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Abstract
We obtain the standard quadrature-phase positive operator-valued measure
(POVM) for homodyne detection directly and rigorously from the POVM for
photon counting without directly employing the mean field approximation for
the local oscillator. In addition, we obtain correction terms for the quadrature-
phase POVM that are applicable for relatively weak local oscillator field
strengths and typical signal states.

PACS numbers: 42.50.Ar, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the advent of squeezed states of light [1], a full quantum description of optical homodyne
detection [1–4] assumed importance as homodyne detection (HD) yields phase-dependent
measurements of the light field. Whereas photodetectors acquire phase-insensitive information
about photon statistics [5, 6], homodyne detection mixes the signal field with a coherent
local oscillator (LO) to yield photon statistics on the output fields that depend on the phase
ϕ of the LO. By varying this phase ϕ, phase-dependent properties of the signal state ρ̂

can be inferred. The phase-sensitive measurement with respect to the in-phase quadrature
x or its canonically conjugate out-of-phase quadrature p, or some in-between quadrature
xϕ ≡ pϕ−π/2 ≡ x cos ϕ + p sin ϕ, is necessary to observe the nonclassical properties of
squeezed light. Phase-sensitive measurement has developed beyond measuring specific
quadrature-phase statistics to acquiring information for many values of ϕ and reconstructing the
density matrix ρ̂ for the signal field. This technique, known as optical homodyne tomography
[7], illustrates another important application of homodyne detection. Homodyne detection has
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Figure 1. Balanced homodyne detection scheme: (a) the input state |ψ〉 is mixed with a LO in
coherent state |α〉, and photon counting occurs at the two output ports and (b) photon numbers
j ± m′ are shown entering the two input ports and j ± m are counted at the output.

evolved into a key tool of quantum optics with applications including squeezed light detection,
optical homodyne tomography and continuous variable quantum teleportation [8–10].

The homodyne detection scheme discussed above involves mixing the signal field with a
LO field at a beam splitter (BS), and the two output fields are subjected to photodetection, as
shown in figure 1. The measured photodetection statistics are analysed to infer the quadrature-
phase statistics. Only in the limit of infinite LO field strengths can the measurement be said
to correspond to quadrature-phase measurements, and, of course, this limit is in principle
unattainable. However, a good approximation to quadrature-phase measurements is attained.
In the most useful variant, a 50/50 BS is used, and the difference between the photocounts at
the two output ports is used to infer the quadrature-phase statistics. This is known as balanced
homodyne detection (BHD) and has the advantage of automatically cancelling the photon
number sum at the two input ports from the detected output fields.

The description of homodyne detection begins with photodetection of the output fields and
then, to validate the approximations normally applied in homodyne detection of quadrature-
phase POVM, must show that the resultant two-mode photon statistic reduces in some way
to the quadrature-phase distribution, for the signal field ρ̂. This connection between photon
statistics to quadrature-phase, or joint quadrature-phase measurements has been established
via calculations involving quasi-probability distributions or characteristic functions (moment-
generating functions) for the electromagnetic field and allowing the local oscillator strength to
become infinitely large. Yuen and Shapiro introduced the characteristic function approach in
their seminal quantum theory of HD [2], and Walker employs Wigner functions in his analysis
of HD [11]. Braunstein [12] uses the positive P representation in the description of the
photon counting statistics, and he emphasizes the quantum nature of the LO as he investigates
‘the effects of a finite-amplitude fully-quantum-mechanical local oscillator’. Banaszek and
Wódkiewicz [13] calculate moments of operationally defined quadrature operators, with an
emphasis on finite photodetection efficiency, but in contrast to our approach, employ the mean
field approximation to the LO from the outset.

These studies undoubtedly establish the connection between the exact photodetection
statistics and the approximate quadrature-phase HD. However, modern applications of
homodyne detection, for example to quantum information applications such as continuous-
variable quantum teleportation, requires an operational quantum theoretic approach [14];
Banaszek and Wódkiewicz advocate the operational approach, but here we avoid the mean
field approximation and thereby include correction terms for the POVM corresponding to
HD. The operational approach is important in the context that a measurement may be applied
for some purpose other than characterizing the state ρ̂; paradoxically, in continuous-variable
quantum teleportation [9, 10], the sender mixes the field described by density operator ρ̂ with
one component of a two-mode squeezed vacuum state [15] in such a way that the sender
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cannot know, even in principle, what the density operator ρ̂ was that is being subjected to this
measurement. For such applications, a rigorous approach to homodyne measurement, which
demonstrates that the POVM for photodetection reduces to the POVM for quadrature-phase or
joint quadrature-phase measurements, is necessary. Here, we establish this connection between
actual and convenient POVMs by directly calculating the photon counting probabilities using
two different approaches: (i) working in the Fock basis for the Hilbert space of the signal and
LO modes, we employ asymptotic expressions for SU(2) Wigner functions that are the BS
matrix elements in the Fock basis; (ii) working in the over-complete basis of coherent states
and taking advantage of the simple transformation of coherent states at the BS, we employ the
Glauber–Sudarshan P function.

