from the huge amount of computational effort required to produce Fig. 5.4.
Now let’s use the dynamics approach to make a short cut. Let’s start with the
ball stationary at A and calculate the force at that point. Now let’s calculate
the energy at a series of points along the direction of that force until the energy
starts to increase. We stop at this point (B) and recalculate the force. We
then start calculating the energy along the direction of this new force, rapidly
converging towards the ground state G. This approach allows us to move to the
ground state with very few energy calculations.

Note that the route to the ground state is not a physical trajectory of the
ball for two reasons.
(i) the acceleration on the ball was only calculated correctly at the points A, B,
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etc. Along the line AB there is no guarantee that the force on the ball is even
along this direction.
(ii) the procedure described amounts to picking the ball from point A and placing
it at rest at point B then C then D etc. In other words the ball acquires no
kinetic energy on this strange journey. This fictitious trajectory is called a “zero
temperature quench”.
Provided we are interested only in locating the ground state we can treat the
description of the ball’s trajectory as sloppily as we wish in order to speed up
the calculation. By calculating the Hellmann-Feynman forces at a few points
on the Born-Oppenheimer surface, zero-T quench dynamics can also be applied
to find the ground state atomic positions of the atoms in a solid.
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This is a brief guide to the main concepts in each chapter of the course. You may wish to
use this summary to structure your revision since the assessment of the course will be aligned
with the main concepts. But note that small parts of the exam paper may draw upon material
designated as primarily “background” and even previously unseen material.
You may find it useful to get exam practice by looking at the papers from 2001-2008, however
do note that the syllabus has evolved a little over the years. The “mock exam” (problem sheet
6) corresponds to the current syllabus.

Chapter 1.

Drude model (classical free electron gas)
The physical picture of the collision model and the assumptions on which it is based.
MB velocity distribution and estimate of core radius (∼ 1 Å) lead to τ ∼ 10−14 sec. at room
temperature.
Derivation of Ohm’s law from Newton’s second law (Eq. 1.4).
Electronic contribution to the heat capacity (Eq. 1.10) comes out wrong.

Sommerfeld model (quantum free electron gas)
Stationary states of SE are plane waves with wavevector k.
Periodic boundary conditions give allowed k and hence gk.
How to convert gk to gk and gǫ.
Ground state of free electron gas obtained by populating the allowed states in ascending order
of energy, the maximum energy being the Fermi energy.

Characteristic properties of the Fermi gas: ǫf ∼ a few eV, kf ∼ 1 Å
−1

, vf ∼ 106 ms−1, Tf ∼ 105

K.
Occupancy at T > 0 given by FD function.
The FD and MB distributions are spectacularly different at room temperature, and this has a
radical effect on the electrons’ contribution to the heat capacity. We derived a good approxima-
tion to this in Problem Sheet 1, but there is a short cut - the result for a classical gas (3

2nkb) is
reduced by a factor ∼ kbT/ǫf since only this fraction of the electrons can be thermally excited
(page 13). (Remember that the electrons’ contribution to CV can only be seen at low tempera-
ture. At higher T it is swamped by another effect.)
Sommerfeld model still needs the collision idea to explain finite conductivity, but, since using
τ ∼ 10−14 s in Eq. 1.5 gives agreement with experiment, we must conclude the collision length
is ∼ vfτ = hundreds of atomic spacings at room temperature. So what is the true origin of
collisions?

Chapter 2.

Structure
§2.1-3 are included mainly to provide background and context.
The description of a crystal structure in terms of a BL and a basis, together with related ideas
(unit cell, packing fraction etc.) are vital (see §2.4). Familiarity with the specific examples
discussed in §2.4.3 is expected.

Reciprocal lattice
This is a key piece of machinery, essential to much of the course, so know and understand Eq.
2.20-25 thoroughly.
The meaning of the term “Brillouin zone” is important.
The importance of the reciprocal lattice lies in the fact that a plane wave with wavevector equal
to a reciprocal lattice vector will have the periodicity of the real space lattice (i.e. will have
the same value at every lattice point) as shown in Fig. 2.25. You should know the theorem
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connecting planes and reciprocal lattice vectors on page 51.

