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Introduction 
Crystallography originated as the science of the study of macroscopic crystal forms, and the 
term “crystal” has been traditionally defined in terms of the structure and symmetry of these 
forms.  With the advent of the x-ray diffraction, the science has become primarily concerned 
with the study of atomic arrangements in crystalline materials, and the definition of a crystal 
has become that of Buerger (1956): “a region of matter within which the atoms are arranged 
in a three-dimensional translationally periodic pattern.”  This orderly arrangement in a 
crystalline material is known as the crystal structure.  X-ray crystallography is concerned 
with discovering and describing this structure.   

There is no way around it – effective application of x-ray diffraction as an analytical tool in 
geology and materials science necessitates a basic understanding crystallography.  The 
purpose of this section is to provide that background.  The material here is anything but 
comprehensive.  Crystallography is taught as a significant part of most Mineralogy courses, 
and multi-course sequences in crystallography are taught in many physics, geology and 
materials science graduate programs.  What is presented here is skeletal treatment that is 
hopefully substantial enough to make sense of your diffraction data.  The XRD Resource 
page (http://epswww.unm.edu/xrd/resources.htm) provides links to resources that students 
are encouraged to use to learn more.  

The aspects of crystallography most important to the understanding and basic interpretation 
of XRD data are:  

• conventions of lattice description, unit cells, lattice planes, d-spacing and Miller 
indices, 

• crystal structure and symmetry elements,  

• the reciprocal lattice (covered in a separate document) 

How all of this is used in your x-ray diffraction work will be discussed over the course next 
few weeks.  Details of crystal chemistry, atomic and molecular bonds, and descriptive 
crystallography will not be discussed; these topics are important in many advanced XRD 
studies, including structure refinements, particle size and shape analysis and other advanced 
techniques.  In class we will use the animations on the CD-ROM tutorial from Klein (2002) 
to illustrate these concepts.  This program will be available on our department network so it 
can be used by the class for self-study from the student workstations in our computer lab 
(Northrop Hall Rm. 209).  I have borrowed freely from several sources to assemble this 
material, including Nuffield (1966), Klein (2002), and Jenkins and Snyder (1996).    

Description of the Crystal Structure 
A crystal structure is like a three-dimensional wallpaper design in that it is an endless 
repetition of some motif (i.e., a group of atoms or molecules).  The process of creating the 
motif involves point-group operations (rotation, reflection, and inversion) that define it.  The 
process of creating the wallpaper involves translation (with or without rotation or reflection) 
to create the complete structure (which we call the lattice).  Real-world crystalline structures 
may be simple lattice structures, or combinations of lattices to make complex crystalline 

http://epswww.unm.edu/xrd/resources.htm
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molecules.  As long as the structure is repetitive, its structure may be discovered with the 
application of x-ray diffraction. 

Lattice Notation 
Klein (2002) defines a lattice as “an imaginary pattern of points (or nodes) in which every 
point (node) has an environment that is identical to that of any other point (node) in the 
pattern.  A lattice has no specific origin, as it can be shifted parallel to itself.”   

The figure at left (Fig 1-5) shows a method of 
notating lattice points, rows, and planes on the 
basis of the crystal coordinate systems.  A 
point in the lattice is chosen at the origin and 
defined as 000.  The a, b and c axes define the 
directions within the crystal structure with the 
angular relations defined by the particular 
crystal system.1   

Lattice points are specified without brackets – 
100, 101, 102, etc.  100 is thus a point one unit 
along the a axis, 002 is a point two units along 
the c axis, and 101 is a point one unit along a 
and one unit along c.   

