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Abstract

An absolute optical instrument is a region of space, typically defined by a spatially-varying
index of refraction, in which bound ray trajectories are closed. Traditional examples of such
devices include Maxwell’s fisheye and the Eaton and Luneburg lenses. In this work we employ
the close analogy between classical mechanics and geometrical optics to develop a general theory
of absolute instruments based on the Hamilton-Jacobi equation. Based on this theory, we derive
many general properties of absolute instruments, and design a number of previously unknown
examples. We also show how absolute optical instruments are related to superintegrable systems
in mechanics and that the optical case is much less restrictive, which leads to an immense design
space of absolute optical instruments.

1 Introduction

The ability to engineer a refractive index distribution to accomplish a particular optical task without
resorting to trial-and-error numerical computation is a long-sought goal in classical optics. With
the advent of transformation optics [1, 2] and fabrication advances in recent years which allow
the construction of spatially graded refractive index distributions both in two (2D) [3] and three
dimensions (3D) [4], there has also been a renewed interest in gradient index optics in general. Here,
we present a general and comprehensive theory which allows construction of an entire class of optical
devices from first principles–the absolute instruments (AIs) [5, 6, 7, 8, 9]–which cannot be designed
through transformation optics and which, until now, only specific examples were known. These lenses
are fascinating because, unlike standard convex or concave lenses which have an image plane, an AI
can stigmatically image every point in a 3D region of space. Two well-known examples of AIs that
were both mentioned in the classic Principles of Optics textbook by Max Born and Emil Wolf [5] are
a plane mirror (all real points on one side of the mirror are virtually imaged to the half-space beyond
the mirror) and Maxwell’s fisheye (all real points have real images across a spherical inversion) which
is shown in Figure 1 (a). In addition to the two AIs already mentioned, a few other lenses have been
discovered within the last two centuries, such as the Eaton lens [10], the Luneburg lens [7] as shown
in Figure 1(b), the Miñano lens [8], and the Lissajous lens [11]. Until now, known 3D AIs other than
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(a) (b)

Figure 1: Ray trajectories in the (a) Maxwell fisheye (b) Luneburg lens/harmonic oscillator. The
centre of the potential is marked by a black dot.

the Lissajous lens have all had spherical symmetry in the refractive index profile, and this specific
case has been well studied [9, 12, 13].

In this work we focus on absolute instruments with bound rays. They have the following known
unique properties [5, 8, 9, 14, 15]:

1. Under well-defined limitations, ray trajectories are closed; light follows periodic motion.
2. Every point in space is stigmatically imaged to either itself or to at least one other point. In

other words, rays emanating from one point in space will, at some later time in a bound system,
converge to a single point.

3. Wave optically, energy passing through a point in space will eventually return to the same
point in space in a bound system.

4. The frequency spectrum of the eigenmodes is equidistantly spaced and degenerate, at least
approximately [14, 15].

These properties are very restrictive. Our task in this work is to find other general properties
that absolute instruments have in common, and use them to design new such devices. The ultimate
goal is then to find all possible refractive index distributions n(~r) that result in an absolute optical
instrument with bound light trajectories. It is impossible to reach this goal with the methods of
transformation optics, coordinate transformations, or other usual methods of gradient index lens
design. Instead, we use methods of Hamiltonian mechanics and the Hamilton-Jacobi theory that can
be adapted to the optical case very well. This enables us to find very general properties of absolute
instruments in both geometrical and wave optics.

The paper is organized as follows. In Sec. 2 we summarize the optical-mechanical analogy, in
Sec. 3 we employ Hamilton-Jacobi theory to find many general properties of AIs. In Sec. 4, we relate
the optical path length to the classical action and in Sec. 5 we find general properties of the spectra
of AIs using the WKB method. Finally, in Sec. 6, we apply our methods to design new absolute
instruments, and conclude in Sec. 7.

2 Mechanical-optical analogy

We begin with the close relationship between classical mechanics and geometrical optics [16]. Con-
sider a particle of energy E moving in potential V (~r). The geometrical shape of its trajectory is
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determined by Maupertuis’ principle [17]

δ

∫ B

A

√
2m[E − V (~r)] dl = 0 , (1)

where A,B is the initial and final point, respectively, and dl is the path length element. On the
other hand, a light ray trajectory in an optical medium with refractive index distribution n(~r) is
determined by the Fermat’s principle of stationary time [5]

δ

∫ B

A

n(~r) dl = 0 . (2)

Now suppose that the refractive index profile n(~r) in the optical problem is related to the potential
V (~r) and energy E in the mechanical problem by the relation

n =

√
2m(E − V )

γ
=
|~p|
γ

(3)

where ~p is the particle’s momentum and γ is a constant of dimension kg ·m · s−1. Then Eqs. (1)
and (2) become identical, so the two variation problems will have the same solutions; light rays will
follow trajectories which are identical in shape to the trajectories of the particle.