Diffraction
A theoretical description of the diffraction of x-rays from a crystal must address: (i) the condi-
tion for diffraction to occur, and (ii) the amplitude (and hence intensity) of the diffracted beams.
§2.6 deals with the former, §2.7 the latter.
You should know that the condition for diffraction to occur can be expressed using the Bragg
equation (Eq. 2.28, Fig. 2.26), the von Laue equation (Eq. 2.29 and Fig. 2.27), or in terms of
Bragg planes (Eq. 2.30 and Fig. 2.28), and you should appreciate that these are equivalent.
The key equations in §2.7 are 2.39-40 (don’t worry about factors of V in these equations). (Re-
member that experiments measure the it intensities of diffraction spots while structure factors
determine their amplitudes.)
You should know and understand the variation of the atomic form factor with Q (and number
of electrons - we usually assume atoms in solids are spherical), and be able to find expressions
for the structure factor of a given crystal structure.
§2.8 is background material.

Chapter 3.

Classical vibrations
What is meant by the “harmonic approximation”.
The equations of motion of a set of coupled harmonic oscillators can be rearranged to give a
set of uncoupled equations, each describing a (possibly fictitious) harmonic oscillator. These
“normal modes” are independent.
Be able to derive the dispersion relations for the monatomic and diatomic chains (Eq. 3.13 and
3.17).
Know Fig. 3.4 in detail and be able to explain its features.
Similarly, know Fig. 3.7.
Periodic boundary conditions and counting the modes (also know how many modes in 3D).
The “branch structure” of materials with different chemical bonding (but the same structure)
is quite similar, except the frequency axis is rescaled, as in Fig. 3.9.

Quantised vibrations and phonons
The general discussion of the quantum theory of the harmonic crystal in §3.4 is important.
Know and understand the shape of CV as a function of T for a solid.
Understand the Einstein and Debye models of the vibrational density of states.
§3.6-8 are mainly background discussion, but you should be aware of the conservation rules for
inelastic scattering from a vibrating crystal (Eq. 3.40-41).

Chapter 4.

In general
Appreciate that the idea of solving the SE “one electron at a time” is an approximation (ex-
pressed in Eq. 4.2).
Be familiar with how dispersion curves (i.e. ǫ vs k for electrons, ω vs k for phonons) are plotted
for crystals.
Know how many electrons each energy “band” can accommodate (using periodic boundary con-
ditions).
Filling of bands is non-trivial for 2D and 3D (know and understand Fig. 4.3 thoroughly).

NFEM
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The primary effect of a weak crystal potential U is to cause diffraction when the electron wavevec-
tor lies on a Bragg plane. The result is “band gaps” (§4.3.1). Appreciate the important conse-
quence of this fact, explored in §4.3.2-3.

Realistic band structure
know Bloch’s theorem (Eq. 4.11), the properties of Bloch electrons (§4.4.2), and the justification
for use of the Reduced Zone Scheme for electrons (proof on p107).
Know that the electronic SE can be solved “in k-space” (§4.5) but that the core orthogonal
constraint presents a technical challenge (§4.6.1).
Appreciate the value of the Ups idea in resolving this problem and in explaining chemical trends,
existence of free electron metals etc. (§4.6.3 and part of §5.1).
§4.6.2 and §4.6.4 are background only.
Understand the Hartree “self-consistent field” approach to treating the (many body) electron-
electron interaction. §4.7.2-5 are mainly background reading, but you should understand that
exchange and Coulomb correlation are important to the stability of metals (see also 5.1.1).

Electron dynamics between collisions
Know and understand §4.8.
Filled bands are inert.
The concept of “holes” is important (§4.9).
Interband optical transitions are vertical on account of the conservation rule in Eq. 4.54.

