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We present a first principles study of ground-state and dynamical stability of austenite and martensite phase
in binary Ti3Nb, used as a model system for Gum Metal. We show that G1-type structure, recently proposed
for high temperature austenite phase, is dynamically unstable within harmonic approximation, nevertheless an-
harmonic phonon-phonon interactions introduced by means of the self-consistent ab initio lattice dynamical
method (SCAILD) stabilize the G1 structure at room temperature. The DO3 structure is dynamically unstable
from T = OK up toT = 1200K and anharmonic effects are not sufficient to stabilize the DO3 structure. We
evaluted relative stability of many hexagonal structures by performing a search over different possible distribu-
tions of Ti and Nb atoms in a hexagonalBh lattice. In the case ofα′′ martensite we relaxed lattice parameters
of the orthorhombic structure. For both stable martensitesand G1 structure we used calculated phonon disper-
sions to evalute the vibrational contribution to the free energy and we estimated martensitic temperatures by
comparing Helmholtz free energies as functions of the temperature.

PACS numbers: 61.50.Ah, 61.50.Ks, 62.50.+p, 62.20.Qp

INTRODUCTION

In spite of six decades of research, the underlying mi-
cromechanisms of deformation of titanium alloys, with their
diversity of martensite phases and single-crystal behaviour,
are still not well understood. In past several years, gum met-
als, a group of the least stableβ titanium alloys, have been de-
veloped for their advantages of multifunctional properties af-
ter severe cold deformation. After severe cold swaging these
alloys exhibit super-properties such as ultralow elastic mod-
ulus, superelasticity, ultrahigh strength, superplasticity and
greatly reduced thermal expansion. The above unique prop-
erties are attributed to the lack of conventional dislocations,
deformation twins and stress-induced martensitic transforma-
tion. Saito et al. [1] suggested that the unique properties
are produced by a dislocation-free plastic deformation mecha-
nism called giant planar faults, which induce crystallographic
rotations from the neighboring area by plastic deformation.
The calculations of Li et al. [2] supported the concept that
the triggering stress for dislocation motion exceeded the ideal
strength of gum metal. This could result in the plastic defor-
mation through the giant planar faults accompanied by nan-
odisturbances, a kind of nanoscale dipoles of nonconventional
partial dislocations with arbitrary and nonquantized Burgers
vectors. However, recent work has shown that more conven-
tional deformation mechanisms are still operative in the gum
metals, for example, largely reversible stress-induced phase
transformation during tensile loading and unloading was ob-
served using in situ synchrotron x-ray diffraction. [3]

A stress-induced martensitic transformation to the or-
thorhombicα′′ phase that is found in a number of Ti alloys.
An early, partially reversible transformation toα′′ would also
introduce a pseudo-elastic deformation that would help to ex-
plain the low tensile modulus and large elastic deformationof
the alloy. Previous investigations also showed compressional
tension asymmetry for the martensitic transformation. That
is, theα′′ martensite can be detected by X-ray diffraction af-

ter compression but is barely detectable after tensile test, even
on the tensile fracture surface. This evidence suggests that the
multifunctional properties of Gum Metal may be attainable if
the valence electron number e/a is slightly lower than 4.24 and
the stress-induced martensitic transformation may take place
in compression. [4]

Generally, the deformation behaviors of metastableβ tita-
nium alloys are closely related to the stability ofβ phase. The
plastic deformation mode changes from the stress-induced
martensite to twin or slip mechanism as the stability of theβ
phase increases. However, the boundaries between different
mechanisms and the role of various elements in stabilization
of β phase in Gum Metal are not quite clear.

Therefore, our calculations were aimed to reveal relative
stability of high-temperature cubicβ phase and martensitic
phases in Ti3Nb system. Forβ phase, we follow recent study
by Nagasako et al. [5], which revealed that the DO3 struc-
ture, which has been used as an approximant for studying bi-
nary Gum Metal, is inadequate due to its instability against
shear deformations and the formation of vacancies and anti-
site point defects. Searching for a better structural model
of Ti-Nb alloy at a A3B stoichiometry, Nagasako et al. [5]
performed supercell based search over many different pos-
sible distributions of Ti and Nb atoms in a B32 lattice and
found that structures from the energetically most favorable
symmetry equivalent group G1 are elastically stable and their
shear moduli agree very well with those measured for Gum
Metal, making the ordered binary alloy of the G1-type a good
model system for studying the properties of Gum Metal. We
will show that G1 structure phase is dynamically unstable
in harmonic approximation, having imaginary frequencies of
some optical phonon branches and that anharmonic phonon-
phonon interactions are needed for its stabilization. As a re-
sult, phonon frequencies are temperature dependent and real
eigen-frequencies of all phonon modes are found already at
room temperature.