This close relation between classical mechanics and geometrical optics allows the transfer of
results from one field to the other: for example, if we find a mechanical potential in which all bound
trajectories are closed, we have automatically found an absolute optical instrument. However, an
important and critical difference exists between the mechanical problem and the optical problem: in
classical mechanics, the energy E of a particle traveling through a potential V is a variable related
to the particle itself and can have different values; in the case of light rays in this analogy, E is
a variable related to the refractive index distribution by Eq. (3), so it is a constant for light rays
therein. It turns out that this feature of fixed energy is in fact a great advantage when designing AIs.
Indeed, it is enough to find a mechanical system that has closed trajectories for one fixed energy,
and we automatically generate an absolute optical instrument. Clearly, it is far less restrictive to
require closed trajectories for a single energy than for a range of energies. This is, for example, the
case of Maxwell’s fisheye [18] shown in Figure 1 (a): its refractive index n = 2/(1 + r2) corresponds
to a mechanical particle with energy E = 0 moving in the potential V = −2/(1 + r2)2, but for a
different energy E 6= 0, the trajectories would no longer be closed. Moreover, it turns out that in
some coordinate systems, separation of the Hamilton-Jacobi equation is possible for a fixed value of
E while it is impossible if E can take any value from some range; an example of such a situation
is given in Sec. 6.4. This way, the set of AIs is obviously much richer than the set of mechanical
potentials that give closed trajectories for a range of energies. Moreover, a situation that is not very
interesting from the mechanical point of view (closed trajectories for a single energy) may be very
interesting from the optical perspective (leading to an absolute instrument).

Thanks to the mechanical-optical analogy, the problem of designing AIs is very similar to the
problem of finding classical bound systems that are maximally superintegrable. A superintegrable
system is an integral system which admits more integrals of motion than degrees of freedom. It is
known that maximal superintegrability leads to closed orbits in bound mechanical systems; in this
case there must be 2n − 1 independent integrals of motion in a system of n degrees of freedom.
For example, in 3D spherically-symmetric systems, the Bertrand theorem [19] states that only two
potentials are able to give closed orbits for particles with any energy E, the Newtonian potential
and the isotropic harmonic oscillator, and both of these systems possess five constants of motion;
in the optical case, these systems correspond to the Eaton lens and the Luneburg lens, respectively.
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Similarly, other maximally superintegrable bound classical mechanical systems also form families of
absolute optical instruments. Some excellent references which introduce such mechanical systems
and describe how they can be found are [20, 21, 22, 23, 24, 25, 26], with a thorough recent review
given by Miller [27]. Potentials such as the Winternitz potential [28] yield rich families of AIs that
have not been discussed in optics literature before, for example.

The mechanical-optical analogy, together with the feature of fixed energy, opens a vast new field
of investigation: we can adapt the well-developed methods of theoretical mechanics, in particular the
Hamilton-Jacobi theory, to the situation when the energy is set to a single value, and then find new
absolute instruments by finding potentials that give closed trajectories for this energy only. So far,
to the best of our knowledge, this interesting theoretical problem has not been investigated, and we
hope it will attract the attention of the mathematical community.

3 Separable Hamilton-Jacobi equation leading to AIs

Due to the Liouville-Arnold theorem, a system is maximally superintegrable if and only if the Hamil-
tonian (expressed in action-angle variables) is a linear combination of action variables with integer
coefficients, as explained clearly in [24]. We thus start with the Hamilton-Jacobi equation for a par-
ticle with mass m moving in a potential V (~r). Since the Hamiltonian H = p2/(2m) + V (~r) does not
depend on time, we can write the action as S = S0 − Et, where E is the conserved value of energy
and S0 is the Hamilton’s characteristic function (in the following we will call it just “action”). The
Hamilton-Jacobi equation for S0 is

(∇S0)2

2m
+ V (~r) = E . (4)

We will assume that Eq. (4) it is fully separable in an orthogonal curvilinear coordinate system
(q1, q2, q3). This assumption allows us to express the action as a sum S0 = S1(q1)+S2(q2)+S3(q3), and
although separability is not a requirement for superintegrability in general [29], it is likely necessary
for superintegrability in systems analogous to AIs [30, 31, 32, 33, 34, 35] although we are unaware
of a suitable proof. After separation, the Hamilton-Jacobi equation gets the form

