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Spherically symmetric vacuum spacetimes

Michael Krbek

1. Preliminaries. We consider a smooth pseudo-Riemannian manifold (M, 〈·, ·〉), with sig-
nature (r, s). For simplicity, we suppose the manifoldM is connected, the dimension ofM is n.
First we need to consider the following question: We are given a smooth manifold M . Under
which conditions does there even exist a smooth nondegenerate metric field of signature (r, s)
on M?

Lemma 1. The following statements are equivalent:

(1) There exist a smooth nondegenerate metric field 〈·, ·〉 of signature (r, s) on M .

(2) There exists a smooth distribution V of constant rank r on M .

Proof. (1) ⇒ (2). There exists a smooth Riemannian metric (·, ·) on M (see [1]). Consider a
point x ∈ M , tangent vectors u, v ∈ TxM and the vector subspace Vx = {u ∈ TxM |〈u, v〉 =
(u, v), ∀v ∈ TxM}. Then V =

∐

x∈M Vx is the sought distribution.

(2) ⇒ (1). We again use the existence of a Riemannian metric (·, ·) on M . To any
distribution V of rank r there exists a distribution V⊥ so that (V, V⊥) = 0 and the rank of V⊥
is s = n − r, n = dimM . We construct an involution θ in the tangent space TxM such that
θ(V ) = id a θ(V⊥) = − id. Define 〈u, v〉x = (u, θ(v))x. Then 〈·, ·〉 is a semi-riemannian metric
of signature (r, s). �

For a Lorentzian metric (of signature (1, n− 1)), this construction gives a distribution of
rank 1. If we assume that M is orientable, this is equivalent to the existence of a vector field ξ
which generates V at each point x ∈M (in order for the distribution V to be of constant rank
1, the vector field ξ has to be everywhere non-zero).

2. Action of a compact Lie group on a semi-Riemannian manifold. Consider a com-
pact Lie group G and a left action of G on (M, 〈·, ·〉), i.e. a smooth map

G×M→M, (g, x) 7→ gx.

Let us denote by g∗ the tangent map x 7→ gx for a fixed g ∈ G. The action is called isometric
(with respect to 〈·, ·〉) if 〈g∗ξ, g∗η〉 = 〈ξ, η〉 for all ξ, η ∈ X (M).

Let (·, ·) be a Riemannian metric on M . Then we have the following

Lemma 2. Let x 7→ gx be an action of the compact Lie group G on M . Then there exists a
Riemannian metric (·, ·) on M with respect to which the action is isometric.

Proof. Let (·, ·)′ be any Riemannian metric on M . Construct

(ξ, η) =

∫

G
f(g∗ξ, g∗η)

′ dµ(g)
∫

G
dµ(g)

,
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where dµ is the Haar measure on G. This is invariant by construction and positive definite by
inspection. �

The preceding Lemma could have been proven without the assumption that G is compact
in which case one must assume the action to be proper. For the proof see [4].

Lemma 3. Let x 7→ gx be an action of the compact Lie group G on M , isometric with respect
to 〈·, ·〉. Then the distribution V from Lemma 1 can be chosen to be invariant, i.e. g∗V = V .

Proof. Use Lemma 2 to construct an invariant metric. The construction (1) ⇒ (2) is now
invariant with respect to the G-action. �

3. The homogeneous space Sn. The group O(n + 1) acts on Rn+1 by its defining repre-
sentation

O(n + 1)→GL
(

Rn+1
)

A 7→ A. (1)

The orbits of the defining representation are spheres Sn (the zero vector in Rn+1 is a singular
orbit of dimension 0). Let us now restrict the defining representation to the subset Sn ⊂ Rn+1,
Sn = {(a1, . . . , an+1) ∈ Rn+1|a21 + · · ·+ a2n+1 = 1}. This action is transitive. Let us denote by
s = (0, . . . , 0, 1) ∈ Sn (the north pole). For each x ∈ Sn there exists a B ∈ O(n + 1) so that
Bx = s. If x = s then B can be f.e. the identity. If x 6= s let us consider the orthonormal basis
in Rn+1 such that the last vector is s and the second last vector lies in the plane given by x
and s. Let us further denote cosϕ = 〈s, x〉. Then





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ









0
sinϕ
cosϕ



 =





0
0
1





and the action is transitive.

