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Light transport in a highly multimode fiber exhibits complex behavior in space, time,
frequency, and polarization, especially in the presence of mode coupling. The newly
developed techniques of spatial wavefront shaping turn out to be highly suitable to harness
such enormous complexity: a spatial light modulator enables precise characterization of
field propagation through a multimode fiber, and by adjusting the incident wavefront it can
accurately tailor the transmitted spatial pattern, temporal profile, and polarization state.
This unprecedented control leads to multimode fiber applications in imaging, endoscopy,
optical trapping, and microfabrication. Furthermore, the output speckle pattern from a
multimode fiber encodes spatial, temporal, spectral, and polarization properties of the
input light, allowing such information to be retrieved from spatial measurements only.
This article provides an overview of recent advances and breakthroughs in controlling
light propagation in multimode fibers, and discusses newly emerging applications. ©
2023 Optica Publishing Group
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1. INTRODUCTION

Multimode fibers (MMFs) are waveguides of microscopic dimensions with close to
perfect cylindrical symmetry, which lend themselves to large magnitudes of bending
and twisting. These attributes drove their dominant exploitation in the past, particularly
toward the low-attenuation delivery of optical signals over long distances and for
conveniently bridging remote sites of optical systems, which are to a large extent
free to move with respect to one another. Sending information through MMFs by
modulating the transported light intensity in time is nowadays well established and
frequently exploited in short-distance communication [1]. In some cases, the data
transmission speed is enhanced by parallelizing this process on separable intervals
of wavelengths (wavelength division multiplexing [2]). Yet this is far from utilizing
the complete information capacity such systems can offer. MMFs can simultaneously
support tens to hundreds of thousands of information channels, encoded in the spatial
properties of the light signals.

Coupling monochromatic light to a MMF, for example by projecting a tight focus to
a specific location at the input facet, results in a unique, randomly distributed speckle
pattern at the output facet (see Fig. 1). Coupling the light at the same frequency to
a different location of the fiber core produces a different speckle pattern, which is
completely uncorrelated with the initial one if the displacement of the input is suffi-
ciently large. The seemingly random yet deterministic transmission process therefore
indicates the possibility to distinguish between multiple different input signals sharing
the same frequency from the spatial distribution of the received output. Furthermore,
if the input wavefront is fixed but the frequency shifts, the output speckle pattern
also changes. Hence, the output speckle pattern encodes both spatial and spectral
information of input light.

The technology with which we may harness the full richness of such complex light
transport became available at the turn of the century. In particular, a whole spectrum of
spatial light modulators (SLMs) [3,4] introduced a relatively low-cost mechanism for
sculpturing and rapidly reconfiguring light from a computer interface, all with fidelity
not available ever before. Being able to shape optical fields in space brought a direct
route toward handling highly complex optical systems [5]. Light transport through
MMFs at low power is linear and deterministic. Regardless of the basis of light modes
we choose, the input–output mapping can be mathematically expressed as a linear
operator, nowadays commonly known as the transmission matrix (TM) [6]. Knowing
the exact TM of a given optical system containing a MMF would enable the synthesis
of any desired vector optical field at the output within the space and spatial frequency
constraints of the MMF. The technology of SLMs can be used to accurately acquire
all TM components of a MMF supporting even tens of thousands of optical modes.
The realization, that the same device can use the measured TM in order to synthesize
any desired optical outputs, moreover in a manner which is immune to alignment
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Figure 1

Randomization of light propagating through a MMF. (a) Coherent light coupled into
a MMF results in randomized outputs. (b) Typical MMF output signal forming a
randomly distributed speckle. (c) Controlled light propagation through a MMF using
a spatial modulator of light. (d) Desired output taking the shape of a diffraction-limited
focus.

imperfections and optical aberrations in other parts of the optical system [7], brought
a revolution to the field. As a result, the utility of MMFs has been reevaluated in the
context of many new applications, especially those, where the minuscule dimensions
of MMFs make a significant difference, and where the role of the transmitted light
goes beyond that of a pure information carrier. Consider here especially the cases
where the delivered signals actively participate in information acquisition or interact
with microscopic samples in a desired manner.

It is well known that optical fibers have played a major role in imaging applications.
In particular, the emergence of fiber bundles in the 1950s [8,9] turned this prospect
into a global industry [10]. The potential of MMFs for imaging applications have
been identified already in the 1960s and 1970s [11–13], yet the technology necessary
for handling the complexity of light transport was missing. This is very different
now: exploiting a low-cost commercially available MMF and the above methodology,
one can create a hair-thin endoscope, which can be employed through even the most
sensitive tissues of living organisms (brain), sending back high-resolution images
without causing significant damage to the overlying structures [14–23]. MMFs with
very high numerical aperture (NA) can be produced, opening up the prospect of
other bio-photonics methods such as three-dimensional (3D) optical tweezers to be
introduced in previously unthinkable studies [7,14,24].

A whole class of further applications emerges when broadband light signals are
considered, since MMFs conversely act as a mixer between the spatial and the spec-
tral/temporal domain [25,26]. Although beam-shaping will not affect the overall power
carried by individual wavelengths, it can manipulate their phase and polarization
relations. By appropriate manipulation of fields in spatial channels, each carrying a
spectrum of frequencies, one can achieve focusing in both space and time. In this way,
it becomes possible to produce, for example, spatially and temporally focused pulses
carrying high energies [27], which can be exploited in multiphoton and nonlinear
imaging modalities [28,29] and in microfabrication [30]. Further in relevance to sens-
ing, this mixing of domains allows for information of an input signal in one domain
to be recovered from measurements of the output light in a different domain. As an
example, the spatial intensity distribution of transmitted light encodes the information
of the spectrum and of the temporal shape of an incident wave. Such information
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of the input signal may be retrieved from spatial measurements of the output light
thereby turning the MMF into a high-resolution, broadband spectrometer [31–38] or
a profiler of ultrashort pulses [39–42]. It is even possible to simultaneously recover
the input information in multiple domains. Reconstructing both spatial and spectral
distributions of a signal from one speckle pattern even enables snapshot hyperspectral
imaging [43,44].

Further, the new experimental possibilities keep re-shaping our understanding of
MMF transmission in general and drive a vibrant discussion of the relevant fields. The
availability of the theoretical framework for predicting details of light propagation
in perfect, straight or even bent MMFs pre-dates our current investigations by many
decades [45,46] and, on its own, it infers immensely complex behavior. However,
real-life MMFs suffer from manufacturing imperfections and external perturbations
manifesting themselves as unpredictable disorder that leads to random spatial- and
polarization-mode coupling. Thus, light propagation through a MMF bears similarities
to coherent transport of electron waves in a narrow metallic waveguide, which has
been widely studied in mesoscopic physics [47–49]. Physical concepts and theoretical
models, previously developed for light transport in complex systems such as random
scattering media or chaotic optic cavities, may be applicable to MMFs. However,
caution must be exercised as there are notable differences between those systems.
First, the transmission through a fiber is extremely high, even in the presence of strong
mixing between spatial and polarization modes, thus information on the input state
of the light is only scrambled but not lost. This is in contrast to strong-scattering
(diffusive) samples where most of the incident light is reflected. Second, unlike wide
slabs with open (side) boundaries, fibers allow one to fully control the coupling of the
input light to all the guided modes thanks to the finite NA, and to collect all output
fields. Thanks to negligible reflection, a sharply bounded number of spatial modes,
weak loss, flexibility, and reconfigurability [50], MMFs provide a powerful platform
for fundamental studies of mesoscopic physics [26].

This review aims: to introduce the theoretical background of light transport in ideal,
perturbed, and disordered fibers; to assess the available technology for manipulating
and harnessing the delivery of light through MMFs in experimental settings; to discuss
the broad spectrum of applicability of MMFs; and, finally, to outline the current
research trends and open questions of this exciting field. This review is limited to
classical light and to linear optical processes in MMFs, thereby excluding topics
such as multimode nonlinear optical processes [51] and quantum optics with MMFs
[52], as well as MMF-based lasers and amplifiers [53]. Further, we neither cover
single-mode fibers (SMFs) or few-mode fibers, nor fiber bundles. Lastly, our selection
of applications excludes the use of MMFs for telecommunications, especially spatial
division multiplexing [1], as this material is already covered by numerous other sources
[54–57]; moreover, many of the considerations explained here would not be scalable
to the required dimensions (in terms of fiber lengths and environment stability). MMF
sensors based on mode and spatial division have been reviewed recently [58], here we
will not consider the MMF application for sensing environmental changes, instead we
will focus on recovering the information of an input light from the output signals.

2. PRINCIPLES

In this section, we revisit the fundamental principles of light propagation in optical
fibers. The various theoretical tools are selected here to prepare the readers for the
discussions on advanced experimental methods and emerging trends. Some important
phenomena related to light transport through multimode optical fibers, including
derivation of the NA, polarization transport, and modal dispersion, can be derived
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even from simple principles based on ray optics, which, in addition to its simplicity,
offers a good level of intuitive understanding.

A much more accurate wave-optics analysis is, however, required in order to model
the exact distribution of the optical field as it propagates through a given MMF
and to describe the influences of imperfections of the fiber refractive index profile,
subtle polarization effects, or the effects of fiber bending. We proceed to the wave
description of light in terms of Maxwell’s equations that can be applied on different
levels of accuracy. The roughest description, the scalar approximation, separates the
spatial and polarization degrees of freedom; within its domain of applicability, the
polarization state is preserved upon propagation in the fiber, which is true only for very
short fibers. However, the scalar approximation gives a good estimate of the number
of modes, their propagation constants, and other properties of light in the fiber. The
next step is the weak guidance approximation (WGA) that takes into account the
interaction of the spatial degrees of freedom with polarization; it provides a very
accurate description of fibers with low NA.

It is also important to take into account deviations from the ideal case of a straight
cylindrical waveguide. In realistic situations, fibers are often deformed, the most
common deformation being fiber bending. In addition, the refractive index profile
often departs from the ideal or desired one due to imperfections in the manufacturing
process. Studying these effects is very relevant when describing light transport through
MMFs in real experimental conditions. Further, fiber imperfections have a direct effect
on the performance of imaging or other desirable applications. Knowing the influence
of the imperfection on fiber performance enables the design of fibers that are more
resilient to bending or suitable for other purposes.

2.1. Ideal Multimode Fiber
Here we consider optical fibers as perfectly predictable waveguides, free from scat-
tering and invariant along their length. They are first studied as ideal cylindrically
symmetric waveguides and we introduce several common models of light transport
applicable in diverse cases. Further, we will introduce how to extend these models
for bent fibers, featuring axially independent perturbations in their refractive index
distributions. Optical fibers are usually designed to have a cylindrically symmetric
refractive index profile, n(r), in which the index depends only on the coordinate r of
the cylindrical coordinate system (r, φ, z). The index usually has a maximum value
on the axis, r = 0, and decreases with growing r. It is the refractive index profile that
keeps light within the fiber and prevents it from escaping. In step-index (SI) fibers, n
has a constant value of nco for r smaller than a certain radius R (this region is called
the core), and another constant value ncl<n0 for n ≥ R (the cladding). In graded-index
(GRIN) fibers the refractive index varies smoothly with r. The most commonly used
GRIN fibers have a parabolic index profile,

n2(r) = n2
co(1 − r2/b2), (1)

where the parameter b has a dimension of length and determines the index profile
steepness.

2.1a. Geometrical Optics Approach
In fibers with a core radius that is much larger than the wavelength, it is possible to
think in terms of geometrical optics and to consider light rays propagating within the
fiber.

In SI fibers, light rays undergo total internal reflection at the interface between the
core and the cladding and orbit the fiber axis along a broken line resembling a helix
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Figure 2

(a) Rays in a SI fiber shown in sideview and frontview. The black ray propagates along
the fiber axis. The red ray propagates in a single plane, repeatedly intersects the z axis,
and carries zero orbital angular momentum. The blue ray forms a spiraling curve and
carries nonzero orbital angular momentum. (b) The same for a parabolic GRIN fiber,
where the rays form smooth trajectories.

composed of straight line segments, see Fig. 2(a). There is a maximum angle αmax that
the ray can make with the fiber axis to undergo the total internal reflection. A simple
calculation shows that the relation nco sinαmax =

√︂
n2

co − n2
cl ≡ NA holds for this case.

This value is the NA of the fiber and describes the maximum angle α′
max of a ray

entering the fiber from vacuum that will be guided by the fiber as NA = sinα′
max.

Rays making larger angles with the fiber axis penetrate into the cladding where they
usually get quickly attenuated since the reflection on the outer cladding boundary is
not perfect. Obviously, rays making larger angles α with the fiber axis have a longer
path and, hence, travel through a given fiber section longer than those with smaller α.
If a short optical pulse is launched into a SI fiber, it excites optical rays with different
angles of propagation, and hence different portions of the pulse take different times to
get through the fiber. As a result, the pulse gets elongated when leaving the fiber, which
is a manifestation of modal dispersion, expressed in terms of geometrical optics.

Instead of total internal reflection as in SI fibers, rays in GRIN fibers are subject to
bending and orbit the fiber axis along a smooth spatial curve, see Fig. 2(b). The radial
extent of the ray motion is not the same for all rays as in SI fibers but depends on the
entrance angle. In this way, some rays explore large portions of the index profile while
others stay near the fiber axis. The length of the rays in a given fiber segment thus
varies just as in SI fibers. However, the rays with a larger length travel on average in
lower refractive index regions (farther from the axis), which partially compensates for
the time difference between different rays. It can be shown that in fibers with parabolic
profiles this compensation is almost perfect [46,59] and the time of travel through a
given fiber segment is essentially the same for all rays. In this way, modal dispersion
is almost eliminated in such fibers and a short pulse launched into the fiber remains
short at the output as well; this property makes parabolic GRIN fibers predestined for
communication applications where large information flows are relevant.

2.1b. Wave Description
In many practical cases it is desirable to model the distribution of the light field prop-
agating through the MMF. Here, the geometrical optics can no longer be used and
wave optics has to be employed instead. For this purpose, it is appropriate to write
Maxwell’s equations in the cylindrically symmetric profile of relative permittivity
εr(r) = n2(r) and unit relative permeability µr = 1. One then obtains six coupled equa-
tions for the components of the electric and magnetic fields. Owing to the cylindrical
symmetry of the index profile, it is natural to look for solutions of Maxwell’s equa-
tions that separate in cylindrical coordinates. The evolution of such a wave along the
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fiber is given simply by acquiring a phase without changing the spatial distribution
of the fields; therefore, such solutions are called propagation invariant modes (PIMs)
or simply “fiber modes.” The rate at which the phase of the mode shifts along the z
axis is called propagation constant and denoted by β. It turns out [46] that for each
mode, all the field components can be expressed in terms of the transverse part (i.e.,
the part perpendicular to the z axis) Et of the electric field E. In this way, the mode is
completely described by Et whose spatial and temporal evolution is

Et(r, φ, z, t) = ei(βz−ωt)Et(r, φ), (2)

where ω is the angular frequency and Et(r, φ) is the transverse field distribution at
t = 0 in the plane z = 0. The field Et(r, φ) is governed by the transverse equation that
follows from Maxwell’s equations [46]:

(∇2
t + k2n2 − β2)Et = −∇t(Et∇t ln n2). (3)

If the refractive index difference between the core and cladding is small with respect
to unity, nco − ncl ≪ 1, we talk about a weakly guiding fiber.

2.1c. Scalar Approximation
For a weakly guiding fiber, one could, in the roughest approximation, completely
neglect the right-hand side of Eq. (3). Then the x and y components of Et completely
decouple and each of them is governed by the scalar Helmholtz equation,

(∇2
t + k2n2 − β2)ψ = 0. (4)

Here, ψ denotes the x or y component of the transverse field so that

Et = êψ, (5)

where ê is the polarization vector (either x̂ or ŷ). In this way, the modes are linearly
polarized and the propagation constant is not influenced by polarization. The scalar
Helmholtz equation can further be separated in polar coordinates and yields the
solutions

ψ(r, φ) = eilϕflp(r). (6)

Here l = 0,±1,±2, . . . is the orbital angular momentum index determining the phase
change of the wave when encircling the z axis, and p = 0, 1, 2, . . . is the radial index
of the mode, respectively. The radial functions flp(r) describe the radial distribution
of the modes, and they have p radial nodes for r>0. In SI fibers, they are given by
Bessel functions and have an oscillatory character in the core while in the cladding
they die out exponentially with growing r (evanescent waves), see Fig. 3(a). In GRIN
fibers, the radius Rlp at which the radial function changes from oscillatory to evanes-
cent form is different for different modes, in analogy to what has been said about
rays in GRIN fibers—Rlp then describes the radial turning point of the correspond-
ing rays. In parabolic fibers, the spatial field distribution eilϕflp(r) corresponds to
Laguerre–Gaussian modes, see Fig. 3(b).

The fiber modes have to be normalized such that the energy flux in each of them is the
same. For low-NA fibers, this is equivalent to normalizing the mode function ψ(r, φ)
over the fiber cross section; for larger NA the flux normalization is essential [49].

There is a degeneracy with respect to the propagation constant β in the scalar approx-
imation: the modes with different polarizations as well as with opposite values of l
have the same values of β. In this way, most modes are fourfold degenerate and those
with l = 0 are twofold degenerate. Due to this degeneracy, the selection of the modes
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Figure 3
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(a) Scalar modes in a SI fiber with parameters NA = 0.15, R = 6 µm, λ = 532 nm.
(b) Laguerre–Gaussian scalar modes for parabolic GRIN fiber with parameters NA =
0.25, R = 6 µm, λ = 532 nm. The brightness encodes the wave amplitude and hue its
phase. The modes are arranged according to index l (horizontal axis) and p (vertical
axis). Note the different radial extents of the GRIN fiber modes as opposed to those
for the SI fiber.

Figure 4

Hermite–Gaussian scalar modes for the GRIN fiber of Fig. 3(b). Due to the strong
degeneracy of scalar PIMs in an ideal parabolic fiber, their choice is not unique, and
alternative modes can be defined via superpositions in the subspace of the original
modes corresponding to the same propagation constant.

is not unique. For example, instead of the linear polarization basis x̂, ŷ one can use in
Eq. (5) the circular polarization basis σ̂± = (x̂ ± iŷ)/

√
2. It turns out that this basis is

more suitable than the linear one when going beyond the scalar approximation, as will
be explained in the following.

In addition to this degeneracy, for certain index profiles n(r) there might also be
an additional degeneracy. In particular, in parabolic GRIN fibers such a degeneracy
is very strong and βlp depends only on the linear combination |l| + 2p. Due to this
degeneracy, the choice of the modes is not unique, and alternative modes can be
defined via superpositions in the subspace of the original modes corresponding to the
same propagation constant. Figure 4 shows the Hermite–Gaussian modes, which form
an alternative choice to the Laguerre–Gaussian modes.
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Interestingly, this situation is very similar to the energy level degeneracy in the quan-
tum mechanical isotropic two-dimensional (2D) harmonic oscillator; there is a close
analogy between such an oscillator and the parabolic fiber, including the similarity
of the governing equations (in case of the oscillator, it is the stationary Schrödinger
equation). As is well known, the stationary Schrödinger equation for the oscillator
can be separated both in polar coordinates, leading to Laguerre–Gaussian states, and
in Cartesian coordinates, leading to Hermite–Gaussian states. This is in complete
analogy to the situation in parabolic GRIN fibers.

The scalar approximation provides a sufficient description for very short fibers. How-
ever, for fibers over a few millimeters long, polarization effects become important and
the term on the right-hand side of Eq. (3) must be taken into account.

2.2. Weak Guidance Approximation
A more accurate description than the scalar approximation is provided by the WGA
[46]. It takes into account the mutual influence of light polarization and the spatial
distribution of the fields, the so-called spin–orbit (SO) interaction [60]. This term is
used also in quantum mechanics where it describes interaction of the electron spin
with its spatial wave function; in optics, the situation is analogous, but its description
is different. The origin of the optical SO interaction lies in the fundamental vector
character of Maxwell’s equations [60], and it is closely related to the concept of the
geometric phase [61].

The approach is based on the expansion of an unknown modal field Et(r, φ) into
the modes given by Eqs. (5) and (6) with unknown coefficients and then using the
perturbation calculation to find these coefficients and the corresponding propagation
constant. The perturbation terms describe the SO interaction in the fiber. By this
procedure one finds the approximate vector modes and their propagation constants.

The perturbation partially removes the degeneracy present in the scalar approximation,
which reflects a typical situation in perturbation theory. Most transverse modal fields
are now approximately described by Eq. (5) with ê ∈ {σ̂−, σ̂+}. We can denote these
modes by |l,σ⟩p according to their index l and circular polarization index σ = ±1,
whereσ = +1 andσ = −1 corresponds to polarization state σ̂+ and σ̂−, respectively, as
defined above. These modes have circular polarization, and modes with the same value
of l and opposite circular polarizations have slightly different propagation constants—a
manifestation of the SO interaction. Changing the sign of l and σ simultaneously does
not change the propagation constant—a manifestation of the mirror symmetry of the
fiber.

Even though most of the circularly polarized states |l,σ⟩p are PIMs of the fiber, there is
an exception: the states |1,−1⟩p and | − 1, 1⟩p are not propagation invariant; the PIMs
are actually the following superpositions:

|H⟩p =
|1,−1⟩p + | − 1, 1⟩p

√
2

, |B⟩p =
|1,−1⟩p − | − 1, 1⟩p

√
2

. (7)

The state |H⟩p is sometimes called “hedgehog state” because the vectors Et(r, φ) are
directed radially, resembling pins of a hedgehog. The state |B⟩p is sometimes called
“bagel state” and the vectors Et(r, φ) are directed in the angular direction. The bagel
modes are specific by having zero electric field component Ez along the z axis, so they
are transversely electric modes. Similarly, hedgehog modes are transversely magnetic;
for all other modes the components Ez and Bz are both nonzero (but still small in
weakly guiding fibers).
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In general, the modes |H⟩p and |B⟩p are the only nondegenerate ones. All other modes
form pairs |l, 1⟩p and | − l,−1⟩p with the same propagation constant. Therefore, here
again the choice of the modes is not unique, and often superpositions (|l, 1⟩p ± | −

l,−1⟩p)/
√

2 are preferred in the literature [46]; these modes are called even and odd
HE and EH modes.

Propagation constants in the WGA are very close to the scalar propagation constants
to which there are small corrections, depending on the mode. These corrections follow
from the perturbation theory described above and can be expressed as integrals over
the plane (r, φ) of the derivative dn/dr with the corresponding modal fields [46].