1

2m

3∑
i=1

1

h2
i

(
dSi
dqi

)2

+ V (q1, q2, q3) = E , (5)

where hi are Lamé coefficients. Separating Eq. (5), we get equations for Si in the form

Si =

∫
dSi
dqi

dqi =

∫
pi(qi, E, α, β) dqi , (6)

where α, β are separation constants and pi = ∂Si/∂qi are the canonical momenta associated with
the coordinates qi. Their particular functional dependence pi(qi, E, α, β) follows from Eq. (5). We
also define the action variables J1, J2, J3 corresponding to full oscillations of the coordinates q1, q2, q3,
respectively:

Ji(E,α, β) =
1

2π

∮
pi dqi =

1

π

∫ qi,+

qi,−

pi dqi . (7)

Here qi± denote the turning points of qi, i.e., the values for which pi turns to zero. In the case of
a coordinate that does not oscillate forwards and backwards between the turning points but rather
changes monotonously (as in the case of the polar coordinate ϕ for a particle orbiting the origin), the
corresponding action variable would instead be Ji = 1/(2π)

∫ qi+
qi−

pi dqi and qi∓ would correspond to
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the endpoints of one full cycle of the coordinate qi. We will refer to such a coordinate as a “cyclic”
coordinate1.

The knowledge of the three functions Ji(E,α, β) enables in principle eliminating the variables α, β
and expressing the energy as a function of J1, J2, J3, i.e., E = E(J1, J2, J3). Then we can calculate
the frequencies of oscillations in each coordinate as [17]

ωi =

(
∂E

∂Ji

)
Jj ,Jk

, (8)

where the partial derivative is taken with the other two Jj, Jk fixed. Only if these frequencies are
commensurable (their ratios are rational) will we get closed orbits. This can be expressed by the
relation

ω1

b1

=
ω2

b2

=
ω3

b3

≡ ω (9)

between the frequencies, where bi ∈ N and the greatest common divisor of b1, b2, b3 is unity; ω is the
frequency of the motion as a whole; the corresponding period is T = 2π/ω.

To calculate the partial derivatives (8), we employ the Jacobian matrix of the transformation
(E,α, β)→ (J1, J2, J3) and its inverse,

M =
∂(J1, J2, J3)

∂(E,α, β)
, M−1 =

∂(E,α, β)

∂(J1, J2, J3)
. (10)

We see that the first line of M−1 contains precisely the desired frequencies ω1, ω2, ω3. To express
them, we invert the matrix M using the method of minors. This yields the frequencies

ω1 = (M−1)11 =
M22M33 −M23M32

detM
, (11)

ω2 = (M−1)12 =
M13M32 −M12M33

detM
, (12)

ω3 = (M−1)13 =
M12M23 −M22M13

detM
. (13)

The conditions (9) then yield the following three conditions for derivatives of the actions:

∂(Ji/bj + Jj/bi)

∂α

∂Jk
∂β

=
∂(Ji/bj + Jj/bi)

∂β

∂Jk
∂α

, (14)

where the triple indices (i, j, k) are cyclic permutations of (1, 2, 3). Note that in these conditions
there are no derivatives with respect to energy E. This is advantageous and also natural because
we are interested in closed trajectories for a fixed value of energy, so any energy dependence of the
quantities is irrelevant.

If we define the “total action” as

J ≡ b1J1 + b2J2 + b3J3 , (15)

the conditions (14) can be rewritten as

∂J

∂α

∂Ji
∂β

=
∂J

∂β

∂Ji
∂α

, i = 1, 2, 3 . (16)

1We put the word “cyclic” into quotation marks to distinguish it from the usual meaning of cyclic coordinates—the
ones on which the Lagrangian or Hamiltonian do not depend explicitly.
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In the following we show that these conditions imply that both of the derivatives ∂J
∂α

and ∂J
∂β

are equal
to zero. To do that, we suppose for a moment that the contrary is true, i.e., that at least one of the
derivatives ∂J

∂α
, ∂J
∂β

is nonzero. Then it would follow from equations (16) that also the other one has

to be nonzero and so have to be all the other derivatives in equations (16). Then we could divide
each equation by the respective ∂J

∂β
∂Ji
∂β

and obtain

∂J1
∂α
∂J1
∂β

=
∂J2
∂α
∂J2
∂β

=
∂J3
∂α
∂J3
∂β

, (17)

which could be rewritten using an identity (common in thermodynamics),(
∂A

∂B

)
C

(
∂B

∂C

)
A

(
∂C

∂A

)
B

= −1 , (18)

into (
∂α

∂β

)
J1

=

(
∂α

∂β

)
J2

=

(
∂α

∂β

)
J3

. (19)

