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Exercises

1. Suppose a and b are real numbers, not both 0. Find real numbers
c and d such that

1/(a+ bi) = c + di.

2. Show that
−1+√3i

2

is a cube root of 1 (meaning that its cube equals 1).

3. Prove that −(−v) = v for every v ∈ V .

4. Prove that if a ∈ F, v ∈ V , and av = 0, then a = 0 or v = 0.

5. For each of the following subsets of F3, determine whether it is
a subspace of F3:

(a) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0};
(b) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4};
(c) {(x1, x2, x3) ∈ F3 : x1x2x3 = 0};
(d) {(x1, x2, x3) ∈ F3 : x1 = 5x3}.

6. Give an example of a nonempty subset U of R2 such that U is
closed under addition and under taking additive inverses (mean-
ing −u ∈ U whenever u ∈ U ), but U is not a subspace of R2.

7. Give an example of a nonempty subset U of R2 such that U is
closed under scalar multiplication, but U is not a subspace of R2.

8. Prove that the intersection of any collection of subspaces of V is
a subspace of V .

9. Prove that the union of two subspaces of V is a subspace of V if
and only if one of the subspaces is contained in the other.

10. Suppose that U is a subspace of V . What is U +U?

11. Is the operation of addition on the subspaces of V commutative?
Associative? (In other words, if U1, U2, U3 are subspaces of V , is
U1 +U2 = U2 +U1? Is (U1 +U2)+U3 = U1 + (U2 +U3)?)



20 Chapter 1. Vector Spaces

12. Does the operation of addition on the subspaces of V have an
additive identity? Which subspaces have additive inverses?

13. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

U1 +W = U2 +W,
then U1 = U2.

14. Suppose U is the subspace of P(F) consisting of all polynomials
p of the form

p(z) = az2 + bz5,

where a,b ∈ F. Find a subspace W of P(F) such that P(F) =
U ⊕W .

15. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

V = U1 ⊕W and V = U2 ⊕W,
then U1 = U2.
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Exercises

1. Prove that if (v1, . . . , vn) spans V , then so does the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)
obtained by subtracting from each vector (except the last one)
the following vector.

2. Prove that if (v1, . . . , vn) is linearly independent in V , then so is
the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)
obtained by subtracting from each vector (except the last one)
the following vector.

3. Suppose (v1, . . . , vn) is linearly independent in V and w ∈ V .
Prove that if (v1 + w, . . . , vn + w) is linearly dependent, then
w ∈ span(v1, . . . , vn).

4. Supposem is a positive integer. Is the set consisting of 0 and all
polynomials with coefficients in F and with degree equal to m a
subspace of P(F)?

5. Prove that F∞ is infinite dimensional.

6. Prove that the real vector space consisting of all continuous real-
valued functions on the interval [0,1] is infinite dimensional.

7. Prove that V is infinite dimensional if and only if there is a se-
quence v1, v2, . . . of vectors in V such that (v1, . . . , vn) is linearly
independent for every positive integer n.

8. Let U be the subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = 3x2 and x3 = 7x4}.
Find a basis of U .

9. Prove or disprove: there exists a basis (p0, p1, p2, p3) of P3(F)
such that none of the polynomials p0, p1, p2, p3 has degree 2.

10. Suppose that V is finite dimensional, with dimV = n. Prove that
there exist one-dimensional subspaces U1, . . . , Un of V such that

V = U1 ⊕ · · ·⊕Un.
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11. Suppose that V is finite dimensional and U is a subspace of V
such that dimU = dimV . Prove that U = V .

12. Suppose that p0, p1, . . . , pm are polynomials in Pm(F) such that
pj(2) = 0 for each j. Prove that (p0, p1, . . . , pm) is not linearly
independent in Pm(F).

13. Suppose U and W are subspaces of R8 such that dimU = 3,
dimW = 5, and U +W = R8. Prove that U ∩W = {0}.

14. Suppose thatU andW are both five-dimensional subspaces of R9.
Prove that U ∩W �= {0}.

15. You might guess, by analogy with the formula for the number
of elements in the union of three subsets of a finite set, that
if U1, U2, U3 are subspaces of a finite-dimensional vector space,
then

dim(U1 +U2 +U3)

=dimU1 + dimU2 + dimU3

− dim(U1 ∩U2)− dim(U1 ∩U3)− dim(U2 ∩U3)

+ dim(U1 ∩U2 ∩U3).

Prove this or give a counterexample.

16. Prove that if V is finite dimensional andU1, . . . , Um are subspaces
of V , then

dim(U1 + · · · +Um) ≤ dimU1 + · · · + dimUm.

17. Suppose V is finite dimensional. Prove that if U1, . . . , Um are
subspaces of V such that V = U1 ⊕ · · ·⊕Um, then

dimV = dimU1 + · · · + dimUm.

