Weyl’s Theorem

Michael Krbek

We want to prove the following theorem concerning a real semisimple Lie
group G and its Lie algebra g.

Theorem 1 (Weyl). The Killing form of the semisimple Lie algebra g is negative
definite if and only if the corresponding Lie group G is compact as a manifold.

Let us fix conventions. The Killing form on a Lie algebra is defined as
(X,Y) =Tr(ad(X)oad(Y)).

Proof. "<". The proof of the converse part is fairly easy if one assumes the possi-
bility of integration on the Lie group G. El Out of any scalar product on g one may
then construct a G-invariant scalar product (-,-) by averaging over the group (it
must be the Killing form up to a positive factor). With respect to this scalar prod-
uct the linear map ad(X): g— g is antisymmetric; we have (Ad(g)X,Ad(g)Y) =
(X,Y) and so after differentiation (ad(Z)X,Y)+ (X,ad(Z)Y) = 0. The eigenval-
ues of an antisymmetric operator A are purely imaginary. Let Au = Au. Then
Mu,u) = (w,Au) = (ATu,u) = —(Au,u) = —A*(u,u). The zero eigenvalues are ex-
cluded since for semisimple g ad is a bijection. Thus a composition of two such
operators has negative eigenvalues and the scalar product is always negative for
nonzero elements of g.

"=". For the other direction we shall use some Riemannian geometry. We
shall construct a G-bi-invariant Riemann metric p on G by translating the nega-
tive of the Killing form on g =T.G to T¢G as follows

p&,mN(g) := —(TgL g-18,TgL g-11).

We can easily compute the curvatures of p. First we shall use the Koszul formula
for a Riemann metric p and the Levi-Civita connection V.

20(VxY,Z) = Xp(Y,2)+ Y p(X,Z) - Zp(X,Y )+

For left invariant vector fields X,Y,Z on G and a bi-invariant metric p the for-
mula simplifies: the first three summands obviously vanish and the last two
cancel. We are left with

20(VxY,Z) = p(Z,[X,Y)),

1 For a compact Lie group one proceeds as follows: Out of the left-invariant Maurer-Cartan form o
one may construct a top-dimensional form v by using the wedge product. The form v is a left invariant
volume element on G (which is actually also right invariant for compact G).



ie. 1
VxY = E[X’Y]'

The geodesics are obviously the integral curves of left-invariant vector fields, i.e.
one parameter subroups, in particular, G is complete. Let us compute the Rie-
mann curvature

R(X,Y)Z .=VxVyZ-VyVxZ - V[X,Y]Z =

1 1
=1 ([X,[Y,Z11-1Y,[X,Z]]1 - 2[[X,Y],Z]) = _Z[[X’Y]’Z]’

where the last step comes from using the Jacobi identity. We can also rewrite
this as

RX,Y)Z = %ad(Z)oad(X)Y.

Now let us compute the Ricci curvature
1
Ricci(X,Y):=Tr(Z— R(X,2)Y) = ZP(X’Y)'

We see that it is a multiple of the Killing form. We also see that Ricci(X,X) =
1/4p(X,X) = (n - 1)/r?p(X,X) >0, so the prerequisites of the Bonnet-Myers theo-
rem are satisfied. We see that GG is bounded by r and therefore compact. [ ]

Theorem 2 (Bonnet, Myers). Let (M, g) be a complete Riemann manifold, dim M =
n. Suppose that the Ricci curvature of M satisfies

-1
Ricei(X, X)(p) = = g(X,X) >0
r

forall pe M and all X e T,M. Then M is compact and the geodesic distances of
the points of M are bounded by nr from above.

Proof loosely following do Carmo. Let p,q € M be arbitrary. Since M is complete
there exists (Hopf-Rinow theorem) a minimizing geodesic segment y: [0,1]— M
such that y(0) = p and y(1) = q. It suffices to show, that

1
0=10(y):= f gy Y)Y de <nr.
0

Then, because M is bounded and complete it is also compact. We will proceed by
contradiction. Assume that ¢(y) > nr. Set e; = y'/¢ and extend it to an orthonor-
mal basis (ey,...,ey) of Ty M. Define the vector fields v; along y by

v;=sin(nt)e;, jei2,...,n}

2 We remind the reader of the form of p(X,X) for compact matrix groups: for su(n) it is —2n Tr(X 2,
for s0(n) it is (2 - n)Tr(X?) and for sp(2n) it is —2(n + 1) Tr(X2).



Note that v;(0) = v;(1) = 0 so v,’s induce proper variations of y namely 6(s,?).
Concretely, we have

0
6‘](05t)=’}/(t)5 a_s =Uj'

Let us denote their energies by

1 1
Ejs)= fo 2(8',8"dt.
For the first and second variation we have

1 D
/0=~ gw;, 2)4¢=0
0

dt d¢
1 D%y, d d
0y = Rl e N &
Ej(O)——fO 8w), 5" +R(g v gt

Let us compute the second variation explicitly

1
E}’(O) = —f g(sin(nt)e j,(sin(nt)e ;)" + ZQR(el,sin(ﬂt)ej)el)dt =
0
1
= f sin?(nt)(n? - (2K (e1,e;))d¢,
0

where K(e1,e;) is the sectional curvature in the plane spanned by e; and e;.
Summing the previous expression through j=2...n we get

n 1
Y Els)= f ((n—1)m* - ¢*Ricci(e1,e1)(y(1)sin®(rt) d ¢
Jj=2 0

and since Ricci(eq,e1) = (n— 1)/r? we get

n

" 1 [2 )
Y Els)< fo (n—1)(n® - r—z)st(ﬂt)dt <0.

Jj=2

This produces a contradiction since y is a minimising geodesic. |