This would imply that the action variables are functions of one another, or, equivalently, they all are
functions of one common function γ(α, β). Taking this γ as a alternative separation variable along
with another, independent function δ(α, β), it would follow that all J1, J2, J3 are functions of only
one separation variable, which is an unphysical situation. Therefore the assumption that some of the
derivatives ∂J

∂α
and ∂J

∂β
is nonzero is wrong, and we are left with the only other possibility—both of

the derivatives must be zero:
∂J

∂α
=
∂J

∂β
= 0 . (20)

We have come to one of the key results of this paper: for a mechanical system that has closed
trajectories for a given energy E, the total action J (for this energy) cannot depend on the separation
constants α, β. Similarly, by the mechanical-optical analogy, the condition (20) is also the key
property of absolute optical instruments for which we define the quantities Ji, J, ωi, etc., analogously
using the relation (3).

3.1 The case of closed trajectories for different energies

Consider now the situation that is of great interest in mechanics, namely that the trajectories are
closed for not just one, but for a range of energies. Then the condition (20) will hold for a range of
E, and hence the total action J(E,α, β) can be a function of E only, i.e., J = f(E). Denoting the
inverse function by g, we can write

E = g(J) = g(b1J1 + b2J2 + b3J3) , (21)

and we can easily express the three periods,

ωi =
∂E

∂Ji
= big

′(J) , (22)

where prime denotes a derivative. Combining this with Eq. (9), we find that ω = g′(J), so ω is a
function of J . But since J is a function of E, it follows that ω is a function of energy, independent
of α, β. We arrive at an important result: in potentials that have the focusing property for a range
of energies, the time period is the same for all trajectories with the same energy. We can verify this
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for two well-known examples: in the Hooke potential it is indeed so because the period is even equal
for all energies; for the Newtonian potential it is also true because there the period depends on the
length of the main axis of the elliptic orbit (Kepler’s third law), which in turn depends on the energy
only.

This means that in potentials that have closed orbits for a range of energies, when particles are
shot from a given point with the same velocity in different directions, it will take the same time to
all of them to complete a closed path. Note that this is not true for potentials that do not give
closed trajectories for different energies but just for one; for example, a particle with zero energy
moving in the Maxwell’s fisheye potential V = −2/(1 + r2)2 clearly has a shorter travel time for a
centered circular path than for a highly eccentric path. What is the same even for Maxwell’s fisheye
is the optical time [time traveled by a light ray in the corresponding optical medium n(~r)] which,
in contrast to mechanical time, is the same for different trajectories; we will show this in the next
section.

4 Total action as the optical path length

Consider an absolute optical instrument. For the corresponding mechanical system, i.e., a particle
moving in a potential V for which the total action (15) satisfies the conditions (20), we define the
quantity

I =

∮
~p d~l =

∮
p dl , (23)

where ~p is the particle momentum vector, and the integral is taken over the whole closed trajectory of
the particle. By the mechanical-optical analogy, Eq. (3), I is proportional to the optical path length
s =

∮
n dl of the closed light ray corresponding to the particle trajectory because the magnitude of

the momentum ~p is proportional to the refractive index n. At the same time, we can express the
integral (23) using the coordinates (q1, q2, q3) as

I =

∮ 3∑
i=1

pi dqi , (24)

where pi are the canonical momenta associated with the coordinates qi because the form
∑

i pi dqi
is invariant with respect to the point transformation (x, y, z) → (q1, q2, q3), which is a special case
of the Mathieu transformation [36]. Now, interchanging summation and integration in Eq. (24), we
can express I as

I =
3∑
i=1

bi

∮
pi dqi = 2

3∑
i=1

bi

∫ qi,+

qi,−

pi dqi . (25)

Here we have taken into account that to complete a closed orbit the particle will require a time
T = 2π/ω, which, due to Eq. (9), contains bi periods of the coordinate qi; therefore the integral over
one cycle of the coordinate qi has to be taken bi times. Comparing now Eq. (25) with the actions Ji
according to Eq. (7), we see that

I = 2π
3∑
i=1

biJi = 2πJ . (26)

This way, the quantity I and hence also the optical path length s of a closed ray along with it, is
proportional to the total action defined in Eq. (15). From conditions (20) it then follows that for
absolute instruments the optical lengths of the rays should not depend on the separation constants,
i.e., they should be the same for all rays. This is in fact a very natural requirement: if rays form
closed trajectories, there are infinitely many rays by which one can get from a point back to the same
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point again. Since the optical path lengths of all these rays should be stationary due to Fermat’s
principle, they must simply be equal. This also gives the conditions (20) a clear physical meaning.