This exercise deepens the analogy between direct sums of sub-
spaces and disjoint unions of subsets. Specifically, compare this
exercise to the following obvious statement: if a finite set is writ-
ten as a disjoint union of subsets, then the number of elements in
the set equals the sum of the number of elements in the disjoint
subsets.
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Exercises

1. Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove
that if dimV = 1 and T ∈ L(V , V), then there exists a ∈ F such
that Tv = av for all v ∈ V .

2. Give an example of a function f : R2 → R such that Exercise 2 shows that

homogeneity alone is

not enough to imply

that a function is a

linear map. Additivity

alone is also not

enough to imply that a

function is a linear

map, although the

proof of this involves

advanced tools that are

beyond the scope of

this book.

f(av) = af(v)

for all a ∈ R and all v ∈ R2 but f is not linear.

3. Suppose that V is finite dimensional. Prove that any linear map
on a subspace of V can be extended to a linear map on V . In
other words, show that if U is a subspace of V and S ∈ L(U,W),
then there exists T ∈ L(V ,W) such that Tu = Su for all u ∈ U .

4. Suppose that T is a linear map from V to F. Prove that if u ∈ V
is not in nullT , then

V = nullT ⊕ {au : a ∈ F}.

5. Suppose that T ∈ L(V ,W) is injective and (v1, . . . , vn) is linearly
independent in V . Prove that (Tv1, . . . , Tvn) is linearly indepen-
dent in W .

6. Prove that if S1, . . . , Sn are injective linear maps such that S1 . . . Sn
makes sense, then S1 . . . Sn is injective.

7. Prove that if (v1, . . . , vn) spans V and T ∈ L(V ,W) is surjective,
then (Tv1, . . . , Tvn) spans W .

8. Suppose that V is finite dimensional and that T ∈ L(V ,W). Prove
that there exists a subspace U of V such that U ∩ nullT = {0}
and rangeT = {Tu : u ∈ U}.

9. Prove that if T is a linear map from F4 to F2 such that

nullT = {(x1, x2, x3, x4) ∈ F4 : x1 = 5x2 and x3 = 7x4},

then T is surjective.
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10. Prove that there does not exist a linear map from F5 to F2 whose
null space equals

{(x1, x2, x3, x4, x5) ∈ F5 : x1 = 3x2 and x3 = x4 = x5}.

11. Prove that if there exists a linear map on V whose null space and
range are both finite dimensional, then V is finite dimensional.

12. Suppose that V and W are both finite dimensional. Prove that
there exists a surjective linear map from V onto W if and only if
dimW ≤ dimV .

13. Suppose that V and W are finite dimensional and that U is a
subspace of V . Prove that there exists T ∈ L(V ,W) such that
nullT = U if and only if dimU ≥ dimV − dimW .

14. Suppose that W is finite dimensional and T ∈ L(V ,W). Prove
that T is injective if and only if there exists S ∈ L(W,V) such
that ST is the identity map on V .

15. Suppose that V is finite dimensional and T ∈ L(V ,W). Prove
that T is surjective if and only if there exists S ∈ L(W,V) such
that TS is the identity map on W .

16. Suppose that U and V are finite-dimensional vector spaces and
that S ∈ L(V ,W), T ∈ L(U,V). Prove that

dim null ST ≤ dim null S + dim nullT .

17. Prove that the distributive property holds for matrix addition
and matrix multiplication. In other words, suppose A, B, and C
are matrices whose sizes are such that A(B + C) makes sense.
Prove that AB +AC makes sense and that A(B + C) = AB +AC .

18. Prove that matrix multiplication is associative. In other words,
suppose A, B, and C are matrices whose sizes are such that
(AB)C makes sense. Prove that A(BC) makes sense and that
(AB)C = A(BC).
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19. Suppose T ∈ L(Fn,Fm) and that This exercise shows

that T has the form

promised on page 39.

M(T) =



a1,1 . . . a1,n

...
...

am,1 . . . am,n


 ,

where we are using the standard bases. Prove that

T(x1, . . . , xn) = (a1,1x1+· · ·+a1,nxn, . . . , am,1x1+· · ·+am,nxn)

for every (x1, . . . , xn) ∈ Fn.

20. Suppose (v1, . . . , vn) is a basis of V . Prove that the function
T : V → Mat(n,1,F) defined by

Tv =M(v)

is an invertible linear map of V onto Mat(n,1,F); here M(v) is
the matrix of v ∈ V with respect to the basis (v1, . . . , vn).

21. Prove that every linear map from Mat(n,1,F) to Mat(m,1,F) is
given by a matrix multiplication. In other words, prove that if
T ∈ L(Mat(n,1,F),Mat(m,1,F)), then there exists an m-by-n
matrix A such that TB = AB for every B ∈ Mat(n,1,F).

22. Suppose that V is finite dimensional and S, T ∈ L(V). Prove that
ST is invertible if and only if both S and T are invertible.

23. Suppose that V is finite dimensional and S, T ∈ L(V). Prove that
ST = I if and only if TS = I.

24. Suppose that V is finite dimensional and T ∈ L(V). Prove that
T is a scalar multiple of the identity if and only if ST = TS for
every S ∈ L(V).