Consider the isotropy group at the point s,

(

A v
wt a

)(

0
1

)

=

(

0
1

)

,

so v = 0 and a = 1. For orthogonality to hold, we must have

(

At w
0 1

)(

A 0
wt 1

)

=

(

1 0
0 1

)

,

so w = 0 and A ∈ O(n). The isotropy subgroup at this point (and every other point by
transitivity) is isomorphic to O(n). So we can write

Sn =
O(n+ 1)

O(n)
. (2)
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There is a induced homogeneous metric on Sn given up to a nonzero multiple. The tangent
space at s is Rn, where we have the standard scalar product. Using the scalar product 〈·, ·〉 at
s denoted by 〈·, ·〉s we can define

〈u, v〉x = 〈g∗g
−1
∗ u, g∗g

−1
∗ v〉gs = α〈g−1

∗ u, g−1
∗ v〉s = α〈g−1u, g−1v〉s,

where x = gs and such g ∈ O(n+1) exists by transitivity of the action and g∗ = g by linearity
of the action.

Let us describe the tangent space to Sn more concretely. Choose a basis eij = δij − δji,
i < j in so(n + 1). Then [eij , ekl] = −δikejl − δilejk + δjkeil + δjleik, where eij = −eji if i > j.
The Killing form is

K(eij , ekl) =
∑

r<s

[eij , ers][ekl, ers] (3)

The group O(n + 1) is compact, its Killing form is therefore negative definite and so is
its restriction to every subspace of the Lie algebra or the factor space so(n + 1)/so(n). In the
eij basis the Killing form is diagonal

K(eij , ekl) = −2nδij,kl. (4)

It may be proved (see [3]) that all O(n + 1)-invariant metrics on the sphere Sn are constant
nonzero multiples of the metric induced by the Killing form.

The structure of the tangent space of Sn at the point s is given as follows. The point
s = es corrresponds to e ∈ O(n+ 1) and the tangent space at e is given by matrices satisfying
X +Xt = 0. The tangent space to the isotropy group at s in e is given by matrices

(

Y 0
0 0

)

,

where Y + Y t = 0, Y is a matrix of order n. It holds

Ts
O(n+ 1)

O(n)
=
TeO(n+ 1)

TeO(n)
=

(

0 v
−vt 0

)

(5)

Pick a basis in this space

(Xi) =

((

0 ei
−eti 0

))

,

where ei is the standard basis in Rn. We have the geodesic normal coordinates (h1, . . . , hn) of
the point x ∈ Sn in the neighborhood of s

x = eh1X1+···+hnXn s. (6)

With the notation h =
√

h21 + · · ·+ h2n we get

x =













h1 sin h
h
...

hn sin h
h

cosh













.
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These coordinates are defined averywhere except at the south pole.

Using the Campbell-Baker-Hausdorff formula we also have

x = eknXn · · · ek1X1 s

and (k1, . . . , kn) are the (generalized) spherical coordinates. The meaning of the preceding
formula is that we get x ∈ Sn from s by successive rotations in the planes [E1, s], then [E2, s]
and finally [En, s], where

Ei =

(

ei
0

)

.

The computation gives

x =



















sin k1
sin k2 cos k1

sin k3 cos k2 cos k1
...

sin kn cos kn−1 · · · cos k1
cos kn cos kn−1 · · · cos k1



















. (7)

The ki take values in −π/2 < k1, . . . , kn−1 < π/2, −π < kn < π. The spherical coordinates are
orthogonal with respect to the metric on Sn by construction, the metric is

G =















1
cos2 k1

cos2 k1 cos
2 k2

. . .

cos2 k1 . . . cos
2 kn















,

in geodesic normal coordinates the metric is not diagonal.

4. Smooth actions of compact groups on manifolds. Let ϕ : G ×M→M be the left
action of the Lie group G on a smooth manifoldM . Pick a point x ∈M and consider the orbit
Gx = {y ∈ M |∃g ∈ G : y = ϕ(g, x) = gx} and the isotropy subgroup Gx = {g ∈ G|x =
ϕ(g, x) = gx}. The isotropy subgroups in two points x and y on the same orbit are isomorphic,
the isomorphism is given by conjugation by such g that y = ϕ(g, x). Gy = gGxg

−1 ∼= H . The
orbit Gx going through x is called of type G/H .