For martensitic phases, we evaluted relative stability of
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many hexagonal structures by performing a search over differ-
ent possible distributions of Ti and Nb atoms in a hexagonal
Bh lattice. We have performed a complete relaxation of the
volume and shape of the supercell and also of all atomic co-
ordinates. For the energetically most favorable configurations
we calculating their phonon dispersions using density func-
tional perturbation theory within harmonic approximation.
We found that dynamically stable configuration has mono-
clinically distorted hexagonal cell and is energetically more
favorable than the G1 structure. In the case of orthorhombic
α′′ martensite we relaxed lattice parameters of the structure
described in the literature [6]. For both stable martensites and
G1 structure we used calculated phonon dispersions to evalute
the vibrational contribution to the free energy and we esti-
mated martensitic temperatures by comparing Helmholtz free
energies as functions of the temperature.

COMPUTATIONAL DETAILS

The DFT calculations have been performed by application
of the Viennaab initio Simulation Package (VASP).[7, 8] We
used the projector augment wave (PAW) method with the gen-
eralized gradient approximation according to the parameteri-
zation of Perdew and Wang.[9] Convergency of the total ener-
gies with respect to basis size and number ofk points for the
Brillouin zone integration was carefully checked. The PAW
potentials were used with energy cutoffs of 300 eV.

The fundamental quantity expressing the thermodynamic
stability of an alloy is the formation energy. For the com-
pound Ti3Nb the energy of formation∆E is defined by the
difference of corresponding DFT total energiesE, according
to

∆E =
1

4
{E(Ti3Nb) − 3E(Ti) − E(Nb)} . (1)

All formation energies of our studies are given in units of eV
atoms−1. The reference energies for the pure states where
calculated for the solid phases of hcp Ti and bcc Nb.

For calculations of the vibrational frequencies of a system
we utilized density functional perturbation theory approach,
which is implemented in VASP. The supercells used were con-
structed by multiplying the primitive cell two times along the
primitive lattice vectors, resulting in a 32 atoms supercell in
the case of G1 structure. The test performed with a larger
supercell (three times the primitive cell in all directions, 108
atoms) showed that the phonon frequencies differ only little
and the free energy is converged with respect to supercell size.
ThePHONOPY [10] package was used to visualize calculated
phonon dispersions. The vibrational contribution to the free
energyFvib(V, T ) is calculated using the phonon density of
statesg(ω) as

Fvib(V, T ) =

∫

∞

0

g(ω)

[

~ω

2
+ kBT ln(1 − e−~ω/kBT )

]

.

(2)

The electronic contribution to the free energyFel(V, T ) is
evaluted directly in VASP, by using the Fermi-Dirac function
for the smearing of the k-point grid. The electronic contribu-
tion is obtained by setting appropriate width of the smearing
σ (σ = kBT ) and calculating the total energy difference with
respect the calculation withσ = 0. The Helmholtz free energy
was then calculated by

F (V, T ) = E(V ) + Fel(V, T ) + Fvib(V, T ), (3)

whereE(V ) is the static lattice energy evaluted using Eq. 1.
Notice that a weak anharmonicity connected with thermal ex-
pansion of the volumeV has been omitted in our calculation,
because it would make the calculations very time-demanding.
The calculations were done at the calculated lattice constants
of respective phase. We will showed that stronger anharmonic
effects associated with the interaction between phonons must
be included in order to describe the stabilization of the cubic
G1 phase.