25. Prove that if V is finite dimensional with dimV > 1, then the set
of noninvertible operators on V is not a subspace of L(V). 11:45 am, Jan 11, 2005
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26. Suppose n is a positive integer and ai,j ∈ F for i, j = 1, . . . , n.
Prove that the following are equivalent:

(a) The trivial solution x1 = · · · = xn = 0 is the only solution
to the homogeneous system of equations

n�

k=1

a1,kxk = 0

...
n�

k=1

an,kxk = 0.

(b) For every c1, . . . , cn ∈ F, there exists a solution to the sys-
tem of equations

n�

k=1

a1,kxk = c1

...
n�

k=1

an,kxk = cn.

Note that here we have the same number of equations as vari-
ables.
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Exercises

1. Suppose m and n are positive integers with m ≤ n. Prove that
there exists a polynomial p ∈ Pn(F) with exactly m distinct
roots.

2. Suppose that z1, . . . , zm+1 are distinct elements of F and that
w1, . . . ,wm+1 ∈ F. Prove that there exists a unique polynomial
p ∈ Pm(F) such that

p(zj) = wj
for j = 1, . . . ,m+ 1.

3. Prove that if p,q ∈ P(F), with p �= 0, then there exist unique
polynomials s, r ∈ P(F) such that

q = sp + r

and deg r < degp. In other words, add a uniqueness statement
to the division algorithm (4.5).

4. Suppose p ∈ P(C) has degree m. Prove that p has m distinct
roots if and only if p and its derivative p� have no roots in com-
mon.

5. Prove that every polynomial with odd degree and real coefficients
has a real root.
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Exercises

1. Suppose T ∈ L(V). Prove that if U1, . . . , Um are subspaces of V
invariant under T , then U1 + · · · +Um is invariant under T .

2. Suppose T ∈ L(V). Prove that the intersection of any collection
of subspaces of V invariant under T is invariant under T .

3. Prove or give a counterexample: if U is a subspace of V that is
invariant under every operator on V , then U = {0} or U = V .

4. Suppose that S, T ∈ L(V) are such that ST = TS. Prove that
null(T − λI) is invariant under S for every λ ∈ F.

5. Define T ∈ L(F2) by

T(w,z) = (z,w).

Find all eigenvalues and eigenvectors of T .

6. Define T ∈ L(F3) by

T(z1, z2, z3) = (2z2,0,5z3).

Find all eigenvalues and eigenvectors of T .

7. Suppose n is a positive integer and T ∈ L(Fn) is defined by

T(x1, . . . , xn) = (x1 + · · · + xn, . . . , x1 + · · · + xn);

in other words, T is the operator whose matrix (with respect to
the standard basis) consists of all 1’s. Find all eigenvalues and
eigenvectors of T .

8. Find all eigenvalues and eigenvectors of the backward shift op-
erator T ∈ L(F∞) defined by

T(z1, z2, z3, . . . ) = (z2, z3, . . . ).

9. Suppose T ∈ L(V) and dim rangeT = k. Prove that T has at
most k+ 1 distinct eigenvalues.

10. Suppose T ∈ L(V) is invertible and λ ∈ F \ {0}. Prove that λ is
an eigenvalue of T if and only if 1

λ is an eigenvalue of T−1.
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11. Suppose S, T ∈ L(V). Prove that ST and TS have the same eigen-
values.

12. Suppose T ∈ L(V) is such that every vector in V is an eigenvector
of T . Prove that T is a scalar multiple of the identity operator.

13. Suppose T ∈ L(V) is such that every subspace of V with di-
mension dimV − 1 is invariant under T . Prove that T is a scalar
multiple of the identity operator.

14. Suppose S, T ∈ L(V) and S is invertible. Prove that if p ∈ P(F)
is a polynomial, then

p(STS−1) = Sp(T)S−1.

15. Suppose F = C, T ∈ L(V), p ∈ P(C), and a ∈ C. Prove that a is
an eigenvalue of p(T) if and only if a = p(λ) for some eigenvalue
λ of T .

16. Show that the result in the previous exercise does not hold if C
is replaced with R .

17. Suppose V is a complex vector space and T ∈ L(V). Prove
that T has an invariant subspace of dimension j for each j =
1, . . . ,dimV .

18. Give an example of an operator whose matrix with respect to These two exercises

show that 5.16 fails

without the hypothesis

that an upper-

triangular matrix is

under consideration.

some basis contains only 0’s on the diagonal, but the operator is
invertible.

19. Give an example of an operator whose matrix with respect to
some basis contains only nonzero numbers on the diagonal, but
the operator is not invertible.

20. Suppose that T ∈ L(V) has dimV distinct eigenvalues and that
S ∈ L(V) has the same eigenvectors as T (not necessarily with
the same eigenvalues). Prove that ST = TS.