The SO interaction has an interesting consequence: consider an x-linearly polarized
wave with orbital angular momentum index l>1 and some radial index p injected into
the fiber at z = 0. Such a wave corresponds to the superposition (|l,−1⟩p + |l, 1⟩p)/

√
2

of the fiber modes. As it propagates along the fiber, the two modes pick up slightly
different phases due to the difference in their propagation constants, so the state
stays linearly polarized, but the polarization vector slowly rotates in the direction
of the angular momentum. In this way, the orbital angular momentum “drags” the
polarization direction. In a typical weakly guiding SI fiber with NA = 0.22 and R =
25 µm, the full 2π polarization rotation occurs on distances starting at about 5 cm
(depending on the mode indexes l and p), so the SO interaction must be taken into
account for fibers longer than a few millimeters.

Conversely, one can instead launch into the fiber the superposition (|l, 1⟩p + | −

l, 1⟩p)/
√

2, which is a standing-wave pattern with right circular polarization. This
time, it is the spatial pattern that slowly rotates, being dragged by the circular polariza-
tion. The distance L2π at which a full 2π rotation occurs depends, in general, on both
indexes l and p. Remarkably, in parabolic GRIN fibers this dependence vanishes [62],
which results in the fact that changing the polarization of the input field (at z = 0),
e.g., from left to right results in a rotation of the whole output field (at z = L) by an
angle 4πL/L2π . This effect can be seen in the last column of Fig. 5.

Interestingly, the drag of the linear polarization by the orbital angular momentum can
be described simply within geometrical optics [63]. As the ray moves through the fiber,
its tangent vector changes and describes a kind of a pyramid (in an SI fiber) or a cone
(in a GRIN fiber). The linear polarization direction is then parallel-transported along
the ray, which results in its rotation with respect to a fixed direction, as is illustrated
in Fig. 6; the angle of rotation in a given fiber segment is numerically equal to the
total solid angle enclosed by the direction vector during motion in that segment [63].
The rotation angle calculated in this way agrees quite well with the more accurate
calculation using WGA. Alternatively, the polarization rotation can be interpreted in
terms of the geometric phase [60,64]. This phase along a given ray is different for left
and right circularly polarized states, and it is proportional to the solid angle enclosed
by the ray direction vector. The result is again a rotation of the polarization.

2.2a. Self-Imaging in Parabolic Fibers
An interesting and useful effect [65,66] occurs in parabolic fibers with a refractive
index as in Eq. (1). The scalar propagation constants in this case are given by [62]

βlp =

√︃
k2n2

co −
2knco(|l| + 2p + 1)

b

= knco −
|l| + 2p + 1

b
−
(|l| + 2p + 1)2

2kncob2 − · · · ,
(8)
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Figure 5

Simulation of the evolution of the left (first row) and right (second row) circularly
polarized state along the parabolic GRIN fiber with parameters NA = 0.3 and R =
25 µm. The distances z along the fiber are shown at the bottom. The input state at
z = 0 is a plane wave modulated by a binary mask in the shape of a tropical island
scenery (courtesy: Une Butaite and David Phillips). At the distance z = Lrep/4 one
gets essentially the Fourier transform of the input image. At z = Lrep/2 one gets a
π rotated input image, and at z = Lrep the input image is reproduced. This process
repeats many times along the fiber, but the image gradually gets degraded, as is clear
for z = 20Lrep and 100Lrep. Comparing the two polarizations at z = 100Lrep, one sees
that they are clearly rotated with respect to each other due to the SO interaction. The
revival distance Lrep is 777.5 µm, and the full rotation distance L2π is 3.48 m.

Figure 6

Drag of the linear polarization by the orbital angular momentum. As the ray (shown
in red in the front view) carrying orbital angular momentum propagates in a weakly
guiding SI fiber, its linear polarization vector (shown by the blue arrows) is parallel
transported along the ray with a good accuracy. This results in a slow polarization
rotation. The rotation is greatly exaggerated here to be visible.

where the square root was expanded by binomial expansion. If the NA is not large, the
first two terms of the expansion provide a good approximation to propagation constants.
Consider for this case the phase change of the modes at the distance ∆z = L0 ≡ 2πb.
The first term knco in Eq. (8) then gives the same phase for all modes, which is just
a global phase; the phase 2π(|l| + 2p + 1) coming from the second term is an integer
multiple of 2π, so it cancels. In this way, the wave pattern repeats itself in the parabolic
fiber after the distance L0. However, due to dephasing caused by the third- and higher-
order terms in Eq. (8), the pattern revivals gradually degrade, as illustrated in Fig. 5.
It can be shown that the effect of the third term in Eq. (8) is partially eliminated if
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the distance L0 is replaced by Lrep = 2πb − πRNA/(2knco). This can be regarded as a
more accurate expression for the revival distance.

A closer inspection of the modes’ parity reveals that at the distance Lrep/2 the pattern is
repeated too, just rotated by π, and at the distance Lrep/4 one gets the Fourier transform
of the input image, so the segment of the fiber of this length works as a lens.

In addition to all this, the SO interaction causes rotation of the repeated pattern in the
negative or positive direction for left or right circular polarizations, respectively, as
explained above and illustrated in Fig. 5.

2.3. Imperfection and Perturbation
In reality, all fibers have inherent imperfections such as refractive index variations and
distortions of the fiber cross section along the fiber. Also external perturbations due to
fiber bending or twisting and ambient temperature inhomogeneity, strains, etc., affect
light transport in a MMF. We will discuss the influence of these effects here below.

2.3a. Fiber Bending
Optical fibers are rarely completely straight, and fiber bending can influence light
propagation significantly. An important effect often discussed in the literature is energy
loss because the light from some of the guided modes can tunnel to the cladding on the
outer side of the bend. In addition to the mode-dependent loss (MDL), fiber bending
causes mode mixing and phase shifting in bent fibers. Understanding in detail how
the bending influences the TM is important in applications where bending occurs and
where it changes in time, especially because it is not always possible to measure the
TM repeatedly on short time scales.

For instance, consider a SI fiber where a specific speckle pattern is sent onto the
proximal end of a straight fiber so that a focused diffraction-limited spot is obtained
on the distal end; this is a typical situation in fluorescent imaging through the fiber.
Now suppose that the fiber gets bent. Due to the changes in the TM, this results
in a complete degradation of the focused spot at the distal end. In order to recover
it, one would need to take into account these changes and modify the input pattern
accordingly. The modification can be found theoretically, based on the known fiber
shape and the knowledge of light propagation in the bent fiber [67] or experimentally
by a coherent beacon source placed at the distal tip of the fiber [68]. However, the
most advantageous way is to use a bending resilient fiber where the TM almost does
not change with fiber deformation. This is possible with near-perfect parabolic fibers
but not with SI fibers. Therefore, the knowledge of bending effects on the TM is very
important.

Let us discuss first light propagation in bent fibers within the scalar theory, and
then mention how the more accurate description within WGA works. Let the fiber
be bent in the positive x direction and have curvature ρ. This means that the center
of curvature lies in the positive x direction at the distance 1/ρ from the fiber axis.
In a straight fiber, the phase in PIMs changes uniformly along the fiber, and the
wavefronts are perpendicular to the fiber axis (when not considering the helicity of
wavefronts caused by the orbital angular momentum). In the PIMs of bent fibers,
it is natural to require the same property; however, due to bending the separation
of the wavefronts in the z direction now changes with x as d(x) = (1 − ρx)d0, where
d0 = 2π/β is the wavefront separation on the fiber axis, as can be seen from a simple
geometric consideration. In this way, the “local propagation constant” now depends
on x as β(x) = 2π/d(x) = β/(1 − ρx).
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To put this into the mathematical form, let the PIM of the bent fiber with a given
polarization state be described by the wave function ψ(x, y) according to Eq. (5). To
account for the local propagation constant dependence on x, we replace β in Eq. (4)
by β(x), which yields an equation for ψ[︃

∇2
t + k2n2 −

β′2

(1 − ρx)2

]︃
ψ = 0. (9)

Here we are using β′ for the propagation constant on the bent fiber axis to distinguish
it from the unprimed propagation constants for a straight fiber.

The most straightforward way of solving Eq. (9) is to multiply it with the expression
(1 − ρx)2 and plug into it the unknown bent fiber mode ψ expanded into the straight
fiber PIMsψj asψ =

∑︁n
j=1 cjψj. The subsequent calculation is relatively straightforward

[69] and enables us to reduce the problem of finding the modes of the bent fiber and
their propagation constants to the eigenvalue problem for the matrix

B′ = (1 − ρX)B, (10)

where B is the diagonal matrix of propagation constants of the straight fiber, i.e., the
matrix with entries Bij = δijβi, and the matrix X is defined by

Xij ≡

∫
R2

xψ∗
i (x, y)ψj(x, y) dx dy. (11)

The eigenvectors of B′ then express vectors of the superposition coefficients ci corre-
sponding to the PIMs of the bent fiber, and the propagation constants are given by the
corresponding eigenvalues of B′.

In this way, the matrix B′ represents the modes of the bent fiber just as the matrix B
represents the modes of the straight fiber. Moreover, the state evolution in the bent
fiber takes a very simple form in terms of the matrix B′: in the fiber segment of length
L and a constant curvature ρ, the TM in the basis ψi is simply T(ρ, L) = exp(iB′L) =
exp[i(1 − ρX)BL].

It can be useful to be able to estimate how fiber bending influences the form of the
modes and their propagation constants based on some simple insights. This will enable
us to estimate what index profiles will give more bending-resilient propagation, etc.
Insights that will be relevant in this regard proceed along the following direction. For
small curvatures, the term ρx is very small compared with unity, which allows us to
perform in Eq. (9) the approximations β′2/(1 − ρx)2 ≈ β′2(1 + 2ρx) ≈ β′2 + 2k2n2

coρx,
where in the second approximation we replaced β′ by knco; in weakly guiding fibers,
propagation constants of all modes are very close to this value. In this way, Eq. (9)
can be rewritten as follows[︁

∇2
t + k2(n2 − 2n2

coρx) − β′2
]︁
ψ = 0. (12)

This equation is formally equivalent to the equation for straight fibers with a modified
refractive index n′2 = n2 − 2n2

coρx. The index modification,∆n2 ≡ n′2 − n2 = −2n2
coρx,

has the character of a uniform slope in the x direction, increasing the index in the x<0
region (the outer side of the bend) and decreasing it in the x>0 region. As larger index
values generally tend to attract the light, at least for lower modes, we see that the light
will be “pulled” to the outer side of the bend. This could be interpreted as an effect
of the “centrifugal force” acting on the light in the bend. Equivalent results can be
obtained by the method of conformal transformation of the refractive index profile [70].

The analogy of fiber bending to modification of the refractive index also helps to
understand the dramatic difference between the behavior of modes in SI and GRIN
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fibers upon fiber bending. Consider first a SI fiber: its index profile, n2, along the x
axis is a partwise constant function, see Fig. 7(b), blue curve. Adding a constant slope
∆n2 (red curve) changes this profile significantly, creating the maximum index region
at the edge of the fiber core, see Fig. 7(b), black curve. This is the reason why the
lowest modes are localized in that region, as Fig. 7(d) shows.

Next, consider a parabolic GRIN fiber: its index profile, n2, along the x axis is parabolic,
see Fig. 7(c), blue curve. Adding a constant slope ∆n2 (red curve) has a much less-
significant effect on the index, simply shifting the parabola slightly in the negative
x direction by the distance ρb2 (where b is the parameter of the index profile from
Eq. (1)) and simultaneously lifting it slightly up (see Fig. 7(c), black curve). The effect
of bending on an ideal parabolic fiber is therefore much less dramatic than for SI
fibers: the modes are simply shifted to the outer side of the bend by a constant value
and their propagation constants are shifted by a constant value, as is demonstrated in
Fig. 7(e). This makes parabolic fibers substantially more resilient to bending than SI
fibers.

The effect of bending can, of course, also be described within the WGA. The idea is
the same as has been described in Section 2.2: expand the unknown bent fiber mode
in the mode basis described by Eqs. (5) and (6) with unknown coefficients cj, and
substitute this into Eq. (3) with β replaced by β′/(1 − ρx). After some manipulation,
one gets a matrix equation for the coefficients cj, so the solution again reduces to an
eigenvalue problem.

The influence of fiber bending on the TM can be expressed in terms of the deformation
matrix. It is defined as the matrix product [67]

D = TbentT−1
straight, (13)

where Tstraight and Tbent is the TM of the same fiber in the straight and bent lay-
out, respectively. The physical meaning behind the deformation matrix is simple: it
expresses the relation between the output state of the bent fiber and of the straight
fiber if the same input state is used. For bending resilient fibers, D is close to the unit
matrix (up to a possible global phase factor) while, e.g., for SI fibers, it differs from
the unity matrix significantly even for slight bending.

Other definitions of the deformation matrix have also been used in literature when,
for instance, one subtracts the identity matrix from the product (13); in this way, one
obtains a zero deformation matrix rather than a unity matrix in case of no deformation
[71].

2.3b. Adiabaticity of Bending
If an optical fiber is bent, usually the curvature is not constant (that case would
correspond to a coiled fiber) but varies along its length. To find the TM theoretically
in this case, one can follow a simple strategy: divide the fiber into a large number
N of segments, the curvature in each of which can be regarded as constant. Let us
assume for simplicity that the bending occurs in the x direction, so the fiber lies
in one plane. The TM of the ith segment in the basis of straight fiber modes is
then T(Li, ρi) = exp[i(1 − ρiX)BLi] as explained in Section 2.3.1, and the total TM
is then simply the matrix product Tbent = T(LN , ρN)T(LN−1, ρN−1) · · · T(L1, ρ1). The
corresponding deformation matrix is D = TbentT−1(L, 0).

It turns out that it is not only the values of the curvatures in the set {ρi, i = 1, . . . , N}

that influence the resulting deformation matrix D, but also their order. In particular, if
curvatures of adjacent fiber segments differ only slightly, the deformation matrix will
be much closer to the unity matrix than if they differ significantly. The reason is that
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Figure 7
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Bending of the fiber (a) is approximately equivalent to adding a constant slope to the
refractive index. The plots (b) and (c) show the original square index n2 (blue), the
added slope ∆n2 (red), and the resulting effective index n2 + ∆n2 (thick black) for (b)
a SI fiber and (c) a parabolic GRIN fiber. In (c), the position of the effective index
maximum is shown by the dashed line. The parameters are here rather unrealistic so
that the effects can be seen in the plots: for both fibers, ρ = (200 µm)−1, NA = 0.7,
R = 6 µm. (d), (e) Scalar modes in bent fibers with curvature ρ = (5 mm)−1, for (d)
a bent SI fiber with the same parameters as in Fig. 3(b) and for (e) a bent parabolic
GRIN fiber as in Fig. 3(c). Only the first 24 modes are shown for each fiber, as some
of the highest modes are no more bound due to the bending. The effect of bending on
the SI fiber modes is dramatic while the GRIN fiber modes are just slightly shifted in
the negative x direction by ρb2 = 0.26 µm. Note that for the GRIN fiber, the shifted
Hermite–Gaussian rather than Laguerre–Gaussian modes are obtained, the result of
breaking the original rotational symmetry of the index profile by bending.

if the curvature changes smoothly along the fiber, light can adapt adiabatically to the
new conditions, while abrupt curvature changes cause abrupt mode changes, which
will degrade the DM strongly. This is illustrated in Fig. 8 where in each case, the



Review Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics 541

Figure 8

Simulation of the influence of the type of fiber bending on the transmitted image. The
top row shows curvatures of 100 fiber segments of equal length for (a) bending of
constant curvature, (b) adiabatic bending, and (c) random bending. The second row
shows the corresponding fiber shapes. The third row shows the intensity pattern at
the output of a bent fiber, with the input speckle pattern that would yield the desired
scenery (with a flat phase) at the output of a straight fiber. The fourth row shows the
simulated fluorescence imaging if the straight fiber TM is used for generating focused
spots at the output. In (c), the same curvatures of 100 segments as in (b) were used,
but with random sequence, so adjacent segments have very different curvatures. The
fiber parameters were as in Fig. 5 and the fiber length L = 50 mm.

specific input speckle pattern is launched into the fiber that would make the desired
scenery (as of Fig. 5, the first column) at the output facet of the fiber if it were
straight. Figure 8(a) corresponds to a fiber bent to a constant curvature; since the
modes in this case do not quite match the modes of a straight fiber, the image is not
perfect. Figure 8(b) corresponds to smooth fiber bending, starting and ending with
zero curvature. Since the bending is adiabatic, the image has a much better quality.
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In Fig. 8(c), the curvatures were taken from the case of the fiber in Fig. 8(b) divided
into 100 segments of equal length, but randomly reordered. The distortion is now very
strong since the bending is far from being adiabatic, even though the curvatures had
the same values as in Fig. 8(b).

In this way, if one needs a high bending resilience in a specific experiment, it is
not only important to choose a bending-resilient fiber, but also to make sure that the
curvature changes smoothly. In particular, concentrated forces acting on the fiber as
well as torques acting on its ends should be avoided. This is also the case of Fig. 8(b)
where the forces deforming the fiber act only at the fiber ends (no torques are applied
there).

2.3c. Refractive Index Perturbations
Most optical fibers have a rotationally symmetric refractive index profile. Finding
the PIMs and the TM in this case is quite straightforward because the Helmholtz
Eq. (4) can be separated in polar coordinates, and WGA can subsequently be applied
as explained in Section 2.2. However, often there are imperfections in the refractive
index profile that do not have cylindrical symmetry, and it is desirable to be able to
describe the PIMs of the fiber that has such imperfections. An example is a transverse
index perturbation that does not change along the fiber. As the index profile can be
measured by tomographic methods [72,73], one can then theoretically calculate PIMs
and the TM of such a fiber with high accuracy, which can be very useful in interpreting
results of experiments. In the following, we briefly describe how to find scalar modes
of a fiber with index perturbations; a generalization of this method to WGA is relatively
straightforward.

We start with the scalar Helmholtz Eq. (4) where we express the squared refractive
index as an ideal profile plus perturbation, n2 = n2

id + ∆n2, which yields the equation

[∇2
t + k2(n2

id + ∆n2) − β′2]ψ = 0. (14)

Expressing, as usual, a perturbed mode as a superposition of unperturbed modes,
ψ =

∑︁
j cjψj with unknown coefficients cj, substituting into Eq. (14), multiplying with

ψ∗
i and integrating over the xy plane, we get a matrix equation∑︂

j

(β2
i δij + k2

∆Nij)cj = β
′2ci, (15)

where ∆Nij =
∫
R2 ∆n2(x, y)ψ∗

i (x, y)ψj(x, y) dx dy are the matrix elements of the index
perturbation. In this way, we again obtain an eigenvalue problem for the matrix B′2 =

B2 + k2∆N, where B2 is the diagonal matrix with squares of unperturbed propagation
constants.

Figure 9 shows the PIMs calculated with this method for an elliptic, triangular, and
square perturbation, respectively. We see that the symmetry of the modes reflects
clearly the symmetry of the perturbation.

Similarly as in the case of bending, one can treat the index perturbations also within
WGA (a generalization of the method is straightforward). What is most demanding
in numerical calculations is to express the matrix elements of the right-hand side of
Eq. (3).

2.4. Mode Coupling
As summarized in the previous section, very elaborate models are available for
light transport through straight or bent optical fibers, including a wide spectrum
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Figure 9

First 24 PIMs in a parabolic GRIN fiber (NA = 0.25, R = 6 µm, λ = 532 nm)
with refractive index perturbations: (a) elliptic perturbation of squared refrac-
tive index, ∆n2(r, φ) = −0.01(r/R)2 cos[2(φ + π/2)], (b) triangular perturbation
∆n2(r, φ) = −0.01(r/R)2 cos[3(φ + π/2)], and (c) fourfold perturbation ∆n2(r, φ) =
−0.0075(r/R)2 cos[4(φ + π/2)]. The gray curves show the contour of refractive index
with the value corresponding to radius R in the unperturbed fiber.

of aberrations. The models already predict very complex behavior including cou-
pling between polarization states and spectral decorrelations. Light transport through
real optical fibers is, moreover, affected by noncircularity of the core, roughness at
the core-cladding boundary, variations in the core radius or the index profile, which
are experimentally very hard or even impossible to determine. For certain applica-
tions, perturbations are even intentionally induced, e.g., by local mechanical stress,
microbends, or material selection, to cause the fiber modes (derived from models of
unperturbed fibers) to couple each other. Consequently, energy transfers from one
fiber mode to another, as light propagates in the fiber. Often such coupling is neither
predictable nor traceable, and thus referred to as random mode coupling.

Ignoring these perturbations in the previous models therefore makes the predictions
diverge from the experimental reality, with the deviation increasing with the length
of the fiber. For each fiber, there is a length limit beyond which the exact prediction
of the light transport becomes impossible. Beyond this limit, the coupling of optical
power between modes can only be treated statistically.
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2.4a. Spatial- and Polarization-Mode Coupling
Traditionally, modal dispersion and coupling in MMFs have been described using
power-coupling models [74]. Such models are effective in describing the modal power
distribution as a function of time and fiber length, and also provide a good understand-
ing of signal distortion, pulse broadening as a function of fiber length, and fiber loss.
Such models fail to consider phase effects, making them generally appropriate only for
incoherent light sources. For coherent light sources, field-coupling models are needed
instead to describe phase-dependent coupling between complex-valued electric field
amplitudes.

On the numerical level, bending of a fiber has been used to induce spatial-mode cou-
pling and birefringence [75]. Concatenated multiple sections with differently oriented
bends cause polarization-mode coupling. Because spatial-mode coupling is phase
dependent, and birefringence leads to different phase shifts for different polarizations,
this model naturally leads to polarization-dependent spatial-mode coupling.

2.4b. Weak versus Strong Mode Coupling
The pairwise coupling strength between two modes depends on the ratio between the
coupling coefficient (per unit length) and the difference between two modal propaga-
tion constants. Hence, a given perturbation may strongly couple modes with nearly
equal propagation constants, but only weakly couple modes with highly unequal
propagation constants.