The anharmonic effects were included by means of self
consistent ab initio lattice dynamical method (SCAILD). [11]
The SCAILD method is an extension of the frozen phonon
approach. The method combines the idea of Born’s self-
consistent phonon approach with accurate ab initio calcula-
tions of interatomic forces. All phonons with wave vectors
commensurate with the supercell are excited together in the
same cell. Due to the simultaneuos presence of all commen-
surate phonons, the interaction between different latticevi-
brations is taken into account. The phonon frequencies are
calculated in self-consistent manner by alternating between
DFT calculation of Hellman-Feymann forces acting on dis-
placed atoms, and calculating new phonon frequencies and
new displacements. The self-consistent loop represents much
larger computational effort compared to usual phonon calcula-
tion, because the forces have to calculated at each iteration. In
our calculations, about 100 iterations were necessary to obtain
converged phonon frequencies. Notice that in present calcu-
lation anharmonic effects associated with thermal expansion
have not been taken into account and the calculations have
been performed using the calculated lattice constants. A more
detailed description of the SCAILD method can be found in
Appendix.

RESULTS

Ground-state stability

Theβ phase of Ti-Nb alloys undergoes a martensitic trans-
formation to a hexagonal structure at low temperatures. Ac-
cording to the phase diagram the martensitic temperature de-
creases with increasing Nb content, but the chemical decora-
tion -positions of Nb atoms- of the alloys is still unknown.
For high temperatureβ phase, we follow recent study by Na-
gasako et al. [5], who performed supercell based search over
many different possible distributions of Ti and Nb atoms in the
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FIG. 1: The phonon dispersions of G1-Ti3Nb calculated at T=0
K (density functional perturbation theory calculation, blue dashed
lines) and T=300 K (SCAILD calculation, black dashed lines).

B32 lattice, using a supercell containing 16 atoms. According
to their search, there exists a group of 16 symmetry equiva-
lent structures which are energetically the most favorable. Na-
gasako et al. [5] have called these structures G1-type, and re-
vealed characteristic nearest-neighbor Nb-Nb chain alongthe
body diagonal of the B32 lattice. It should be noted, that for
all configurations of Ti and Nb atoms a relaxation of volume
and shape of the supercell has been performed. Performing
complete relaxation (i.e. including the relaxation of individual
atomic positions) leads lattice distortions which destroycubic
symmetry and consequently to a different order of chemical
decorations. However, we are interested in a phase with cubic
symmetry and, therefore, in following calculations we con-
sider the G1-type lattice as a high temperature cubic phase.

The low temperature hexagonal phase has not been studied
in detail so far. Searching for a stable hexagonal Ti-Nb phase
of A3B stoichiometry, we adopted an approach of Nagasako
et al. [5]. We constructed a supercell based on a hexagonal
Bh lattice and performed simulations for different possible
distributions of Ti and Nb atoms in the supercell. To reduce
number of possible configurations, the occupation of one half
of Ti lattice sites has been fixed, which creates 66 different
decorations of the basicBh structure. For this low tempera-
ture phase, we have performed a complete relaxation of the
volume and shape of the supercell and also of all atomic coor-
dinates. According to their energies, the structures can bear-
ranged into seven groups and for three of these groups the total
energy is lower than for the high temperature cubic G1 phase.
The first group contains 24 structures with monoclinically dis-
torted cell and a strong Nb-Nb interaction. These structures
are by 15 meV per atom energetically more favorable than the
G1 phase. The second group consisting of four structures is
by about 3 meV per atom higher in energy than the structures
from the first group. The decorations from the second group
are closely related to those from the first group, but differ in

FIG. 2: The phonon dispersions of stable hexagonal Ti3Nb phase
calculated by density functional perturbation theory approach, corre-
sponding to T=0K.

the absence of the nearest-neighbor Nb-Nb interaction. The
third group of structures is still by about 2.5 meV per atom
more favorable than the G1 structure and has a nearly tetrago-
nal unit cell. Notice that the presence of a tetragonal phasein
25 and 21.7% Nb alloys was reported [12, 13], however, the
identification of this phase was uncertain. The other groups
of structures have higher energy than the G1 structure and
therefore are not suitable candidates for a martensitic phase.
It should be noted that the hexagonal symmetry is perserved
only for six structures which are by 17 meV per atom less
favorable than the cubic G1 phase.