21. Suppose P ∈ L(V) and P2 = P . Prove that V = nullP ⊕ rangeP .

22. Suppose V = U⊕W , where U andW are nonzero subspaces of V .
Find all eigenvalues and eigenvectors of PU,W .
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23. Give an example of an operator T ∈ L(R4) such that T has no
(real) eigenvalues.

24. Suppose V is a real vector space and T ∈ L(V) has no eigenval-
ues. Prove that every subspace of V invariant under T has even
dimension.
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Exercises

1. Prove that if x,y are nonzero vectors in R2, then

�x,y� = �x��y� cosθ,

where θ is the angle between x and y (thinking of x and y as
arrows with initial point at the origin). Hint: draw the triangle
formed by x, y , and x −y ; then use the law of cosines.

2. Suppose u,v ∈ V . Prove that �u,v� = 0 if and only if

�u� ≤ �u+ av�
for all a ∈ F.

3. Prove that � n�

j=1

ajbj
�2 ≤

� n�

j=1

jaj2
�� n�

j=1

bj2

j

�

for all real numbers a1, . . . , an and b1, . . . , bn.

4. Suppose u,v ∈ V are such that

�u� = 3, �u+ v� = 4, �u− v� = 6.

What number must �v� equal?

5. Prove or disprove: there is an inner product on R2 such that the
associated norm is given by

�(x1, x2)� = |x1| + |x2|
for all (x1, x2) ∈ R2.

6. Prove that if V is a real inner-product space, then

�u,v� = �u+ v�2 − �u− v�2

4

for all u,v ∈ V .

7. Prove that if V is a complex inner-product space, then

�u,v� = �u+ v�2 − �u− v�2 + �u+ iv�2i− �u− iv�2i
4

for all u,v ∈ V .
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8. A norm on a vector space U is a function � � : U → [0,∞) such
that �u� = 0 if and only if u = 0, �αu� = |α|�u� for all α ∈ F
and all u ∈ U , and �u+ v� ≤ �u�+ �v� for all u,v ∈ U . Prove
that a norm satisfying the parallelogram equality comes from
an inner product (in other words, show that if � � is a norm
on U satisfying the parallelogram equality, then there is an inner
product � , � on U such that �u� = �u,u�1/2 for all u ∈ U ).

9. Suppose n is a positive integer. Prove that This orthonormal list is

often used for

modeling periodic

phenomena such as

tides.

� 1√
2π

,
sinx√
π
,
sin 2x√
π

, . . . ,
sinnx√
π

,
cosx√
π
,
cos 2x√
π

, . . . ,
cosnx√

π

�

is an orthonormal list of vectors in C[−π ,π], the vector space of
continuous real-valued functions on [−π ,π] with inner product

�f , g� =
� π
−π
f(x)g(x)dx.

10. On P2(R), consider the inner product given by

�p,q� =
� 1

0
p(x)q(x)dx.

Apply the Gram-Schmidt procedure to the basis (1, x, x2) to pro-
duce an orthonormal basis of P2(R).

11. What happens if the Gram-Schmidt procedure is applied to a list
of vectors that is not linearly independent?

12. Suppose V is a real inner-product space and (v1, . . . , vm) is a
linearly independent list of vectors in V . Prove that there exist
exactly 2m orthonormal lists (e1, . . . , em) of vectors in V such
that

span(v1, . . . , vj) = span(e1, . . . , ej)

for all j ∈ {1, . . . ,m}.
13. Suppose (e1, . . . , em) is an orthonormal list of vectors in V . Let

v ∈ V . Prove that

�v�2 = |�v, e1�|2 + · · · + |�v, em�|2

if and only if v ∈ span(e1, . . . , em).
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14. Find an orthonormal basis of P2(R) (with inner product as in
Exercise 10) such that the differentiation operator (the operator
that takes p to p�) on P2(R) has an upper-triangular matrix with
respect to this basis.

15. Suppose U is a subspace of V . Prove that

dimU⊥ = dimV − dimU.

16. Suppose U is a subspace of V . Prove that U⊥ = {0} if and only if
U = V .

17. Prove that if P ∈ L(V) is such that P2 = P and every vector
in nullP is orthogonal to every vector in rangeP , then P is an
orthogonal projection.

18. Prove that if P ∈ L(V) is such that P2 = P and

�Pv� ≤ �v�
for every v ∈ V , then P is an orthogonal projection.

19. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if PUTPU = TPU .

20. Suppose T ∈ L(V) and U is a subspace of V . Prove that U and
U⊥ are both invariant under T if and only if PUT = TPU .

21. In R4, let
U = span

�
(1,1,0,0), (1,1,1,2)

�
.

Find u ∈ U such that �u− (1,2,3,4)� is as small as possible.

22. Find p ∈ P3(R) such that p(0) = 0, p�(0) = 0, and
� 1

0
|2+ 3x − p(x)|2 dx

is as small as possible.

23. Find p ∈ P5(R) that makes
� π
−π
| sinx − p(x)|2 dx

as small as possible. (The polynomial 6.40 is an excellent approx-
imation to the answer to this exercise, but here you are asked to
find the exact solution, which involves powers of π . A computer
that can perform symbolic integration will be useful.)
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24. Find a polynomial q ∈ P2(R) such that

p(
1
2
) =

� 1

0
p(x)q(x)dx

for every p ∈ P2(R).