Origin of collisions
In band theory the electron-ion interaction (in the perfect crystal) is fully accounted for when
solving the Schrodinger equation (i.e. the Drude mechanism is wrong, as we suspected).
Ions whose position departs from that in the ideal crystal structure do scatter electrons. This cir-
cumstance includes structural defects, chemical impurities, and also lattice vibrations. Electron-
phonon scattering dominates in pure crystalline specimens, provided there is a significant number
of phonons (i.e. for T approaching the Debye temperature).
(Technically electon-electron interactions must also be considered, but this turns out to be unim-
portant.)

Semiconductors
Concentrate on §4.12.1.
Understand the basic mechanism for electrical conduction in semiconductors.
Different “Bloch” states have different effective masses and hence different mobilities.
Since carrier densities are low FD statistics approach the classical (MB) limit.

Insulators and superconductors
§4.13 − 4.14 are background reading only.

Chapter 5.

Cohesion
§5.1: this is mostly background discussion, except that you should appreciate the ingredients
needed to explain the stability of metals and understand the discussion of competing ionic struc-
tures.
§5.2: know the basic argument underpinning Born-Oppenheimer separation.
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Chapter 0Introduction
0.1 What is Condensed Matter Physics?Matter is the physical expression of the laws of nature. In this course we aimto explain the properties of `condensed' matter, by which we mean matter witha density of � 10�3 kg m�3. Given the enormous diversity of materials, this isa tall order indeed, and so most of the time we will have to be content with aqualitative or semi-quantitative approach for just a few properties. I hope thatyou will be convinced that condensed matter physics is intellectually demanding,reasonably interesting, and is still an extremely active research area, particularlyat Edinburgh.There are three main components to the course:� Atomic structure (i.e. the spatial arrangement of atoms),� Lattice dynamics (i.e. how the atoms move), and� Electronic structure (i.e. how the electrons behave in condensed matter).Rather than present a systematic exposition of each, here we adopt an idiosyn-cratic approach. We will gain insight into mechanical, thermal and opticalproperties but will focus on the material property that shows the greatest vari-ation, namely electrical conductivity, �: that of the best conductors is about1030 times that of the worst. If we understand anything about condensed matterthen we must be able to explain this.1So profound is the variation in � that one might suspect that completelydi�erent conduction mechanisms are involved in di�erent materials, and it is so.The best electrical conductors, which we call metals, o�er the simplest startingpoint. We may suppose that for an electrical current to 
ow through a metalthere must be a collection of mobile electrons within these materials, and we willpursue this notion in the next chapter. The casual explanation for the existenceof insulators is that their electrons are tied up in rigid chemical bonds. We willsee that this is a rather super�cial (and in fact misleading) explanation.1It is worth noting at the outset that many of the properties of condensed matter appearto be linked. For example those solids which crystallise with what we call the diamond crystalstructure tend to be physically hard, electrically insulating with high melting points. Elementswhich exhibit close-packed structures are usually good conductors of heat and electricity, shiny,ductile, and rather soft. 1