2. Balanced homodyne detection scheme

A balanced homodyne detection scheme is depicted in figure 1(a). The (generally mixed)
signal state ρ̂ to be measured is coherently mixed at the BS with a LO assumed to be in a
coherent state (in the optical domain a coherent state with an absolute adjustable phase has not
been achieved, but the coherent state approach leads to correct measured results provided that
the signal field and LO field are derived from the same source [14,16]). The photon number
difference from the two BS output ports is measured. The photon number sum can also be
measured but usually is not. However, in our analysis we include the treatment of both the
difference and the sum as this is a more complete description than considering the difference
alone. We will denote the photon number difference by 2m ∈ Z and the sum by 2j ∈ Z.

The Hilbert space of two modes of electromagnetic field has the basis {|n1〉 ⊗ |n2〉}
of joint eigenstates of the photon number operators n̂1 = â

†
1â1 and n̂2 = â

†
2â2. Denoting

j = (n1 + n2)/2,m = (n1 − n2)/2, we will use the notation |jm〉 ≡ |n1〉 ⊗ |n2〉. Thus, the
state |jm〉 is the number states with photon numbers j ± m at modes 1 and 2, respectively.
The value of j can be any non negative half integer and m can get values −j,−j + 1, . . . , j

for a given j .

2.1. Beam splitter transformation

The beam splitter action on a two-mode state of electromagnetic field is given by the SU(2)
transformation [17–19]

B̂(ϕ1, ϕ2, ϕ3) = e−iϕ1Ĵ z e−iϕ2Ĵ y e−iϕ3Ĵ z (1)

where the SU(2) generators Ĵ y, Ĵ z are expressed in the Schwinger boson representation as

Ĵ y = − i
2

(
â
†
1â2 − â

†
2â1

)
Ĵ z = 1

2

(
â
†
1â1 − â

†
2â2

)
. (2)

An input state |jm〉 is transformed under the BS action as

B̂(ϕ1, ϕ2, ϕ3)|jm〉 =
∑
m′

e−i(mϕ3+m′ϕ1)d
j

m′m(ϕ2)|jm′〉 (3)

where m′ in the sum runs from −j to j with unit steps and d
j

m′m(ϕ2) = 〈jm′|e−iϕ2Ĵ y |jm〉 are
the SU(2) Wigner functions [20].

On the other hand, coherent states are transformed in a very simple way on BS. If the
initial two-mode coherent state is |α1〉 ⊗ |α2〉, where

|αi〉 = e−|αi |2/2
∞∑

n=0

αn
i√
n!

|n〉 (4)
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then the BS output state is again a two-mode coherent state with amplitudes α′
1, α

′
2:

B̂(ϕ1, ϕ2, ϕ3)|α1〉 ⊗ |α2〉 = |α′
1〉 ⊗ |α′

2〉 (5)

with α′
1 = e−iϕ1/2(α1 cos ϕ2 e−iϕ3/2 − α2 sin ϕ2 eiϕ3/2) and α′

2 = eiϕ1/2(α1 sin ϕ2 e−iϕ3/2 +
α2 cos ϕ2 eiϕ3/2). This simple transformation is a key reason for the usefulness of the Glauber–
Sudarshan P function in describing homodyne detection.

For the rest of the paper, we will consider BHD with no phase factors, so we set
ϕ1 = 0, ϕ2 = π/2, ϕ3 = 0. Ideally, the LO is prepared in the pure coherent state with
amplitude α, and is directed into port 1 of BS. The unknown signal field described by the
density operator ρ̂ enters the second input port. The total state of the two modes before
entering BS is then

ρ̂in = |α〉〈α| ⊗ ρ̂. (6)

The beam splitter transforms the input state into

ρ̂out = B̂ρ̂inB̂
†. (7)

The probability of detecting j + m and j − m photons at the two BS outputs is then

P j
m = Tr(ρ̂out|jm〉〈jm|) = 〈jm|B̂ρ̂inB̂

†|jm〉. (8)

The probability P
j
m can be expressed as

P j
m = Tr

(
ρ̂outÊ

j

m

)
. (9)

where the POVM Êj
m = |jm〉〈jm| satisfies the completeness condition

∑
m,j Êj

m = 11

and positivity condition Tr
(
ρ̂inÊj

m

)
� 0. The importance of the photon number difference

measurement and its relation to phase measurements has been emphasized for many years,
including in early work on phase operators in two-mode systems [21]. If the total photon sum
2j is not measured in BHD and only the difference 2m is observed, the appropriate POVM is

Êm =
∞∑

j=|m|,|m|+1,...

|jm〉〈jm|

=
∞∑

j=|m|,|m|+1,...

|j + m〉1〈j + m| ⊗ |j − m〉2〈j − m|

× |N/2 + m〉1〈N/2 + m| ⊗ |N/2 − m〉2〈N/2 − m| (10)

where the subscripts refer to the output ports of BS. However, we consider here the more
valuable case when both m and j are measured.

3. Asymptotic SU(2) Wigner function approach

In this section, we derive the photon counting probability P
j
m in the strong LO limit using the

asymptotic formulae for SU(2) Wigner functions. Let ρ̂ be the density operator describing
the signal state and let the coherent amplitude of the LO be α = −A with A real and positive.
We now prove the following theorem:

Theorem 1. For A very large (in the limit A → ∞), which means a very strong LO, the
photon counting probability P

j
m is given by

P j
m = e−(2j−A2)2/2A2

√
πA2

〈x|ρ̂|x〉 (11)
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where |x〉 is the eigenstate of the quadrature operator x̂ = (â + â†)/
√

2 with the eigenvalue
x = m/

√
j .

