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ORDER IN ATOMIC ARRANGEMENTS

• No order (e.g., monatomic gases)

• No regular spatial relationship between atoms

• Short-range order (e.g., inorganic glasses, noncrystalline
polymers, molecular liquids)

• Nearest neighbors may have fixed orientations and
separations

• Long-range order (crystals)

• Identical structural units repeating continuously in
three dimensions over hundreds of atomic spacings
— periodicity

Q: How many atoms in a tiny crystal, 1 µm × 1 µm ×
1 µm?

A: Assume a monatomic solid, 10 g/cm3, 60 g/mol:

6.0×1023 atoms
mol   × 10 g

cm3  ×  10 –12 cm3

60 g
mol

=  1011 (i.e., 100 billion) atoms!
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LATTICES and CRYSTAL STRUCTURES

• Lattice (below left):

• A regular, periodic configuration of points — the
lattice points — in space

• A mathematical construct that describes the
symmetry of spatially periodic arrangements

• Translation vectors between nearest-neighbor
lattice points describe the periodicity of the lattice

• The translation vectors define the lattice’s unit cell

• Lattices can describe the symmetry of …

• floor tiling • brickwork • wallpaper

• fabrics • crystal structures

• Crystal structure (below right):

• An arrangement of atoms in space, whose
symmetry can be described by a lattice

A cinder-block wall (solid lines)
with superimposed 2D lattice
(dashed lines)
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UNIT CELL of a lattice

• Polyhedron bounded by the three translation vectors
that describe the periodicity of the lattice

• Smallest grouping of lattice points which describes the…

• Structure

• Symmetry

…of the entire solid.

1 unit cell 1 unit cell

an
equivalent

way to
define the

unit cell
“monatomic”

2D lattice
“diatomic”
2D lattice

• Described by lattice parameters:

• Cell dimensions a, b, c
(lengths of cell edges)

• Angles α, β, γ
between cell edges
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z
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PRIMITIVE vs. NON-PRIMITIVE UNIT CELLS

• Primitive unit cell: one (net) lattice point per cell

• Non-primitive unit cells: additional lattice points per cell,
within a given crystal class

2-D example:*

• Every lattice point lies at the intersection of a vertical
mirror line and a horizontal mirror line

• The primitive cell (left) can replicate the lattice, …

• … but the non-primitive cell (right), though larger,
is preferred because it possesses the full 
horizontal and vertical mirror symmetry of the lattice

• Similar logic extends to 3-D lattices — the Bravais
lattices

*) After D. W. Oxtoby, H. P. Gillis, and N, H. Nachtrieb, Principles of Modern
Chemistry, 5th ed., p. 752. Thomson Learning, 2002.
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THE BRAVAIS LATTICES (start)

Only unit cells with certain geometries will continuously fill
three-dimensional space — the Bravais lattices

Class (a.k.a. System) Type
Minimum lattice
points occupied Unit cell

Cubic
a = b = c

α = β = γ  = 90°

Simple
(a.k.a.

"primitive")

0 0 0

Body-
centered 0 0 0     1

2
 1
2
 1
2

Face-
centered 0 0 0     1

2
 1
2
 0

1
2
 0 1

2
     0 1

2
 1
2

Tetragonal
a = b ≠ c

α = β = γ  = 90°
(four-fold symmetry)

Simple 0 0 0

Body-
centered 0 0 0     1

2
 1
2
 1
2

Hexagonal
a = b ≠ c

α = β = 90°
γ = 120°

(six-fold symmetry)

Simple 0 0 0

Rhombohedral
a = b = c

α = β = γ ≠ 90°
(each face is a

rhombus)

Simple 0 0 0
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THE BRAVAIS LATTICES (end)

Class (a.k.a. System) Type
Minimum lattice
points occupied Unit cell

Orthorhombic
a ≠ b ≠ c

α = β = γ  = 90°
(orthogonal axes)

Simple 0 0 0

Body-
centered 0 0 0     1

2
 1
2
 1
2

Base-
centered 0 0 0     1

2
 1
2
 0

Face-
centered 0 0 0     1

2
 1
2
 0

1
2
 0 1

2
     0 1

2
 1
2

Monoclinic
a ≠ b ≠ c

α = γ = 90° ≠ β
(one inclined axis)

Simple 0 0 0

Base-
centered 0 0 0     1

2
 1
2
 0

Triclinic
a ≠ b ≠ c
α ≠ β ≠ γ

(three inclined axes)

Simple 0 0 0

Total:
7 crystal
systems

Total:
14 Bravais lattices
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From a LATTICE to a CRYSTAL STRUCTURE

Given the lattice that corresponds to a particular crystal,
describing the crystal structure involves

listing the locations of atoms in the unit cell,
which may be at:

• vertices (corners) • edges

• faces • interior positions

• There may be >1 atom per lattice point:

Example: perovskite (CaTiO3) is …

• … primitive cubic

• Not body-centered, because the atom at the
corners differs from that at the body center

• Not face-centered, for similar reasoning

• … with five atoms per lattice point
(one Ca, one Ti, and three O)

Ti
Ca
Sr
Ba

O

reviewer
Text Box
Callister, Fig. 12.6
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COUNTING ATOMS in a UNIT CELL

• Atoms on corners are
shared by eight unit cells

• Atoms on faces are
shared by two unit cells

[After C. E. Mortimer, Chemistry — A Conceptual Approach, 3rd Ed., p. 213.
D. Van Nostrand, New York, 1975.