Example 1. Consider the vector spaceM = {X ∈ gl(3)|X = Xt,TrX = 0} with the action ϕ of
SO(3) by conjugation ϕ : (g,X) 7→ gXg−1. It is known from basic linear algebra that any sym-
metric matrix is diagonalizable by an orthogonal conjugation, the orbits can be parametrized
by the three eigenvalues λ1 ≥ λ2 ≥ λ3 such that λ1+λ2+λ3 = 0. There are several orbit types
on M

(i) λ1 = λ2 = λ3 = 0, the isotropy subgroup is the whole SO(3) and the orbit is a point.

(ii) λ1 = λ2 > λ3, the isotropy subgroup is
(

A 0
0 ±1

)

,

where A ∈ O(2), detA = ±1, the orbit is isomorphic to RP 2 ∼= SO(3)/(O(2)⋉ Z2).
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λ1 = λ2 = λ3 = 0

λ1 = λ2 ≥ λ3 λ1 ≥ λ2 = λ3

Figure 1: Orbits on M

(iii) λ1 > λ2 = λ3, here again
(

±1 0
0 A

)

and the orbit is isomorphic to RP 2 ∼= SO(3)/(O(2)⋉ Z2).

(iv) λ1 > λ2 > λ3, the isotropy subgroup here is





±1 0 0
0 ±1 0
0 0 ±1





isomorphic to Z2 ⊕ Z2 ⊕ Z2. The orbit is isomorphic to SO(3)/(Z2 ⊕ Z2 ⊕ Z2).

Quite generally two orbits Gx, Gy are of the same type G/H , if their isotropy subgroups
are both isomorphic to H . When H ⊆ G is a subgroup, we can partially order different
subgroups using set inclusion ⊆. We define

[H ] ≤ [H ′] ⇐⇒ ∃K ∈ [H ], K ′ ∈ [H ′] : K ⊆ K ′,

which is equivalent to
[H ] ≤ [H ′] ⇐⇒ ∃g ∈ G : gHg−1 ⊆ H ′.

When G is not compact, the relation need not be antisymmetric. We have

Lemma 4. Let G be a compact Lie group, H ⊆ G its closed subgroup. Then

gHg−1 ⊆ H =⇒ gHg−1 = H.

Proof. By iteration we have gHg−1 ⊆ H ⇒ gnHg−n ⊆ H for all n ∈ N0. Let us analyze the
set A = {gn|n ∈ N0}. We shall show that g−1 lies in the closure Ā. We need to distinguish two
cases

(i) e is a limit point in A. Then for each its neighborhood U , there must exist an index n so
that gn ∈ U . It follows gn−1 ∈ g−1U ∩ A and the set g−1U is a neighborhood of g−1, all
such g−1U are a local basis at g−1 ∈ Ā.
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(ii) e is a discrete point in Ā. But G is compact and A is therefore a finite set, so gn = e for
some n ∈ N. We obtain g−1 = gn−1 ∈ A.

The conjugation conj : (g, h) 7→ ghg−1 is continuous as a map G × G→G and H is closed, so
conj(Ā, H) ⊆ H , especially g−1Hg ⊆ H . �

Let x ∈ M be a point and Gx the orbit through it. The orbit is called principal if
there exists an invariant neighborhood U of the point x ∈ M and for all y ∈ U an equivari-
ant map Gx→Gy. Points which lie on principal orbits are called regular , other points are
called singular . A subset S ⊂ M is called a slice at x if there exists a G-equivariant open
neighborhood U of the orbit Gx and a smooth retraction r : U→Gx such that S = r−1(x).

Example 2. Consider the defining representation of G = SO(3) on M = R3. Let x = (0, 0, 1).
The orbit is Gx = S2. We shall show that this orbit is principal Let y

Uǫ = {(y1, y2, y3) ∈ R3|ǫ2 < y21 + y22 + y23},

where ǫ > 0. The retraction r : Uǫ →Gx is defined as

r : (y1, y2, y3) 7→
(y1, y2, y3)

√

y21 + y22 + y23
.