Proof. We assume a pure signal state first, ρ̂ = |ψ〉〈ψ | with |ψ〉 = ∑∞
n=0 ψn|n〉. The photon

counting probability P
j
m is given by the square of the magnitude of the probability amplitude

M
j
m for j ± m photons emerging from the first/second interferometer output port,

Mj
m = 〈jm|B̂(0, π/2, 0)| − A〉1|ψ〉2 = e−A2/2

2j∑
n=0

ψn

(−A)2j−n

√
(2j − n)!

d
j

m,j−n(π/2). (12)

For A → ∞, the probability distribution of the total photon number 2j is dominated by
the Poissonian distribution of the photon number in the LO, so 2j is sharply peaked at A2.
Further, the photon number difference 2m at the BS output is much less than 2j and also
n 
 2j holds for any photon number n for which ψn is non-negligible. This enables us to
use several approximations. First, the fraction in equation (12) can be approximated via the
Stirling formula and the Taylor expansion and by neglecting terms of order n2/j, n/j and
higher. These approximations yield

(−A)2j−n

√
(2j − n)!

≈ (−1)2j−n

4
√

4πj
eA2/2−(2j−A2)2/4A2

. (13)

The condition n 
 2j justifies the following asymptotic expression for d
j

m,j−n(π/2) that holds
for n 
 j [20] and is central to the calculation:

d
j

m,j−n(π/2) = (−1)nj−1/4un

(√
j arcsin

m

j

)
≈ (−1)nj−1/4un(m/

√
j). (14)

Here un(x) = 〈x|n〉 denotes the nth Hermite Gaussian, that is, the x representation of the
number state |n〉. The approximation

√
j arcsin(m/j) ≈ m/

√
j is valid for |m| 
 j .

Substituting equations (13) and (14) into equation (12) and approximating j by A2/2 in the
denominator, we obtain

Mj
m = e−(2j−A2)2/4A2

e2iπj

4
√

πA

2j∑
n=0

ψnun(m/
√

j). (15)

The following identity for the inner product of the state |ψ〉 and the eigenstate |x〉 holds due
to completeness of the Fock basis:

〈x|ψ〉 =
∞∑

n=0

〈x|n〉〈n|ψ〉 =
∞∑

n=0

un(x)ψn. (16)

Equation (16) also holds if the summation over n goes only to 2j instead of infinity because
2j � n for all n for which ψn differs from zero significantly. Then equation (15) becomes

Mj
m

.= e−(2j−A2)2/4A2
e2iπj

4
√

πA
〈x|ψ〉 (17)

with the eigenvalue x = m/
√

j . Equation (11) is now obtained directly by squaring the
magnitude of M

j
m for the pure signal state. The extension to mixed states is straightforward

and follows from linearity of quantum mechanics. �

In the case of a general phase of LO when the amplitude is α = −A eiϕ , equation (11)
turns into

P j
m = e−(2j−A2)2/2A2

√
πA2 ϕ〈x|ρ̂|x〉ϕ (18)
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where |x〉ϕ is the eigenstate of the rotated quadrature x̂ϕ = x̂ cos ϕ+p̂ sin ϕ with the eigenvalue
x = m/

√
j .

From theorem 1, we can now get the POVM defined by Tr
(
ρ̂�̂

j
m

) = P
j
m and corresponding

to BHD in the strong LO limit:

�̂j
m = e−(2j−A2)2/2A2

√
πA2

|x〉〈x|. (19)

Equations (11) and (19) show that in the limit of strong LO, homodyne detection performs
the POVM given by the projection |x〉〈x| to the x eigenstate. This fact has been known;
however, here it has been shown for the first time by a direct calculation. However, our result
does not provide any correction terms. We will obtain these in the next section by employing
the Glauber–Sudarshan P function. Before doing so, let us discuss a few aspects of the
result (11).

First, the Gaussian factor in equation (11) reflects the fact that the Poissonian distribution
of the photon number for the LO (whence the majority of the total 2j photons come) converges
asymptotically to the Gaussian distribution P(2j) = (2π)−1/2A−1 exp[−(2j − A2)/2A2].

Second, one may wonder if the probability distribution (11) is properly normalized.
Indeed, it is easy to check that

∞∑
2j=0

∑
m=−j,−j+1,...,j

P j
m = 1 (20)

by changing the double sum into an integral and using the normalization of the state ρ̂,∫ ∞

−∞
〈x|ρ̂|x〉 dx = 1 (21)

and replacing x = m/
√

j by x = √
2m/A, which can be done for a strong LO.

Third, if the total photon sum 2j is not measured in the homodyne detection scheme, then
the probability distribution for the photon number difference 2m is

Pm =
∞∑

j=|m|
P j

m = 1√
2A

〈x|ρ̂|x〉 (22)

(in the sum j runs from |m| to infinity via unit steps and the eigenvalue x is again
√

2m/A).
The factor 1/

√
2A in equation (22) is connected with the Jacobian

√
2/A of the map

m → x = √
2m/A and the fact that m changes in half-integer steps.

4. Glauber–Sudarshan P-function approach

The method using the asymptotic formulae for SU(2) Wigner functions from the previous
section gave us the asymptotic expression for the photon counting probability P

j
m. However,

it is difficult to obtain the correction terms due to the amplitude of the LO being finite because
of absence of correction terms in equation (14). This problem can be overcome by using the
Glauber–Sudarshan coherent-state representation, which we do in the following.