Compared with light scattering in disordered photonic structures, mode coupling can
be treated as a scattering process taking place in fiber mode space [76]. The associated
scattering mean free path ℓs gives the average distance that light travels in the fiber
before hopping from one spatial mode to another. One also defines the transport mean
free path ℓt ≥ ℓs as the minimum propagation distance beyond which light is spread
over all fiber modes, no matter which mode it is initially launched into. Even if the
fiber length L is already longer than ℓs, but still shorter than ℓt, the mode coupling
is considered weak. Once L ≫ lt, the mode coupling is strong enough to initiate a
random walk of light in mode space. As light still propagates only forward in the fiber,
this optical diffusion process does not result in significant back-reflection or loss. This
is in stark contrast to disordered photonic structures that induce strong backscattering
[25,26,47–49].

In the weak-coupling regime, the group delays (derivative of the change in spectral
phase with respect to the angular frequency) are weakly dependent on mode coupling,
and the differential group delays (difference in group delays) are linearly proportional
to fiber length. By contrast, in the strong-coupling regime, the group delays are strongly
dependent on mode coupling. Differential group delays are reduced as compared with
the low-coupling regime, and are proportional to the square root of fiber length. In the
strong-coupling regime, the statistics of modal dispersion and MDL depend only on
the number of modes and the variance of accumulated group delay or loss, and can be
derived from the eigenvalue distributions of certain Gaussian random matrices [77].

In optical telecommunication, strong mode coupling reduces the group delay spread
from modal dispersion, minimizing signal processing complexity for spatial-division-
multiplexing systems. Likewise, it reduces the variations of loss due to MDL,
maximizing the channel capacity for long-haul communication [78,79].

2.4c. Disorder and Complexity
The presence of disorder in MMFs undoubtedly limits the spectrum of applications
greatly, and it remains highly desirable to develop fibers with predictable transmission
properties to ever larger distances. Further, it is very important to develop methods,
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with which one can discriminate disorder from other manifestations of complexity.
More specifically, it is very desirable to ascertain reliably, how far a specific fiber can
be considered predictable. For example, many applications relying on the exact spatial
control of light outputs (imaging, optical trapping, micromanufacturing), which shall
function through bendable fibers and without direct optical access to the output, may
be enabled in predictable fibers with the use of sufficiently precise theoretical models.
But once disorder overtakes the dominant role, such possibilities would be immensely
challenging and extremely demanding technologically.

Assessing the predictability of an optical fiber, i.e., to what extent it follows a theo-
retical prediction, is however associated with yet another important problem, related
to limitations in our experimental possibilities. Here, one has to consider further
uncertainties in the parameters of the given fiber (core diameter, NA) as well as the
uncertainties in spatial alignment under which the light signals have been coupled into
and collected from the fiber. Unless these uncertainties are identified and eliminated
[67,71], they manifest themselves practically as coupling between modes and can be
easily confused with disorder.

Importantly, disorder does not only bring limitations, but also benefits. Specifically,
random mode coupling not only suppresses negative effects such as modal dispersion
and MDL, but it is also the crucial tool for certain applications. Consider here, e.g.,
disorder-induced spatial- and polarization-mode coupling, which allows one to use
the spatial degrees of freedom in the input light to a MMF to control the polarization
degrees of freedom of the output field, which will be described in a later section.

2.4d. Optical Memory Effects
One notable difference between optical fibers and disordered photonic structures lies
in their optical memory. The angular memory effect, also referred to as intrinsic
isoplanatism, has been well studied for random scattering media [80–83]. When the
spatial wavefront of a coherent beam incident on a disordered slab is tilted by a small
angle, the transmitted wavefront is tilted by the same angle. The angular range of the
memory effect is inversely proportional to the system thickness, thus a thin scattering
layer has a large memory effect range. Correspondingly, the angular memory effect is
usually absent in a MMF, because its length typically lets the memory effect range go
to zero.

However, short fibers with weak mode coupling have rotational and quasi-radial mem-
ory effects [84–86]. Rotating the incident wavefront around the fiber axis leads to
a rotation of the transmitted intensity pattern without any significant change of the
pattern itself. When monochromatic light propagates through a MMF with a specific
propagation constant, a quadratic radial phase modulation of the input wavefront will
cause an axial shift of the output pattern [15]. More recently, the translational memory
effect has been observed in MMFs with square cross section [87]. Symmetry proper-
ties of the square-core fiber lead to speckle patterns shifting along four directions at the
fiber output for any given shift direction at the input. The memory effect has also been
extended to the spectral domain [88]. When the input wavefront of a monochromatic
light is shaped to focus through a SI MMF, a frequency change induces an axial shift
of the output focus. This broadband chromato-axial memory effect originates from
the conservation of the transverse component under spectral detuning in the MMF.
Nevertheless, none of these memory effects will survive in long MMFs with strong
mode coupling.

A phenomenon closely related to optical memory effects is “coherent backscattering”
(CBS). It is manifested by an enhancement by a factor of two of the backscattered
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light intensity, due to constructive interference of waves which propagate along time-
reversed paths [47,48]. While CBS is commonly known as weak localization of waves
in random scattering systems, it also exists for light reflected from the distal facet of
a MMF, which has random mode coupling [89]. By tuning the nonreciprocal phase
with the magneto-optical effect, it is possible to control the interference between time-
reversed paths in a MMF and realize a continuous transition from enhancement to
suppression of CBS [89].

3. METHODS

In this section, we will introduce the key experimental tool that enables optical wave-
front shaping (WFS): a SLM. There are several types of SLMs, operating with different
principles. Their specifications will be summarized in Section 3.1 to facilitate the
choice of an appropriate SLM for the specific application. In Section 3.2, we describe
how the SLM is used to measure the field TM of a MMF. The transmission eigenchan-
nels are then introduced. The SLM is used to control the spatial profile of transmitted
light through a MMF. In addition to monochromatic light, broadband transmission and
short-pulse propagation through MMFs are characterized by multispectral and time-
gated TMs in Section 3.3. They allow for temporal control of MMF transmission,
including spatiotemporal focusing and global temporal focusing of an optical pulse
through MMFs. In Section 3.4, novel states of light, such as principal modes (PMs),
super-PMs, or anti-PMs, are introduced to manipulate modal dispersion in MMFs.
Finally, Section 3.5 shows full control of output polarization states are realized by
shaping input wavefront to a MMF.

3.1. Spatial Light Modulators, Optical Wavefront Shaping, and Transmission Matrix
Measurements

First appearing in the 1960s [11], the idea of taming a complex and seemingly random
light transfer in MMFs using holography was based on photographic plates as a static
WFS element. Being able to recreate a single prerecorded image at the distal end of
the fiber, this remarkable fundamental concept based on a time-reversal technique was
ahead of its time for any practical outputs. An elegant extension of this concept was
proposed by Yariv a decade later [12], utilizing not a single but two identical fiber
segments of MMF for image transmission. The spatial distortion, accumulated over
propagation through a first piece of the fiber, can be compensated for, or as the author
stated “healed” [90], by complex conjugating of the propagated field and sending it
down to the second, identical segment. However, the manufacturing of two identical
fiber segments of practical length remains a technological challenge even today. A new
round of development started only in the early 2010s [91], fueled by novel technology
of computer-controlled SLMs and principles of digital holography, allowing for fast,
dynamic, and on-demand generation of desired optical fields.

The general case depicted in Fig. 10 represents a typical WFS scheme. The laser light
passes by the SLM and couples to the fiber at the proximal end, allowing a user to gain
control over the input wavefront. The detector, which is usually located at the distal
end, enables recording the optical response of the fiber to the coupled input wavefronts
and serves as feedback for WFS algorithms. Using these response measurements to
characterize light transfer through the fiber or as part of iteration-based approaches,
one can tailor the output wavefront of a MMF to the desired light distribution.

The choice of the SLM with appropriate specifications is an essential aspect to address
when considering an application. One of the critical specifications is the diffraction
efficiency of the device, defining the portion of illumination power redirected to the
fiber. Another is the pixel count of the SLM, which limits the spatial definition of



Review Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics 547

Figure 10

WFS through a MMF. Coherent light is modulated by a SLM prior to coupling to the
fiber. The detector captures speckled responses to the applied input wavefronts. Meas-
ured feedback, fed to the WFS algorithm, results in a computer-generated hologram.
Such a pattern is then imprinted on the input wavefront by the SLM to generate the
desired output field after propagating through the fiber.

Figure 11

Table summarizing specifications of modern SLMs. Values are not associated with
particular SLM models; trade-offs between parameters should always be expected.

the input wavefronts or the number of modes to be controlled in the fiber, while the
type of modulation and its depth dictates the precision of the WFS. Finally, frame rate
and upload latency are critical for both quick fiber response measurements and highly
dynamic WFS. A perfect modulator, in this case, would offer high pixel resolution,
modulation depth, and diffraction efficiency, while providing a high refresh rate with
low upload overheads. WFS through MMFs is a highlight of complex photonics
applications since the existing multimegapixel modulators provide enough degrees of
freedom to manage the number of available spatial channels or fiber modes for large
variety of commercially available fibers. However, when looking at the broader picture
involving the other vital parameters, the choice of spatial modulator for a particular
application becomes an exercise of balancing the trade-offs.

Nowadays, commercially available SLMs are based on either liquid crystal (LC)
technology, or optical microelectromechanical system (MEMS), that owe their rapid
development and affordable price to mass-market success of display and projection
devices (see Fig. 11 for a comparison of these two technologies).



548 Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics Review

3.1a. Liquid Crystal SLM
Initially developed for video projectors, LC-SLM promptly found new applications
in holographic optical tweezers (HOTs), advanced microscopy, holographic displays,
data storage, and optical computing [92]. In particular, the parallel-aligned LC on sili-
con microdisplays became a gold standard in complex photonics applications offering
a direct full-phase control with high spatial resolution and modulation depth. This
modulator remains the first choice for power-efficient applications due to its high
diffraction efficiency (up to 90%) in the off-axis regime. While the standard LC-SLM
modulates only the phase of light field, a computer-generated phase hologram enables
modulation of both amplitude and phase [93]. For highly dynamic WFS scenarios,
however, LC technology often becomes a severe obstacle for practical applications due
to the relatively limited frame rate of a few hundreds of hertz. An example of the lim-
itation mentioned is raster-scan imaging via MMF, which takes more than a minute to
acquire a single 120 × 120 pixels image when implemented on LC-SLM [23]. Another
modulator in the LC family, the ferroelectric LC-on-silicon display, allows for accel-
erated WFS with a kilohertz-level refresh rate, which comes at the cost of a limited
modulation depth. Less-efficient binary phase modulation (0 or π states) modality is
suitable for applications not demanding power efficiency [94], which usually does not
exceed 10% for the first diffraction order to this type of device.

3.1b. MEMS-based SLM
In parallel to the LC technology, MEMS or microoptoelectromechanical systems
(MOEMSs) began their rapid development in the 1980s. MEMS devices have common
major advantages when compared with LC technology. These are broad spectral range,
high frame rate, possibility to operate with nonpolarized light and long lifetime [95].
Digital micromirror devices (DMDs) have emerged as a powerful solution to high
modulation speed applications, reaching framerates of more than 20 kHz. Unlike
LC-SLMs, which typically modulate the phase of the reflected wavefront directly,
DMDs operate as purely binary amplitude modulators, posing a limit to the precision
and efficiency with which each degree of freedom can be controlled. Nevertheless, it
has already been shown that using a DMD in the off-axis regime [96–100] makes it
possible to perform beam shaping through a MMF with the fidelity of generated fields
matching and, for some instances, even outperforming that for LC-SLMs [20,101].

The most utilized modulation technique with a DMD, known as the Lee hologram
[96], allows for tailoring the desired complex field in the first order of diffraction
formed by superposition of binary amplitude gratings. The simplest case of a single
grating displayed on a DMD is illustrated in Fig. 12. Here, a grating pitch defines the
angle of the first order of diffraction and, as a result, the position of the beam focused
on the detector. The lateral shifting of the grating allows modulating the phase of the
diffracted light, while a duty cycle controls the amount of light redirected toward a
first order, allowing for amplitude modulation.

The main competitive advantage of such modulators comes with the same trade-off
in refresh rate and diffraction efficiency as ferroelectric devices mentioned above.
While reaching tens of kilohertz in the scanning speed, wavefront modulation systems
based on DMD usually provide only a few percent of power efficiency in the first
diffraction order when employed off-axis [102]. Offering two orders of magnitude
faster frame rates, these modulators significantly promote practical applications of
the MMF-based endoscopes, allowing the capture of dynamic scenes [103], neuronal
activity to be monitored [21,104], or sampling of acquired images to be extended to
a level comparable to modern video endoscopes [105]. Rather weak power efficiency
of a DMD in an off-axis regime can be improved significantly by a double-pass
scheme, where displayed patterns will be relayed back to the same DMD in a way
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Figure 12

(a) Lee hologram method utilizing binary amplitude gratings for off-axis complex
modulation. (b) Amplitude modulation is performed via variation of a duty cycle of
the grating. (c) Phase modulation is achieved via a lateral shift of the grating. (d) Far-
field (Fourier) plane schematically illustrates the modulations caused by the gratings
presented in cases (b) (blue dots) and (c) (red dots).

that light reflected of ON and OFF mirror states will acquire a relative π-phase
shift, enabling more efficient binary phase modulation [106]. Moreover, such double-
pass configuration automatically corrects for pronounced spatial dispersion, inherent
for DMDs, extending WFS to broadband and short-pulsed light sources. Another
prospective MEMS modulator, Grating Light Valve (GLV), is based on reflective
movable ribbons mounted on a silicon base that can dynamically form diffraction
gratings [107]. Recently, GLV technology found its application in beam shaping
through the complex medium, demonstrating an outstanding speed level of hundreds of
kilohertz [108]. An efficient way of coupling the light reflected off this one-dimensional
(1D) modulator into the MMF has to be addressed to benefit from a high refresh rate.

Rapidly growing industrial interest in holographic displays could become a new mass-
market driver for further developing cost-efficient phase-modulation SLMs with high
pixel count in the upcoming years. One of the most awaited solutions is a MEMS
modulator based on a pistonlike micromirror array. Although its design is similar to the
DMD, micromirrors do not tilt but produce a vertical stroke, enabling direct phase-only
modulation of the incoming wavefront. The availability of such SLMs, simultaneously
offering high resolution, high speed, and low spatial dispersion, will accelerate the
practical adoption of methods relying on rapid beam steering and shaping through a
MMF, e.g., additive manufacturing [30], optical ablation [109,110], volumetric [103],
and nonlinear imaging [111]. According to recent reports [112–115], such devices are
currently under intensive development and already available to the first users.

3.2. Monochromatic Transmission
Coherent light coupled into MMFs rapidly transforms into a complex and seemingly
random speckled pattern with no resemblance to its original field distribution. Optical
WFS is used to characterize and compensate for such extreme cases of optical aber-
rations. Iteration-based or direct-search feedback algorithms, previously applied to
experiments with turbid media, were successfully adapted to enable the first instance
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Figure 13

Simplified representation of typical optical schemes employed for WFS through the
MMF. (a) Illustration of optical phase conjugation system for WFS through the MMF.
The desired optical wavefront projected onto the distal end and propagated through
the fiber is recorded interferometrically at the proximal end. A phase-conjugated copy
of the recorded field created by a SLM and coupled back to the fiber would result in
the original beam shape at the distal end. Experimental approaches for measuring the
TM of a MMF. (b) Using a separate reference arm for obtaining the phase distribution
of the output fields. (c) Using a SLM for both probing signal and phase reference
generation. (d) Relying on intensity-only measurements and phase retrieval algorithms.
(e) Utilizing partial reflectors or guiding stars to allow measurements to be performed
at the proximal end.

of WFS through a MMF [7,14,116]. Another approach lead to the first holographic
experiment with MMFs and is built on the principle of digital phase conjugation
[17,117]. The desired light distribution, for example, a focal spot, is initially projected
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onto the distal fiber facet, and the field propagating through the fiber is measured inter-
ferometrically at the proximal end (see Fig. 13(a)). Finally, the phase conjugated field
is generated using a SLM, also located at the proximal end, so that the light propagated
back along the fiber would form the focal spot at the original position of the output
end. Although the alignment is difficult, this approach is inherently fast, requiring a
single image to calculate the correct wavefront, and it works even for vectorial beams
over long distances [118]. Moreover, the digital phase conjugation scheme could be
modified, by linking optical fields at the SLM and camera planes via the TM, allowing
to relax on the pixel-to-pixel pre-alignment step and minimizing general aberrations
in the system, caused by components or assembling imperfections [119].

Probably the most popular method of gaining control over light transmission through
MMFs is based on the powerful concept of the TM [15,16]. The TM characterizes the
optical response of the complex medium and expresses it as a linear operator linking
a selected set of input fields coupled to the fiber to another set of transmitted output
fields. Once characterized, the TM allows tracking the transformation of every input
field that is utilized a priori for probing the fiber response; most importantly, however,
it can be used to determine what these inputs must be to obtain the desired output
field.

3.2a. Transmission Matrix Measurement
In the experiment, the typical way of retrieving the monochromatic TM of a MMF
involves projecting a set of probing optical fields generated by a SLM, while measuring
the interference of the output speckle field with a reference beam in a phase-shifted or
off-axis manner. This procedure does not depend on the particular set of input fields
chosen, provided the field patterns can be generated in sequence. Phase shifting the
input field or reference beam results in a corresponding harmonic intensity evolution in
every spatial position across the speckled output field. Recording such evolution for at
least three phase steps over the 2π range allows one to retrieve both the amplitude and
phase information of the output field. With the output fields usually being conjugated to
the camera chip, the interferometric response can be recorded by every individual pixel
of a camera simultaneously, such that an entire column of the TM can be measured at
once.

The reference beam can be delivered externally via a separate optical path to avoid
scrambling by the fiber, or it can copropagate through the fiber with the probing fields
[7]. The first scheme (Fig. 13(b)) benefits from a uniform reference field for precise
measurements across the whole distal facet of the fiber. In contrast, the second scheme
(Fig. 13(c)) provides outstanding measuring stability at the cost of blind spots in
the acquired output fields caused by the speckled reference. These blind spots can,
however, be eliminated via repeated measurements with different internal references
[120,121]. Moreover, using phase retrieval algorithms, inherently complex TMs can be
computationally estimated without any phase reference (Fig. 13(d)), using instead only
real-valued intensity measurements and multiple calibration procedures [122–124].

The set of input and output fields, forming the representation for TM expression, is
another essential aspect for TM measurements. One possible choice is the orthonor-
mal basis of the flux-normalized PIMs of the fiber for both the input and output state,
see Fig. 14(c); in this basis, the TM is diagonal (when fiber loss and mode coupling
are negligible) and it contains the phase factors of the individual modes in the diag-
onal elements, see Fig. 14(e). However, the PIM basis is not directly experimentally
accessible because the exact fiber parameters and consequently the modes are not a
priori known: in contrast, it is the TM itself obtained by measurement that enables to
find the modes as well as the fiber parameters [67]. In this way, the basis of PIMs is
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Figure 14

(a) Set of diffraction-limited spots at the proximal and distal ends of the fiber and
(b) TM represented by these states. (c) Basis of the PIMs of the fiber, (d) conversion
matrix between the DLS set and the PIM basis, (e) diagonal TM in the PIM basis, and
(f) color map used. Adapted with permission from [67].

not convenient for measuring the TM. Instead, the choice of input and output states
is dictated by the pixelated nature of the SLM as a source of the input fields and
the camera utilized for recording the speckled outputs. Therefore, a square grid of
diffraction-limited points (see Fig. 14(a)), or truncated plane waves with different
propagation angles are frequently used for TM measurements. In this case, both focal
points, as well as plane waves (points in the Fourier plane) can be associated directly
with pixels of a camera detector or SLM.

The density of the diffraction-limited points has to be sufficiently large to faithfully
sample the input and output states; slightly oversampled sets are usually used, and
the input and output states do not form orthogonal systems. In such a representation,
the dimension of the TM is larger than the number of the transmitted PIMs, and the
TM has a complicated structure that can be seen in Fig. 14(b). It is important to
emphasize that the sets of the input and output states can be different; if the number
of input states differs from the number of output states, the TM is a nonsquare matrix
in this representation. Another common set of orthogonal input fields is based on the
Hadamard matrices, which is capable of higher signal-to-noise ratio (SNR) during
TM measurement in certain schemes [97].

Once the TM is measured, the basis in which it is expressed can be changed for
the convenience of further operations [67,125]. An excellent example of such a case
relevant to this chapter is the compressed sensing of the TM, which promises a
significant speed-up compared with the above-mentioned TM measurement methods
[126]. Relying on the sparsity and highly diagonal nature of TM in PIMs representation
as priors, the compressed sampling approach can estimate the TM of a MMF with high
fidelity, using as little as 5% of the sampling required to complete a TM measurement.

The above procedure of measuring the fiber TM requires access to fields at both ends
of the fiber, which is not always possible in practical applications. Moreover, changes
of fiber configuration or external perturbations may require recalibration of the TM in
situ right before imaging. To measure the TM with access only to the proximal end of
the fiber (Fig. 13(e)), a partial reflector or known calibration element is added to the
distal end of the fiber [127–130]. For example, a thin stack of structured metasurface
reflectors at the distal facet of the fiber introduce wavelength-dependent, spatially
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Figure 15

(a) Single focal point generated at the tip of a MMF using the measured TM. Reprinted
with permission from [142] © Optica Publishing Group. (b), (c) Array 3 × 3 of focal
points and the flower were generated using the TM approach and further optimized
by Gerchberg–Saxton (GS) iterative algorithm for uniform amplitude distribution. (b)
Adapted with permission from [14]. (c) Reprinted from [7] with permission from the
Royal Society of Chemistry. The red background illumination is provided by a LED
source coupled to the same fiber. (d) Screenshot of a cartoon being projected at the
tip of the MMF. WFS was achieved by the optical phase conjugation technique using
LC-SLM. Reprinted with permission from [18] © The Optical Society of America.
(e) The Chinese character for light is shaped using the measured TM in a DMD-based
WFS system. Reprinted from [126] under a Creative Commons Attribution (CC BY)
license.

heterogeneous reflectance profiles, and the TM can be recovered from the reflected
light arriving at the proximal end of the MMF [128]. Another elegant approach,
utilizing the PIMs as a TM basis together with memory effects inherent to MMFs due
to their waveguiding nature, allows the TM measurement without accessing the distal
fiber facet [86].