The point O = (0, 0, 0) is a singular point of the action, GO = SO(3), the orbit is the point O
itself. There are only regular points in any open neighborhood of the point O.

Orbits of singular points are themselves called singular (singular orbits are isomorphic
to G/K, where dimK > dimH). There is a third possibillity: the orbit is of maximal dimension
but is not isomorphic to the principal orbit. We call such orbits exceptional .

Example 3. Consider the left action ψ : SO(3) × SO(3)→ SO(3) of the group G = SO(3) on
itself by conjugation. ψ : (g, h) 7→ ghg−1. We know from linear algebra that there always exists
an orthonormal basis with respect to which

h(ϕ) =





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



 .

The orbit Ge = Gh(0) is singular, the isotropy subgroup is the whole Ge = SO(3). For ϕ = π
the orbit is exceptional Gh(π) ∼= RP 2. The remaining orbits Gh(ϕ), 0 < ϕ < π, are spheres S2

and their isotropy subgroup is SO(2). From this follows the model of the SO(3) manifold as a
closed ball of radius π, where we identify the antipodal points on the boundary. The center of
the ball corresponds to the singular orbit.

5. Warped products. This part of the exposition follows [2]. Suppose M = B × F , where
(B, 〈·, ·〉B) and (F, 〈·, ·〉F ) are (semi)riemannian manifolds, f a positive function on B. We
construct the (semi)riemannian metric on M : pick an arbitrary point x = (a, b) ∈M = B×F .
Then the tangent space at this point is TxM = TaB ⊕ TbF and each tangent vector (x, ξ) can
be unambiguously written as (a, α) + (b, β). The scalar product on M is then defined by

〈ξ, ξ′〉(x) := 〈α, α′〉B(a) + f 2(a)〈β, β ′〉F (b). (8)
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If the metric signature on B is (r, s) and (r′, s′) on F then the metric signature onM is obviously
(r + r′, s + s′). The whole construction is a generalization of a surface of revolution; in this
case B is a plane curve which does not intersect the axis of revolution, f(a) gives the distance
of the point a from the axis, F = S1. Warped products are denoted by B ×f F .

On p : B × F →B (and more generally on a Riemannian submersion p : M→B) there
exist special subbundles of the tangent bundle: the vertical subbundle VM = ker p∗ and the
horizontal subbundle HM = VM⊥ (the definition of a Riemannian submersion demands
that HxM ∼= Tp(x)B for all x ∈ M). The sections of these subbundles are called vertical

resp. horizontal vector fields. There is a special class of horizontal vector fields, called basic

defined as follows: Take any vector field η on B. Then there exists a unique horizontal vector
field ξ such that ξp∗ = p∗η. The basic vector fields span HM (for dimensional reasons).

We can compute the relevant tensor fields for warped products following [2]. Let ξ, η
be basic vector fields and X , Y , Z vertical vector fields. Let RiemannF denote the Riemann
curvature tensor field on the fiber F . We assume dimM = 4 and dimF = 2. For the Riemann
curvature on M we obtain

RiemannXY Z = RiemannF
XY Z −

〈(d f)#, (d f)#〉B
f 2

(〈X,Z〉FY − 〈Y, Z〉FX) ,

and defining the Hessian of the function f by

Hessianf(ξ, η) = 〈[∇ξ(d f)
#, η〉B = (ξη −∇ξη)f,

which is a symmetric tensor field of type (0, 2), we may write

〈RiemannξXη, Y 〉 = −
Hessianf(ξ, η)

f
〈X, Y 〉F ,

for the Ricci curvature

Ricci(ξ, η) = RicciB(ξ, η)−
2

f
Hessianf(ξ, η) (9)

Ricci(ξ,X) = 0 (10)

Ricci(X, Y ) = RicciF (X, Y )− 〈X, Y 〉F

(

⋆ d ⋆ d f

f
+

〈(d f)#, (d f)#〉B
f 2

)

, (11)

here ⋆ is the Hodge operator and ∇ the Levi-Civita connection (both with respect to 〈·, ·〉B).

Example 4 (The Kruskal solution). We take

B = {(v, u) ∈ R2|u2 − v2 > 1},

and

f(u, v) = 1 +W

(

v2 − u2

e

)

.