We represent the signal state ρ̂ by the Glauber–Sudarshan P function [6, 22, 23]

ρ̂ =
∫

P(β)|β〉〈β| d2β. (23)

The BS input state is then

ρ̂in = |α〉〈α| ⊗
∫

P(β)|β〉〈β| d2β (24)
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and the BS output state is

ρ̂out =
∫

P(β)

∣∣∣∣α − β√
2

〉
1

〈
α − β√

2

∣∣∣∣ ⊗
∣∣∣∣α + β√

2

〉
2

〈
α + β√

2

∣∣∣∣ d2β. (25)

Using equation (8), the probability P
j
m is evaluated as

P j
m = e−|α|2

∫
P(β) e−|β|2

= 2−2j e−|α|2

(j + m)!(j − m)!

∫
P(β) e−|β|2 |α − β|2(j+m)|α + β|2(j−m) d2β. (26)

We again assume that the LO amplitude is α = −A. Generalization to arbitrary α is
straightforward and discussed later.

To evaluate the integral in equation (26), we use the following identity, definitions and
lemma that is proved in appendix A.

Identity 1. For |x| < 1

(1 + x)n = exp[n ln(1 + x)] = exp

[
n

∞∑
k=1

(−1)k−1xk

k

]
.

Definition 1. A pure z-regular state |ψ〉 is a state that can be expressed in the Fock basis as

|ψ〉 = N
∞∑

n=0

cnz
n

√
n!

|n〉 (27)

with the complex coefficients cn satisfying |cn| < 1, z ∈ R
+ and N a constant. In other words,

it is a state whose Fock basis coefficients fall off at least as fast as those of a coherent state |z〉.
Definition 2. A mixed z-regular state is a finite mixture of pure z-regular states, that is, a state
corresponding to density operator

ρ̂ =
n∑

i=1

pi |ψi〉〈ψi | (28)

with n finite, pi � 0 and all |ψi〉 being z regular.

Examples of z-regular states include (i) a coherent state |γ 〉 with |γ | � z, (ii) superposition
or mixture of several such coherent states, (iii) superposition of such a coherent state with a
number state and (iv) superpositions or mixtures of several number states. However, they do
not include squeezed or thermal states.

Lemma 1. The Glauber–Sudarshan P function P(β) of a z-regular state is identically equal
to zero for |β| > z.

(See appendix A for the proof.)
We assume that the signal state is z-regular for some z < A. Then P(β) = 0 for |β|/A � 1,

and we can employ identity 1 in evaluating the powers |α + β|2(j+m) and |α − β|2(j−m) in
equation (26) as follows:

|α + β|2(j+m)|α − β|2(j−m) = A4j

(
1 +

β

A

)j+m (
1 +

β∗

A

)j+m (
1 − β

A

)j−m (
1 − β∗

A

)j−m

= A4j

(
2m

∞∑
k=1

1

2k − 1

β2k−1 + (β∗)2k−1

A2k−1
− j

∞∑
k=1

1

k

β2k + (β∗)2k

A2k

)
. (29)
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Using equation (29), the integral in equation (26) can be expressed as

I ≡
∫

P(β)|α − β|2(j+m)|α + β|2(j−m) d2β

= A4j e2m2/A2
∫

P(β) eχ e−2[(β+β∗)/2−m/A]2
d2β (30)

where the exponent

χ = −2j − A2

2A2
{β2 + (β∗)2} + m

∞∑
k=2

2

2k − 1

β2k−1 + (β∗)2k−1

A2k−1
− j

∞∑
k=2

1

k

β2k + (β∗)2k

A2k
. (31)

To evaluate the integral (30), we will use the following lemma.

Lemma 2. Let ρ̂ = ∫
P(γ )|γ 〉〈γ | d2γ be the Glauber–Sudarshan representation of the

density operator ρ̂. Then for x ∈ R,∫
P(γ )γ m(γ ∗)n e−[2−1/2(γ +γ ∗)−x]2

d2γ = √
π Tr(ρ̂(â†)n|x〉〈x|âm). (32)

(For the proof see appendix B.)

Theorem 2. For a z-regular state ρ̂ and the LO coherent amplitude −A with A > z,

P j
m =

√
π2−2j e−A2

A4j e2m2/A2

(j + m)!(j − m)!
Tr

{
ρ̂

[
:

∣∣∣∣∣x =
√

2m

A

〉 〈
x =

√
2m

A

∣∣∣∣∣
× exp

(
−2j − A2

2A2
{â2 + (â†)2} + 2m

∞∑
k=2

1

2k − 1

â2k−1 + (â†)2k−1

A2k−1

−j

∞∑
k=2

1

k

â2k + (â†)2k

A2k

)
:

]}
. (33)

The ordering symbol :: that involves the projection operator |x〉〈x| should be understood as

: |x〉〈x|âr (â†)s := (â†)s |x〉〈x|âr (34)

that is, all creation operators go to the left of the projector |x〉〈x| and all annihilation operators
go to the right of it.

Proof. The theorem is proved by a straightforward calculation applying lemma 2 to
equation (30) and substituting the result into equation (26). �

The form of P
j
m in equation (33) produces the POVM for homodyne detection of a

z-regular state:

�̂j
m =

√
π2−2j e−A2

A4j e2m2/A2

(j + m)!(j − m)!