25. Find a polynomial q ∈ P2(R) such that
� 1

0
p(x)(cosπx)dx =

� 1

0
p(x)q(x)dx

for every p ∈ P2(R).

26. Fix a vector v ∈ V and define T ∈ L(V ,F) by Tu = �u,v�. For
a ∈ F, find a formula for T∗a.

27. Suppose n is a positive integer. Define T ∈ L(Fn) by

T(z1, . . . , zn) = (0, z1, . . . , zn−1).

Find a formula for T∗(z1, . . . , zn).

28. Suppose T ∈ L(V) and λ ∈ F. Prove that λ is an eigenvalue of T
if and only if λ̄ is an eigenvalue of T∗.

29. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if U⊥ is invariant under T∗.

30. Suppose T ∈ L(V ,W). Prove that

(a) T is injective if and only if T∗ is surjective;

(b) T is surjective if and only if T∗ is injective.

31. Prove that

dim nullT∗ = dim nullT + dimW − dimV

and
dim rangeT∗ = dim rangeT

for every T ∈ L(V ,W).
32. Suppose A is an m-by-n matrix of real numbers. Prove that the

dimension of the span of the columns of A (in Rm) equals the
dimension of the span of the rows of A (in Rn).
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Exercises

1. Make P2(R) into an inner-product space by defining

�p,q� =
� 1

0
p(x)q(x)dx.

Define T ∈ L(P2(R)) by T(a0 + a1x + a2x2) = a1x.

(a) Show that T is not self-adjoint.

(b) The matrix of T with respect to the basis (1, x,x2) is



0 0 0
0 1 0
0 0 0


 .

This matrix equals its conjugate transpose, even though T
is not self-adjoint. Explain why this is not a contradiction.

2. Prove or give a counterexample: the product of any two self-
adjoint operators on a finite-dimensional inner-product space is
self-adjoint.

3. (a) Show that if V is a real inner-product space, then the set
of self-adjoint operators on V is a subspace of L(V).

(b) Show that if V is a complex inner-product space, then the
set of self-adjoint operators on V is not a subspace of
L(V).

4. Suppose P ∈ L(V) is such that P2 = P . Prove that P is an orthog-
onal projection if and only if P is self-adjoint.

5. Show that if dimV ≥ 2, then the set of normal operators on V is
not a subspace of L(V).

6. Prove that if T ∈ L(V) is normal, then

rangeT = rangeT∗.

7. Prove that if T ∈ L(V) is normal, then

nullTk = nullT and rangeTk = rangeT

for every positive integer k.



Exercises 159

8. Prove that there does not exist a self-adjoint operator T ∈ L(R3)
such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

9. Prove that a normal operator on a complex inner-product space Exercise 9 strengthens

the analogy (for normal

operators) between

self-adjoint operators

and real numbers.

is self-adjoint if and only if all its eigenvalues are real.

10. Suppose V is a complex inner-product space and T ∈ L(V) is a
normal operator such that T 9 = T 8. Prove that T is self-adjoint
and T 2 = T .

11. Suppose V is a complex inner-product space. Prove that every
normal operator on V has a square root. (An operator S ∈ L(V)
is called a square root of T ∈ L(V) if S2 = T .)

12. Give an example of a real inner-product space V and T ∈ L(V) This exercise shows

that the hypothesis

that T is self-adjoint is

needed in 7.11, even

for real vector spaces.

and real numbers α,β with α2 < 4β such that T 2 + αT + βI is
not invertible.

13. Prove or give a counterexample: every self-adjoint operator on
V has a cube root. (An operator S ∈ L(V) is called a cube root
of T ∈ L(V) if S3 = T .)

14. Suppose T ∈ L(V) is self-adjoint, λ ∈ F, and � > 0. Prove that if
there exists v ∈ V such that �v� = 1 and

�Tv − λv� < �,

then T has an eigenvalue λ� such that |λ− λ�| < �.

15. Suppose U is a finite-dimensional real vector space and T ∈
L(U). Prove that U has a basis consisting of eigenvectors of T if
and only if there is an inner product on U that makes T into a
self-adjoint operator.

16. Give an example of an operator T on an inner product space such This exercise shows

that 7.18 can fail

without the hypothesis

that T is normal.

that T has an invariant subspace whose orthogonal complement
is not invariant under T .

17. Prove that the sum of any two positive operators on V is positive.

18. Prove that if T ∈ L(V) is positive, then so is Tk for every positive
integer k.
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19. Suppose that T is a positive operator on V . Prove that T is in-
vertible if and only if

�Tv,v� > 0

for every v ∈ V \ {0}.

20. Prove or disprove: the identity operator on F2 has infinitely many
self-adjoint square roots.

21. Prove or give a counterexample: if S ∈ L(V) and there exists
an orthonormal basis (e1, . . . , en) of V such that �Sej� = 1 for
each ej , then S is an isometry.