2 CHAPTER 0. INTRODUCTION0.2 Some preliminary considerations0.2.1 A very many body problemWhether by classical or quantum mechanics, we are very good at solving prob-lems where a single particle is moving in an external potential (e.g. an electronmoving in an electric �eld) or when two particles interact with each other (e.g.the earth going round the sun). But we cannot in general solve the equations ofmotion for a system of only three interacting particles. Condensed matter com-prises lots of particles, all of which are interacting with each other. Althoughwe understand these interactions (and of the fundamental forces we shall haveneed only of the electromagnetic interaction) this \many-body" nature makestheoretical treatments hard. How then are we to approach condensed mattersystems? A good physicist must master the art of carefully applying approxi-mations.One approach is to focus on the movement of one particular particle. Wecan then assume that all the other particles give rise to some average potentialwhich acts upon our chosen particle. We can then compute the movement ofthis particle in the presence of this potential (which we must guess since wedon't know how all the other particles move of course). In this way we areapproximating the behaviour of the many-body system by that of a collectionof single particles which, though interacting, move independently. It turns outthat this simpli�cation enables us to understand and explain many things. Butoccasionally we �nd phenomena that can only be explained by looking at someof the correlation e�ects inside the many-body system. Superconductivity isone such example. Who would have guessed that an apparent lack of electricalresistance in a metal could be produced by electrons attracting each other? Weall know that electrons repel each other, but in a superconductor they appearto bound together in pairs.Such e�ects only emerge from the many-body system. We cannot predictthem by looking at how two particles interact or how a single particle moves in anexternal �eld. This disturbs the reductionist approach of trying to understandthe universe by dissecting it.0.2.2 Quantum or classical, particle or wave?Quantum mechanics can be tough, so can we get away without it? We knowthat when a beam of light is �red at a narrow slit then di�raction e�ects can beobserved - the wave nature of light is manifest. In fact the de Broglie relationtells us that any particle with momentum p can be thought of as a wave withwavelength � � h=p. But when we walk through a doorway we tend not to noticeany di�raction. So how can one decide if a particle will behave classically,2 orif its wave nature will dominate (requiring us to solve the Schr�odinger waveequation)?The important point is whether the de Broglie wavelength is comparable inmagnitude with the relevant physical size for the situation in question (whichmight be the width of a slit, the separation between two particles etc.). If thewavelength is negligible (e.g. when you walk through a doorway at 1 m s�1)2By \classical" we mean \non-quantum mechanical" here. We will probably not encounterany relativistic e�ects.



0.2. SOME PRELIMINARY CONSIDERATIONS 3then classical physics works, if not, then we must deal with waves. You mightbe a bit worried that if we su�ciently reduce the momentum of an object asit approaches an aperture, then it would always be possible to make the deBroglie wavelength signi�cant. However it is not always be possible to make thede Broglie wavelength arbitrarily large for a variety of reasons, and here we canlist three.Firstly, there may be no suitable allowed states.Secondly, an object with temperature T will have a random motion with energyof order � kbT , where kb = 1:38� 10�23 J K�1 and is known as Boltzmann'sconstant, and hence a \thermal wavelength" of � h=p2mkbT . The thermalwavelength of a snooker ball at room temperature is � 10�23 m, which is ex-tremely small on the length scale of the ball, and we con�rm that wave e�ects(i.e. quantum mechanics) should not be manifest during a game of snooker,no matter how slowly you strike the balls. On the atomic scale, where herethe natural length is 1 �A = 10�10 m, the same argument implies that at roomtemperature the molecules in water are bumbling around like classical parti-cles, while the electrons within the molecules demand a quantum mechanicaltreatment. It may seem that reducing T will eventually cause the de Brogliewavelength to explode, but there is a third point.The Uncertainty Principle requires that the de Broglie wavelength cannot ex-ceed �x, the spatial uncertainty. This implies that atoms in condensed mattercan usually be treated classically.0.2.3 StatisticsQuantum mechanics is not simply a matter of �nding the eigenstates of a Hamil-tonian. When we consider a system of many particles we must think aboutstatistics. Take, for example, the electrons in a piece of metal. If, using someapproximation, we describe this many body system using a collection of singleelectron states, it still remains for us to say how many electrons will go intowhich states. At T = 0 they will try to drop as low in energy as they can,and we call this the ground state. For T > 0 there will inevitably be thermalexcitations, and we also need to understand how this a�ects the occupations. Inclassical systems the probability that a particular state will be occupied is givenby Maxwell-Boltzmann statistics but in quantum mechanical systems thingsare more complicated. It is a remarkable fact that all systems of particles withhalf-integer spin obey one kind of statistics (Fermi-Dirac statistics), while thoseconsisting of integer spin obey another (Bose-Einstein statistics). This \spin-statistics theorem" is universal - no exceptions are known.Already we have touched upon some rather profound issues and it should beclear that if we are to get to grips with condensed matter then we will need tokeep our wits about us. Since condensed matter constitutes the raw materialsfor all manner of industries from food production to microelectronics to shipbuilding, the technological imperative for mastering this �eld can scarcely beoverstated.
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