Recently, deep learning methods emerged as a viable alternative to the TM approach,
which rely on learning rather than measuring the relationship between coherent fields
coupled to the fiber and the resulting output speckled intensity patterns [41,131–137].
Demonstrated mostly in monochromatic image transmission and sensing experiments,
these novel approaches showed a pronounced resilience against fiber perturbations,
after trained for variety of fiber contortions. Neural networks provide the explicit
advantage that they can learn the input-output relation of a MMF also in the non-linear
regime [138–140].

3.2b. Spatial Control of Transmitted Light
Over the past decade, spatial control of light transmitted through MMFs has been
successfully realized using WFS feedback algorithms first developed for random scat-
tering media [141], or using the measurement of the TM, as well as principles of
digital phase conjugation.

The simplest example of wavefront formation, regardless of the method used, is
focusing. In this case, the input wavefront is optimized in such a way as to make all
modes constructively interfere only at a single point on the output side, as depicted
in Fig. 15(a). The focus is a high-intensity spot at the desired location surrounded
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by faint speckles across the entire field of view (FOV). Despite the simplicity and
even primitiveness of the approach, many applications are based precisely on the
formation of a single focus and raster scanning. The suppression level of residual
speckle background formed by a portion of uncontrolled light often defines the quality
of the result for such raster scanning applications. The widely used metric for focusing
fidelity is the power ratio (PR), defined as the fraction of the optical power carried
by the desired focus with respect to the total amount of power transmitted through
the fiber (see [142] for more details). The PR can be linked to the other common
complex photonics metric, such as enhancement η, which describes the ratio between
the intensity of the focus and the mean intensity of the background: PR = η/(N + η),
where η = Ifocus/⟨Ibackground⟩ and N is a number of guided modes in the fiber at a given
wavelength [22].

In principle, any optical field, which can be linearly decomposed into PIMs, can be
generated at the output of the fiber. In the case of a focal point, near-unity PR can be
achieved [143]. In practice, the PR depends on the sufficiency of input sampling to
address all fiber’s degrees of freedom [101] and the precision of input fields’ amplitude,
phase, and polarization control. The PR of over 97% can be reached experimentally
when these and a few minor factors are handled [142].

Light focusing using any direct search algorithm to optimize input fields for single
output channel is equivalent to measuring a single row of the TM, which set of output
fields is conveniently organized as a set of points conjugated to the individual camera
pixels. Measurement of the full TM T(ω) as described above, allows us to predict,
first, how any input state Ein will be transmitted at the (single) frequencyω determined
by the input laser, to an output state Eout = T(ω)Ein. (We will use a scalar notation
for the input and output states here just for simplicity.) For this input–output relation
to hold, we implicitly assume, of course, that the fiber that has not changed its shape
since T(ω) was determined.

Once the TM is known, one can achieve a desired state at the fiber output by launching
the corresponding state at the input; this state can be found by applying the inverse of
the TM to the output state Ein = T(ω)−1Eout (see Fig. 15(e)). The inverse of the TM
can be calculated simply by matrix inversion if one works in the PIM basis; however, if
the TM is represented in terms of the nonorthogonal sets of states as explained above,
matrix inversion should be replaced by Hermite conjugation, i.e., transposition and
complex conjugation T(ω)−1 = T(ω)†.

3.2c. Transmission Eigenchannels
The TM T(ω) at frequency ω allows us to determine states with unique transmission
characteristics: consider here, e.g., the so-called “transmission eigenchannels,” whose
field patterns are the same at the input and output. This property follows directly
from the fact that these transmission eigenchannels are determined (at the input) by
the eigenvectors of the TM, T(ω)ETM

n = ξnETM
n (assuming here that T is a square and

normal matrix for a MMF). With the eigendecomposition of the TM,

T = UΞU†, (16)

these right eigenvectors, contained in the columns of U, are at the same time the
eigenvectors of the Hermitian matrix product T†T = U(Ξ†Ξ)U†. The real eigenvalues
of T†T are called “transmission eigenvalues” and given as τn = |ξn |

2. In the absence of
any amplifying mechanism (optical gain), the transmission eigenvalues fall within the
interval τn ∈ [0, 1]. For the case of a perfectly cylindrical fiber without any bending or
mode coupling, the eigenvectors of the TM, which have the same transverse profile at
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the input and output, are equivalent to the PIMs, which maintain this profile throughout
propagation along the entire fiber.

Transmission eigenvalues of τn below unity, for which the ξn do not lie on, but inside the
unit circle in the complex plane, indicate fiber absorption, unwanted scattering, reflec-
tion, or transmission into the fiber cladding. In all these cases, the matrix T†(ω)T(ω)
remains Hermitian per construction. Losses are mainly produced by the overlap with
the fiber cladding and by the dissipation in the fiber core. Quite generally, fiber modes
corresponding to a larger angle with respect to the fiber axis will suffer more losses.
This is because these higher-order modes both have a stronger overlap with the fiber
cladding and an increased propagation time through the fiber, simply because their
optical path length increases for larger injection angles. This MDL [77,144,145] lifts
the degeneracy among the transmission eigenvalues of unity (in the loss-free and
perfectly straight fiber). For the extreme case that this loss is so strong that some
higher-order modes are entirely lost during propagation, the TM ceases to be a square
and normal matrix. It is then more appropriate to represent the transmission in terms of
a singular value decomposition rather than in terms of the eigendecomposition shown
in Eq. (16). For increasing mode coupling in the fiber, the angle with respect to the
fiber axis is less and less preserved during propagation, leading to a reduction in the
overall modal dispersion [77]. As a result, both the losses and the transmission eigen-
values are again more equally distributed among all available modes [77,144–146],
a property that is strongly desirable for practical applications such as for improving
the channel capacity [146]. As we will show in the subsequent section, concepts such
as the propagation time through a MMF that determines the degree of loss, can be
formally defined not only in the ray picture, but also in the wave description of fiber
transmission.

3.3. Spectrally and Temporally Resolved Transmission
In the previous section, we consider time-harmonic fiber modes that are characterized
by a well-defined angular frequencyω. In reality, any light that is launched into a MMF
has a finite spectral width. Light propagating through a MMF can be considered as
monochromatic when its spectral bandwidth is narrower than the spectral correlation
width of the fiber, which will be introduced below.

3.3a. Spectral Decorrelation
Let us assume that we scan the (angular) frequency ω of light injected to a MMF,
while an (arbitrary) spatial profile of the incident wavefront remains fixed during the
frequency scanning. To understand how the output profile at the distal end of the
fiber changes, we first note that both the transverse field profile Ψm(r, φ) of different
fiber modes and their propagation constants βm vary with ω. Whereas the frequency
dependence of Ψm(r, φ) is weak and will be neglected below, the change of βm with ω
lets the fiber modes accumulate different phase delays during their propagation. As a
result, the field at the output end (z = L) changes with ω.

Assuming that the incident field excites all fiber modes, the transmitted field at ω is
expressed as

E(r, φ;ω) =
M∑︂

m=1

Am eiφm Ψm(r, φ;ω) ei[βm(ω)L−ω t], (17)

where M is the total number of fiber modes, Am and ϕm represent the amplitude and
phase of the incident field in the mth fiber mode.
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The spectral field correlation function of the output field is defined as

CE(∆ω) ≡
⟨E∗(r, φ;ω) · E(r, φ;ω + ∆ω)⟩r,ϕ,ω

⟨|E(r, φ;ω)|2⟩r,ϕ;ω
, (18)

where ⟨· · · ⟩r,ϕ,ω represents an average over transverse position (r, φ) on the fiber cross
section and frequency ω. With increasing frequency detuning ∆ω, the correlation
magnitude |CE(∆ω; L)| decays monotonically, and eventually approaches 0 for large
∆ω.

The spectral correlation width ∆ωc of a MMF is usually defined as the full width
at half maximum (FWHM) of the field correlation function, namely, |CE(∆ωc/2)| =
|CE(0)|/2. It is inversely proportional to the temporal spread that light experiences
while propagating through the fiber. The latter is characterized by the width of the
optical path-length distribution ∆L in the fiber [147]. In a MMF, different fiber
modes have varying group delays. The modal dispersion will broaden the path-length
distribution of transmitted light through a MMF [77]. Consider that all modes are
excited at the fiber input; when mode coupling is negligible, ∆L scales with the fiber
length L, thus ∆ωc ∝ 1/L [31,32]. In the presence of strong mode coupling, light is
scattered back and forth among the fiber modes with different group velocities, and
the optical path-length distribution is narrowed. Such process can be considered as
light diffusion or random walk in fiber mode space. The width of the path-length
distribution scales as ∆L ∝

√
L, and ∆ωc ∝ 1/

√
L [147].

Using GRIN fibers, whose transverse index profile is designed to reduce the difference
in the phase velocities, is a viable strategy to counteract modal dispersion. In most
cases refractive index profiles decrease nearly parabolically from the central fiber axis
to the cladding, achieving a strong (albeit not perfect) reduction in modal dispersion
and a periodic refocusing of incident light along the propagation direction [59]. On
top of the modal dispersion, the fiber will also suffer from “chromatic” or “material
dispersion” due to the frequency dependence of the refractive index n(ω) that the fiber
is made of. In highly MMFs, especially in SI fibers, the material dispersion is usually
weaker than the modal dispersion.

3.3b. Multispectral and Time-Gated Transmission Matrices
For an optical pulse of frequency bandwidth ∆ωi exceeding the fiber spectral corre-
lation width ∆ωc, the number of uncorrelated spectral channels is Ms ≃ ∆ωi/∆ωc. As
the field TM becomes decorrelated after the input frequency shifts by ωc, one needs
to measure Ms TMs at frequency spacing of ωc. The frequency-resolved or “multi-
spectral” TMs make it possible to predict (through a simple Fourier transform) how a
pulse of spectral bandwidth ∆ωi arrives at the distal end of the fiber both in its spatial
and temporal shape. The multispectral TMs are measured using a frequency-tunable
laser. The relative phases between different T(ω) are acquired with a reference beam
[148,149]. The reference arm length matches the MMF length, to avoid errors from
phase drift of the laser during the measurement [76].

The Fourier reciprocity between frequency and time degrees of freedom suggests that,
instead of measuring a frequency-resolved TM T(ω), one can also measure directly a
time-resolved (or “time-gated”) TM T(t). Indeed, such measurements are possible and
typically being carried out by sending an input pulse through the MMF and through a
delay line in parallel. Tuning the delay then allows one to scan the time at which both
parts of the pulse jointly reach the detector. Through the corresponding interference
process, the time-resolved TM T(t) can be determined [150].
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Figure 16

Spatiotemporal focusing through a MMF. Spatiotemporal characterization of the
reconstructed phase conjugated spot. (a)–(d) Intensity of the spatial profile and (e)
temporal profile of the phase conjugated spots generated from the reconstructed holo-
grams recorded at preselected times. Adapted with permission from [27] © The Optical
Society of America.

3.4. Temporal Control of Fiber Transmission
When a short pulse is launched into a MMF, the modal dispersion typically broadens
and breaks up this pulse into several temporal components. For controlling and mit-
igating such distortions, a number of different techniques have been developed that
will be reviewed in this subsection.

3.4a. Spatiotemporal Focusing
The simultaneous spatial and temporal focusing of ultrashort pulses has been achieved
in MMFs by employing time-gated interferometry and subsequent digital phase con-
jugation [27], as shown in Fig. 16. Specifically, only modes with similar group delays
have been excited through selective phase conjugation. These modes only follow those
nearby paths in the fiber that interfere constructively at the distal end of the fiber, both
in a focused spot (spatially) and with minimal distortions (temporally) [27]. In this
way, temporal broadening due to modal dispersion could be reduced by a factor of
around 30 (the effects of chromatic dispersion remain). An alternative technique to
mitigate modal dispersion that has already been successfully employed for the case of
disordered media, is the optimization of a nonlinear signal (such as two-photon fluo-
rescence) behind the complex medium [151]. In this case, both spatial and temporal
distortions can be corrected by manipulating only the spatial degrees of freedom of
the incident wavefront.

Instead of spatial WFS, spectral or temporal shaping of broadband femotosecond
pulses has been employed for spatiotemporal focusing through MMFs [152,153].
Since the temporal speckle fields at different MMF output locations are uncorrelated,
spectral pulse shaping at the fiber input can focus a short pulse at a specific output
spatial location, while keeping the field at other output locations speckle-like [152].
While the input pulse is in a single spatial mode, light scrambling in a MMF, temporal
shaping of the input pulse, and nonlinear optical feedback are utilized to focus the
output pulse to a predefined location [153].

3.4b. Total Temporal Impulse Response
While the last subsection describes temporal focusing of a pulse to a single spatial
channel, here we show how to control the total temporal impulse response of a MMF.
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The global enhancement or suppression of the total light intensity exiting a MMF
at arbitrary delay times can be achieved with the time-resolved TM T(t) of a MMF
[154,155].

The maximum (or minimum) power that can be delivered at a given time t is determined
by the largest (or smallest) eigenvalue of the Hermitian “temporal focusing matrix”
T(t)†T(t) . The corresponding spatial wavefront of the pulse that achieves this, is
given by the corresponding eigenvector. The enhancement (or suppression) of power
delivery at targeted times is significantly improved by the presence of long-range
spatiotemporal correlations in the TM of a MMF [154].

The positive correlations among spatial channels enable a global enhancement of
transmitted energy at a selected arrival time by shaping the incident wavefront. Exper-
imentally, a higher enhancement is obtained when the target time is before or after
the mean arrival time, as a result of stronger long-range correlations. Theoretically,
a quantitative relation between spatiotemporal correlations and the time-dependent
enhancement of transmitted power is established in a MMF with strong mode coupling
[154].

3.4c. Principal Modes
Since the time-resolved TM T(t) is just the Fourier transform of the frequency-resolved
TM T(ω), the same amount of control is also possible through T(ω) directly. Quite
remarkably, however, the availability of T(ω) at two neighboring frequency values
already enables efficient temporal control. Consider here the situation, when we launch
a time-harmonic input field Ein into a MMF and change the input frequency from ω to
ω + dω. An interesting question to ask is whether modal dispersion that leads to the
change of the output pattern (Eout) at the distal end of the fiber with input frequency
can be compensated through a proper choice of the input field Ein. Similar to the
transmission eigenchannels, that are invariant with respect to propagation through the
fiber, we are looking here for states that are invariant in their output pattern with respect
to a change of the input frequency (the input field stays the same). Formalizing this
property results in the following defining equation for the so-called principal modes
(PMs) of a MMF [156]:

T(ω + dω)EPM
n = αnT(ω)EPM

n . (19)

The complex eigenvalue αn in this equation is a global factor, indicating that the fre-
quency shiftω → ω + dωmay change the output field in overall phase and brightness,
but not in its spatial structure, see Fig. 17(a). Quite instructively, a Taylor expansion
of T(ω + dω) in the above equation shows that the PMs are the eigenstates of the
following operator:

Q = −iT(ω)−1∂ωT(ω). (20)

Already the derivative with respect to frequency indicates that this operator must have
something to do with time. Indeed, a rigorous scattering theory analysis carried out
by Eisenbud, Wigner, and Smith (EWS) [157–159] shows that the eigenvalues of this
“time-delay operator” measure the times associated with the operator’s eigenstates.
More specifically, these “time-delay” eigenvalues correspond to the time lag between
the envelopes of incoming and outgoing wave packets launched in such a time-delay
eigenstate at the center frequencyω. (This correspondence only holds for wave packets
that are spectrally narrower than ωc.) Provided that the TM T(ω) is a unitary matrix,
the EWS time-delay operator Q is Hermitian, resulting in an orthogonal set of PMs
as eigenstates and in real eigenvalues. Since these real time-delay eigenvalues are
inversely proportional to the wave packets’ group velocity, they are also referred to as
“group delays.” While arbitrary input states in a MMF are characterized by several
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Figure 17

PMs in MMFs. (a) Illustration of the concept: an arbitrary input pulse launched into
a MMF will spread in time such that a stretched pulse or even several of them will
arrive at the output. The reason for this spreading is modal dispersion, resulting in the
indicated wavelength-dependent output speckle pattern. PMs, in contrast, are designed
to be free of modal dispersion with a wavelength-independent output speckle pattern.
A single input pulse launched into them will also arrive as a single output pulse with
negligible broadening and shape distortions. Adapted with permission from [148]. (b),
(c) Time-dependent variation of the output field in three independent speckle grains
when a pulse is launched into (b) a random mode or (c) a PM. The temporal traces of
these individual spatial channels differ significantly from each other for the random
input but are almost identical for the case of a PM. (d) Intensity of a Gaussian input
pulse integrated over the entire fiber cross section (black dotted line) and that of the
corresponding output pulses when they propagate in a random spatial profile (red
dashed line) or in a PM (green solid line). The reduced dispersion of the PM is clearly
visible, even though a MMF with strong mode coupling is used here. Adapted with
permission from [149].

group delays, the PMs are associated with a single group delay only and are thus robust
with respect to a small change in the input frequency: ω → ω + dω.

This spectral robustness of PMs [75], which comes with several advantageous prop-
erties for multiplexing in data transmission [77,79,160,161], was first demonstrated
experimentally in MMFs with weak mode coupling [148], where PMs may exceed ran-
dom input modes by several orders of magnitude in terms of their frequency stability.
When the input wavefront is set to one of the PMs, the output field pattern decorrelates
very slowly with frequency detuning. The spectral correlation width of a PM, given
by the FWHM of the transmitted field correlation function, is much broader than that
of random inputs (∆ωc). PMs also survive in the more challenging case of MMFs with
strong mode coupling [149], where their spectral correlation width remains about a
factor of two larger than that of random input fields. Quite remarkably, even in the
presence of mode coupling, a pulse with a spectral width exceeding the spectral cor-
relation width ∆ωc will arrive at the distal end of the fiber not only without significant
broadening and shape distortions, but with a spatial output pattern that stays the same
throughout the entire pulse duration, see Figs. 17(b)–17(d). This feature illustrates the
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decoupling of spatial and temporal variations of a PM’s output field which enables a
full spatiotemporal control of pulse transmission [149].

PMs have meanwhile also been used as a basis in which the multispectral TM T(ω)
can be conveniently parametrized. Using the PMs’ spectral stability, it has been shown
that only a few measurements at selected frequencies are sufficient to approximate
T(ω) inside a spectral window that approaches that of the spectrally most stable PMs
in bandwidth [162].

The fact that both the temporal focusing operator T(t)†T(t) and the EWS time-delay
operator Q(ω) feature eigenstates that are associated with a well-defined arrival time
at the fiber output, suggests that these two operators are closely connected. Indeed,
under the assumption of input pulses that are centered around the frequency ω and
that have a spectral width ∆ω that is shorter than the spectral correlation width ∆ωc,
it can be shown [163] that the following matrix identity holds:

T(t)†T(t) ≈ 1 − (∆ω/2)2[1 − Q(ω)]2. (21)

This relation demonstrates that T(t)†T(t) and Q(ω) share a common eigenbasis and
that the EWS time-delay operator, indeed, acts as a temporal focusing operator for
spectrally narrow pulses.

3.4d. Super- and Anti-PMs
A further increase of the spectral stability of these time-delay eigenstates can be
obtained through the concept of “super-PMs,” which outperform the stability of con-
ventional PMs [164]. The idea here is to use, instead of the derivative ∂ω in the
time-delay operator Q(ω) = −iT(ω)−1∂ωT(ω), a finite difference quotient:

Q̃(ω,∆ω) = −iT(ω)−1 T(ω + ∆ω) − T(ω)
∆ω

, (22)

which ensures that the eigenstates of this matrix remain perfectly correlated in their
output patterns when shifting the frequency fromω toω + ∆ω. As it turns out, however,
when this shift ∆ω is larger than the spectral correlation width ∆ωc, the spectral field
correlation CE(∆ω), see Eq. (18), between the normalized output fields cannot be
perfect in the entire frequency interval [ω,ω + ∆ω]. The reason is simply that, to
maintain the correlation, an input state would have to be a simultaneous eigenstate
of all operators Q̃(ω,∆ω) within this frequency interval. Since the corresponding
operators do, however, not commute, such joint eigenstates do not, in general, exist.
Instead, one can use a numerical optimization routine to find input states that maximize
the frequency-integrated correlation,

∫
|CE(∆ω)| dω, within a given spectral interval.

Such states are called super-PMs as they perform better than conventional PMs in
terms of the spectral stability of their output spatial field profiles [164].

Inverting this concept also allows one to create anti-PMs, which have a minimal
spectral correlation width and the output field profiles are considerably more sensitive
to a frequency change than typical input wavefronts. Decomposing them in the PM
basis reveals that the super-PMs are formed via interference of PMs with close delay
times, whereas the anti-PMs are a superposition of PMs with the most-different delay
times available in the fiber. Therefore, PMs constitute the natural basis not only to
capture the dynamical aspects of light scattering, but also for synthesizing novel types
of states with unique spatial, temporal, and spectral characteristics.

In the same way as PMs are invariant with respect to a frequency shift, also states in
a fiber can be found that are invariant with respect to a shift in another parameter that
the TM depends on, such as those parameters α that describe potential deformations
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of the fiber when pressing or bending it. As it turns out, such “deformation PMs” [71]
are the eigenstates of the generalized EWS operator Qα = −iT(ω,α)−1∂αT(ω,α) in
which the frequency derivative ∂ω from the conventional EWS time-delay operator
is replaced by a derivative with respect to the deformation parameter ∂α [164,165].
The perturbation-insensitive channels that can be obtained as the eigenvectors of this
operator have meanwhile also been implemented experimentally [71].

3.5. Polarization of Transmitted Light
The vectorial nature of electromagnetic waves plays an indispensable role in
light–matter interaction, optical transmission and imaging. A control over the
polarization state of light has been widely exploited in single molecule detec-
tion, nanoplasmonics, optical tweezers, nonlinear microscopy, and optical coherence
tomography. However, a well-prepared state of polarization can be easily scrambled
when transmitting through a fiber. Polarization maintaining SMFs have been widely
used, but they operate with a fixed polarization state. An arbitrary polarization state
can be obtained for transmitted light by either modifying the fiber configuration or
tailoring the input polarization state.

In a MMF, the modes generally do not maintain a linear polarization state due to
SO interaction. Yet the circular polarization state can be maintained in most modes
of ideal cylindrical SI fibers. However, fiber deformation, residual birefringence, or
strain lead to polarization scrambling. When light is launched into an individual mode
of the MMF, it will spread to other modes, each of which will experience a distinct
polarization change. Thus, the output polarization state varies from one mode to
another [166].