Lattice planes are defined in terms of the Miller indices, which are defined as the 
reciprocals of the intercepts of the planes on the coordinate axes cleared of fractions.  In 
Fig. 1-5, the plane shown intercepts a at 100, 
b at 010 and c at 002.  The Miller index of the 
plane is thus calculated as 1/1(a), 1/1(b), 
1/2(c), and reduced to integers as 2a,2b,1c.  
Miller indices are by convention given in 
parentheses, i.e., (221).  If the calculations 
result in indices with a common factor (i.e., 
(442)) the index is reduced to the simplest set 
of integers (221).  This means that a Miller 
index refers to a family of parallel lattice 
planes defined by a fixed translation distance 
(defined as d) in a direction perpendicular to 
the plane.  If directions are negative along the 
lattice, a bar is placed over the negative 
direction, i.e. (2 2 1) 

Families of planes related by the symmetry of 
the crystal system are enclosed in braces { }.  
Thus, in the tetragonal system {110} refers to 

                                                 
1 Note that the angular relations between the coordinate axes are not necessarily orthogonal but are dependent 
on the particular crystal system.  The angular relations in the different crystal systems are discussed below.   
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the four planes (110), ( 1 10), ( 1 1 0) and (1 1 0).  Because of the high symmetry in the cubic 
system, {110} refers to twelve planes.  As an exercise, write the Miller indices of all of 
these planes.   
Spacing of Lattice Planes: The perpendicular distance separating each lattice plane in a 
stack is denoted by the letter d.  Figure 1-7 shows several lattice planes and the associated d 
spacings.  In a and c are in the plane of the paper, and b is perpendicular to the plane of the 
page.  The notation shown for the d spacing and the relationship to the particular lattice plane 
(i.e., d001, d101, d103) with the Miller index for the particular plane shown in the subscript (but 
usually without parentheses) are standard notation used in crystallography and x-ray 
diffraction.   

The values of d spacings in terms of the geometry of the different crystal systems are shown 
in Table 1-2 below (from Nuffield, 1966).  The crystal systems (discussed in the next 
section) are listed in order of decreasing symmetry.  The calculations are increasingly 
complex as symmetry decreases.  Crystal structure calculations are relatively simple for the 
cubic system, and can be done with a good calculator for the tetragonal and orthorhombic 
system.  In actual practice, these calculations are usually done with the aid of specialized 
computer programs specifically written for this purpose.   
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Symmetry 
The repetition of the arrangement of atoms (or motif) in a crystal structure is what produces 
the diffraction pattern, thus a large part of X-ray crystallography is discerning the motif by 
“solving” the diffraction pattern.  If there is no repetition (as in truly amorphous materials) 
there is no diffraction pattern.  Repetition of the motif in a lattice defines its symmetry.   

A symmetry operation may be thought of as moving a shape-object in such a way that after 
the movement, the object appears exactly the same as it did before the movement.   

An alternative way to view symmetry is as a series of replication operations on one surface of 
a shape-object by which the entire object may be generated.  Crystal structures are defined 
based on the symmetry operations used to replicate (or create) the structure. 

All symmetry operations may be defined by several basic movement operations described 
below:  

Rotation (Symbols used: 1,2,3,4,6.  Indicates the number of times the form is replicated 
during one 360° rotation.  As an example, in 4-fold rotation, it takes four rotational 
movements of the form to return to the original position, and the form is identically repeated 
at each of the four rotational stages.)2 

Reflection (Symbol used: m. Form is replicated by mirror reflection across a plane.) 

Inversion (Symbol used: i. Form is replicated by projection of all points through a point of 
inversion; this point defines a center of symmetry.) 

Rotation-Inversion (Symbol used: 1  for single rotation/inversion.  May be combined with 
rotational operations, i.e., 3  = 3-fold rotation w. inversions at each rotation.) 

Translation (A lateral movement which replicates the form along a linear axis) 

In general, rotation, reflection and inversion operations generate a variety of unique 
arrangements of lattice points (i.e., a shape structure) in three dimensions.  These translation-
free symmetry operations are called point-group elements.    

Translations are used to generate a lattice from that shape structure.  The translations include 
a simple linear translation, a linear translation combined with mirror operation (glide plane), 
or a translation combined with a rotational operation (screw axis).  A large number of 3-
dimensional structures (the 230 Space Groups) are generated by these translations acting on 
the 32 point groups as discussed in the next section.   