Finally, we calculate the time period Tray needed for a ray to complete a closed path. This period
can clearly be expressed in terms of the optical path length of the ray s defined above as Tray = s/c,
where c is the speed of light in vacuum. Note that this period has nothing to do with the period
Tparticle = 2π/ω of motion of the equivalent mechanical particle. This is because the “mechanical
time” t and “optical time” τ are quite different quantities [16] despite the close mechanical-optical
analogy. Indeed, we can express the differentials of both times using the path element dl as

dt =
dl

vparticle

= m
dl

p
, dτ =

dl

vlight

=
1

c
n dl . (27)

Now, since the refractive index n is proportional to the particle momentum p, we see that if n grows
then dτ also grows while dt decreases. This way, we cannot expect any direct relation between the
mechanical period Tparticle and optical period Tray.

5 Spectrum of absolute instruments from the WKB method

An important characteristic of an optical device with bounded trajectories is the frequency spectrum
of its eigenmodes. It has been shown by two different methods [15, 14] that for spherically-symmetric
absolute instruments, the spectrum has distinct properties: it is equidistant and degenerate, at least
approximately. The reason for this is simple: if light rays form closed loops in an AI, then after a
certain time all light rays emitted from a given point of AI must return to the same point again.
Motion of rays in an AI is therefore periodic, and the same can be expected for waves, at least at
high frequencies. Now each wave in an AI can be decomposed into modes, each of which evolves
harmonically with its frequency. If the total wave should repeat periodically, there should be some
common period of all the modes. In other words, their angular frequencies should be multiples of
some common fundamental frequency.

In the following we show that the above characteristic of the spectrum applies not only to
spherically-symmetric AIs but also to the most general ones discussed in this paper. To do this,
we employ the Wentzel-Kramers-Brillouin (WKB) method and the fact that the action variables J
are closely related to the quantized semiclassical phases.

For simplicity, consider a monochromatic scalar wave ψ of wavenumber k = ω/c propagating in
an AI with refractive index n(~r). It is governed by the Helmholtz equation

∆ψ + k2n2ψ = 0 . (28)

This equation can be solved approximately by the WKB method. To do that, we write ψ in the
form ψ = ρ exp(iφ), where φ is the phase, or eikonal, of the wave. Performing the derivatives,
neglecting the term ∆ρ with respect to ρ(∇φ)2, and separating the real and imaginary parts, we get
two equations. One of them is the eikonal equation

(∇φ)2 = k2n2 (29)

and the other one is the equation for the ρ,

2∇ρ∇φ+ ρ∆φ = 0 . (30)

Clearly, Eq. (29) is very similar to the Hamilton-Jacobi equation (4). The two equations become
identical when we make the identification described by Eq. (3) and in addition set φ/k = S0/γ.
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Now, according to our assumption, Eq. (4) separates in the coordinate system (q1, q2, q3) and
therefore so does Eq. (29). To solve it, we can follow the same procedure as we did for Eq. (4),
i.e., write φ as a sum

∑
i φi(qi) and solve an equation analogous to Eq. (6) for each φi. In addition,

however, for each coordinate qi we now have to match the solution in the classically allowed region
to the solution in the classically prohibited region where the wave has to die out evanescently. As is
well known [37], there is a semiclassical phase factor of π/4 associated with each turning point qi,±.
(In the case of a “cyclic” coordinate defined in Sec. 3, this factor is missing.) Therefore the total
change of the phase φi between the turning points qi,− and qi,+,

Φi ≡
∫ qi,+

qi,−

dφi
dqi

dqi , (31)

must be Φi = (Ni + 1/2)π, where Ni = 0, 1, 2, . . . On the other hand, thanks to the above described
identification φ/k = S0/γ, we can express the phase change Φi between the turning points in terms
of the action variable Ji using Eqs. (6), (7) and (31). This gives the relation

Φi =
kπJi
γ

= (Ni + 1/2)π , (32)

which, in fact, is a quantization condition for k. To see its meaning clearly, we employ the fact that
for an AI the total action (15) is a constant as we have shown. Using the relations (3) and (26), we
see that J = γ

∮
ndl/(2π) = γs/(2π). Inserting this into Eq. (32) and using Eq. (15), we find the

wavenumber corresponding to the mode (N1, N2, N3) as

kN1,N2,N3 =
2π

s

3∑
i=1

bi

(
Ni +

1

2

)
. (33)

This is the formula for the semiclassical spectrum of an absolute instrument. Since bi ∈ N, we see
that the spectrum obeys the general patterns of AIs mentioned above. In a case where one of the
coordinates qi is “cyclic”, the term 1/2 in the parentheses would be missing for that coordinate.