One way to avoid depolarization is to use polarization-maintaining MMFs [167,168].
However, if a fiber has several hundreds of guided modes, maintaining the polarization
states for all of them is challenging. Moreover, the output light from all modes of a
polarization-maintaining MMF will have an identical polarization state, e.g., linear
or circular polarization. It is difficult to have arbitrary polarization states for the
transmitted light, especially making the polarization state vary from one mode to
another. It is also difficult to control the polarization states of all modes by adjusting
the fiber configuration, which would require strong bending and twisting of the MMF.
In the following, we show how to control the polarization state of light transmitted
through a MMF by WFS.

3.5a. Full Polarization Control
The simplified yet highly practical scalar representation of the waveguiding modes
of optical fibers, described in Section 2.1, implies polarization degeneracy. Every
mode can be defined in two orthogonal polarization states, thus the TM is complete
only when both states are measured. Such measurements require access to orthogonal
polarization states at both the proximal and distal end of the fiber, allowing for gen-
erating input fields and recording output responses in a polarization-resolved manner.
Figure 18 represents the optical scheme for WFS through the MMF based on com-
plete TM acquisition. This setup utilizes a standard digital holography technique of
superimposing the desired hologram with a phase grating on a SLM, which allows
the beam to be redirected off the optical axis and therefore the Fourier plane to be
centered toward the carrier frequency given by the modulation period of the applied
grating. Relying on such an off-axis configuration, it utilizes different carrier frequen-
cies as a simple method for multiplexing the complex fields in the modulator’s farfield
region.
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Figure 18

Experimental geometry for polarization complete TM measurements. Relying on an
off-axis configuration, it utilizes different carrier frequencies as a simple method
for multiplexing the complex fields in the farfield region of the SLM. Two linearly
polarized beams are diffracted off the SLM beams, and one of them has a polarization
rotation before the two beams are merged again, giving an independent control for
both input polarization states coupled to the fiber. The third beam is chosen to be
a static reference for the phase-shifting TM measurements and therefore directed
to the calibration module by the SMF. Output optical fields at the distal end of
the fiber are split by a polarization beam splitter and recorded with two cameras,
enabling polarization-resolved TM measurements. Such a scheme employed for WFS
can gain full control of complex field amplitude and polarization of the output light
and allow the study of polarization effects in MMFs. The following abbreviations are
used: L, lens; M, mirror; MO, microscope objective; HWP, half-wave plate; QWP,
quarter-wave plate; PBS, polarizing beam splitter; PBD, polarization-dependent beam
displacer; NPBS, nonpolarizing beam splitter; SMF, single-mode fiber. Adapted with
permission from [67].

The single-frequency, linearly polarized laser light illuminates the SLM. The displayed
pattern, formed as the superposition of three carrier frequencies, diffracts light into
distinct directions, propagating at different angles from the SLM. Focused by the
lens, the beamlets form focal points in different regions of the Fourier plane. One of
the spots is chosen to serve as a static reference for phase-shifting measurements of
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TM coefficients and transferred to the calibration module via the SMF, the other two
are utilized for WFS. Using a half-wave plate, the polarization state of one of the
remaining beams is then rotated by 90◦. Two beamlets, now orthogonally polarized,
can be merged via beam displacers and coupled to the proximal fiber end through the
microscope objective with a tube lens. The distal facet of the fiber is imaged on two
cameras placed behind the ports of the polarizing beam splitter so that output fields
carried by both polarization states can be measured independently.

The TM measurement procedure in this geometry can be performed in the represen-
tation of diffraction-limited spots for the input fields, since the focused spots can be
easily generated experimentally using a SLM or DMD as depicted in Fig. 12. During
the measurement, focused spots are generated at different positions of the input fiber
facet. The resulting fields at the output facet are superimposed with the reference
beam, delivered via the SMF, and recorded by the camera to provide both amplitude
and phase information [101]. In this case, however, TM measurements have to be
performed for two input sets of fields corresponding to both orthogonal polarization
states.

Complete, polarization-resolved TM measurements, linking amplitude, phase, and
polarization state for the sets of input and output fields, enables one to generate any
complex vector beam allowed to propagate in the optical fiber [67]. Moreover, control
of both input polarization states allows for near-perfect fidelity of the generated beams
[142].

Such a scheme for polarization control can be utilized with both LC-SLMs [15,67] as
well as DMDs [98]. Moreover, this exemplary case can be simplified to using just one
beam displacer and one camera [142] for practical convenience in applied experiments.

In addition to the aforementioned TM, including two orthogonal polarizations, the
TM based on the Stokes parameters for transmitted light is introduced to describe
depolarization effects in a MMF [169]. Such TMs have been used for complete control
of polarization states of light at one or multiple focal spots at the distal end of a
MMF.

3.5b. Polarization Conversion
For particular applications, right and left circular polarization states of the input
optical field may be used to prevent or minimize polarization changes through short
pieces of the fiber. In contrast, the polarization mixing in MMFs due to pronounced
SO interaction when working with linearly polarized modes, can be intentionally
utilized to promote cross talk between polarization states, and gain complete control
of the output polarization of the light without the need of independent control of two
polarization components at the proximal end.

Furthermore, random mode coupling and polarization scrambling, caused by fiber
imperfections and external perturbations, additionally couple the spatial degrees of
freedom and the polarization degrees of freedom, allowing one to control the polariza-
tion state of the transmitted light by shaping the spatial wavefront of an incident beam.
For illustration, we consider a fiber with only two guided modes, and the incident
light is linearly polarized in the horizontal (H) direction. Without mode coupling, the
relative phase of input fields in the two modes does not affect the output polarization
state of either mode. However, with mode coupling, the output field of one mode also
depends on the input field of the other. For example, the vertical (V) polarization of
mode 1 has contributions both from the input field in mode 1, which is converted
into the vertical polarization, and from the input field in mode 2, that is coupled to
the vertically polarized mode 1. The interference of these two contributions can be
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made constructive or destructive by varying the relative phase of input fields to the
two modes, which will modify the vertically polarized output field in mode 1. This
degree of control is effective only when there is mode mixing in the fiber.

Beyond a qualitative description above, a quantitative evaluation of the degree of
control with strong mode and polarization coupling is given below. Let us consider a
fiber with M guided modes at frequencyω, where each mode has a twofold degeneracy
which corresponds to two orthogonal polarizations. Without loss of generality, the
horizontal (H) and vertical (V) linear polarizations are used below as the basis to
describe the vector TM of a MMF at a single frequency ω

T =
[︃
THH THV
TVH TVV

]︃
,

where THH (or TVH) is a M × M matrix that represents the horizontal (or vertical)
components of transmitted fields when the input light is horizontally polarized.

A concatenated fiber model was built to calculate the TM with random mode and
polarization coupling in a MMF [77]. In this model, the fiber is divided into many
small segments. Within each one of them, light propagates without polarization or
mode coupling such that the TM of each segment is a diagonal matrix in mode basis.
Each matrix element accounts for the phase delay and the loss of an individual mode.
Between adjacent segments, fiber modes with different spatial profiles and polarization
states are randomly coupled. Adjacent modes with similar propagation constants tend
to couple more easily, thus the coupling can be described by a banded random matrix.
The bandwidth gives the range of fiber modes that are coupled, and the magnitude
of matrix elements within the band reflects the strength of coupling. In the case of
strong mode coupling, where each segment is already shorter than a transport mean
free path, every mode is coupled to all other modes at the interface between two
adjacent segments. The random unitary coupling matrices are drawn from the circular
unitary ensemble (CUE). The total TM is the product of the propagation matrices for
all segments and the coupling matrices in between them.

Let us first ignore the loss in a MMF which has strong mode and polarization coupling.
The Hermitian TM product T†

HH THH has M real transmission eigenvalues τHH in the
range of 0 and 1. The largest eigenvalue determines the maximum energy that can
be retained in the horizontal polarization after propagating through the fiber. Due to
strong mode and polarization mixing, the eigenvalue density P(τHH) has a bimodal
distribution for M ≫ 1, as shown in Fig. 19(a). The peak at τHH ≃ 1 corresponds to
the transmitted light retaining the input polarization (H), although the spatial mode
contents at the output differ from those of the input. The other peak at τHH ≃ 0
corresponds to 100% conversion to the orthogonal polarization (V), in spite of strong
polarization mixing in the fiber. As τHH decreases from 1 to 0, the percentage of
transmission in the horizontal polarization drops, while that in the vertical polarization
rises, as seen in Fig. 19(b).

In a MMF with strong spatial- and polarization-mode coupling, the analytical expres-
sion for the probability density function (PDF) is P(τHH) = 1/π

√︁
τHH (1 − τHH). It is

identical to the expression found already earlier [49,170,171] for wave transmission in
a lossless chaotic cavity [see the symbols and lines in Fig. 19(a)], revealing the analogy
between a MMF with random spatial- and polarization-mode coupling and the scatte-
ring of scalar waves through a chaotic cavity with two leads, as drawn schematically in
Fig. 19(c). The fiber transmission in the same polarization as the input is analogous to
the reflection from a chaotic cavity, in the sense that light exits the cavity via the same
lead. Similarly, the fiber transmission to the polarization that is orthogonal to the input
polarization is analogous to the transmission into the other lead of the chaotic cavity.
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Figure 19

Polarization of transmission through a MMF. The fiber has strong mode coupling and
polarization mixing. The number of guided modes is much larger than 1. (a) Probability
density of transmission eigenvalues for horizontally polarized input and output light
featuring a bimodal distribution when the fiber loss is negligible. (b) Transmission of
horizontal (H) and vertical (V) polarization components for individual eigenvectors,
which are numbered by their eigenvalues from high to low. The decrease of H is
accompanied by an increase of V, and their sum remains 1. (c) Eigenvalue distribution
in (a) is identical to that of reflection eigenvalue in a chaotic cavity with two leads,
drawn schematically. (d) Eigenvalue distribution is modified by fiber loss. Adapted
with permission from [166].

The PDF P(τVH) for the eigenvalues τVH of T†

VH TVH has the same functional form as
P(τHH). One peak at τVH ≃ 1 means 100% conversion of input horizontal polarization
to output vertical polarization, the other peak at τVH ≃ 0 indicates the input and output
polarizations are identical.

Therefore, depolarization of light transmitting through a MMF with strong polarization
mixing can be suppressed by coupling light into the eigenvector of T†

HH THH with the
maximum eigenvalue τmax

HH . The ensemble average of maximum eigenvalue,
⟨︁
τmax

HH
⟩︁
=

1 − 1/(M2 + 1), approaches unity rapidly with the increase of fiber modes M. The
polarization extinction ratio (PER) of transmitted light is

⟨︁
τmax

⟩︁
/(1 −

⟨︁
τmax

⟩︁
) = M2.

If loss in the fiber is nonnegligible, the bimodal distribution of the eigenvalue density
will be modified. As shown in Fig. 19(d), the peak at eigenvalue close to 1 is reduced
and shifts to smaller values [145]. However, the peak near 0 remains in the presence of
strong loss. If the input light is horizontally polarized, by coupling it to the eigenvector
of T†

VH TVH with eigenvalue close to 0, the transmitted light has a vanishing vertical
component. Hence, depolarization is avoided, even though part of incident light is
lost. Similarly, all transmitted light can become vertically polarized by exciting the
eigenvector of T†

HH THH with eigenvalue close to 0.

Strong mode and polarization mixing in a MMF makes it possible to create arbitrary
polarization states for all output modes by modulating the spatial wavefront of a linearly
polarized beam [166]. For example, complete transformation from horizontal linear
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Figure 20

Polarization conversion of transmission through a MMF with strong mode and polar-
ization mixing. (a) WFS of an incident monochromatic light transforms the input
linear horizontal polarization (LHP) to various output polarizations such as LHP,
linear vertical polarization (LVP), linear polarization in ±45◦ direction (L±45), right-
hand circular polarization (RCP), and left-hand circular polarization (LCP). Arrows in
the Poincaré sphere represent the polarizations of individual spatial modes at the fiber
output; the arrow length indicates the intensity of each mode. (b) Transformation of
an input polarization state B (left) to the output polarization state (C) by exciting the
maximum-transmission eigenchannel of TBC. (c) The output intensity pattern is the
sum of its horizontal and vertical polarization components, revealing that the trans-
mitted field in the left half of the fiber facet is horizontally polarized and the right half
is vertically polarized. Adapted with permission from [166].

(H) polarization to right-hand circular (R) polarization is possible by resorting to the
transmission eigenchannels of TRH =

1
√

2
(THH − i TVH) for H input and R output. The

eigenvalue density P(τRH) is identical to that of P(τHH), as long as the fiber completely
scrambles light polarization, making all polarization states equivalent. With strong
spatial- and polarization-mode coupling and negligible loss, P(τRH) has a bimodal
distribution, and the peak at τRH = 1 (τRH = 0) allows a full conversion of horizontal
polarization to right (left) circular polarization. The green arrows in Fig. 20(a) show,
e.g., that all output modes are right-hand circularly polarized.

Instead of having the same polarization for all output modes, it is possible to acquire
different polarizations for individual modes. Beyond the fiber mode basis, the spatial
channels can be represented in real space. For example, the output polarization state
A is designed to have the horizontal (H) linear polarization for the spatial channels
within the left half of the fiber cross section, and the vertical (V) polarization in the
right half. The TM TAH is constructed by concatenating one half of THH and the other
half of TVH. The conversion of input polarization H to output A is realized by exciting
the maximum eigenvector of T†

AHTAH, as shown in Fig. 20(c)

Thanks to strong spatial- and polarization-mode coupling, WFS can transform any
input polarization state (e.g., individual spatial modes with distinct polarizations) to
arbitrary output polarization states with nearly 100% efficiency. One example is given
in Fig. 20(b) for a MMF with 60 modes. The input polarization state B has right-hand
circular polarization (R) for fiber modes 1–30 and linear +45◦ polarization for modes
31–60. The output polarization state C has left-hand circular polarization (L) for modes
1–20, linear 135◦ polarization for modes 21–40, and horizontal polarization (H) for
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Figure 21

Examples for the simultaneous control of the spatial, spectral/temporal, and polariza-
tion degrees of freedom of a light field recorded at the distal end of a MMF. (a) A
vector spatiospectral state is shown that displays different letters of the alphabet in
the horizontal (H) and vertical (V) polarization component at every 50 GHz. In the
right panel the letters are stacked on top of each other. (b), (c) Spatiotemporal states
with numerals and an “arrow of time” pointing upward in the time-axis. Adapted with
permission from [172].

modes 41–60. The field TM from input state B to output C is given by TBC. If the
fiber loss is negligible, the eigenvector of T†

BCTBC with the near-unity eigenvalue will
provide the input wavefront for perfect conversion of input polarization B to output
polarization C. Hence, controlling the spatial degrees of freedom alone can transform
a MMF into a highly efficient reconfigurable matrix of wave plates.

The above discussion of polarization control is restricted to monochromatic light. For
broadband optical pulses, polarization control can be combined with temporal control
by WFS. This has been achieved by measuring the time-resolved vector TM [155]. The
total transmission is enhanced for arbitrary delays and polarization states. These ideas
have also been carried further to achieve a full control of all of the classical degrees
of freedom of a light field simultaneously [172]. Using a multiplane light converter
in combination with a polarization-resolved multiport spectral pulse shaper, both the
two spatial components as well as the spectral/temporal degrees of freedom have
been controlled for both polarizations at the distal end of a MMF. Examples of such
volumetrically shaped light fields both in the spatiospectral and the spatiotemporal
domain are shown in Fig. 21.

4. APPLICATIONS

This section covers emerging applications of MMFs. WFS enables new applications
of MMFs in imaging and endoscopy (Section 4.1), optical trapping (Section 4.2),
and microfabrication (Section 4.3). Furthermore, an output speckle pattern of a MMF
encodes the information of the input spectrum, temporal pulse shape, and polarization
state. Hence, a MMF can function as a high-precision spectrometer and snapshot
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hyperspectral imager, as described in Section 4.4. The MMF has also been used for
full-field measurement of an optical signal (Section 4.5), and serves as a compressive
radio-frequency (RF) receiver (Section 4.6). Finally, the random fluctuation of light
transmission through a MMF is utilized for remote key generation and establishment
in Section 4.7.

4.1. Imaging and Endoscopy
Having the possibility to generate a spectrum of desired optical fields at the output
of a MMF opens a variety of routes to perform imaging. The most straightforward
one can be found in raster-scanning objects point by point with a large number of
diffraction-limited foci. Although in the remaining part of this section we focus mainly
on such point-scanning approaches, there are other available choices. Imaging can, for
example, be achieved by exposing the sample to an ensemble of completely random
speckle intensity distributions, which have been recorded prior to imaging [173].
The records are then employed in a computational algorithm essentially providing
the pseudo-inversion of the linear optical system. Practical implementations of this
concept are virtually analogous to that of computational ghost imaging [174,175].
Under no-noise conditions, the algorithms provide images free from background and
with the highest contrast of all available spatial frequencies of the image. Moreover,
these approaches are compatible with the exploitation of compressive sensing (CS),
allowing for reduction of image acquisition time and, with the use of sparsity priors,
resolution enhancement [176]. In presence of noise, the speckle pattern illumination
approaches do, however, result in severe numerical artifacts, which often render the
resulting images unreliable. Fluorescent imaging using diffraction-limited foci are
known to offer the best resilience to noise in low-photon regimes [143].

The illumination foci are typically distributed across an orthogonal grid and con-
strained to a single axial plane of choice as well as the zone which the MMF outputs
can illuminate. In most cases, the group of the scanning foci is identical to the basis
of the output modes which were used for the preceding TM acquisition, hence the
selection of the focal plane (the working distance measured from the output facet) is
carried over. In cases, where the phase relations between the output modes are known,
i.e., where the TM has been measured using a reference signal with a flat wavefront,
it is straightforward to computationally shift the focal plane by any desired distance
[67]. The selection of the working distance however affects the available FOV as well
as the size of the focus, and thereby the spatial resolution of imaging. Directly at the
MMF output facet, the resolution is dictated purely by the NA of the MMF, while the
FOV is governed by the size of the MMF’s core. Moving the focal plane away from
the fiber, these relations first mix and ultimately, at infinite distance, they reverse. The
freedom of choice in the focal plane distance brings by itself the possibility to refocus
within the sample volume but also to extend the raster-scanning into 3D paths, thereby
achieving volumetric imaging.

Each focus, and therefore a pixel of the acquired image, requires a specific modulation
to be applied onto the light coupled into the MMF. The speed of the acquisition (the
pixel rate) then derives from the refresh rate of the used light modulator. Depending
on the chosen contrast mechanism, the objects residing within the grid of the scanning
foci then interact with the light signal producing some measurable response to be
detected and expressed as an image once the scanning focus visits all positions of the
desired sequence.

This imaging mechanism is also associated with a true random access feature. In
contrast to many implementations of scanning approaches, no moving mechanical
parts, e.g., galvo- or piezo-driven mirrors, are involved. In order to change the focus
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position, one has to apply new settings to each pixel of the used light modulator,
inflicting identical delay, regardless of how remote the fresh position is from the
expired one. One can therefore always choose which individual foci of the available
sequence to use and in what order.

Although this review does not cover fiber bundles and multicore fibers, they are fre-
quently compared for pros and cons with the MMF-based approaches when considered
for a specific application, especially in the domain of imaging. Arguably, MMFs are
hard to beat in reaching the most minuscule footprint of the resulting instrument and
in many cases also in terms of photon efficiency. They are therefore uniquely suited
in photon-hungry imaging modalities such as in hardly accessible locations. Multi-
core fibers and fiber bundles, however offer several important benefits. As the power
exchange between the cores is frequently negligible, the TM (in representation derived
from the waveguide’s structure) is close to diagonal. The element can therefore be
treated as a planar random aberration, thereby offering very robust memory effects,
allowing for calibration-free and single-shot image acquisition and much simpler solu-
tions to the problems related to bending. Further, as multicore fibers are almost free
from modal dispersion, they lend themselves to nonlinear and multiphoton imaging
modalities without the need for complex and costly technological solutions. These
considerations and further prospects of imaging using multicore fibers can be found
in [5].

In the following, we turn our attention to the specificities and the most promising
applications of commonly used contrast mechanisms.

4.1a. Fluorescence Imaging
Fluorescence is a process of energy exchange between light and matter, whereby the
absorption of radiation is almost instantly re-emitted at longer wavelengths. Assuming
that photobleaching and saturation do not play significant roles, the emission of fluores-
cent signals from fluorophores (fluorescent chemical compounds) can be considered as
being directly proportional to the intensity of the excitation signal. Fluorescence is an
immensely powerful instrument for life sciences, as through labelling with fluorescent
stains and techniques exploiting expressions of florescent proteins, one can separately
visualize constituents of cells including genetic molecules, cytoskeleton, membranes,
and various vesicles. Further one may selectively visualize specific cell types, e.g.,
excitatory or inhibitory neurones while monitoring their metabolism and signalling.
The development of powerful, more energy efficient and versatile fluorescent labels
and proteins goes hand in hand with the development of imaging technologies,
together pushing the boundaries of biological research. Endoscopy, based on MMFs
is nowadays recognized as a strategy to achieve detailed observations deep inside
even the most sensitive tissues such as that of the brain, inside a living and fully
functioning organism, without inflicting unnecessary damage and affecting its natural
behavior.

This enormous potential has been identified shortly after the methods for controlling
light propagation through optical fibers have been established. Although fluores-
cent micro-particles have been the first objects imaged with SLM-controlled MMF
endoscope geometries [14,15], imaging fluorescently labeled neuronal cells followed
shortly afterward [17] (see Fig. 22).

Over the past half decade, several studies have exemplified this concept in in-vivo
imaging of neurones inside brains of small animal models, also pioneering the concepts
of volumetric imaging and random access, while enjoying the boosted recording speed
due to the transition from LC-based SLMs to more than two orders of magnitude faster
DMD modulators [21,22,104]. Details of the structural connectivity within neuronal
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Figure 22

Images of fluorescently stained neuronal cells acquired with the MMF endoscope and
compared against conventional images acquired with a microscope objective. Left
column: (a) a widefield fluorescent image of a single neuron soma and (d) detail of
dendrites. Middle column, (b) and (e): a direct stitched image as acquired from the
fiber. Right column, (c) and (f): an image from the fiber resampled and filtered so
that the pixelation induced by the scanning acquisition is overcome. Highly detailed
images of the neuronal soma and the dendritic network can be resolved by the fiber
imaging system. The working distance is 200 µm to compensate for the coverslip that
separates the cells from the fiber facet. FOV is 60 µm by 60 µm and scale bars in
all images are 10 µm. Adapted with permission from [17] © The Optical Society of
America.

circuits (dendritic spines and axonal boutons) have been successfully visualized and
the activity of individual neurones has been recorded. The current state of the art is
visualized in Fig. 23.