{
:

∣∣∣∣∣x =
√

2m

A

〉 〈
x =

√
2m

A

∣∣∣∣∣
× exp

(
−2j − A2

2A2
{â2 + (â†)2} + 2m

∞∑
k=2

1

2k − 1

â2k−1 + (â†)2k−1

A2k−1

−j

∞∑
k=2

1

k

â2k + (â†)2k

A2k

)
:

}
(35)

such that Tr
{
ρ̂�̂

j
m

} = P
j
m holds.
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Equation (35) is the key result of our calculation. It shows that the POVM for homodyne
detection of a z-regular state (with z < A) is given by the normally ordered product of the
projector |x〉〈x| multiplied by an exponential of powers of creation and annihilation operators.
We will discuss this result in the following sections.

We still need to mention the case of a general phase of the LO when α = −A eiϕ . The
operators â and â† in equations (33) and (35) then have to be replaced by âϕ = eiϕâ, â†

ϕ =
e−iϕâ†, respectively, and |x〉 has to be replaced by |x〉ϕ , the eigenstate of the rotated quadrature
x̂ϕ = x̂ cos ϕ + p̂ sin ϕ = (âϕ + â†

ϕ)/
√

2 with the eigenvalue x = √
2m/A.

4.1. Limit A → ∞
We begin discussing the result (33) by considering the limit of strong LO, that is, the limit
A → ∞ for a given signal state ρ̂. This will give us the asymptotic expression for the photon
counting probability P

j
m corresponding to an ideal homodyne detection.

For large A, the total photon number distribution is dominated by the Poissonian LO
distribution, so 2j is peaked at A2 and has the variance of A2. Hence, the expression
(2j −A2)/2A2 in the exponent of equation (33) is negligible. At the same time, in the sums in
the exponent the factors A−k go to zero for A → ∞. Thus, the trace in equation (33) becomes
simply Tr(ρ̂|x〉〈x|) = 〈x|ρ̂|x〉. The factor in front of the trace can be approximated using the
Stirling formula for the factorials and neglecting terms of order (2j − A2)/2A2 and m/A3/2.
Then the probability P

j
m becomes

P j
m = e−(2j−A2)2/2A2

√
πA2

〈x|ρ̂|x〉 (36)

which replicates the result (11) from section 3. The only difference is that in equation (11) the
eigenvalue was x = m/

√
j while here we have x = √

2m/A. However, this difference is not
important as j is sharply peaked about A2/2 for a strong LO as has been mentioned.

4.2. Infinite series and its convergence

For a finite amplitude of LO, one can expand the exponential function in equation (33) using
the usual Taylor series. This gives an expansion of the the photon counting probability P

j
m

into the following series:

P j
m =

√
π2−2j e−A2

A4j e2m2/A2

(j + m)!(j − m)!

{
〈x|ρ̂|x〉 − 2j − A2

2A2
[〈x|â2ρ̂|x〉 + 〈x|ρ̂(â†)2|x〉]

+
2m

3A3
[〈x|â3ρ̂|x〉 + 〈x|ρ̂(â†)3|x〉] + · · ·

}
. (37)

The terms in the series are arranged such as to contain increasing powers of creation and
annihilation operators. To determine for which states this series converges is a task that we
have not been able to solve in general. We believe, though, that the following conjecture is
valid.

Conjecture 1. The series in equation (37) converges for all z-regular states with z < A.

Surprisingly enough, however, it turns out that the question of convergence does not really
matter for practical purposes as we will see in the following section.

In addition, also the factor in front of the parentheses in equations (33) or (37) can be
expanded into a series using the Stirling formula for the factorials and Taylor expansion around
the point m/j = 0 and (2j −A2)/2A2 = 0. The leading term of the series for this factor is the
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same fraction as in equation (36) and reflects the Gaussian limit of the Poissonian distribution
for the LO photon number. We do not write the other terms explicitly.

4.3. Truncation in Fock basis

We explore the properties of the series (37) for density operators truncated in the Fock basis.
Such density operators can be expressed as

ρ̂ =
N∑

m,n=0

ρmn|m〉〈n| (38)

for some finite N.

Theorem 3. For truncated signal states ρ̂, the series (37) is finite (i.e., it contains only a finite
number of nonzero terms). Therefore, it converges and expresses the exact photon counting
probability P

j
m.

Proof. Consider a term in the series in equation (37) that contains more than 2N field
operators (i.e., annihilation and creation operators). Then it contains more than N creation
and/or more than N annihilation operators. As all the annihilation operators are to the left
from the density operator ρ̂ and all creation operators are to the right of it, every such term
turns into zero because of the truncation (38) of ρ̂. Further, it follows from the expansion of an
exponential in equation (33) that in the series in equation (37) the number of terms with less
than k field operators is finite for every k. Hence, the number of nonzero terms in the series in
equation (37) is finite, which we wanted to prove. �

The fact that the series converges for truncated states is very useful as it can be employed
for states for which the series does not converge. The reason is the following. Consider a
general state ρ̂ = ∑∞

m,n=0 ρmn|m〉〈n| and for a given cutoff N ∈ N define the corresponding
truncated state ρ̂ ′ with matrix elements ρ ′

mn satisfying

ρ ′
mn =

{(∑N
i=1 ρii

)−1
ρmn for m � N n � N

0 otherwise.
(39)

This definition ensures the proper normalization of ρ̂ ′. Now, the cutoff number N can be
chosen arbitrarily large, so that the truncated state ρ̂ ′ mimics the state ρ̂ arbitrarily close.
Then also the photon counting probabilities P

j
m

′ corresponding to the state ρ̂ ′ can be brought
arbitrarily close to the probabilities P

j
m for all pairs of j,m, for which P

j
m is non-negligible.