22. Prove that if S ∈ L(R3) is an isometry, then there exists a nonzero
vector x ∈ R3 such that S2x = x.

23. Define T ∈ L(F3) by

T(z1, z2, z3) = (z3,2z1,3z2).

Find (explicitly) an isometry S ∈ L(F3) such that T = S√T∗T .

24. Suppose T ∈ L(V), S ∈ L(V) is an isometry, and R ∈ L(V) is aExercise 24 shows that

if we write T as the

product of an isometry

and a positive operator

(as in the polar

decomposition), then

the positive operator

must equal
√
T∗T .

positive operator such that T = SR. Prove that R = √T∗T .

25. Suppose T ∈ L(V). Prove that T is invertible if and only if there
exists a unique isometry S ∈ L(V) such that T = S√T∗T .

26. Prove that if T ∈ L(V) is self-adjoint, then the singular values
of T equal the absolute values of the eigenvalues of T (repeated
appropriately).

27. Prove or give a counterexample: if T ∈ L(V), then the singular
values of T 2 equal the squares of the singular values of T .

28. Suppose T ∈ L(V). Prove that T is invertible if and only if 0 is
not a singular value of T .

29. Suppose T ∈ L(V). Prove that dim rangeT equals the number of
nonzero singular values of T .

30. Suppose S ∈ L(V). Prove that S is an isometry if and only if all
the singular values of S equal 1.
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31. Suppose T1, T2 ∈ L(V). Prove that T1 and T2 have the same
singular values if and only if there exist isometries S1, S2 ∈ L(V)
such that T1 = S1T2S2.

32. Suppose T ∈ L(V) has singular-value decomposition given by

Tv = s1�v, e1�f1 + · · · + sn�v, en�fn

for every v ∈ V , where s1, . . . , sn are the singular values of T and
(e1, . . . , en) and (f1, . . . , fn) are orthonormal bases of V .

(a) Prove that

T∗v = s1�v, f1�e1 + · · · + sn�v, fn�en

for every v ∈ V .

(b) Prove that if T is invertible, then

T−1v = �v, f1�e1

s1
+ · · · + �v, fn�en

sn

for every v ∈ V .

33. Suppose T ∈ L(V). Let ŝ denote the smallest singular value of T ,
and let s denote the largest singular value of T . Prove that

ŝ�v� ≤ �Tv� ≤ s�v�

for every v ∈ V .

34. Suppose T �, T �� ∈ L(V). Let s� denote the largest singular value
of T �, let s�� denote the largest singular value of T ��, and let s
denote the largest singular value of T �+T ��. Prove that s ≤ s�+s��.
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Exercises

1. Define T ∈ L(C2) by

T(w,z) = (z,0).

Find all generalized eigenvectors of T .

2. Define T ∈ L(C2) by

T(w,z) = (−z,w).

Find all generalized eigenvectors of T .

3. Suppose T ∈ L(V), m is a positive integer, and v ∈ V is such
that Tm−1v �= 0 but Tmv = 0. Prove that

(v, Tv, T 2v, . . . , Tm−1v)

is linearly independent.

4. Suppose T ∈ L(C3) is defined by T(z1, z2, z3) = (z2, z3,0). Prove
that T has no square root. More precisely, prove that there does
not exist S ∈ L(C3) such that S2 = T .

5. Suppose S, T ∈ L(V). Prove that if ST is nilpotent, then TS is
nilpotent.

6. Suppose N ∈ L(V) is nilpotent. Prove (without using 8.26) that
0 is the only eigenvalue of N .

7. Suppose V is an inner-product space. Prove that if N ∈ L(V) is
self-adjoint and nilpotent, then N = 0.

8. Suppose N ∈ L(V) is such that nullNdimV−1 �= nullNdimV . Prove
that N is nilpotent and that

dim nullNj = j

for every integer j with 0 ≤ j ≤ dimV .

9. Suppose T ∈ L(V) and m is a nonnegative integer such that

rangeTm = rangeTm+1.

Prove that rangeTk = rangeTm for all k > m.
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10. Prove or give a counterexample: if T ∈ L(V), then

V = nullT ⊕ rangeT .

11. Prove that if T ∈ L(V), then

V = nullTn ⊕ rangeTn,

where n = dimV .

12. Suppose V is a complex vector space, N ∈ L(V), and 0 is the only
eigenvalue of N . Prove that N is nilpotent. Give an example to
show that this is not necessarily true on a real vector space.

13. Suppose that V is a complex vector space with dimV = n and
T ∈ L(V) is such that

nullTn−2 �= nullTn−1.

Prove that T has at most two distinct eigenvalues.

14. Give an example of an operator on C4 whose characteristic poly-
nomial equals (z − 7)2(z − 8)2.

15. Suppose V is a complex vector space. Suppose T ∈ L(V) is such
that 5 and 6 are eigenvalues of T and that T has no other eigen-
values. Prove that

(T − 5I)n−1(T − 6I)n−1 = 0,

where n = dimV .

