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diffractometers
� Visualization of the reciprocal lattice in a TEM



Wave characteristics



Interference between waves



Double slit experiment



Diffraction at a single slit



The envelope function



Diffraction and sampling



Diffraction from crystals
� A crystal is a three dimensional diffraction 

grating
� The lattice periodicity of the crystal 

determines the sampling regions of the 
diffraction pattern
� Where the peaks appear

� The unit cell contents give you the envelope 
function
� The intensity of the peaks



Real space and reciprocal space



Diffraction from ordered atoms
� Consider a 3D array of atoms 

arranged on planes
� Get constructive interference 

between x-rays scattered from 
atoms P and K in same plane 
when there is no path 
difference for the scattered rays

– Need to have symmetrical diffraction so that QK-PR =
PKCosθ –PKCosθ = 0

– Get constructive interference between x-rays scattered from 
atoms in different planes when the path length is a multiple 
of λ. Consider atoms K and L.
– ML + LN = d’sinθ + d’sinθ = 2d’sinθ = nλ

– 2dsinθ = nλ is Bragg’s law



Bragg “reflection”
� Bragg equation is

– 2dsinθ = nλ
» n is the order of diffraction
» Typically we treat all higher orders of diffraction as coming from 

planes with spacing d/n
� So second order diffraction from (100) can be though of as first order 

from (200) planes

� We often refer to peaks in a diffraction pattern as 
reflections. However, the process is not one of 
reflection it is one of diffraction
– There are strict conditions on the angles at which diffraction 

can occur and the bulk of the crystal is responsible for 
scattering not just the surface

– True reflection of x-rays only occurs at very low angles



Laue equations
� The Bragg equation does not explicitly tell us about 

the directions in which diffraction occurs
� We have to remember that the line bisecting the incoming 

and outgoing beams is always perpendicular to the planes 
responsible for diffraction

� Laue equations make the directionality of the process 
more obvious as we have a set of three equations, one 
for each crystallographic axis that must be 
simultaneously satisfied



Derivation of Laue equations
� Consider a row of atoms scattering x-rays

– S0 is a vector describing the incoming x-ray beam and S describes the 
scattered beam

� To get constructive interference between the x-rays scattered from 
each atom

– a(cosα – cosα0) = hλ where h is an integer
� If we have a 2D periodic array of atoms we also have to satisfy

– b(cosβ – cosβ0) = kλ where k is an integer
� If we have a 3D periodic array of atoms we also have to satisfy

– c(cosγ – cosγ0) = lλ where l is an integer



Reciprocal space and diffraction
� In thinking about diffraction we often resort 

to constructions, such as the Ewald sphere, 
in reciprocal space
– Why is reciprocal space important?

�To see diffraction, the diffraction vector 
must lie on a reciprocal lattice point



Reciprocal space and diffraction 2

� Consider x-rays scattered from two lattice points O and A
– S0 is a unit vector parallel to the incoming beam and S is a unit 

vector parallel to the scattered beam,

Α



Reciprocal space and diffraction 3
Path difference between x-rays scattered from O and A is

δ = uA + Av = Om + On = S0.OA + (-S).OA
= - OA.(S-S0)

So the phase difference is 
φ = 2πδ/λ = 2π(S-S0).OA)/λ = -2π.H.OA
where H = (S-S0)/λ =  h’b1 + k’ b2 + l’b3 is the scattering vector and has 
been defined in reciprocal space

OA is real space lattice vector pa1 + qa2 + ra3, where p,q and r are integers
So φ = 2π=(h’b1 + k’ b2 + l’b3). (pa1 + qa2 + ra3)

= 2π=(ph’+qk’+rl’)
For constructive interference φ must be a multiple of 2π this can only occur 

when h’, k’ and l’ are all integers’
You only get diffraction when the diffraction vector coincides with a 

reciprocal lattice point



Ewald construction
� We can express the requirement that the scattering 

vector lies on a reciprocal lattice point geometrically. 
This is done in the Ewald construction
– Draw the reciprocal lattice. Draw a sphere of radius 1/λ with 

one point on the sphere touching the origin of reciprocal 
space (this is the Ewald sphere).

– The line joining the sphere center to the origin of reciprocal 
space is parallel to the incoming x-ray beam

– Any reciprocal lattice point (relp) touching the surface of the 
sphere is in the diffraction condition and the diffracted beam 
will travel in the direction of the line joining the sphere center 
to a relp on the surface of the sphere

– We can rotate the crystal and hence the reciprocal lattice to 
bring other relps into the diffraction condition



Ewald construction



Using the Ewald construction
� The Ewald construction allows you to see what direction 

a diffracted beam will travel in.
� Note that a crystal in a random orientation in the X-ray beam 

will not necessarily give any diffraction as no relp may lie on 
the Ewald sphere

� Rotation of the crystal or the use of polychromatic radiation 
will lead to the observation of several spots

� We can predict which diffracted beams are observable 
with a given wavelength by rotating the sphere around 
the origin or reciprocal space. This rotation marks out a 
larger so called limiting sphere
� Only those relps that lie within the surface of the limiting 

sphere can ever be observed



Limiting sphere



Calculating diffraction angles
� The angle between the incident x-ray direction and the 

diffracted beam is referred to as the Bragg angle 2θ
� It can be calculated by combining Braggs law with the 

equation relating d-spacing (interplanar spacing) and 
lattice constants/Miller indices

� 2dsinθ = λ
� For a crystal with orthogonal axes 
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Units for x-ray wavelengths
� The wavelengths of x-ray emission lines are usually 

determined by measuring Bragg angles
– To do this you have to know the lattice spacing for the crystal you 

are using
» In early studies this was determined using density measurements that were 

of limited accuracy
– a precise value for the lattice spacing was assumed and used as 

the basis for a new length unit, the XU
» XU ~ 0.001Å

– Later work has enabled more accurate determinations of lattice 
spacings. This has led to the conversion of old wavelength values 
in XU or kX (1000XU) to “corrected” values in Å

» Be careful regarding the units for any wavelength values that you use as 
they may be in XU or they may have been corrected more or less 
accurately to give values in Angstroms.   