This enables us to employ equation (37) for calculating P
j
m with an arbitrary precision also for

states, for which the series (37) does not even converge.
Another question concerns the practical usefulness of this truncation procedure. To see

an example when it is not useful, consider the signal state as a coherent state with an amplitude
β, |β| � A, and its truncation for a very large N (say N � |β|2). In this situation, the
series (37) diverges while after the truncation it becomes finite and so it converges. A closer
inspection of equation (37) also shows that the initial subsequent terms grow very quickly
for both the original and truncated states. Therefore, we would need very many of them to
calculate the probabilities P

j
m using the truncation procedure and equation (37), which would

not be very practical and it would be much simpler to calculate P
j
m directly. This can be

expected as the signal field is not weaker than the LO field.
On the other hand, in many situations our result is very useful. Our calculations were

motivated by trying to show that homodyne detection measures the field quadrature, and
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to find correction terms. This happens for large amplitudes of LO when the term 〈x|ρ̂|x〉
in the photon counting probability P

j
m is the largest and dominant one. In such situations,

the truncation works very well and the series (37) gives good correction terms for balanced
homodyne detection as can be seen in the following section.

We should also note that the convergence of the series (37) is not directly related to the
behaviour of the initial terms. It can happen (e.g., for a weak thermal state or a weakly
squeezed vacuum state) that the initial subsequent terms decrease quickly but after some time,
they start to grow and the series diverges. At the same time, for weak signal states (compared
to the LO) these first terms provide an increasingly good approximation to the photon counting
probability P

j
m as can be seen in the next section with numerical simulations. The situation is

thus similar to the one in perturbation theory: even though a perturbation series diverges, its
several (or many) initial terms may give a good approximation.

4.4. What is a strong local oscillator?

We would now like to address the question of when the LO is strong enough so that BHD
really performs the projective measurement of the quadrature phase of the signal field. It can
be roughly said that it is in situations for which the first term 〈x|ρ̂|x〉 in the parentheses in
equation (37) dominates over the remaining ones. Let us focus at the second and third terms,

2j − A2

2A2
[〈x|â2ρ̂|x〉 + 〈x|ρ̂(â†)2|x〉] (40)

and try to estimate their magnitude compared to 〈x|ρ̂|x〉. First, the distribution of the LO
photon number is Poissonian with both mean and variance equal to A2. Therefore, if we assume
that the LO contains many more photons than the signal state, the quantity (2j − A2)/2A2 is
of the order of 1/A. Of course, 2j can be an arbitrary integer, but if it is not close enough to
A2, the probability P

j
m becomes negligible. In this sense, we mean that (2j − A2)/2A2 is of

the order of 1/A.
To estimate 〈x|â2ρ̂|x〉 + c.c., we will consider two different types of signal states—a

coherent state and a number state. The discussion for a general state would be very difficult,
and we think that coherent and number states are good representatives that can help us
understand the general behaviour of the series in equation (37).

For a coherent state |β〉 for which ρ̂ = |β〉〈β|,
〈x|â2ρ̂|x〉 + 〈x|ρ̂(â†)2|x〉 = 2 Re{β2}〈x|ρ̂|x〉. (41)

This means that the term (40) in the series (37) is of the order of Re{β2}/A compared to the
first term 〈x|ρ̂|x〉. We see that if the mean photon number in the signal state is much less than
the magnitude of the LO amplitude, the leading term is dominant.

For the signal field in a number state |n〉, we have

〈x|â2ρ̂|x〉 + 〈x|ρ̂(â†)2|x〉 = 2
√

n(n − 1) Re {〈x|n〉〈x|n − 2〉∗}. (42)

The magnitude of the inner product 〈x|n − 2〉∗ can be considered roughly the same as that of
〈x|n〉∗ for our purpose. As

√
n(n − 1) is close to n for n > 1, we arrive at a similar result

as for the coherent state: the second and third terms become unimportant if A is much larger
than the photon number in the signal state.

The analysis of the magnitude of other terms in equation (37) would be similar. The result
is that if A � n, where n means the average photon number in the signal state, the subsequent
terms decrease quickly and homodyne detection indeed measures the field quadrature phase.
It should be noted that it is not enough if the mean number of photons n in the signal state
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Figure 2. The simulation for (a) coherent state |γ 〉 with γ = 2 for j = 190, (b) squeezed state
with squeezing parameter r = 1.5 for j = 219.5 and (c) number state |6〉 for j = 183.5. The
exact probabilities are shown in black, and the truncated ones are shown in green, blue and red,
respectively, according to the increasing number of terms in equation (37) taken into account. The
red curves are so close to the black ones in (b) and (c) that they almost cover them in the plots.
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is much less than the number of photons in the LO; in fact, the correct condition is that the
square of n must be much smaller than the number of photons in the LO.