Theα′′ martensite has an orthorhombic lattice, which may
be viewed as a transition from the hcp structure to the bcc
structure ofβ phase. The space group is Cmcm and the
atom positions are(0, 0, 0), (1/2, 1/2, 0), (0, 1 − 2y, 1/2),
and(1/2, 1/2− 2y, 1/2) with y being≈ 0.1 according to our
calculation. The complete relaxation of the orthorhombic cell
yields the lattice parameters of 3.34, 4.77, and 4,41Å, in a
good agreement with those calculated by Sun et al. [14] Ac-
cording to our calculation, the internal energy ofα′′ is by 20
meV per atom lower than that of the G1 structure and also
lower than any of structures based on hexagonalBh lattice.
The stability ofα′′ is consistent with experimental observa-
tions, which reported the occurence of theβ → α′′ transfor-
mation in the Ti-Nb alloys. [15]

Dynamical stability

Fig. 1 shows the calculated phonon dispersions for cubic
G1 structure of Ti3Nb. The density functional perturbation
theory calculation (which corresponds to T=0 K) shows imag-
inary frequencies of some optical phonon branches, indicating
that the G1 structure is dynamically unstable for some of op-
tical phonon modes with wave vectors close toΓ-point. On
the other hand, real eigen-frequencies are found for all acous-
tic modes, in agreement with recent study by Nagasako et
al. [5], which demostrated that the G1 structure is elastically
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FIG. 3: The free energy differences (red line) between cubicand
hexagonal phases of Ti3Nb and Ti. The differences of vibrational
(diamonds) and electronic (crosses) contributions to the free energy
are also displayed.

stable. According to Fig. 1, anharmonic effects introducedby
the SCAILD calculation stabilize the G1 structure already at
room temperature (T=300 K), demostrating that the interac-
tion between different phonon modes provides the main driv-
ing mechanism for the stabilization of the G1 structure.

The stabilization of the G1 structure at room temperature
justifies recent study by Nagasako et al. [5], which showed
that the elastic shear constants of the G1-type Ti3Nb alloy
are very similar to those measured for Gum Metal and con-
sequently assumed that the ordered binary alloy of the G1-
type is a good model system for studying the intrinsic prop-
erties of Gum Metal. It also worth of notice that the DO3

structure, which has been used as an approximant for study-
ing binary Gum Metal, is dynamically unstable fromT = O
K up toT = 1200 K according to our perturbation theory and
SCAILD calculations. Imaginary acoustic phonon modes oc-
cur over large regions of the Brillouin zone and can not be sta-
bilized by phonon-phonon iteractions. This evidence that the
DO3 structure is inadequate for modeling binary Gum Metal
supports recent finding, that it is unstable against shear de-
formations and the formation of vacancies and anti-site point
defects. [5] The DO3 structure is closely related to the struc-
tures of the G1-type, but differs in the absence of the nearest-
neighbor Nb-Nb interaction.

For the low temperature hexagonal Ti3Nb phase, we used
density functional perturbation theory approach, becausewe
search for a structure dynamically stable already at low tem-
peratures, i.e. we do not consider if a structure is evetually
stabilized by phonon-phonon interactions at elevated temper-
atures. We calculated the phonon dispersions of all struc-
tures with internal energy higher than that of the G1 structure,
because the most of derived hexagonal chemical decorations
showed imaginary frequencies. Thus, we had to find the dy-
namically stable pattern with the lowest possible total energy.

According to our perturbation theory calculation, all 24 chem-
ical decorations contained in the energetically most favorable
first group are dynamically unstable, displaying imaginary
phonon frequencies along theΓ-[ξξ0] wave vector. The favor-
able and dynamically stable structures were found in the sec-
ond group and their phonon dispersions are shown in Fig. 2.
These structures are closely related to the structures fromthe
first group, being monoclinically distorted hexagonal struc-
tures, and are by 0.007 eV/atom more favorable than the G1
structure.