Diffraction methods
� In order to record a diffraction pattern some 

reciprocal lattice points must lie on or pass 
through the Ewald sphere
– This can be achieved in several different ways

» Use “white” radiation and a single crystal
� Laue method

» Use monochromatic radiation and rotate a single crystal
� Rotation method and similar techniques

» Use monochromatic radiation and a sample containing 
crystals with all different orientations (a powder)

� Powder diffraction



The Laue method
� As used in Laue’s original experiment

– Use the “white” Bremsstrahlung radiation from the tube so 
that many different wavelengths are incident on the sample

» Many reflections will simultaneously satisfy Bragg’s law without
rotating the crystal

Transmission Laue Back reflection Laue

film

X-rays
X-rays

crystal
Record a spot 
“pattern” on 
the film



Appearance of Laue photos
�Spots appear on ellipses or hyperbola. The spots 

lying on these lines belong to a common zone

Transmission Back reflection

All reflections on common zone

Diffracted beams for reflections in a zone
fall on a cone centered around the zone axis

Transmission Reflection



Proving reflections fall on a cone
� Can represent Laue diffraction using a stereographic 

projection 
– Arrange projection so that zone axis falls on the basic circle

» By definition all poles in the zone are at 90 degrees to this axis
– The pole (normal to diffraction planes), the diffracted beam 

and incident and transmitted beams must be coplanar
» So diffracted beam lies on the same great circle as the pole and the 

points where the incident and transmitted beams cut the basic circle. 
Also the diffracted beam must make the same angle to the pole as the 
pole does to the incident beam.

� This uniquely locates the diffracted beam direction on the pole figure.

– We can do this for all the poles in zone
» Find that all diffracted beams lie on a small circle defined by the 

intersection of the sphere of projection and a cone with semi-apex 
angle φ



Stereographic projection 
examining Laue diffraction

Z.A. – zone axis
Pn – pole belonging to zone
Dn – diffracted beam 
corresponding to the pole n
I – incident beam direction
T – transmitted beam direction

All diffracted beams 
belonging to a zone lie on 
the surface of a cone



Ewald construction for Laue method
� In practice, no x-ray beam is truly “white”, it is only 

useable over a finite wavelength range
– Can represent this range by drawing Ewald spheres 

corresponding to the wavelength limits

All relps lying in 
the dark shaded 
area will give 
diffracted beams



Rotation photography
�Aligned crystal is rotated around one axis so 

relps pass through the Ewald sphere
– Produces spots lying on layer lines

Rotation photograph of quart 
showing spots on layer lines

Beam direction

film



Reciprocal space representation 
of a rotation photograph



Powder diffraction
� In a powder we have a large 

number of crystals all at 
different orientations

� In reciprocal space we no 
longer have one set of points, 
but many sets of points at 
different orientations. All of 
these points lie on the surface 
of spheres or shells. 
– Reciprocal lattice shells – rel 

shells



Reciprocal space representation 
of powder diffraction
�Reciprocal lattice shells 

of the powder intersect 
with the Ewald sphere to 
form circles

�All the diffracted beams 
from a powder sample lie 
on the surface of cones



Debye-Scherrer camera
� Can record sections on these 

cones on film or some other 
x-ray detector
– Simplest way of doing this is 

to surround a capillary sample 
with a strip of film

– Can covert line positions on 
film to angles and intensities 
by electronically scanning film 
or measuring positions using a 
ruler and guessing the relative 
intensities using a “by eye” 
comparison



Powder diffractometer
�Alternatively, you can intercept sections of the 

cones using an electronic detector
Slit is moved to different 2θs. 
The x-rays passing through the 
slit are recorder electronically 
giving a powder pattern



Bragg-Brentano diffractometer



Visualization of the reciprocal lattice

�Some techniques record diffraction patterns 
that are undistorted slices through reciprocal 
space
– Precession photography uses a complex motion of 

the crystal and the x-ray film to record a diffraction 
pattern that can be any slice through reciprocal 
space

– Electron diffraction directly records patterns that 
are slices through reciprocal space



A precession photograph



Imaging and diffraction in the TEM

� In a TEM the electron beam hits 
the object being studied. Some 
electrons are diffracted and some 
pass through the sample. The 
objective lens focuses all the 
beams to points in the diffraction 
plane. So we would see a 
diffraction pattern here. The 
diffracted beams combine in the 
image plane to form an image. 
Other lenses can be used to form 
magnified images of either the 
diffraction or image planes.



Why ED patterns have many spots
� Typically, in X-ray or neutron diffraction only one reciprocal 

lattice point is one the surface of the Ewald sphere at one time
� In electron diffraction the Ewald sphere is not highly curved due to 

the very short wavelength electrons that are used. This almost flat 
Ewald sphere intersects with many relps at the same time
– In real crystals relps are not infinitely small and in a real microscope the 

Ewald sphere is not infinitely thin

Electron Diffraction
pattern from NiAl

Ewald sphere for Cu radiation is much
more curved than that for electrons in 
an electron diffraction experiment