The repetitive nature of crystal structures results in the presence of stacks of planar arrays of 
atoms. Repeating, equidistant planar elements (d-spacings) are present in all crystals.  The 
measurement of these d-spacings and the variations in intensity of the diffractions caused by 
them can be used to uniquely “fingerprint” the crystal studied.  This is the basis of x-ray 
crystallography.   

                                                 
2 It is noted that “5” is omitted from the list.  Although a pentagon shape may be replicated by a 5-fold rotation, 
crystalline structures that occur in nature cannot meet the rotation criteria by 5-fold rotation.  There are some 
synthetic materials that do show this kind of symmetry, however they do not display 3-dimensional translational 
symmetry and are referred to as “quasicrystals” (Pecharsky and Zavalij, 2003).   
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Classification and Crystal Structure 
The repetition of the atomic-molecular motif in a lattice is what defines the crystal structure.  
This section begins with the five possible planar lattices, the Bravais lattices developed from 
them in three dimensions, the point-groups derived by non-translation symmetry operations, 
and the 230 possible space groups derived by translations of the point groups.  The 
development is, at best, incomplete.  For a more comprehensive discussion, the reader is 
referred to Klein (2002) or Nuffield (1966).  For a detailed and rigorous treatment, the reader 
is referred to Donald Bloss (1971) “Crystallography and Crystal Chemistry: An 
Introduction”.   

Lattices and Crystal Systems 
There are five planar translation lattices defined by possible angular and length relations 
between the two-dimensional coordinate systems, shown in Fig. 1-3 (from Nuffield, 1966). 

 
When translated in three dimensions, the plane lattices define an assemblage of points in 
space.  By selection of different groups of points in two dimensions, and “copying” that 
group in the third dimension, we can produce the fourteen space lattices shown on page 7 
(Fig. 5.63 from Klein, 2002).  These lattices are called the Bravais lattices after Auguste 
Bravais (1811-1863) who was the first to show that they were unique.  The CD-ROM tutorial 
(Klein, 2002) includes an animated derivation of ten of the fourteen space lattices from the 
plane lattices (Module 3 – Generation of 10 Bravais lattices).   

The six crystal systems (table on following page) are defined by relationships between unit 
cell edge lengths and the angles between those edges.  The combination of centering and 
relationship between the angles between lattice directions and axis length define the 14 
lattice types within the 6 crystal systems.  In the primitive lattice (P) all atoms in the lattice 
are at the corners.  In the body centered lattices (I) there is an additional atom at the center of 
the lattice.  There are two types of face centering, one in which the atoms are centered on a 
pair of opposing plane lattices (C) and another in which an atom is centered on each face (F).  
It is important to note that the choice of the planar replication unit and the direction of 
that replication in three dimensions that determines the character of the lattice.   
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System Type Edge - Angle Relations Symmetry 
Triclinic P a ≠ b ≠ c  

α ≠ β ≠ γ 
Ī 

Monoclinic P (b = twofold axis) 
C  

a ≠ b ≠ c  
α = γ = 90° ≠ β 

 
2/m 

 P (c = twofold axis) 
C 

a ≠ b ≠ c  
α ≠ β = 90° ≠ γ 

 

Orthorhombic P 
C (or A, B) 
I 
F 

 
a ≠ b ≠ c  
α = β = γ = 90° 

 
mmm 

Tetragonal P 
I 

a1 = a2 ≠ c  
α = β = γ = 90° 

4/mmm 

Hexagonal R 
P 

a1 = a2 ≠ c  
α = β = 90°, γ = 120° 

3 m 
6/mmm 

Cubic P 
I 
F 

a1 = a2  = a3  
α = β = γ = 90° 

 
m3m 

 

(Please note that in this simplified chart, the symmetry notations are not inclusive, and 
represent simplified “Laue Group” symmetry for the crystal class.  Later graphics and tables 
expand upon the symmetry possibilities available in the different systems.) 