This condition has a clear physical interpretation. As the photon number in the coherent
state |−A〉 has a Poissonian distribution of width A, the condition of a strong LO can
be formulated such that the mean photon number in the signal must be much less than
the fluctuation of the photon number in LO. Now suppose for a moment that the opposite
would hold. Then from the knowledge of the total photon number 2j we could access some
information about the photon number in the signal state. However, the photon number operator
does not commute with the quadrature x̂, so this would necessarily disturb the measurement
of x̂. On the other hand, if the strong LO condition is satisfied, then we do not know how
many of the 2j photons come from the signal and how many come from the LO; thus, the
different possibilities can interfere and the distribution of x̂ is not affected.

4.5. Numerical simulations

In this section, we show some numerical simulations of our results. For a given pure signal state
|ψ〉 and a given photon number sum 2j , we compare the exact photon counting probability
P

j
m calculated with the help of equation (12) with the series (37) truncated at different points.

The purpose of such a simulation is to show that taking increasing number of terms in the
series (37) gives an increasingly better approximation to the exact probability P

j
m.

The LO amplitude was chosen to be α = −A = −20 which means that the mean photon
number of the LO field is 400. The value of j in the individual plots was chosen randomly
from the Poissonian distribution of LO photon number. It has turned out during the simulations
that changing j inside the interval for which the probability P

j
m is non-negligible does not

affect the behaviour of the series significantly. As the signal states we have chosen a coherent
state with amplitude 2, a squeezed vacuum state [1] exp[r(â2 − â†2)/2]|0〉 with r = 1.5 and a
number state |6〉. The results of the simulations are shown in figure 2. The exact probabilities
P

j
m are shown in black, and the results of truncation of the series (37) keeping terms with (i)

zero number of field operators

P j(0)
m =

√
π2−2j e−A2

A4j e2m2/A2

(j + m)!(j − m)!
〈x|ρ̂|x〉 (43)

are shown in green colour, (ii) maximum of two field operators

P j(2)
m =

√
π2−2j e−A2

A4j e2m2/A2

(j + m)!(j − m)!

{
〈x|ρ̂|x〉 − 2j − A2

2A2
[〈x|â2ρ̂|x〉 + 〈x|ρ̂(â†)2|x〉]

}
(44)

are shown in blue colour and (iii) maximum of four field operators are shown in red (we do
not write P

j(4)
m explicitly).

The simulations show that with increasing number of terms in the series (37), a better
approximation to the exact photon counting probability is achieved.

5. Conclusion

We have analysed balanced homodyne detection in terms of the POVM for photon counting by
directly calculating the photon counting probability. We employed two different approaches.
First, using asymptotic expressions for SU(2) Wigner functions allowed us to establish the non-
trivial connection between the discrete variables j,m corresponding to photon numbers being
detected and the continuous quadrature phase variable xϕ . In the strong LO limit, we have
shown that homodyne detection indeed performs the projective measurements corresponding
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to POVM |x〉〈x|, where |x〉 is the eigenstate of quadrature phase operator. Second, employing
the Glauber–Sudarshan P function, we extended the result obtained by the first approach.
For a very large amplitude of the LO, the result was the same, and for finite amplitudes we
obtained additional correction terms. Even though the series we got does not converge in
general, it can be used for determining the correction terms via truncation of the signal state
in the Fock basis. We have determined the strong LO condition for coherent and number
signal states—the square of the mean photon number in the signal state must be much smaller
than the mean photon number in the LO. We have also performed numerical simulations that
confirm the validity of the quadrature-phase POVM and the correction terms for a LO that
is not strong for typical signal states. Therefore, in addition to obtaining the quadrature-
phase POVM rigorously from the photon counting POVM, we have an expansion that yields
correction terms for the POVM that works well for typical signal states in quantum optics.

In this paper, we have considered a perfect HD scheme with ideal detectors, LO and
BS and 100% mode matching. In practice, all these elements are subject to imperfections,
which disturbs the measurement. For example, the LO from a realistic laser has an amplitude
distribution PLO(α) broader than the delta function. This would convolute the probability
P

j
m(α), where we now write the dependence on α explicitly, with PLO(α). If this distribution

is Gaussian, then the strong LO measurement would correspond to a Gaussian spread of the
quadrature measurement with the imprecision corresponding to the degree of LO amplitude
fluctuation. Lossy beam splitters and inefficient photodetectors would add vacuum noise that
would result in Gaussian spread of quadrature measurement, similar to the effect discussed
above for the LO amplitude spread. Finally, for a multi-mode field with the LO mode-matching
condition satisfied, the detection efficiency can incorporate the mismatch between the beam
and detector modes. If, on the other hand, the signal and LO modes are mismatched, HD
efficiency declines, and beats between different frequency modes arise.

Our operational approach to HD ignores the realistic effects described above, but the
theory is readily generalized to accommodate these effects by including inefficiencies and
multi-mode description. Moreover, if multi-mode fields and beats are desirable, heterodyne
detection replaces homodyne detection (for which signal and LO are frequency matched); an
operational formulation of heterodyne detection without mean field approximation is a topic
of further research.