(Also: edge atoms are shared by four unit cells)

Q.: How many lattice points (atoms) does a single face-
centered cubic cell contain?

A.: 8 corners occupied
cell  × 

1
8 atom

corner = 1

6 faces occupied
cell  ×

1
2 atom

face =       3

total of 4  atoms
cell
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How to specify DIRECTIONS in a lattice:

1) Draw a vector, through the origin, that is parallel to the
direction of interest.

2) Determine the projections  (components) of the vector
along the three axes.

OR

Determine the coordinates of any point on the vector.

3) Multiply the resulting three numbers by a common factor
to convert them to the smallest possible integers.

4) Enclose the resulting three integers in square brackets: [ ].

a

b

c

[111]

[012]

[110]
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How to specify PLANES in a lattice:

1) Choose a plane that does not contain the origin.

2) Determine the intercepts of the plane on the three axes.

3) Take the reciprocals of the intercepts.

4) Multiply the reciprocals by the smallest common factor
that will clear all fractions.

5) Enclose the resulting integers — the Miller indices — in
parentheses: (h k l ).

a

b

c

(110)

(012)

(111)
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POINTS ON PLANES

Stated w/o proof:  A point with coordinates x,y,z is on a
plane with Miller indices (h k l ) if and only if

hx + ky + l z  =  1

(true for all crystal systems).

So, for example, of the following points,

1
4 ,14, 14 is NOT on (111)  ⎝

⎜
⎛

 ⎠
⎟
⎞⇐ hx + ky + l z  =  34

1
3, 13, 13 IS on (111)  ⎝

⎜
⎛

 ⎠
⎟
⎞⇐ hx + ky + l z  =  1

1
2, 12, 12 is NOT on (111)  ⎝

⎜
⎛

 ⎠
⎟
⎞⇐ hx + ky + l z  =  32

1
4

1
4

1
4, ,

,,
1
3

1
3

1
3

,,
1
2

1
2

1
2

x

y

z

(111)
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MILLER-BRAVAIS INDICES for planes in hexagonal lattices (start)

• Define a set of four basis
vectors, a1, a2, a3, and c
as shown at right:

• Determine the intercepts
of the plane of interest on
the four basis vectors

• Take the reciprocals of
the intercepts

• Multiply the reciprocals by
the smallest common
factor that will clear all
fractions

• Enclose in parentheses
(h k i l)

a

a

a2

1

3

120°
120°

120°

c

Examples:

a2
a1

a3

c

(0 1 1 0)
_

a

a2
a1

3

c

a

a2
a1

3

c

(0 0 0 1)

(1 1 2 1)
_

• Note: the relationship between a1, a2, and a3 is such that

–i = h + k
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MILLER-BRAVAIS INDICES (end)

Q: Why bother with an extra index?
A: Now planes in the same family are identified by

permutations of the (first three) indices, as with Miller
indices for the other systems:

e.g. {112
_

0} consists of

(1 1 2
_

 0)  (1
_

 2 1
_

 0)  (2
_

 1 1 0)  (1
_

 1
_

 2 0)  (1 2
_

 1 0)  (2 1
_

 1
_

 0)

a2
a1

a3

c

(1 1 2 0)
_

a2
a1

a3

c

(1 2 1 0)
_ _

a2
a1

a3

c

(1 2 1 0)
_

a2
a1

a3

c

(1 1 2 0)
_ _

a2
a1

a3

c

(2 1 1 0)
__

a2
a1

a3

c

(2 1 1 0)
_
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EQUIVALENT PLANES

Callister, Figure 3.9

Equivalent planes: planes that are identical to each other by
virtue of the ordinary translational symmetry of the lattice;

i.e., they can be generated by translating the unit cell along its
base vectors by integral multiples of the respective
lattice parameter

Z (001) Plane referenced
to the origin at point O

y

x

Other 
equivalent

(001) planes

O
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FAMILIES OF PLANES & DIRECTIONS

• Also called planes of a form and directions of a form

• Are identical to each other by the internal symmetry of
the cell (vs. equivalent planes, which are related by the
translational symmetry of the lattice):

e.g., in the cubic class,

the cell faces lie on
planes of a form

the cell edges are along
directions of a form

Cube faces —

(100), (010), (001) —

belong to the family

of {100} planes

Cube edges —

[100], [010], [001] —

belong to the family

of <100> directions

x

y

z

[100]

[001]

[010]

(100)
(010)

(001)

But note: in the tetragonal class,

[100] and [010] belong to
the <100> family, but
[001] doesn’t

(100) and (010) belong to
the {100} family, but
(001) doesn’t