16. Suppose V is a complex vector space and T ∈ L(V). Prove that For complex vector

spaces, this exercise

adds another

equivalence to the list

given by 5.21.

V has a basis consisting of eigenvectors of T if and only if every
generalized eigenvector of T is an eigenvector of T .

17. Suppose V is an inner-product space and N ∈ L(V) is nilpotent.
Prove that there exists an orthonormal basis of V with respect to
which N has an upper-triangular matrix.

18. Define N ∈ L(F5) by

N(x1, x2, x3, x4, x5) = (2x2,3x3,−x4,4x5,0).

Find a square root of I +N .
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19. Prove that if V is a complex vector space, then every invertible
operator on V has a cube root.

20. Suppose T ∈ L(V) is invertible. Prove that there exists a polyno-
mial p ∈ P(F) such that T−1 = p(T).

21. Give an example of an operator on C3 whose minimal polynomial
equals z2.

22. Give an example of an operator on C4 whose minimal polynomial
equals z(z − 1)2.

23. Suppose V is a complex vector space and T ∈ L(V). Prove thatFor complex vector

spaces, this exercise

adds another

equivalence to the list

given by 5.21.

V has a basis consisting of eigenvectors of T if and only if the
minimal polynomial of T has no repeated roots.

24. Suppose V is an inner-product space. Prove that if T ∈ L(V) is
normal, then the minimal polynomial of T has no repeated roots.

25. Suppose T ∈ L(V) and v ∈ V . Let p be the monic polynomial of
smallest degree such that

p(T)v = 0.

Prove that p divides the minimal polynomial of T .

26. Give an example of an operator on C4 whose characteristic and
minimal polynomials both equal z(z − 1)2(z − 3).

27. Give an example of an operator on C4 whose characteristic poly-
nomial equals z(z − 1)2(z − 3) and whose minimal polynomial
equals z(z − 1)(z − 3).

28. Suppose a0, . . . , an−1 ∈ C. Find the minimal and characteristicThis exercise shows

that every monic

polynomial is the

characteristic

polynomial of some

operator.

polynomials of the operator on Cn whose matrix (with respect to
the standard basis) is




0 −a0

1 0 −a1

1
. . . −a2

. . .
...

0 −an−2

1 −an−1




.
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This equation, along with 9.23, shows that dimV = dimU . Because U
is a subspace of V , this implies that V = U . In other words,

V = U1 + · · · +Um + V1 + · · · + VM.

This equation, along with 9.23, allows us to use 2.19 to conclude that
(a) holds, completing the proof.
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Exercises

1. Prove that 1 is an eigenvalue of every square matrix with the
property that the sum of the entries in each row equals 1.

2. Consider a 2-by-2 matrix of real numbers

A =
�
a c
b d

�
.

Prove that A has an eigenvalue (in R) if and only if

(a− d)2 + 4bc ≥ 0.

3. Suppose A is a block diagonal matrix

A =



A1 0

. . .

0 Am


 ,

where each Aj is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of A1, . . . , Am.

4. Suppose A is a block upper-triangular matrixClearly Exercise 4 is a

stronger statement

than Exercise 3. Even

so, you may want to do

Exercise 3 first because

it is easier than

Exercise 4.

A =



A1 ∗

. . .

0 Am


 ,

where each Aj is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of A1, . . . , Am.

5. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that T 2 + αT + βI = 0. Prove that T has an eigenvalue
if and only if α2 ≥ 4β.

6. Suppose V is a real inner-product space and T ∈ L(V). Prove
that there is an orthonormal basis of V with respect to which T
has a block upper-triangular matrix



A1 ∗

. . .

0 Am


 ,

where eachAj is a 1-by-1 matrix or a 2-by-2 matrix with no eigen-
values.
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7. Prove that if T ∈ L(V) and j is a positive integer such that
j ≤ dimV , then T has an invariant subspace whose dimension
equals j − 1 or j.

8. Prove that there does not exist an operator T ∈ L(R7) such that
T 2 + T + I is nilpotent.

9. Give an example of an operator T ∈ L(C7) such that T 2 + T + I
is nilpotent.

10. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that α2 < 4β. Prove that

null(T 2 +αT + βI)k

has even dimension for every positive integer k.

11. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that α2 < 4β and T 2 +αT + βI is nilpotent. Prove that
dimV is even and

(T 2 +αT + βI)dimV/2 = 0.

12. Prove that if T ∈ L(R3) and 5,7 are eigenvalues of T , then T has
no eigenpairs.

13. Suppose V is a real vector space with dimV = n and T ∈ L(V)
is such that

nullTn−2 �= nullTn−1.

Prove that T has at most two distinct eigenvalues and that T has
no eigenpairs.

14. Suppose V is a vector space with dimension 2 and T ∈ L(V). You do not need to find

the eigenvalues of T to

do this exercise. As

usual unless otherwise

specified, here V may

be a real or complex

vector space.