Fig. 5.63 (on following page, from Klein, 2002) shows the 14 unique Bravais lattices.  These 
are defined by translation of the two-dimensional lattices in the third dimension combined 
with placement of presence atoms in addition to those at the lattice corners (P).  These atoms 
can be body-centered (I) or face-centered (F) in the lattice.  
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Table 5.9 from Klein, 2002 (below) presents another way of cross-referencing the 
distribution of the 14 Bravais Lattices among the six crystal systems that the reader might 
find helpful.  
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Figure 1-8 (from Nuffield, 1966) below describes diagrammatically (as spherical projections) 
the translation-free symmetry operations by which the 32 point-groups are generated from 
the 14 Bravais lattices.  On the diagrams small dots represent upper hemisphere projections, 
open circles represent lower hemisphere projections.  The upper row shows mirror operations 
(m), the middle row shows 1-fold through 6-fold rotational operations (1,2,3,4,6), and the 
bottom row shows rotation-inversion operations ( 64321 ,,,, ).   

Note that 1 and 1  represent the lowest symmetry conditions, 1-fold rotation and simple 
centrosymmetry (inversion through a center), respectively; this is the only symmetry in the 
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triclinic system.  It is also noted that 2  is exactly equivalent to the mirror condition where 
the mirror plane is parallel with the page surface (found in the monoclinic system).   

 

 
(Figure is continued on next page) 
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Table 5.5 from Klein (2002) on the following page summarizes (and explains) the crystal 
classes as defined by their symmetry elements, including the standardized Hermann-Mauguin 
notation used in crystallographic notation.   Some notation conventions: 

• numbers indicate rotations (2-fold, 4-fold, etc.) 
• multiple numbers indicate multiple rotations (usually parallel with axes; in higher 

symmetry systems rotations are around other symmetry directions) 
• m indicates a mirror planes (multiple m = multiple mirror planes) 
• /m following a number indicates rotation perpendicular to a mirror plane 
• A bar over a number indicates a rotoinversion  
• P (primitive), F (face centered), I (body centered), R (rhombohedral primitive), and 

side centered (A,B, or C) lattice types used with Space Group notation (Table 5.10) 
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Translation Operations 
Direct translation (i.e., linear replication without rotation or reflection) enables the point 
group symmetry elements to replicate into a macroscopic crystalline structure but is not 
capable of adding unique symmetry to the structure and thus does not effect the variations 
which produce the Space Groups.  Translational symmetry operations combine direct 
translation with rotation and/or reflection.  These operations acting on the Bravais lattices 
and point groups produce the 230 Space Groups.  The translational symmetry operations are:  

Screw-axis: rotation about an axis combined with translation parallel to the axis.  Screw axes 
are restricted by the translational periodicity of the crystals to repetitions at angular intervals 
of 180, 120, 90, and 60°, defining 2-fold, 3-fold, 4-fold and 6-fold axes, respectively.  The 
subscript notation indicates the fraction of the total translation as the numerator of a fraction 
in which the main number is the denominator.  Thus, 41 indicates 4-fold screw operation with 
¼ the translation increment.   42 indicates 4-fold screw operation of a motif pair with ½ (i.e., 
2/4) the translation increment.   

Glide Plane: reflection across a plane combined with translation parallel to the plane.  Glides 
are expressed as a/2, b/2, or c/2 (increment x ½) when the glide is parallel to a 
crystallographic axis and the motif is repeated twice during in one translation increment.  If 
the denominator is 4 (x ¼), the motif repeats 4 times during the increment.  Diagonal glides 
occur, bisecting axis directions.  Types are the diagonal (n) when the repeat increment is 2 or 
diamond (d) when the repeat increment is 4.  Table 6.4 below from Klein (2002) summarizes 
the symbols used to represent the various mirror and glide planes.   
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We will use Klein’s (2002) CD-ROM tutorial material to demonstrate screw-axis and glide 
plane operations in class.   

The following page is Table 5.10 from Klein, 2002, that lists the Space Group symbols for all 
the 230 space groups (and the associated crystal classes).   
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