Figure 3 shows calculated Helmholtz free energy as a func-
tion of temperature for stable low temperature Ti3Nb phase
and cubic G1 structure. The transformation to cubic phase ap-
pears aroundTk = 500 K. We also calculated the hexagonal-
cubic transformation in pure Ti for the reference and displayed
its free energy in the right panel of Fig. 3. Obviously, marten-
sitic transformation from hexagonal to cubic phase appears
at much lower temperature in Ti3Nb compared to Ti. No-
tice, that pure Nb crystallizes in cubic bcc structure, and Nb
content in Ti-Nb alloys influences the temperature of marten-
sitic transformation according to experiments. This fact is
well reflected in our calculation, when one compares calcu-
lated transition temperatures of Ti and Ti3Nb. The free energy
differences displayed in Fig. 3 arise from the self-consistent
SCAILD calculation for the cubic phase and harmonic cal-
culation for the low temperature phase. Wondering how the
different methods used for phonon calculation influenced the
free energy, we performed test calculation for the bcc Ti and
the G1 structure using a harmonic approximation. According
to this calculation, anharmonic effects bring negligible contri-
bution to the vibrational free energy at ambient temperatures
and become relevant at temperatures higher than 1000 K, thus
calculated transition temperatures are barely influenced.

According to our calculation, martensitic tranformation in
Ti should appear around 1300K, which corresponds very well
to experimental results reportingTk around 1155K for Ti. One
has to consider that the transition temperature is very sensitive
to the energy difference between the hcp and bcc phase of Ti.
The static energy difference between the cubic and hexago-
nal phase of Ti is 114 meV/atom according to our calculation.
Notice that for the calculation ofFvib(V, T ) of bcc Ti we have
used the the lattice parameter calculated by volume relaxation
atT = 0K. In order to investigate the influence of thermal ex-
pansion we evaluated the total free energyF (V, T ) for several
volumesV at the temperature T=1200K, which is close to the
experimental transition temperature. A reduction ofF (V, T )
by 12 meV was found, which would decrease the calculated
transition temperature by≈ 120 K, giving the transition tem-
perature of Ti in almost perfect agreement with experiment.

For understanding of strength-limiting mechanisms and de-
formation behavior in Gum Metal is important to reveal the
occurence of the stress-induced martensitic transformation to
the orthorhombicα′′ phase that is found in a number of Ti
alloys. The orthorhombic lattice ofα′′ martensite is dynami-
cally stable, which is demonstrated by real eigenvalues of the
phonon frequencies in Fig. 4. Observing Fig. 5, which dis-
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Ti3Nb calculated by density functional perturbation theory approach,
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plays the free energy differences between cubic G1 and or-
thorhombicα′′ martensite in Ti3Nb, one realizes thatα′′ has a
rather large region of stability at low temperatures and marten-
sitic temperature is around 600 K. Theα′′ phase is more sta-
ble that hexagonal low temperature structure and its stability
arises mainly from large difference in internal energies ofthe
G1 andα′′ structures. Notice also that vibrational as well as
electronic contributions to the free energy are relevant for the
stabilization of the G1 phase.

The calculated martensitic temperature of 600 K is some-
what higher than martensitic temperatures measured for Gum
Metal, which are reported around 300-400K (see Ref. 15 and
references therein), depending on the composition of the al-
loy and technology used for its production. Large region of
α′′ stability in pure Ti-Nb system agrees with recent exper-

imental study, which concluded that oxygen stabilizes theβ
phase. The greater oxygen content increases the material’sre-
sistance to theα′′ transformation by increasing the magnitude
of the shear elastic constantC′, which is associted with the
β → α′′ transformation. [16] The experiments also indicate
that a critical amount of prior deformation is required to trig-
ger the transformation. [17]

CONCLUSIONS

First, we focused on model systems for high temperature
austenite phase in Ti3Nb. The phonon spectra within the
harmonic approximation of recently proposed G1-type struc-
ture, [5] is dynamically unstable for some of optical phonon
modes with wave vectors close toγ-point. On the other
hand, real eigen-frequencies are found for all acoustic modes,
in agreement with the study by Nagasako et al. [5], which
demostrated that the G1 structure is elastically stable. We
showed that anharmonic phonon-phonon interactions intro-
duced by means of the self-consistent SCAILD scheme sta-
bilize the G1 structure already at room temperature (T=300
K). We also inspected the DO3 structure, which has been of-
ten used as an approximant for studying binary Gum Metal,
and found that it is dynamically unstable fromT = Ok up to
T = 1200K and anharmonic effects in SCAILD scheme are
not sufficient to stabilize the DO3 structure.