Prove that if �
a c
b d

�

is the matrix of T with respect to some basis of V , then the char-
acteristic polynomial of T equals (z − a)(z − d)− bc.

15. Suppose V is a real inner-product space and S ∈ L(V) is an isom-
etry. Prove that if (α,β) is an eigenpair of S, then β = 1.
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Exercises

1. Suppose T ∈ L(V) and (v1, . . . , vn) is a basis of V . Prove that
M�T , (v1, . . . , vn)

�
is invertible if and only if T is invertible.

2. Prove that if A and B are square matrices of the same size and
AB = I, then BA = I.

3. Suppose T ∈ L(V) has the same matrix with respect to every ba-
sis of V . Prove that T is a scalar multiple of the identity operator.

4. Suppose that (u1, . . . , un) and (v1, . . . , vn) are bases of V . Let
T ∈ L(V) be the operator such that Tvk = uk for k = 1, . . . , n.
Prove that

M�T , (v1, . . . , vn)
� =M�I, (u1, . . . , un), (v1, . . . , vn)

�
.

5. Prove that if B is a square matrix with complex entries, then there
exists an invertible square matrix A with complex entries such
that A−1BA is an upper-triangular matrix.

6. Give an example of a real vector space V and T ∈ L(V) such that
trace(T 2) < 0.

7. Suppose V is a real vector space, T ∈ L(V), and V has a basis
consisting of eigenvectors of T . Prove that trace(T 2) ≥ 0.

8. Suppose V is an inner-product space and v,w ∈ L(V). Define
T ∈ L(V) by Tu = �u,v�w. Find a formula for traceT .

9. Prove that if P ∈ L(V) satisfies P2 = P , then traceP is a nonneg-
ative integer.

10. Prove that if V is an inner-product space and T ∈ L(V), then

traceT∗ = traceT .

11. Suppose V is an inner-product space. Prove that if T ∈ L(V) is
a positive operator and traceT = 0, then T = 0.
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12. Suppose T ∈ L(C3) is the operator whose matrix is



51 −12 −21
60 −40 −28
57 −68 1


 .

Someone tells you (accurately) that −48 and 24 are eigenvalues
of T . Without using a computer or writing anything down, find
the third eigenvalue of T .

13. Prove or give a counterexample: if T ∈ L(V) and c ∈ F, then
trace(cT) = c traceT .

14. Prove or give a counterexample: if S, T ∈ L(V), then trace(ST) =
(traceS)(traceT).

15. Suppose T ∈ L(V). Prove that if trace(ST) = 0 for all S ∈ L(V),
then T = 0.

16. Suppose V is an inner-product space and T ∈ L(V). Prove that
if (e1, . . . , en) is an orthonormal basis of V , then

trace(T∗T) = �Te1�2 + · · · + �Ten�2.

Conclude that the right side of the equation above is independent
of which orthonormal basis (e1, . . . , en) is chosen for V .

17. Suppose V is a complex inner-product space and T ∈ L(V). Let
λ1, . . . ,λn be the eigenvalues of T , repeated according to multi-
plicity. Suppose 


a1,1 . . . a1,n

...
...

an,1 . . . an,n




is the matrix of T with respect to some orthonormal basis of V .
Prove that

|λ1|2 + · · · + |λn|2 ≤
n�

k=1

n�

j=1

|aj,k|2.

18. Suppose V is an inner-product space. Prove that

�S, T� = trace(ST∗)

defines an inner product on L(V).
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19. Suppose V is an inner-product space and T ∈ L(V). Prove thatExercise 19 fails on

infinite-dimensional

inner-product spaces,

leading to what are

called hyponormal

operators, which have a

well-developed theory.

if
�T∗v� ≤ �Tv�

for every v ∈ V , then T is normal.

20. Prove or give a counterexample: if T ∈ L(V) and c ∈ F, then
det(cT) = cdimV detT .

21. Prove or give a counterexample: if S, T ∈ L(V), then det(S+T) =
detS + detT .

22. Suppose A is a block upper-triangular matrix

A =



A1 ∗

. . .

0 Am


 ,

where each Aj along the diagonal is a square matrix. Prove that

detA = (detA1) . . . (detAm).

23. Suppose A is an n-by-n matrix with real entries. Let S ∈ L(Cn)
denote the operator on Cn whose matrix equals A, and let T ∈
L(Rn) denote the operator on Rn whose matrix equals A. Prove
that traceS = traceT and detS = detT .

24. Suppose V is an inner-product space and T ∈ L(V). Prove that

detT∗ = detT .

Use this to prove that |detT | = det
√
T∗T , giving a different

proof than was given in 10.37.

25. Let a,b, c be positive numbers. Find the volume of the ellipsoid

�
(x,y, z) ∈ R3 :

x2

a2
+ y

2

b2
+ z

2

c2
< 1

�

by finding a set Ω ⊂ R3 whose volume you know and an operator
T ∈ L(R3) such that T(Ω) equals the ellipsoid above.