Acknowledgments
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Appendix A. Properties of the P representation for z-regular states

We first prove lemma 1 for pure z-regular states and then generalize to mixed states. The
density operator associated with a normalized pure state |ψ〉 is

ρ̂ = |ψ〉〈ψ | (A1)
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and is represented by the Glauber–Sudarshan P representation according to equation (23). The
trace of ρ̂ is unity due to the normalization of the state |ψ〉 and hence the integral of the P
function over the complex plane is equal to unity:∫

P(β) d2β =
∫

P(β) Tr|β〉〈β| d2β = Tr ρ̂ = 1. (A2)

Now, for a positive number r we define a non-unitary operator

Ŝ(r) = e−r exp

(
râ

z

)
(A3)

and, for a normalized z-regular state |ψ〉 (see equation (27)), we consider the state

|ψ ′〉 = Ŝ(r)|ψ〉 = N
∞∑

n=0

c′
nz

n

√
n!

|n〉 (A4)

where the coefficients c′
n are related to the coefficients cn by

c′
n = e−r

∞∑
m=0

cn+mrm

m!
=

∑∞
m=0 cn+mrm/m!∑∞

m=0 rm/m!
. (A5)

Clearly |c′
n| � 1, so the state |ψ ′〉 is also z regular but generally not normalized. To normalize

it, we introduce the inverse norm N ′ = 〈ψ ′|ψ ′〉−1/2 so that the state |ψ ′〉N = N ′|ψ ′〉 =
〈ψ ′|ψ ′〉−1/2|ψ ′〉 is normalized. The density operator ρ̂ ′ of |ψ ′〉N can be expressed via the
density operator ρ̂ as

ρ̂ ′ = N ′2 e−2r exp

(
râ

z

)
ρ̂ exp

(
râ†

z

)
(A6)

and the P function corresponding to |ψ ′〉N is hence

P ′(β) = N ′2 e−2r exp

(
rβ

z

)
exp

(
rβ∗

z

)
P(β) = N ′2 exp

[
2r

(
Re β

z
− 1

)]
P(β). (A7)

The integral of P ′ over the complex plane is unity as the state |ψ ′〉N is normalized:∫
P ′(β) d2β = 1. (A8)

Decomposing β to real and imaginary parts β = β1 + iβ2, and using equation (A7), we can
write equation (A8) as a double integral

1 = N ′2
∫ ∞

−∞
dβ1 exp

[
2r

(
β1

z
− 1

)] ∫ ∞

−∞
dβ2 P(β1, β2)

= N ′2
∫ ∞

−∞
exp

[
2r

(
β1

z
− 1

)]
G(β1) dβ1 (A9)

where we have denoted

G(β1) =
∫ ∞

−∞
P(β1, β2) dβ2. (A10)

The inner product 〈ψ ′|ψ ′〉 can be bound as follows (see equation (A4)):

〈ψ ′|ψ ′〉 = N ′−2 = N 2
∞∑

n=0

|c′
n|2z2n

n!
� N 2

∞∑
n=0

z2n

n!
= N 2 ez2

. (A11)
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ϕ
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z

β

β

l

Figure 3. The integral of the P function of the state |ψ〉 over the line l shown in the picture
vanishes, and so it does for all other lines that do not intersect the circle |β| = z. Therefore, the P
function itself vanishes outside the circle, i.e., for |β| > z.

From equations (A9) and (A11),∫ ∞

−∞
exp

[
2r

(
β1

z
− 1

)]
G(β1) dβ1 � N 2 ez2

. (A12)

We see that the integral (A12) is bound by a fixed number N 2 ez2
, no matter how large r we

choose. The only way to satisfy this is if G(β1) ≡ 0,∀β1 > z. Specifically if f (x) : R → R

is a function and we know that∫ ∞

−∞
f (x) eax dx < c (A13)

where c > 0 is fixed and a is arbitrary positive, then necessarily f (x) = 0 for all x > 0. Thus,
we obtain

G(β1) =
∫ ∞

−∞
P(β1, β2) dβ2 = 0 for β1 > z (A14)

which means that the integral of P over any vertical line in the complex plane that is farther
than z from the origin is zero.

Now the whole construction can be repeated with another state

|ψ ′
ϕ〉 = e−r exp

(
r eiϕâ

z

)
|ψ〉 (A15)

whose P function is

P ′
ϕ(β) = 〈ψ ′

ϕ|ψ ′
ϕ〉−1 exp

[
2r

(
Re(β eiϕ)

z
− 1

)]
P(β). (A16)

Using the same argument, we arrive at the fact that the integral of P(β) over any line whose
normal has the angle ϕ with the real axis and whose distance from the origin is larger than z

(e.g., the line l in figure 3) is zero. Now, as ϕ can be arbitrary, this means that the integral over
all lines not intersecting the circle with radius z is zero. Then it follows by the tomographic
argument that the P function must be zero outside the circle, which is what we wanted to
prove.

The generalization of the claim to mixed z-regular states is straightforward as the P
function of a mixed state is the weighed sum of the P functions of the pure states in the
mixture.
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Appendix B. Proof of lemma 2

A direct calculation yields

Tr
(
ρ̂(â†)n|x〉〈x|âm

)
ρ̂ =

∫
P(γ )〈x|âm|γ 〉〈γ |(â†)n|x〉 d2γ

=
∫

P(γ )γ m(γ ∗)n|〈x|γ 〉|2 d2γ

= 1√
π

∫
P(γ )γ m(γ ∗)n e−[2−1/2(γ +γ ∗)−x]2

d2γ. (B1)

Here the fact that |〈x|γ 〉|2 = π−1/2 exp[−(x − √
2 Re{γ })2] was used.
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