Then we define the metric on B by

4 e−f(u,v)

f(u, v)

(

d u2 − d v2
)

, (12)
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where z 7→ W(z) is the principal branch of the Lambert W-function, the solution of z =
W(z) eW(z). The manifold F is the sphere S2 with the standard negative definite metric induced
by the Killing form. For the metric

4 e−f(u,v)

f(u, v)

(

d u2 − d v2
)

+ f 2(u, v)γ,

where γ is the standard metric on S2 given locally by d k21 + cos2 k1 d k
2
2, the following holds

Ricci = 0, R = 0, Einstein = 0. (13)

−1 0 1 2 3 4

0

0.5

1

1.5

x

1 +W(x/e)

Figure 2: The Function 1 +W(x/e)
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1

1.5

v

u

Figure 3: Hyperbolic plane u2 − v2 > 1

6. Centrally symmetric spacetimes. Let G = SO(3,R) be the compact Lie group and
(M, 〈·, ·〉) a semi-Riemannian manifold of signature (1, 3). We say that (M, 〈·, ·〉) is centrally
symmetric if there exists an isometric proper G-action ϕ all of whose orbits are spheres
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S2 = SO(3)/SO(2).

ϕ : G×M→M

ϕ : (g, x) 7→ ϕ(g, x) = gx.

The action is proper if the preimages of compact sets by the map (g, x) 7→ (gx, x) are compact.
The action is isometric if 〈g∗ξ, g∗η〉 = 〈ξ, η〉 for all g ∈ G and all vector fields ξ, η ∈ X (M).
The orbit of the point x ∈M is denoted by Gx.

The sphere is viewed as the homogeneous space G/Gx = SO(3,R)/SO(2,R), where Gx

is the stabilizer of x ∈ M . The Riemannian metric γ on the sphere is constructed using
the Maurer-Cartan form on SO(3) corestricted from g = so(3,R) to the factor vector space
so(3,R)/so(2,R) and the negative definite Killing form. This metric is unique up to a constant
positive multiple (this corresponds to different sphere radii). Orbits of different points are
therefore spheres S2 with varying radii.

Theorem 5. Let (M, 〈·, ·〉) be a centrally symmetric spacetime. Then M is the total space of
a semi-Riemannian fibre bundle (M,B, p,S2), where p : M→B is a surjective submersion and
the fibre is p−1(b) = S2. Moreover, the metric on this fibre bundle is a warped product

〈·, ·〉 = 〈·, ·〉B + f 2〈·, ·〉S2 ,

where f is a positive function on B.

Proof. The space B =M/G can be thought of as the space of orbits of the action by G on M .
This induces a topological and smooth structure on B in the standard way such that the factor
projection p : M→M/G is continuous and smooth.

We have to construct a local trivialization on some neighborhood of each point x ∈ M .
We proceed as follows: (M, 〈·, ·〉) is a semi-Riemannian manifold of signature (1, 3), therefore
there exists a one-dimensional distribution ξ which can be chosen invariant with respect to the
SO(3)-action by Lemma 3 and the corresponding invariant Riemannian metric denoted by (·, ·),
see Lemma 2. We can now use the results from [4].

The orbit Gx is a sphere S2 embedded in M by ι : S2→M . Consider the normal bundle
NS2 := {v ∈ TM |(v, w) = 0 for all w ∈ T ιTS2} and the exponential map applied to 0x in a
small enough ball Br(0x) so that expx : TxM ⊃ Br(0x)→M is a diffeomorphism on its image
expx(Br(0x))∩Gx. Br(0x) denotes a cylindrical neighborhood of 0x in NS2. The inverse is the
sought local trivialization of (M,B, p,S2).

The inner product
〈Txpξx, Txpηx〉B = 〈ξx, ηx〉

is well defined for ξ, η ∈ HM . Therefore the metric on M is a warped product. �

Lemma 6. The one-dimensional distribution ξ projects to B via the map Tp giving rise to a
one-dimensional distribution on B.

Proof. ξ can be chosen invariant, i.e. spanned by local horizontal vector fields. These fields
correspond to basic vector fields by definition of a Riemannian submersion. �
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7. Birkhoff’s theorem. This section is almost entirely based on [5].
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