We evaluted relative stability of many hexagonal structures
by performing a search over different possible distributions of
Ti and Nb atoms in a hexagonalBh lattice. We found a group
of monoclinically distorted hexagonal structures, which are
1) by 0.007 eV/atom energetically more favorable than the G1
structure ofβ phase and 2) dynamically stable, showing real
phonon eigenfrequencies in all directions. The martensitic
temperature of≈ 400 K was calculated for this martensite
phase. Comparing martensitic transformations from hexag-
onal to cubic phase in Ti3Nb to Ti, we demonstrated that
Nb atoms significantly lower the martensitic temperature in
agreement with experimental observations of the role of Nb
content in Ti-Nb alloys. [15]

In the case of orthorhombicα′′ martensite we relaxed lat-
tice parameters of the structure described in the literature [6].
The complete relaxation of the orthorhomboc cell yields the
lattice parameters of 3.34, 4.77, and 4,41Å, in a good agree-
ment with those calculated by Sun et al. [14] According to our
calculation within harmonic approximation, the orthorhombic
lattice ofα′′ martensite is dynamically stable. Theα′′ has a
rather large region of stability at low temperatures and marten-
sitic temperature is around 600 K. Theα′′ phase is more sta-
ble that hexagonal low temperature structure and its stabil-
ity arises mainly from large difference in internal energies of
the G1 andα′′ structures. Our calculations also showed that
though the vibrational contribution to the free energy is dom-
inant for the stabilization of the G1 phase, electronic contri-
bution are not negligible and must be considered in calcula-
tions. Large region ofα′′ stability in pure Ti-Nb system agrees
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with recent experimental study, which concluded that oxygen
present in Gum Metal type alloys increases the resistance to
α′′ transformation and stabilizes the cubicβ phase. [17]

APPENDIX

The SCAILD method is based on the calculation of
Hellman-Feynmann forces acting on atoms in a supercell. All
phonons with wave vectorsq commensurate with the super-
cell are excited by displacing atoms situated at the undistorted
positionsR + bj to new positionsR + bj + URj , where the
displacements are given by

URj =
1√
N

∑

qs

Aj
qsǫ

j
qs expiq(R+bj) . (4)

HereR represents the N Bravais lattice sites of the supercell,
bj the position of atomj relative to its site,ǫj

qs are the phonon
eigenvectors corresponding to the phonon modes. The mode
amplitudeAj

qs can be calculated from the different phonon
frequenciesωqs as

Aj
qs = ±

√

~

2Mjωqs
coth

(

~ωqs

2kBT

)

, (5)

in which T the temperature of the system andMj the mass
of atomj. The phonon frequenciesωqs appearing in this ex-
pression can be obtained from the Fourier transformF

j
q of the

forces acting on the atoms in the supercell by

ωqs =

√

√

√

√−
∑

j

ǫj
qsF

j
q

Aj
qsMj

. (6)

In the SCAILD scheme the equations are solved first by cal-
culating a starting guess for the phonon dispersions by means
of standart supercell calculation using direct-displacement
method [? ]. The phonon frequencies corresponding tok-
vectors commensurate with the supercell are then used to cal-
culate the atomic displacements through Eq. 4, Eq. 5, and
Eq. 6. The forces induced by the displacementsURj are cal-
culated by the VASP code. From the Fourier transform of new
forces a set of frequencies is calculated using Eq. 6. The mean
value of all iterations provides a new set of frequencies

ωqs(Ni) =
1√
Ni

√

√

√

√

Ni
∑

i=1

Ω2
qs(i), (7)

whereΩqs(i) are the frequencies restored from previous iter-
ations. These steps are repeated until convergency is reached.
In our calculations, about 100 iterations were necessary toob-
tain converged phonon frequencies, which makes SCAILD
calculation considerably more expensive than usual direct-
displacement or density functional perturbation phonon cal-
culation. Anharmonicities associated with thermal expansion
of the lattice are not included in SCAILD scheme, but may
be taken into account by performing SCAILD calculation at
several diferent volumes of the cell.
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