5.1 Wave period

Thanks to the fact that the eigenfrequencies ωN1,N2,N3 = ckN1,N2,N3 of the modes obey the rule (33),
there exists some minimum time period Twave after which the phases of all modes will advance by an
integer number of 2π (up to a possible common global phase). After this time, the wave in the AI
will resume its original state, so the wave motion will be periodic as we expect. To find this period,
we use the fact that the greatest common divisor of the numbers bi is unity. The period must then
be simply Twave = 2π/(2πc/s) = s/c = Tray. This is exactly what we would expect – the period of
repetition of the wave pattern is equal to the period of motion of rays in the absolute instrument.

5.2 Spectrum of spherically-symmetric AIs

We now compare the general result (33) for an AI spectrum with a previously derived formula for
spectra of AIs with spherical symmetry. In Ref. [14] it was derived by the WKB method that the
semiclassical wavenumbers of the eigenmodes satisfy the condition

k =
1

r0n(r0)

[
µ

(
N +

1

2

)
+ l +

1

2

]
, (34)

where r0 is the radius of the trajectory of a circular ray, µ determines the angle δ swept by the radius
vector between two radial turning points as δ = π/µ, and N, l ∈ N0. Let us check what our general
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formula (33) states in this case. We will assume that µ = P/Q with P,Q integers. Then the angle
swept by the radius vector between two radial turning points is δ = Qπ/P , so there are P cycles in
the radial direction per Q angular cycles, hence in Eq. (9) applied to spherical coordinates (r, θ, ϕ) we
have br = P and bθ = bϕ = Q. The optical path length of the full orbit is then s = 2πQr0n(r0) (we
are taking the circular orbit that corresponds to Q full rotations). Combining all this together and
taking into account that the azimutal angle ϕ does not have the factor 1/2 for the reason described
above, Eq. (33) gives the spectrum

k =
1

Qr0n(r0)

[
P

(
Nr +

1

2

)
+Q

(
Nθ +

1

2

)
+QNϕ

]
=

1

r0n(r0)

[
µ

(
Nr +

1

2

)
+Nθ +Nϕ +

1

2

]
,

(35)
which is exactly Eq. (34) if we identify N = Nr and l = Nθ + Nϕ. This shows that our general
method exactly matches the previously known special case.

6 Applying the general method to different coordinate sys-

tems

We now apply the condition (20) in different situations. Some of them are already known such as
the case of spherically-symmetric AIs [8, 9]; in other cases we get new absolute instruments. For
simplicity, we will set the mass of the particle to unity, m = 1 till the end of this paper.

6.1 Cartesian coordinates

In the first example, let (q1, q2, q3) be the Cartesian coordinate system (x, y, z). The Hamiltonian

H =
p2
x + p2

y + p2
z

2
+ V (x, y, z) = 0 (36)

separates if the potential is in the form V = Vx(x) +Vy(y) +Vz(z). This leads to the action variables

Jx =
1

π

∫ x+

x−

√
2[α− Vx(x)] dx (37)

Jy =
1

π

∫ y+

y−

√
2[β − Vy(y)] dy (38)

Jz =
1

π

∫ z+

z−

√
2[E − α− β − Vz(z)] dz . (39)

From Eq. (20) we then get bxJ
′
x(α)− bzJ ′z(E−α−β) = 0, where the prime denotes derivative. Since

this must hold for any α and β, we immediately see that J ′z(E−α−β) cannot depend on β, so it must
be a constant and cannot depend on E either. Evaluating then the frequencies according to Eqs. (11–
13) using Eqs. (37–39), we find that ωx = 1/(dJx/dα), ωy = 1/(dJy/dβ), and ωz = 1/(∂Jz/∂E)α,β.
This way, the frequencies ωi depend neither on the energy nor the separation constants. This is an
important conclusion that is specific to the 3D situation as it does not hold for 2D systems [38].