Separate efforts have been focused on implementing two-photon microscopy via
MMFs. Two-photon excitation requires simultaneous absorption of two photons car-
ried by a femtosecond laser pulse, which together provide the necessary energy for a
fluorophore molecule to transit into the excited state. Each of the photons therefore
carries only half of the excitation energy and its wavelength is thereby double of that for
the standard, single-photon excitation. As at longer wavelengths the tissue scattering
weakens significantly, one can achieve much larger penetration depths. In addition,
the excitation is proportional to the square of the excitation beam, thereby exciting
the sample much less outside the focal plane when compared with the single-photon
case. As the excitation is very well localized to the selected focal plane, this results
in elegant means of sectioning. These considerations make two photon excitation a
very desirable modality for MMF endoscopes. Although very short pulses have been
successfully realized through MMFs [27] and imaging possibility has been verified
[28], these results have been achieved with relative slow scanning rates allowed by
LC SLMs. The DMD technology does not allow for power-efficient wavefront control
of broadband signals [106], so the practical relevance of multiphoton excitation in
biological application will likely emerge once the means of much faster phase-only
modulation become widely accessible.
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Figure 23

In-vivo fluorescence imaging through a MMF in the living brain. (a) Simplified exper-
imental scheme. (b) To-scale fiber probe and mouse brain. (c) Overlay in-vivo MMF
endomicroscope record detailed in (d)–(f) with post-mortem bright-field and confocal
fluorescence microscopy. (d) Record of the “side-view” [177] endoscope progression
throughout the whole brain depth of a Thy1-GFP line M mouse. (e) Detail of the
same record from the location of cortex, shown in full resolution. (f) Volumetric data
corresponding to left part of (e) organized in nine parallel planes away from the probe
tip, displaced by 2.5 µm from one another. The horizontal scale bar in (c) corresponds
to the length of 1 mm. Vertical scale bars in (d) and (e) correspond to the length of
20 µm. Fluorescence intensity data in (d) and (e) are shown in logarithmic scale as
indicated by a color bar in (d). Adapted with permission from [104].

4.1b. Reflectance Imaging
Reflectance imaging, i.e., compiling an image from the intensity of light signals
which have reflected off the sample, is arguably the most straightforward imaging
modality, which has been exploited in numerous pioneering studies in this domain
[16,67,127,173,178–180]. In MMF implementations, the reflected signal is ideally
collected and delivered toward the detector backward, through the same fiber, which
has provided the illumination signals. The returning signals can, however, be mixed
with other returning signals, including reflections off the MMF’s facets or power
backscattered inside the fiber. As the same wavelength is used both ways through the
fiber, the TM for the returning light is just the transpose of that determined in the
calibration procedure. This can be efficiently utilized in implementations of confo-
cal, phase contrast, polarization contrast, and other microscopy modalities [180,181]
and offers a way to address the issue with undesired reflections. While studying the
principles of light transport through MMFs and various aspects of their potential
applicability, researchers often utilize the transmittance alternative, i.e., collect the
signals transmitted through semitransparent objects of known properties (e.g., the
1951-USAF resolution target) serving as the ground truth, although such geometries
do not provide viable technological solutions for endoscopy [67,86,101,126].
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One area where reflectance MMF endoscopes stand a solid chance of applicability
emerged from translating their image plane to very large distances away from the fiber
facet. Due to the minuscule aperture size given by the size of the MMF core, they
essentially operate as infinity focus cameras with giant depth of focus, starting only a
few centimeters behind the facet. They can be readily switched into high-resolution
microscopes when the observed objects are brought into the vicinity of the distal
MMF facet, purely by scheduling a different set of modulation patterns for the used
light modulator. Combining these geometries with highly precise measurements of the
photons’ time-of-flight, it has been shown that reconstructing the depth of the object
is possible, with a precision of a few millimeters [103].

Nevertheless, when light focused on a distant object reflects back toward the MMF,
the tiny fiber core and thereby the minuscule collection efficiency makes the collected
light signal returning toward the detector feeble with respect to the strength of the
undesired signals from facet reflections and MMF scattering. Although more elaborate
solutions (e.g., time-gating) are possible, practical implementations have sacrificed on
the instruments’ footprint and implemented a separate collection fiber, free from
the parasitic light signals. Further, issues originate from the coherent nature of the
illuminating light, which is essential for the very enabling principles of the instruments’
operation. Upon reflection off matte distant objects, light returns toward the distal facet
as a randomized speckle, with grain size comparable to the diameter of the core. It
is therefore a question of chance and statistics, what will be the brightness of a pixel,
which corresponds to a certain location of a diffusive object. With the influence
growing as the object moves away from the distal facet, the speckle manifestation
of coherent light is therefore carried over as a random intensity modulation of the
object’s image (see Fig. 24). Even with the present limitations, however, these far-field
MMF-based microendoscopes could be exploited in various clinical and diagnostics
applications, remote inspection, and security systems.

4.1c. Chemical Contrast Imaging
Label-free methods enabling instant imaging of chemical contrast represent a greatly
desired alternative to post-mortem histopathology, the current gold-standard in clin-
ical diagnostics of potentially cancerous tissues which, due to the remote and
time-consuming procedures involved, delay decision-making and frequently require
repeated surgical interventions. A potential answer is the concept of light biopsy,
utilizing methods derived from vibrational, particularly Raman spectroscopy. Here,
the inelastic scattering of light by atoms and molecules leads to alternations of the
scattered photons’ frequencies thereby leaving characteristic spectral signatures for dif-
ferent materials. Although Raman scattering has been shown to have great relevance
to medical diagnostics [182], its main limitation is in the sparsity of the inelastically
scattered photons (only 1 in ≈ 106 collisions is inelastic), necessitating long collection
times while keeping the sample exposure intensities at safe levels. Next to spontaneous
Raman scattering, several nonlinear chemical imaging techniques which derive from
Raman scattering, particularly coherent anti-Stokes Raman scattering (CARS) and
stimulated Raman scattering (SRS), have been introduced [183]. As they are tuneable
to image at a specific line of the Raman spectrum, they are much faster and safer to the
sample, yet their implementation is considerably more elaborate as they require two
synchronous picosecond or femtosecond laser pulses to illuminate the sample point
by point. Before these techniques can be exploited in clinical settings, such label-
free chemical contrast techniques must be allowed to operate in extended depths of
highly scattering tissues, thereby necessitating the development of minimally invasive
endoscopic solutions [184].



Review Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics 573

Figure 24

(a) A sequence of holograms displayed by a DMD spatially shapes the wavefronts
coupled into a multimode optical fiber in such way that a far-field focus scans the
distal FOV. The light signals backscattered by an object are partially captured by
a collection fiber, allowing real-time image reconstruction at the proximal side. (b)
Imaging a mechanical clock as an example of a dynamic object. (c) Demonstration of
endoscopic imaging of a bell pepper via a small opening. Reprinted from [105] under
a Creative Commons Attribution (CC BY) license.

MMF endoscopes feature many of the properties desired for such advancements,
particularly their minuscule footprint and high spatial resolution. They have joined the
race to achieve label-free light biopsy by implementing spontaneous Raman imaging
modality in 2017 [185], recording the complete Raman spectrum of various specimens
for each pixel of the FOV with 5–20-second acquisition time per pixel (see Fig. 25).

A potential limitation was found in the strong Raman and fluorescence background
originating from the fiber itself, at shorter wavenumbers (<500–1700 cm−1). This
has been addressed by employing sapphire MMFs, which enabled collecting Raman
spectra at wavenumber near 1000 cm−1, thereby opening the possibility to image within
the most prominent window for clinical applications (Raman shifts of aromatic amino
acid phenylalanine, unsaturated fatty acids, CH2 and CH3 deformation vibrations, and
amide bands of proteins) [186]. MMF endoscopes have further been demonstrated
to offer even nonlinear chemical imaging modalities, particularly CARS [29]. The
most advanced version [187] utilizes femtosecond laser pulses with spectral focusing
modality [188] and composite fiber probes for suppression of strong background
signals originating in nonlinear processes inside the fiber. Importantly, this concept
enabled reduction of the pixel dwell time to millisecond intervals (see Fig. 26 for
performance examples). Similarly as in the case of multiphoton imaging, the bottleneck

https://creativecommons.org/licenses/by/4.0/


574 Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics Review

Figure 25

Raman imaging through a MMF of polystyrene particles dried on a glass coverslip.
(a) Background (black dotted) and polystyrene (red solid) spectral information. (b)
Bright field image of the particles. (c) Weights for polystyrene spectral components,
showing a Raman image of the particle distribution. Scale bars are 20 µm. Adapted
from [185] © The Optical Society of America.

Figure 26

(A) CARS image of myelin sheaths in a transversal cut of a sciatic nerve taken on the
surface. (B) CARS image of myelin sheaths in the corpus callosum of mouse brain
taken with the probe inserted 1.5 mm inside the tissue. (C) Multimodal CARS (red)
and TPEF (green) image of myelinated nerve fibers in the cerebellum. Adapted from
[187] © Optica Publishing Group.

for higher imaging speeds is here the slow operation of LC-SLMs and further progress
will be enabled through the availability of faster light modulators capable of directly
manipulating the phase.

4.1d. Photoacoustic Imaging
Photoacoustic imaging provides a contrast based on optical absorption. It can be used
as a label-free method to image highly absorbing tissues locations, where hemoglobin,
melanin, or lipids occur in high concentrations. The contrast can be further enhanced
by compounds targeting desired structures. Upon illumination by nanosecond pulses
delivered through the MMF in the shape of diffraction-limited foci, light absorption,
and resulting thermoelasticity causes acoustic waves to emerge. The strengths of this
acoustic signal is detected and used as contrast for the resulting image [189–191]. In
2020, it was shown that the generated acoustic waves can be efficiently detected from
the vicinity of the sample also with the use of an optical fiber (separate from the MMF
for light delivery), thus making for a narrow all-fiber photoacoustic endoscope to be
used in large depths of tissues, which can further be combined with other modalities
described above, particularly the fluorescence [190,191].
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Figure 27

Wide-field imaging using coherent signals. (a) Setup based on an interferometric phase
microscope. The interference between the reflected light from the object located at
the opposite side of a single MMF and the reference light is recorded by a camera. A
two-axis galvanometer scanning mirror (GM) controls the incident angle to the fiber.
BS1, BS2, and BS3, beam splitters; OL, objective lens; IP, input plane of a multimode
optical fiber (0.48 NA, 200 µm core diameter); OP, object plane. (b) Reconstructed
images are stitched to enlarge the FOV. Scale bar indicates 100 µm. Adapted with
permission from [16].

4.1e. Wide-Field Approaches
A naïve idea of an ideal microscope is the use of two lenses sharing one focal plane.
The optical fields found in the remaining focal planes are essentially related by a
physical realization of two Fourier transforms between the spatial domain and that of
the spatial frequencies. The first lens converts the field of the observed object into the
spatial spectrum, the second reverses the conversion and forms the field of the object’s
image to be observed by a naked eye or acquired by a camera. Due to the mathematical
equivalence of the Fourier transform and its inverse the image is upside down, and
conveniently scaled by a factor given by focal lengths of both lenses. Considering
ideal lenses, this principle applies regardless of the spatial and temporal coherence
of the light relaying the object with its image. In contrast to scanning approaches, all
pixels of an image are not formed sequentially, but simultaneously, e.g., from a single
camera acquisition.

A TM of a MMF is similarly an operator, which also has its mathematical inverse.
Finding solutions for implementing a computational or even physical inverse of a
TM are greatly desired as they can significantly speed-up image acquisition and
enable powerful wide-field methods of modern microscopy such as localization super-
resolution techniques such as PALM and STORM [192,193].

When fully (spatially and temporarily) coherent signals are considered, the knowledge
of the TM offers a direct route to implement wide-field imaging [16] (see Fig. 27). In
this concept, light reflected off an object and transformed by the propagation through
the MMF is captured in both amplitude and phase using off-axis interferometry. A
mathematical inverse of the TM is then used to compute the object field corresponding
to the received signal. Due to the coherence of the light used, the reconstructed image
field, however, remains modulated by speckle, therefore averaging the result over
numerous realizations is necessary to obtain a speckle-free image.

Further, it has been shown, that single-plane phase modulation can be used to acquire
images with over 100 image pixels from a single camera acquisition, utilizing tem-
porary coherent yet spatially incoherent signals, resulting in wide-field (bright-field
and dark-field) imaging modalities. Although there is no speed bottleneck other than
the camera detector itself, this approach was associated with immense power losses,
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which scale proportionally to the amount of pixels in the image [15]. The efficiency
and the number of pixels can be greatly improved if the concept of mode convertors
was implemented [194]. These devices, featuring a series of single-plane phase mod-
ulations, decompose a propagating signal into the basis of PIMs and direct the optical
power carried by each of them into spatially separated regions. In a recent theoretical
study [195] a pair of 15-plane convertors of 400 PIMs of a SI MMF were considered
and one additional corrector plane, all together forming a physical inverter of the TM.
The light propagating through an optical fiber is decomposed into its PIM constituents
by the first convertor, the corrector plane removes the phase shifts they acquired while
propagating through the MMF and, finally, they are combined into the image by the
second convertor, thus forming a physical copy of the field found in front of the MMF.
Even though this scheme will be immensely challenging to realize experimentally and
it would limit the use of broadband signals for larger segments of fibers (>10 nm
bandwidth is achievable with <1 cm long fiber), it may render any form of wide-field
microscopy at the tip of a hair thin segment of MMF possible.

Finally, when fluorescence signals of multiple emitters are coupled into a MMF, the
output intensity distribution is essentially a linear superposition of individual intensity
landscapes, which would emerge if each emitter was present in the sample plane on its
own. Acquiring such individual MMF output intensity distributions can be achieved
for example by a single fluorescent particle anchored to a microscope slide. The
particle is densely position stepped across the desired object plane in front of the distal
MMF facet and the corresponding fluorescence intensity distributions are recorded
for each position. These can further be used when reconstructing the image of more
complex objects algorithmically [196]. This technique is simple and elegant, yet highly
sensitive to noise and prone to numerical artifacts, especially in low-photon-number
regimes, e.g., when observing details of structural connectivity of neurones. It can be
efficiently used in imaging of sparse fluorescent objects, possibly even for signalling
activity of neurones within the brain tissue.

4.1f. Image Transmission
Image transmission is a technique, which utilizes a monochromatic beam with usually
a flat wavefront and the intensity spatially modulated to the shape of an image. This
field is then sent through a MMF and the image is recovered from the speckle distribu-
tion [197]. Unlike in imaging applications, the light does not interact with an object
to give a contrast. The approach is frequently used as a test bed for advanced com-
puting algorithms, particularly artificial neural networks [198]. Using a convolutional
network, Rahmani et al. [132] reconstructed the input intensity (or phase) random-
ized by propagation through a 0.75 m segment of SI fiber having 50 µm in diameter.
After training, the network has been used to reconstruct images of different classes.
Although the network could transfer its knowledge for retrieval of untrained image
classes, the retrieval performance deteriorated significantly. This has been addressed
by an alternative method, designed to statistically reconstruct the inverse transforma-
tion matrix of the MMF, thereby enabling reconstruction of untrained images with
significantly higher structural complexity [133] (see Fig. 28).

Further, neural networks have been used to reconstruct image information in fibers
which are subjected to bending [134–136,199–204] and spectral correlation [205].

4.2. Optical Trapping
Micro-objects, which find themselves in an optical field, experience mutual exchange of
the momentum with the light, which manifests itself by optical forces. One component
of this force related to the idea of radiation pressure, i.e., the so-called scattering
force, accelerates the particles in the direction of the beam propagation. Further, such
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Figure 28

Transmitted image reconstruction using TM obtained by an artificial neural network.
(a) Scene coupled into the MMF. (b) Output speckle. (c) Reconstructed image. Adapted
with permission from [133].

particles whose refractive index is higher than that of the surrounding medium are
attracted toward the locations of high intensity as a result of so called gradient force.
Optical tweezers are 3D optical traps formed by tightly focused laser beams, where both
force components are balanced. A number of exciting applications of this concept have
been introduced, particularly due to their ability to exert and measure subpiconewton
forces on single molecules or molecular assays. Optical tweezers have greatly shaped
our understanding of molecular motors and the functionality of biological polymers
driving the mechanics of cells. HOTs are arguably the most powerful and versatile
embodiments of optical tweezers, which exploit WFS to facilitate a large number of
trapping sites that can be simultaneously manoeuvred in three dimensions at will.
HOTs require the use of a high-NA focusing element (NA > 0.8), most commonly
a specialized microscope objective. Further, its performance degrades steeply in the
presence of aberrations, thereby precluding its exploitation deep in scattering tissues.

Due to the close mutual relevance of WFS and optical trapping methodologies, the
potential to exploit shaped structured fields emerging from MMFs for optical manipu-
lation has been identified very early [7,14]. Forming HOT at the tip of a hair-thin fiber
endoscope would enable acting and measuring minuscule optical forces into optically
complex environments beyond the reach of bulky focusing optics and would allow for
studies of important biological processes directly inside complex living organisms.

As the NA of the commercial MMFs does not reach sufficiently high values for stable
3D confinement of micro-objects, the early achievements of optical manipulation
though MMFs have been reduced to 2D lateral trapping whereby the particles were
prevented from escaping the optical trap in the axial direction by the boundary of the
sample chamber.

In order to increase the NA to the required level, several possibilities have emerged
recently and although they have not found use in optical trapping applications, it is
worth mentioning them for their benefits in other applications including imaging. Plac-
ing a highly scattering element in the close vicinity of the distal MMF facet [206,207]
is probably the simplest route toward achieving tight focusing (see Fig. 29(d)). This
solution only allows a fraction of the optical power to form the desired foci, with
the rest forming a background speckle signal. This would be problematic particularly
when forming large amounts of optical traps, with which the background signal can
undesirably interfere. Further options involve micro-fabrication of focusing elements,
directly at the distal facet [120] (see Figs. 29(b) and 29(c)), with which it is possible to
achieve tight and high-purity foci, yet the FOV is no longer as large as the instrument’s
footprint, instead it is reduced by the same factor with which the NA is enhanced.
Air-cladding photonic crystal fibers also offer the formation of tight and pure foci
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Figure 29

Strategies for tight focusing of light at the distal end of a MMF. (a) Air-cladding
photonic crystal fiber with generated focus. Adapted with permission from [208] © The
Optical Society of America. (b) and (c) Fiber with micro-fabricated optics. Adapted
with permission from [120] © The Optical Society of America. (d) Exploiting the
properties of a highly scattering layer close to the distal facet of a MMF. Adapted with
permission from [206] © The Optical Society of America. (e) All solid SI fiber from
soft-glass materials. Adapted with permission from [24].

[208] (see Fig. 29(a)), yet due to the necessity of the outer layer, holding the core in
place via narrow bridges, they have a rather large footprint. Moreover it is unclear
whether aqueous media would not invade the air cavities and alter the MMF’s TM
during experiments.

An implementable solution was however found in manufacturing all-solid fibers
formed by soft-glass materials [24] (see Fig. 29(e)). The fibers were successfully
employed in confining and manipulating up to nine particles simultaneously, with
position sensitivity as small as 5 nm (see Fig. 30).

4.3. Microfabrication
The formation of 3D microstructures brings novel advanced methods in several
disciplines, including biophotonics, plasmonics, metamaterials, and MEMSs [209].
One of the 3D printing processes that makes it possible to create high-resolution
microstructures is direct laser writing. Most precise systems rely on the two-photon
polymerization principle, which due to its nonlinear nature, utilizes ultrashort pulses to
trigger polymerization only in the highly confined volume of the photoresin. It recently
attracted a lot of attention for creating structures of highly complex architecture with
feature sizes below 100 nm [210].

Submicrometer resolution implies using high-NA objectives, which limits 3D printing
ability to a small volume at close proximity to the bulk optics elements, preventing
applications in nontransparent and hard to reach environments, or simply inside narrow
cavities. Here MMF endoscopy can play its role [30,211,212].
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Figure 30

Multiple holographic tweezers delivered through a lensless MMF. (a), (b) Multiple
holographic tweezers trapping (a) nine particles in a square-grid arrangement and (b)
eight particles forming a rotating 3D cube. The scale bars correspond to 5 µm. (c), (d)
Optical manipulation of two particles inside a turbid cavity comprising a complex,
hard-to-access environment. The scale bars correspond to 10 µm. In (a)–(d), all the
particles are 1.5 µm diameter silica microspheres in a water suspension, the fiber
length is 65 mm, and the trapping wavelength is 1064 nm in vacuum. Adapted with
permission from [24].

In the experiment depicted in Fig. 31, a GRIN fiber terminated with a grin lens,
resulting in an NA exceeding 0.5, was utilized to deliver tightly focused laser beams
through only 0.5 mm thick probes [30]. Both optical phase conjugation [27] or TM-
based approaches [212] were successfully applied in combination with time-gating,
resulting in WFS only for the modes of similar propagation constant, therefore mini-
mizing the effect of modal dispersion and significant pulse broadening. This focused
pulse can be scanned across the photoresist volume, resulting in highly localized
polymerization.

This raster scanning approach at the tip of the fiber enables the additive manufacturing
of complex structures (see Fig. 31(c)) with sub-diffraction-limited precision to be
performed in hard-to-reach areas. Moreover, the inherently reconfigurable nature of
the WFS approaches allowed the beam’s PSF to be optimized for faster printing [212].

Further development of fast and flicker-free SLMs will significantly reduce printing
time and improve quality, enabling practical applications.

4.4. Spectroscopy and Hyperspectral Imaging
4.4a. Multimode Fiber Spectrometer
Optical spectrometers are widely used for chemical and biological sensing, material
analysis, and light source characterization. The spectral resolution δλ sets the smallest
difference in wavelength λ that can be distinguished. The wavelength range covered
by one measurement is given by Mλ δλ, where Mλ is the number of spectral channels
that can be measured in one acquisition. The ultimate limit is the free spectral range
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Figure 31

Schematic for the two-photon endofabrication through a MMF. (a) SLM illuminated
by femtosecond laser allows WFS through a GRIN MMF (400 µm core diameter,
length 50 mm). The distal end of the fiber is dipped into a photosensitive polymer.
Axial (z) positioning is implemented at the sample side via motorized translation stage.
(b) Calibration procedure based on TM approach allowing light focusing through the
probe. (c) Raster scanning by precalculated phase patterns. (d) Scanning electron
microscopy image of printed structures of the woodpile and the pyramid of Chichen
Itza; both scale bars are 10 µm. Left figure adapted from [30] © The Optical Society
of America. Right figure adapted from [212].