To find the possible forms of the potentials Vx,y,z, we write explicitly the period of oscillation in
x,

Tx =
2π

ωx
=
√

2

∫ x+

x−

dx√
α− Vx(x)

(40)

10



(we write just the expression for the x coordinate as the expressions are similar for the others). This
equation is invertible [17], and is equivalent to Equation 4 in [38] or Equation (0.10) in [24] where it is
extensively studied in the context of AIs and superintegrable systems, respectively. Upon inversion,

x+(Vx)− x−(Vx) =
Tx

π
√

2

∫ Vx

0

dα√
Vx − α

=
Tx
√

2Vx
π

, (41)

where we have used the fact that Tx is constant. Eq. (41) provides considerable freedom. It is just
necessary that the two branches x−(Vx) and x+(Vx) of the function inverse to Vx(x) be non-increasing
and non-decreasing, respectively, but otherwise one of them can be chosen arbitrarily and the other
branch is then calculated from Eq. (41). For the symmetric case when x+(Vx) = −x−(Vx) we get
Vx = ω2

xx
2/2, which corresponds to the harmonic oscillator. Choosing this form of potential for

each of the coordinates x, y, z yields the Lissajous lens [11]. Another solution where the potential is
analytic, the Winternitz model [39], corresponds to the choice

Vx =
1

2
ω2
xx

2 +
kx
x2
. (42)

Choosing the potentials Vx, Vy, Vz in the most general manner yields the generalized Lissajous lenses
discussed in Sec. IV of Ref. [38].

Note also that whatever combination of potentials Vx, Vy, Vz we choose, there is always an addi-
tional freedom to later choose any E in the index of refraction n, as the energy E will not affect the
dependence of the action variables on the separation constants.

6.2 Spherical coordinates

We now analyze the situation when the Hamilton-Jacobi equation separates in spherical coordinates
(r, θ, ϕ).

6.2.1 Spherically-symmetric absolute instruments

First consider a spherically-symmetric (central) potential V (r) depending only on the radial coordi-
nate. The Hamilton-Jacobi equation

1

2

(
dSr
dr

)2

+
1

2r2

(
dSθ
dθ

)2

+
1

2r2 sin2 θ

(
dSϕ
dϕ

)2

+ V (r) = E (43)

gives the separated equations

dSϕ
dϕ

= α ,

(
dSθ
dθ

)2

+
α2

sin2 θ
= β2 ,

1

2

(
dSr
dr

)2

+
β2

2r2
+ V (r) = E . (44)

The separation variable α has the physical meaning of projection of the angular momentum to the
z-axis. The action variables are then

Jr =
1

π

∫ r+

r−

√
2[E − V (r)]− β2

r2
dr (45)

Jθ =
1

π

∫ π−arcsin(α/β)

arcsin(α/β)

√
β2 − α2

sin2 θ
dθ = β − |α| (46)

Jϕ =
1

2π

∫ 2π

0

|α| dϕ = |α| . (47)

11



Note the fixed limits and the factor 1/(2π) in Eq. (47), which corresponds to the “cyclic” coordinate
ϕ in the sense explained in Sec. 3. Now let us assume just as in Sec. 5.2 that there are P radial
cycles per Q cycles in θ and ϕ, so br = P and bθ = bϕ = Q. Eq. (20) then gives two conditions. The
first one, ∂(PJr +QJθ +QJϕ)/∂α = 0, is satisfied automatically because Jr does not depend on α.
From the second condition ∂(PJr +QJθ +QJϕ)/∂β = 0 it then follows that

∂Jr
∂β

= − 1

π

∫ r+

r−

β dr

r2

√
2[E − V (r)]− β2

r2

= −Q
P
. (48)

The integral in this equation expresses the turning angle δ, i.e., the angle swept by the radius vector
between two radial turning points if the particle has total angular momentum β [17]. This way,
Eq. (48) expresses the requirement that the turning angle is a rational multiple of π, which is exactly
the well-known condition for trajectories in a central potential to be closed [17]. If the energy is fixed,
there are infinitely many such potentials. A comprehensive analysis of the corresponding refractive
indices and a general method how to generate them is given in Ref. [9]. On the other hand, if we
require the condition (48) to hold for a range of energies, there are just two potentials that satisfy
it [19], namely V (r) = −Cr−1 and V (r) = Cr2 (with C > 0).

Finally, we express Jr explicitly. Integration of Eq. (48) gives Jr = const − βQ/P . It is not
difficult to determine the integration constant. Eqs. (46) and (47) tell us that Jθ = Jϕ = 0 must hold
when β = 0, and we know that J = PJr + QJθ + QJϕ. This fixes the constant to J/P and we get
Jr = (J − βQ)/P .