(FSR), beyond which a spectrometer may generate the same response at well-separated
wavelengths. The sensitivity of a spectrometer depends on the light throughput and
the SNR.

A standard multimode optical fiber can function as a compact spectrometer with high
resolution and broad range. Let us consider a monochromatic light of wavelength λ
that is coupled via a polarization-maintaining SMF to a MMF of length L and with M
excited guided modes. The transmitted field is filtered by a linear polarizer, and the spa-
tial distribution is given by Eq. (17). Once the spatial wavefront and polarization state
of incident light are fixed, the transmitted intensity pattern It(r, φ; λ) = |Et(r, φ; λ)|2
is unique for each wavelength λ, and serves as a fingerprint. The input spectrum Ii(λ)
can be reconstructed from It,

It(r, φ) =
∫

P(r, φ; λ) Ii(λ) dλ, (23)

where P(r, φ; λ) represents the output intensity pattern at wavelength λ. Once P(r, φ; λ)
is calibrated by recording the output speckle patterns at individual wavelengths using a
tunable light source, any unknown spectrum Ii(λ) can be recovered from the measured
It(r, φ) [31].

The spectral resolution is determined by how small a wavelength shift of the input light
can cause a notable change in the output intensity pattern. Such a change is quantified
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Figure 32

MMF spectrometer featuring high resolution and broad range. (a) Spectral correlation
function of the transmitted intensity pattern CI(∆λ) through a 100-m-long MMF has
a HWHM of 1.5 pm at λ = 1500 nm. Inset: speckle pattern recorded at fiber output.
(b) Reconstructed spectrum (blue line) of two narrow lines separated by 1 pm. The
red dotted vertical lines mark the probe wavelengths. (c) Three broadband spectra
recovered with 1 nm resolution from the speckle patterns of a 4-cm-long MMF.
Adapted with permission from [33] © The Optical Society of America.by the spectral intensity correlation function:

CI(∆λ) ≡
⟨P(r, φ; λ)P(r, φ; λ + ∆λ)⟩r,ϕ,λ

⟨P(r, φ; λ)⟩r,ϕ,λ ⟨P(r, φ; λ + ∆λ)⟩r,ϕ,λ
− 1, (24)

where ⟨· · · ⟩r,ϕ,λ denotes an average over spatial position (r, φ) and wavelength λ. As
∆λ increases, CI(∆λ) gradually decays to zero, as shown in Fig. 32(a). The half width
at half maximum (HWHM) provides an estimate of wavelength resolution δλ.

Ignoring material dispersion, the spectral resolution is dictated by modal dispersion
that broadens the optical path-length distribution as light propagates through a MMF.
If all M fiber modes are equally excited (Am = 1) and their coupling is negligible, the
width of the optical path-length distribution scales as (β̇1 − β̇M)L. Here, β̇1 − β̇M =

dβ1/dλ − dβM/dλ reflects the maximal difference of group velocity, and it scales as
NA2 for a SI MMF of NA≪ 1 [32]. The spectral resolution δλ is inversely proportional
to ∆L:

δλ ∝
1

(β̇1 − β̇M)L
. (25)

If mode coupling is strong in a MMF, light hops among the fiber modes, and δλ ∝

1/
√

L.

Since the optical fiber has been optimized for long-distance transmission with minimal
loss, a long MMF can be used to reach ultrahigh resolution without sacrificing light
throughput. As shown in Fig. 32(b), a 100-meter-long SI MMF (core diameter = 105
µm, NA = 0.22) provides a wavelength resolution of 1 pm at λ = 1500 nm [33]. Such
a long fiber is coiled on a small spool, making a compact, lightweight spectrometer
with ultrahigh resolution.
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The number of spectral channels Mλ that can be recovered from a single measurement
is determined by the number of speckle grains in the output intensity pattern, which is
equal to M. Without prior information of the probe spectrum, Mλ ≃ M. Since a MMF
maps a 1D spectrum to 2D space, a large number of spectral channels are measured
by a 2D camera in a single acquisition. As shown in Fig. 32(c), a 4-cm-long MMF
(core diameter = 105 µm, NA = 0.22) is able to cover the entire visible spectrum with
1 nm wavelength resolution in a single measurement [33].

One advantage of the MMF spectrometer, over the conventional grating spectrometers,
is that the spectral channels in one measurement do not need to be contiuous in
wavelength. If it is known a priori that the signals are located in certain wavelength
regions that are disconnected, the wavelengths in P(r, φ; λ) may be assigned only to
those regions. In this way, a finite number of spectral channels can effectively cover a
broad wavelength range.

To recover a large number of spectral channels Mλ, it is important to excite as many
modes as possible at the fiber input. This is realized by using a fiber mode scrambler
[213] or offset fusion of fibers [38]. The upper bound for Mλ is the total number of fiber
modes, which is proportional to the fiber core area. While a large-core MMF provides
a high Mλ, the speckle intensity contrast Ct ≃ 1/

√
Mλ is low for a dense spectrum of

Mλ ≫ 1. Once the contrast is below the noise level, an accurate spectrum recovery is
impossible [214].

To overcome the trade-off between spectral range and resolution, a wavelength division
multiplexer (WDM) is integrated with a bundle of MMFs [34]. The WDM divides
a broad spectrum to multiple windows, with each window being covered by a single
MMF. The output speckle patterns from all MMFs are recorded simultaneously by
a large-area camera (with a million pixels). Then they are separately processed in
parallel, greatly reducing the complexity of the spectrum reconstruction and increasing
the speed of reconstruction. Using five 2-meter-long MMFs, dense spectra centered
at λ = 1500 nm with 100 nm bandwidth are recovered with 0.03 nm resolution in
snapshot measurements.

Compared with other high-resolution spectroscopy tools such as the scanning
Fabry–Perot etalon or the virtually imaged phase array (VIPA), a notable advan-
tage of the MMF is that its spectral range is not limited by the FSR. This is because
fiber fabrication imperfections (random refractive index variation) and external per-
turbations (fiber bending, twisting) make the probability of a highly MMF producing
identical speckle patterns at distinct wavelengths extremely low. A MMF spectrome-
ter, combined with an optical frequency comb source, has been adopted in broadband
metrology-grade spectroscopy to resolve individual comb lines [215]. The wavelength
resolution obtained with a 100-meter-long MMF is an order of magnitude higher than
that of dual-comb spectroscopy. Using the MMF spectrometer, 500 comb lines are
measured simultaneously and 3500 lines sequentially for direct comb spectroscopy.

The MMF also functions as an ultrahigh-resolution wavemeter that can precisely
determine a single wavelength [35]. By modulating the input signal with an acoustic
optical modulator (AOM) and applying the principal component analysis, attometer
resolution at λ ≃ 780 nm is obtained with a 18-cm-long SI MMF (core diameter = 105
µm, NA= 0.22). Multiple wavelengths may be resolved simultaneously by modulating
them at different acoustic frequencies [37].

The resolving power of a MMF spectrometer/wavemeter can be further improved by
increasing the fiber length and/or the differential group delay. However, the speckle
patterns are sensitive to environmental changes including mechanical vibration and
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temperature drift. Recent studies show that a combination of thermal and mechani-
cal stabilization together with software correction can enable robust performance of
a high-resolution MMF spectrometer [33,215]. Alternatively, the spectral-to-spatial
mapping P(r, φ; λ)may be calibrated as a function of temperature, and the one matched
to the current temperature will be used for spectrum recovery.

Further stabilization has been realized with on-chip implementation of the MMF
spectrometer. A silicon multimode waveguide (width = 10 µm, length = 18 mm) is
coiled in an Archimedean spiral [147]. By introducing evanescent coupling of light
between adjacent waveguide arms (separated by small air gap), light will leap forward
or backward in time, greatly broadening the optical path-length distribution. Con-
sequently, the spectral resolution is dramatically enhanced, and such enhancement
is nonresonant and broadband. The wavelength resolution of 10 pm is obtained at
λ ≃ 1500 nm with a spiral of outer radius 250 µm. Like the MMF, the spiral wave-
guide effectively disperses light at any wavelength at which the material absorption is
negligible.

Since the output speckle pattern varies with the launch condition of input light, it is
crucial to ensure the consistency between the launch used in the calibration and that in
spectrum measurement. On the other hand, the input launch condition may be switched
among multiple choices to increase the number of spectral channels Mλ [216]. The
space-division multiplexing scheme has been implemented with a multicore fiber [36]
or an on-chip photonic lantern [217].

Promising progress has also been made for speckle-based RF spectrometers, which
perform very fast frequency measurements (MHz resolution is reached at an 800 kHz
frame rate) [218,219].

4.4b. Hyperspectral Imager
Hyperspectral imaging (over a continuous spectrum) and multispectral imaging (at
multiple frequencies) are of great importance for acquiring both spatial and spectral
information, with applications in remote sensing and threat detection. Scanning-based
hyperspectral imaging techniques, such as pushbroom and whiskbroom spectral imag-
ing systems, require performing many sequential measurements to reconstruct an
image. A more desirable approach is to acquire both spatial and spectral information
in one measurement. Such snapshot hyperspectral imaging has recently been demon-
strated with a multicore MMF array in combination with a monochrome CMOS camera
[43]. As shown in Fig. 33, 3000 cores in a 30-cm-long fiber bundle produce distinct
speckle patterns, from which space-dependent spectra are recovered with subnanome-
ter wavelength resolution. A clustering algorithm is employed in combination with
l1-minimization to limit data collection at the acquisition stage for the reconstruction
of spectral images that are sparse in the wavelength domain. The efficient acquisi-
tion of spatial and spectral information in one measurement enables high-resolution,
high-throughput snapshot spectral imaging.

In addition to CS algorithms, deep learning has been employed for fast and reliable
reconstruction of both discrete and continuous spectra from speckle patterns [44].
The artificial neural network is trained with the multispectral datasets numerically
constructed from the measured spectral PSFs. Compared with analytical inversion
methods and CS algorithms, the deep learning approach is robust to system drift and
measurement noise. Although it takes time to train an artificial neural network, once
it is done, the reconstruction is fast enough for real-time recovery of hyperspectral
information.
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Figure 33

Hyperspectral imaging with multicore MMF. Light travels through a multicore MMF,
and the cross section of the end of the fiber is imaged onto a camera. A clustering
algorithm detects the coordinates of the speckle patterns produced by each fiber core
on the camera. The pattern coordinates are then used to calibrate a spectral intensity
TM by measuring wavelength-dependent speckle patterns at every core position and
storing them in a 3D data cube. Reprinted with permission from [43] © The Optical
Society of America.

4.5. Full-field Measurement
Full-field (both amplitude and phase) characterization of ultrashort optical pulses
with femtosecond to attosecond pulse duration is crucial to ultrafast science. Existing
sensors are not fast enough to directly resolve such short pulses, and the pulses are
recovered indirectly, often through algorithmic methods. Various schemes have been
developed for multishot measurements, which require trains of identical pulses. How-
ever, in many cases the probed pulses are not reproducible, prompting the development
of single-shot characterization methods.

Single-shot measurements are more challenging for several reasons. First, a trade-off
between the temporal range ∆t and resolution δt limits the time-bandwidth product
∆t/δt, where 1/δt is proportional to the spectral bandwidth of detection. Second,
the single-shot measurement is highly sensitive to noise, as there is no averaging
over multiple pulses and the power of an incoming signal is always limited. Third,
a full-field characterization requires recovering the amplitude A(t) and phase θ(t)
simultaneously, and both may evolve rapidly in time t.

A Fourier transform of the temporal field E(t) = A(t)eiθ(t) gives the spectral field
E(ω) ≡ F [E(t)] = A(ω)eiθ(ω). Simultaneous reconstruction of spectral amplitude A(ω)
and phase θ(ω) will recover E(ω) and E(t). As shown in Section 4.4, the power spec-
trum I(ω) = |E(ω)|2 = [A(ω)]2 can be reconstructed from a time-integrated intensity
measurement of optical speckle patterns generated by a MMF. However, such speckle
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patterns do not contain any information of spectral phase, thus preventing complete
pulse recovery.

Recently, two methods have been developed for single-shot full-field measurement
of optical pulses using (i) spatiotemporal speckles and (ii) nonlinear speckles. This
subsection will introduce these methods. While method (i) employs a reference pulse,
method (ii) is reference-free or self-referenced.

4.5a. Parallel Temporal Ghost Imaging
Figure 34(a) illustrates the single-shot full-field measurement using a spatiotemporal
speckle pattern out of a MMF [39]. A linearly polarized laser pulse with known field
f (t) is split into two arms of a Mach–Zehnder interferometer. In one arm, the pulse is
launched into a MMF to create a spatiotemporal speckle field Es(r, t) in transmission.
In the other arm, the pulse interacts with a sample, and the transmitted/reflected field
g(t) interferes with Es(r, t). The time-integrated intensity pattern Ip(r) =

∫
|Es(r, t) +

g(t)|2dt is recorded by a slow camera. By applying a Hilbert filter in the Fourier domain
of Ip(r), the interference term Iq(r) =

∫
dt[E(r, t) g∗(t) + E(r, t)∗ g(t)] is extracted.

In the frequency domain, Es(r,ω) = F [Es(r, t)] = T(r,ω)F(ω), where T(r,ω) is the
frequency-resolved TM of the MMF, and F(ω) = F [f (t)]. The interference term can
be expressed in the frequency domain as

Iq(r) =
[︁
T(r,ω)F(ω) T∗(r,ω)F∗(ω)

]︁ [︃G∗(ω)
G(ω)

]︃
, (26)

where G(ω) = F [g(t)]. Once T(r,ω) is calibrated and F(ω) is known, G(ω) can be
retrieved from Iq(r), and an inverse Fourier transform gives g(t).

The temporal range ∆t of the single-shot measurement is set by the temporal length
of Es(r, t), which is inversely proportional to the spectral correlation width of the
MMF. A fiber with longer length and/or stronger modal dispersion has a faster
spectral decorrelation, and can cover a longer time window. The temporal reso-
lution δt is equal to the temporal speckle size, which is given by the inverse of
the spectral bandwidth of the reference pulse. A reference pulse of broader band-
width (not necessarily transform-limited in time) provides higher temporal resolution.
Therefore, the temporal range and resolution can be tuned separately by varying the
parameters of the fiber and the reference pulse. Experimentally, single-shot full-field
measurement with a 1.8-m-long MMF (105 µm core diameter, 0.22 NA) provides
230 fs temporal resolution over a window of 35 ps, and the time-bandwidth product
is 152 [39].

The time-bandwidth product reflects the number of independent temporal channels that
are measured simultaneously. Its upper bound is given by the number of uncorrelated
time traces generated by the MMF, which is equal to the number of guided modes in
the fiber. The time-bandwidth product for a MMF with a large core and a high NA
may well exceed 1000, and a further increase is possible with a bundle of MMFs [34].

This single-shot measurement scheme is equivalent to parallel ghost imaging in time
[220]. While conventional ghost imaging relies on sequential generation of different
temporal waveforms for sampling, the MMF simultaneously creates many distinct
time traces in different spatial channels to sample the signal (Fig. 34(c)). The complex
yet deterministic spatiotemporal speckle field enables parallel sampling in a single
shot for a full-field recovery, eliminating the requirement for repetitive signals.

The spatiotemporal coupling of broadband light in a MMF has also been employed
for axial reflectivity profiling [40]. The closely spaced yet distinct propagation con-
stants of various spatiotemporal modes in a MMF yield a set of spatially distributed
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Figure 34

Single-shot pulse characterization using spatiotemporal speckles. (a) Schematic of an
interferometric setup for calibration of a spatiotemporal speckle field generated by
a reference pulse through a MMF. Its interference with the signal (pulse transmitted
through a sample) is measured without temporal resolution by a camera. The time-
integrated measurement enables full field recovery of the signal. Inset: intensity (red
solid line) and phase (blue solid line) of the reference pulse launched into the MMF.
(b) Spatial field amplitude distribution of the reference pulse transmitted through the
MMF evolving with time. (c) Transmitted field amplitudes at different spatial positions
of the fiber output exhibit distinct temporal fluctuations. Reprinted with permission
from [39] © The Optical Society of America.

functions that are distinct for varying delay times (path lengths). Such encoding func-
tions can be used for depth referencing. A signal that is delayed by reflection at a
specific sample depth only interferes with the path-length-matched encoding function
(Fig. 34(b)), and creates a distinct speckle pattern that is unique to this depth. An
arbitrary sample reflectivity profile produces a linear superposition of the associated
speckle patterns. By calibrating the random encoding functions, the 1D sample depth
profile is reconstructed from a single recording of the interference pattern without the
need for any mechanical or optical scanning. Such configuration can be considered as



Review Vol. 15, No. 2 / June 2023 / Advances in Optics and Photonics 587

spatially multiplexed low-coherence interferometry, and is a parallel implementation
of ghost optical coherence tomography [221]. Experimentally, axial depth profiling is
demonstrated with bandwidth-limited resolution of 13.4 µm over a range of 13.4 mm
[40]. By varying the MMF length, the depth range is scaled from several millime-
ters to well beyond one centimeter, relaxing the challenging hardware requirements
of achieving similar performance with conventional spectrometer-based coherence
gating.

4.5b. Nonlinear Speckle and Deep Learning
The method described in the previous subsection relies on a known optical pulse that is
mutually coherent with the unknown signal. In this subsection, a reference-free time-
integrated measurement scheme will be introduced to enable standalone single-shot
characterization of ultrafast pulses.

The key for full-field recovery is retrieving the spectral phase θ(ω), as the spectral
amplitude A(ω) is already reconstructed from the linear speckle pattern. Measuring the
relative phase of different spectral components in a pulse requires these components to
interfere, but distinct frequencies do not interfere in a linear, time-integrated detection.
To retrieve the spectral phase without any reference, a nonlinear material is placed
behind a MMF to create a speckle pattern via two-photon absorption or sum-frequency
generation [41,42].

As illustrated in Fig. 35(a), the propagation of a signal pulse in the MMF remains linear,
so that the transmitted light is related to an incident field Ei(t) = F −1[A(ω) eiθ(ω)]

by the field TM: Et(r, t) = F −1[T(r,ω)A(ω) eiθ(ω), where F −1 denotes the inverse
Fourier transform. The time-integrated linear speckle pattern I1p(r) =

∫
|Et(r, t)|2 dt =∫

|T(r,ω)|2 |A(ω)|2 dω encodes only the spectral amplitude A(ω) of an input signal.
The time-integrated nonlinear speckle pattern I2p(r) =

∫
|Et(r, t)|4 dt can be expressed

as

I2p(r) =
∭

dω1 dω2 dω3 |T(r,ω1)| A(ω1) |T(r,ω2)| A(ω2)

|T(r,ω3)| A(ω3) |T(r,ω1 − ω2 + ω3)|

A(ω1 − ω2 + ω3) ei[θ(ω1)−θ(ω2)+θ(ω3)−θ(ω1−ω2+ω3)]

ei[θTM(r,ω1)−θTM(r,ω2)+θTM(r,ω3)−θTM(r,ω1−ω2+ω3)],

(27)

where θTM(r,ω) is the phase of T(r,ω). Here I2p(r) encodes the spectral phase θ(ω) of
the signal, because different spectral components interfere in the nonlinear process of
two-photon absorption. Moreover, the complex interference eliminates ambiguity in
the sign of the spectral phase, allowing the direction of time to be recovered (Figs. 35(b)
and 35(c)). This is advantageous over other self-referenced nonlinear techniques that
cannot distinguish the direction of time [222].

In practice, retrieving the input spectral phase θ(ω) from the nonlinear speckle intensity
I2p(r) is highly nontrivial, because the inverse mapping from I2p(r) to θ(ω) is compli-
cated. Conventional phase retrieval algorithms are sensitive to noise in the nonlinear
snapshot measurement, and thus cannot provide a reliable recovery. A deep neural
network provides here a useful alternative to learn the nonlinear mapping from I2p(r)
to θ(ω) [41]. Once the field TM T(r,ω) of the fiber is calibrated, it is straightforward to
calculate the nonlinear speckle pattern for any input pulse using Eq. (27). However, a
large amount of data need to be numerically synthesized to train a convolutional neural
network. Furthermore, deep learning can be combined with CS by representing the
spectral phase in a sparse basis to dramatically reduce the number of parameters that
the neural network predicts. Measurement noise and fiber fluctuation are incorporated
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Figure 35

Full-field recovery with linear and nonlinear speckles. (a) Schematic of experimental
realization. An optical pulse at λ = 1550 nm is delivered via a SMF to a MMF. At the
MMF output, a time-integrated linear speckle pattern I1p(r) is recorded by an infrared
camera via one-photon absorption, and a nonlinear speckle pattern I2p(r) is recorded
by a silicon camera via two-photon absorption. The spectral amplitude A(ω) and phase
θ(ω) of the input pulse are recovered from I1p(r) and I2p(r), respectively. (b) Optical
pulse with spectral amplitude A(ω) (red solid line) and phase θ(ω) (blue dashed line).
The green dotted line shows the phase flipped to −θ(ω) (green dotted line), which
corresponds to temporal inversion with phase conjugation. (c) The difference in I2p(r)
between the two pulses with opposite spectral phases in (b) indicates that the sign of
the spectral phase can be recovered from the nonlinear speckle pattern. Reprinted with
permission from [41] under a Creative Commons Attribution (CC BY) license.

to the training data, so that the trained network is robust and outperforms classical
algorithms.

Since the nonlinear speckle pattern encodes both amplitude and phase information, it
may be used to recover A(ω) and θ(ω) simultaneously, eliminating the linear speckle
measurement. Numerically, a deep neural network is trained for pulse amplitude and
phase recovery [42]. This technique is shown to be robust to noise and inaccuracy
in system parameters, and capable of reconstructing ultrashort pulses at low SNR.
It mitigates the need for iterative optimization, which is usually slow and hampered
by the presence of noise. Therefore, the deep learning method is advantageous for
real-time probing of ultrafast processes under noisy conditions.

The speckle-based pulse characterization scheme can be tuned to measure optical
pulses of varying length. The temporal range of measurement is determined by the
spectral decorrelation of the MMF, and the temporal resolution depends on the spectral
bandwidth over which the field TM is calibrated. Experimentally, a 1.3-m-long SI fiber
with 105 µm core and 0.22 NA is calibrated over a wavelength range of 1525–1575
nm, and provides a temporal resolution of 160 fs over a time window of 30 ps. The
resolution can be further increased by calibrating the MMF over a larger bandwidth,
and the temporal range can be extended by using a longer fiber with faster spectral
decorrelation. Finally, the MMF may be replaced by a random scattering medium or
an on-chip multimode waveguide.

4.6. Compressive Radio-Frequency Receiver
Nyquist rate sampling of gigahertz-band RF signals rapidly generates huge amounts
of data. To address this general issue, CS techniques have been developed for sparse

https://creativecommons.org/licenses/by/4.0/
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signals and images. Electronic CS systems suffer timing jitter and amplitude noise.
Although microwave photonic CS systems have equivalent issues, in many cases the
distortions are static or lower in frequency and amenable to calibration. Previously
pseudo-random bit sequences have been created to modulate the optical carriers for
CS. Recently optical speckle patterns, generated by MMFs, are employed for sparse
RF signal recovery [213,223].

Figure 36 is a schematic showing a MMF replacing a 2D SLM in generating pseudo-
random bit sequences in a modulated wideband converter [213]. Femtosecond pulses
from a mode-locked laser (MLL) are launched into a dispersion-compensating fiber
(DCF), which stretches the pulse to the inter-pulse time. Then the optically chirped
pulses pass through a Mach–Zehnder modulator (MZM) that imprints the RF signal
on the optical intensity, and subsequently enter a MMF. The transmitted signals are
spatially split at the output of the guide and directed to an array of photodiodes.
The integration times of the photodiodes are matched to the period of mode-locked
pulses, and the electrical signals from the photodiode array are digitized by an array of
analog-to-digital converters (ADCs) clocked to the pulse repetition rate. An optional
fiber mode scrambler is placed near the input end of the fiber to fully excite the guided
modes. The time–wavelength mapping is depicted by the rainbow-colored pulse icons.
The output speckle pattern from the MMF varies with wavelength, and hence with
time. The optical spectrum recovered from the speckle pattern provides temporal
variation of the RF signal through the time–wavelength mapping. CS algorithms are
employed to recover different types of sparse signals, e.g., sparse in time, in frequency,
or after the Harr wavelet transform [213].

Instead of mapping from space to wavelength and then to time, it is possible to
combine them for a direct mapping from space to time or to RF frequency. In addition
to the RF signal amplitude, its relative phase (with respect to the optical pulse train
from the mode-locked laser) can be recovered from the speckle measurement. The
mapping matrix has two columns for each RF tone, which are referred to as in-phase
and quadrature components. Three methods have been explored for calibration: the
first estimates the two columns from measurements with pairs of pulses; the second
method fits the data as a function of the relative RF phase; and the third is based
on singular value decomposition (SVD) of the calibration matrix [223]. Finally, a
penalized l1 norm method recovers the amplitude, phase, and frequency of sparse RF

Figure 36

CS of RF signals. Schematic of RF signal recovery from optical speckle measure-
ment. Broadband optical pulses from a mode-locked laser (MLL) are stretched by a
dispersion-compensating fiber (DCF), and the RF signals are applied to the chirped
pulse in a Mach–Zehnder modulator (MZM), then the modulated pulses are sent
through a MMF, and the transmitted speckle patterns are detected by a photodiode
array. Reprinted with permission from [213] © The Optical Society of America.
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signals. Using a 5-m-long MMF (0.22 NA SI, 105-µm core), RF signals with one tone
or two tones in the 2–19 GHz band are reconstructed with 100 MHz resolution in a
single 4.5 ns pulse.

To reduce the device footprint, the MMF is replaced by an 11-cm-long multimode
waveguide (96 µm wide, and 220 nm thick), which is integrated with a multiport
splitter and a grating coupler array in a photonic circuit [224]. The planar waveguide
is wrapped in a spiral geometry and produces random projections for CS via optical
speckle. A precise analog signal routing is supported by two integrated structures,
waveguide bus trombone flare and matched 90◦ bus bend, in the silicon chip. 16
RF channels, each with an effective sampling rate of 35 MSps (mega samples per
second), are able to recover RF signals across a 2 GHz bandwidth from 2.5 to 4.5
GHz. Compared with direct Nyquist sampling which requires 4 GSps, the CS requires
4000/(35 × 16) = 7 times fewer recorded samples and a maximum sampling rate that
is 4000/35 = 114 times smaller [224]. Sampling well below the Nyquist limit reduces
the need for data storage, shortens data-payload transmission time, and reduces the
overall receiver size, weight, and power.

Also, speckle-based demodulators of RF signals have been demonstrated that use not
only the compressive sensing in MMFs but also the very low jitter of a mode-locked
laser to obtain the phase and frequency information for the demodulator [225].

4.7. Remote Key Establishment
There has been an ever-growing demand for improving the security levels of opti-
cal communication networks. The challenge for establishing a secure communication
channel is to distribute secret keys between remote users without exposing them to
an eavesdropper. One of the most widely used solution is asymmetric keys, where
the encryption is performed with a public key that is available to everyone, but the
decryption requires a private key that is only available to the receiver. The security
is based on the assumption that it is practically impossible to decrypt the information
using only the public key (without knowing the private key). Therefore, generating and
sharing secret keys are essential to secure communications. Quantum key distribution
(QKD) takes advantage of the “no-cloning theorem” and guarantees that an eaves-
dropper cannot reveal the key without being exposed. However, this scheme requires
transmission and detection of single photons, which can be technically challenging to
implement.

SMFs have been explored for classical key generation and distribution, utilizing phase
and polarization fluctuations of transmitted light caused by passive environmental
changes and/or active perturbations [226–229]. Active polarization scrambling is
incorporated to increase the key generation rates [230,231], which has reached 2.7
Gbps (gigabits per second) over a 10-km SMF [232]. In addition, lasing oscillation
between the sender and receiver of a SMF link is explored for secure key distribution
[233]. An ultralong SMF laser, based on Raman gain, provides error-free distribution
of random keys with an average rate of 100 bps (bits per second) over 500 km [234].

Here we focus on harnessing the complexity of a MMF for secure key establishment
between two remote parties: Alice and Bob [235]. Since ambient temperature fluctu-
ations and mechanical strains have a major effect on random mode and polarization
mixing in a MMF, the transmitted speckle pattern is extremely sensitive to environmen-
tal perturbations and constantly changes in time. Such random fluctuations are utilized
for remote key establishment. By virtue of the optical reciprocity principle, Alice and
Bob at the two ends of a MMF can share identical copies of the keys extracted from
speckle intensity fluctuations. The keys, which are constantly updated due to intrinsic
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Figure 37

Classical key establishment with a MMF with strong mode and polarization mixing. (a)
Alice (Bob) couples a laser beam into the MMF with wave vector kA (kB) and measures
the transmitted intensity from Bob (Alice) IA (IB) of−kB (−kA). The optical reciprocity
demands IA = IB. (b) All-fiber implementation of remote key establishment between
Alice and Bob through a MMF. (c) Changes of environmental conditions make IA and
IB fluctuate randomly in time, but their values are always correlated. Then IA and IB are
digitized to provide binary keys shared by Alice and Bob. Adapted with permission
from [235].

fluctuations of the fiber, can then be used to encode and decode information being sent
over a standard unsecure communication channel.

Figure 37 illustrates the concept of this scheme. Alice and Bob simultaneously couple
a laser beam of the same frequency into the opposite ends of the MMF with wave
vectors kA and kB, respectively. Both Alice and Bob measure the speckle patterns at the
far-field (k-plane) of the opposite fiber facets. In the presence of strong mode coupling,
Alice and Bob record different speckle patterns. However, if the fiber link preserves
time-reversal symmetry, then, due to reciprocity, the intensity measured by Bob at
the speckle grain which corresponds to −kB, is identical to the intensity measured
by Alice at the grain which corresponds to her input mode, −kA. Due to changes in
the environmental conditions of the fiber, the mode mixing in the fiber constantly
changes, and therefore the speckle patterns that Alice and Bob observe change as well.
Nevertheless, optical reciprocity guarantees that the intensities measured at −kA and
−kB will still be correlated, as long as the fiber is static during the time it takes for
the signals from Alice and Bob (or vice versa) to propagate through the fiber. In this
way Alice and Bob generate a common random analog signal, which they can further
digitize for obtaining a binary key.

Alice (or Bob) does not need to know which wave vector kB (or kA) that Bob (or Alice)
chooses. Since the input and output channels are specified not only by the wave vector
but also by the polarization, linear polarizers are placed at both ends of the fiber. Note
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that the two polarizers do not need to select the same polarization state, but can be
oriented at any arbitrary angle. Since the reciprocity principle is not restricted to the
wave vector space, Alice and Bob can use channels in other spaces, e.g., the position
space or the guided-mode space. Moreover, either of them can choose a channel in
different space without knowing which space or channel is selected by the other.

The remote key establishment relies on classical light and standard passive fibers, and
can therefore be implemented in existing fiber networks [235]. An all-fiber setup using
standard off-the-shelf components has been demonstrated (Fig. 37(b)). The nodes of
Alice and Bob at each side of the MMF channel consist of four elements, a continuous-
wave laser at λ = 1550 nm, a photodetector, an in-fiber 2 × 2 splitter and an in-fiber
polarizer. The nodes are coupled to the MMF channel using a SMF, which together
with the polarizer assures that the detection and illumination modes at each side of the
multimode link are identical. Figure 37(c) shows the time traces of intensities recorded
by Alice and Bob. The intensity fluctuations are highly correlated. A key rate of 20
bps over 1 km is obtained [235].

Since the external perturbations distributed along the fiber act as the source of the
random fluctuations in the transmittance, the key rate–distance product is limited by
the speed of light. To increase the key rate and the distance of communication, a
fast light modulator is added to one end of the MMF [236]. The decoupling of key
rate and distance enables a higher key rate–distance product. Experimentally, the key
rate–distance product is increased to 64.7 Mbps × 12 km.

The security of remote key establishment via a MMF is based on a fundamental asym-
metry associated with the physical layer: the sophistication of optical tools needed
by an eavesdropping adversary (Eve) to subvert the key establishment is significantly
greater and more costly than the complexity needed by the legitimate parties to imple-
ment the scheme [235]. The SNR for Eve is significantly lower than that for Alice
and Bob. Therefore, security is guaranteed as the legitimate users have access to a
common source of randomness through channels that are less noisy than the channel
the eavesdropper has access to [237,238].

Beyond classical key distribution (CKD), QKD is realized with transmission and
detection of single photons or weak light pulses through optical fibers. QKD takes
advantage of the no-cloning theorem and guarantees that an eavesdropper cannot
reveal the key without being exposed. While SMFs are widely used, multicore and
MMFs are recently explored for high-dimensional QKD [239,240]. The secure key
establishment via a MMF with random mode mixing relies on secure characterization
of the multimode transmission channel [240]. Alice and Bob can characterize the
scrambled communication channel in a calibration phase and undo the scrambling by
WFS in the communication phase. Eve cannot extract enough information to identify
a single transmitted symbol from a measurement. By merit of the no-cloning theorem,
Eve cannot clone the transmitted symbol.

Finally, analog noise has been utilized to protect optical encryption of signals sent
through a SMF [241]. Without secret keys, physical layer security is introduced to
enhance the information security in optical fiber networks. The information security
is achieved not by exchanging a cryptographic key, but by exploiting the physical
properties of the transmission channel itself. In a MMF, physical layer security is
implemented by using inverse precoding of spatial wavefront with artificial noise
[242].
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5. SUMMARY AND OUTLOOK

In the past decade, the possibility to control and exploit the complexity of light transport
through MMFs has been identified simultaneously by a number of subcommunities
in optics and photonics. While the theoretical foundation for describing the light
transmission through ideal as well as imperfect MMFs is already well established, the
technology needed for harnessing such complexity has only recently become broadly
available with the emergence of fast and accurate wavefront-shaping technologies as
well as through ever-more-powerful computing algorithms and capabilities.

These advances have opened up a new route to study light transport in realistic MMFs
with all sorts of imperfections, and they keep assisting greatly in broadening our
understanding of various associated phenomena such as the role of disorder. Random
mode coupling has been treated in statistical models, with tunable parameters to match
the experimental reality. Such models are very practical and have been shown to make
correct predictions, even without discriminating to what extent the mode coupling
originates from the intrinsic imperfections of the MMF itself or from external pertur-
bations including experimental limitations. Nevertheless, the amount and the origin of
spatial- and polarization-mode coupling are of crucial importance for future exploita-
tions of MMFs, particularly in scenarios where precisely structured optical signals are
to be delivered through fibers under bending and twisting deformations. Isolating the
disorder due to MMF imperfections from that of the experimental settings remains
challenging, and significant efforts are needed to provide the necessary answers.

In the following two sections, we discuss newly emerging research directions with
MMFs in the context of exploiting, predicting, and controlling complexity. On the one
had, we will present how disorder and the complex scattering it induces in MMFs is
not always detrimental, but can even be beneficial to practical applications [243]; on
the other hand, we will present recent works that show how MMFs can be used to
predict and analyze other complex systems in the context of optical computing and
machine learning.

5.1. Disordered Fibers
To achieve transverse localization of light, random fluctuations of the refractive index
that remain invariant in the propagation direction have been intentionally introduced to
MMFs and fiber bundles. As a result, light that is injected to one position of the input
facet will be localized in the transverse cross section while propagating longitudinally
in the fiber [244]. Such fibers are explored for endoscopic imaging [245–250] and
information transmission [251].

The first example is a disordered fiber bundle, i.e., a 2D array of coupled optical fibers
with slightly different and randomly distributed physical parameters, e.g., different
radii, random locations [252,253]. Because the individual fibers are evanescently cou-
pled, light can tunnel from one fiber to another and spread over the bundle (Fig. 38(a)).
However, the disorder can stop the lateral spread, namely, when the input light is cou-
pled into a single fiber, the amplitude of the field, on average, decays exponentially
away from it in the transverse dimension at the output facet. With sufficient disorder,
the transverse decay length is shorter than the transverse dimension of the system,
leading to transverse localization of light in the fiber bundle.

The transverse localization is also achieved with random fluctuations of the refractive
index in a single broad-area fiber over its cross section, where a transverse index
profile stays invariant in the longitudinal direction [256]. This was first realized [254]
by the stack-and-draw method from two polymers with different refractive indices
(Fig. 38(c)). Later, disordered glass–air fibers with larger refractive index contrast
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Figure 38

Various types of disordered optical fibers. Microscope images of the fiber cross section.
(a) Disordered array of fiber cores with evanescent coupling. Adapted with permission
from [253]. (b) Glass–air random fiber. Adapted with permission from [247] under a
Creative Commons Attribution (CC BY) license. (c) Polymer disordered fiber. Adapted
with permission from [254] © The Optical Society of America. (d) Random air line
fiber. Adapted with permission from [255].

(Figs. 38(b) and 38(d)) were fabricated [247,255,257]. Transverse scattering and inter-
ference of light results in transverse localization, similar to Anderson localization in
a 2D disordered structure. It has been shown that such disordered fibers can trans-
port transversely localized beams with low cross talk [258], facilitating image transfer
[245–249] and secure information transmission [251].

Beyond conventional optical fibers, novel fiber structures have been designed and fab-
ricated for targeted applications in recent years [87,259]. Moreover, novel applications
of MMFs have been explored, e.g., optical computing and artificial neural networks,
which will be described below.

5.2. Computation and Machine learning
As discussed in Section 4.5.2, the intricate ways in which an input light field gets
scrambled when propagating through a MMF can be “learned” computationally by the
use of tools from artificial intelligence (AI), enabling various applications in imaging,
projection, and image transmission. MMFs are, however, not just a problem that AI
can be applied to, but MMFs also offer a promising solution to pressing problems in
AI (see [198] for a recent review covering both of these aspects). Consider for this
purpose that artificial neural networks, that most implementations of AI are based on,
are highly dimensional systems containing many layers with multiple neurons. The
value assigned to an output neuron is typically evaluated as a weighted sum of all input
neurons: an operation that constitutes a multiplication between a matrix and a vector in
the language of linear algebra. As an enormous number of such operations and related
ones (such as SVD and Fourier transforms) need to be executed in the training phase of
a neural network, it would be highly desirable to implement them in massively parallel
systems that operate in a fast and energy-efficient way, especially when compared with
implementations involving electronic hardware as in the computers we use on a daily
basis.

As it turns out, photonic circuits offer many of these features, making them very
attractive as hardware platforms for AI [260]. Specifically, already the propagation
through simple optical elements such as (i) a lens, (ii) a thin scattering layer, or (iii) a
volumetric scattering medium and a disordered MMF provide very basic operations
on the input wave field such as (i) a Fourier transform, (ii) a multiplication with a
random diagonal matrix, or (iii) a multiplication with the pseudo-random TM. One
may wonder at this point, whether the intrinsic randomness of the TM and the limited
control one has over it, would not prevent any useful applications in AI; it turns
out, however, that such “random projections” are, indeed, very well suited for an

https://creativecommons.org/licenses/by/4.0/
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implementation of “CS” [261], in which a signal can be acquired and reconstructed
based on a much reduced number of measurements as would be required based on
the seminal Nyquist–Shannon sampling rate. First implemented with disordered media
[262–265], various tasks such as image classification and object recognition have been
demonstrated successfully.

On the next level of complexity, such random projections have also been employed
in the context of “reservoir computing” [266], in which input states are mapped into
a high-dimensional recurrent neural network called a “reservoir” that can capture the
complex manifestations even of nonlinear dynamical systems. In contrast to traditional
machine-learning approaches, the weights in this network are fixed and training is only
necessary at the readout stage, where an algorithm is trained to map the state of the
reservoir onto a desired output. To evaluate the recursive computation of the reservoir
states, disordered media [267] and MMFs [268] have been employed successfully. In
the latter case, an SLM-modulated input beam is propagated through a MMF with
the output being recorded on a camera (see Fig. 39(a)). The required nonlinearity of
this network is implemented through the intensity measurement of the camera, which
detects the modulus square of the optical electric field and also saturates above a
certain field intensity (as determined by the laser power). The intensity pattern on the
camera, together with the previous input, then determines the new input to the reservoir
in this iterative process. The output of the “reservoir computer” is the camera image
multiplied with a matrix of weights that are trained with a training dataset, like from
a nonlinear time series, whose future temporal evolution one aims to predict. A first
part of the data produced by the time series is used for training the weights in the
output matrix in such a way that the input wavefront is reproduced; a second part of
the data is then used to check if the reservoir computer correctly predicts the input
data at future time steps. As shown in Fig. 39(b), even the near-chaotic dynamics of a
nonlinear dynamical system can be well predicted with this strategy.

In the specific MMF-based realization of a reservoir computer discussed above [268],
the nonlinearity stems from the intensity measurement on the camera and digital
processing was involved to determine a new input based on the camera image. More
recent studies have focused on implementing the nonlinearity that is required to build a
reservoir computer directly in a MMF all-optically, by using the nonlinearities present
in the fiber material [269]. These fiber-based implementations of photonic neural
networks have shown impressive performance for classifying x-ray lung images of
COVID patients, for speech recognition, and for predicting the age of a person just from
an image of their face. The accuracy achieved in these tasks is of comparable accuracy
as with a purely digital implementation on a computer. Very promising developments
have also been reported with a parallel and autonomous photonic neural network
operated with a semiconductor multimode laser. Here, the input and output weights
of the corresponding reservoir computer are realized via the complex transmission
matrix of a MMF and a digital micro-mirror array, respectively [270].

5.3. Concluding Remarks
The rapid advances of the past decade have produced a multitude of new methods
and, above all, applications for MMFs. Soon we will witness the first to reach the
level of readiness for technology transfer. This will likely include the exploitation of
MMFs in imaging, particularly in the domain of in-vivo neuroscience. In many aspects
this new approach has already exceeded the current state of the art, moreover with
further advances in wavefront-shaping technology its performance and applicability is
expected to grow rapidly. This field would benefit immensely from the availability of
phase modulators, which would reach or even exceed the speed and the pixel resolution
of the current amplitude-only DMD modulators even in the binary regime (switching
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Figure 39

(a) Sketch of a reservoir computer using a MMF as a central element. In addition to
the optical part involving the modulated laser field propagating through the MMF,
the readout on the camera and the feedback on the SLM is provided electronically.
(b) Time evolution of a nonlinear time-delay differential equation (black) and the
replication resulting from the trained weights in the output signal from a MMF (red).
Adapted with permission from [268] under a Creative Commons Attribution (CC BY)
license.

between phases of 0 and π). Such a tool would enable the use of broadband, especially
pulsed light in MMF-based imaging devices so that multiphoton and nonlinear imaging
modalities achieve the performance required for practical applications.

With numerous degrees of freedom, a single MMF can be employed as a multifunc-
tional photonic device. In combination with a SLM, it can function simultaneously as
a temporal pulse shaper, a reconfigurable wave plate, a tunable spectral filter, and a
programmable polarizer. Moreover, the information about spectrum, temporal profile,
and polarization state of an optical signal can be recovered from the speckle pattern

https://creativecommons.org/licenses/by/4.0/
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it generates through a MMF. Thus, a single MMF can function as a spectrometer, a
polarimeter, a hyperspectral imager, a profiler of optical pulses, and of RF signals.
One issue for the MMF device is fiber stability under external perturbations, such as
temperature drift and mechanical vibrations. Several methods have been developed to
overcome this problem [271]. Placing a MMF in a temperature-stabilized, low-vacuum
chamber has greatly improved the long-term stability [215]. In addition, software cor-
rections are employed to correct environmental effects [33]. Finally, the fiber can be
replaced by a multimode waveguide fabricated on a chip [147], for which a robust
package will eliminate most environmental perturbations.

Finally, the combination of MMFs and light control techniques enables many appli-
cations in imaging, sensing, and spectroscopy, as well as communication, optical
computing, and cryptography. With the growing importance of these new domains, we
expect the community to become increasingly inter-connected, more aware of emerg-
ing trends and equipped to benchmark emerging techniques and achievements against
one another. In any case, as new methods are currently under extensive development,
we expect the potential for applicability to grow at a rapid pace.
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