6.2.2 Modifying spherically-symmetric AIs

It turns out that when we have a central potential corresponding to an absolute instrument, it is
possible to modify it by adding certain terms and the focusing properties will not be lost, i.e., we get
again an AI. We have found this interesting property after inspiration from a paper by Evans [20].
To show this, suppose that the potential V (r) satisfies the condition (48), and take a new potential

V ′ = V (r) +
k2
x

2x2
+

k2
y

2y2
+

k2
z

2z2
(49)

with arbitrary kx, ky, kz > 0. The Hamilton-Jacobi equation has now three additional terms compared
to Eq. (43). Repeating the standard procedure, we find the action variables

Jr =
1

π

∫ r+

r−

√
2[E − V (r)]− β2

r2
dr =

J −Qβ
P

, (50)

Jθ =
1

π

∫ θ+

θ−

√
β2 − k2

z

cos2 θ
− α2

sin2 θ
dθ =

β − kz − |α|
2

, (51)

Jϕ =
1

π

∫ ϕ+

ϕ−

√
α2 − k2

x

cos2 ϕ
−

k2
y

sin2 ϕ
dϕ =

|α| − kx − ky
2

, (52)

where in Eq. (50) we have used the result from the previous section. Note that the coordinate ϕ is
no longer “cyclic”.

It is now easy to check that

J ′ ≡ PJr + 2QJθ + 2QJϕ = J −Q(kx + ky + kz) , (53)

where J refers to the total action for the potential V (r) calculated in the previous section. If we now
interpret J ′ as the total action for the problem with the potential (49), we see that it satisfies the
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Figure 2: (a) The trajectory of a particle with energy E = −4 in the potential (49) with V (r) = −1/r
being the Newtonian potential and kx = 0.01, ky = 0.005, kz = 0. The initial condition was chosen
such that the trajectory lies in the plane z = 0. The soft reflection from the planes x = 0 and y = 0 is
clearly seen. (b) For comparison we show the trajectory in a pure Newtonian potential V (r) = −1/r
with the same initial conditions.

conditions (20) because it does not depend on α, β. Moreover, from Eq. (53) we see that the new
coefficients from Eq. (9) are now b′r = P and b′θ = b′ϕ = 2Q. This shows that adding the special terms
to the central potential V indeed preserves the focusing properties of the potential. However, thanks
to doubling of the constants, b′θ = 2bθ, b

′
ϕ = 2bϕ compared to the potential V there are now twice

as many oscillations in the angles θ, ϕ per one oscillation in r than in the previous case. Another
difference is that the total action J ′ is now smaller than the previous one J . A trajectory in the
potential (49) with V (r) taken as the Newtonian potential is shown in Fig. 2(a) and compared to
the situation without the additional terms (Fig. 2(b)).

An interesting situation corresponds to the limit kx, ky, kz → 0. Then the effect of the additional
terms is present only in the immediate neighbourhood of the planes x = 0, y = 0 and z = 0 where
there are infinite potential barriers. This is equivalent to an effect of three mutually orthogonal
plane mirrors placed in these planes. The focusing property of the potential V ′ is then not surprising
– compared to the potential V , the motion of the particle is now simply “reflected” in the three
mirrors, so it occurs (or “is imaged”) just in a single octant of space.

Of course, we could also modify the potential V by adding fewer than three special terms discussed
above, which would correspond to one or two of the ki in Eq. (49) being zero. In this case a similar
analysis could be made and it would be found again that we get an absolute instrument, now with
still different frequency constants b′′r , b

′′
θ , b
′′
ϕ. We leave this analysis to the reader.

6.3 Rotational parabolic coordinates

Next we apply our method to the case of rotational parabolic coordinates σ, τ, ϕ that are related to
Cartesian coordinates by

x = στ cosϕ , y = στ sinϕ , z =
τ 2 − σ2

2
. (54)

The Hamiltonian

H =
p2
σ + p2

τ

2(σ2 + τ 2)
+

p2
ϕ

2σ2τ 2
+ V (σ, τ) (55)

yields the Hamilton-Jacobi equation(
dSσ
dσ

)2

+

(
dSτ
dτ

)2

+

(
1

τ 2
+

1

σ2

)(
dSϕ
dϕ

)2

+ 2(σ2 + τ 2)V (σ, τ) = E . (56)
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Being inspired by the Hamilton-Jacobi equation for the radial part of a harmonic oscillator in polar
coordinates, we take the potential in the form

V =
B(σ2 − τ 2)− 2A

σ2 + τ 2
= −A+Bz

r
(57)

where A ≥ 0 and B are constants. For B = 0, V reduces to the Newtonian potential. We substitute
Eq. (57) into Eq. (56) and find the action variables

Jσ =
1

π

∫ σ+

σ−

√
2A+ β + 2(E −B)σ2 − α2

σ2
dσ =

2A+ β

4
√
−2(E −B)

− |α|
2
, (58)

Jτ =
1

π

∫ τ+

τ−

√
2A− β + 2(E +B)τ 2 − α2

τ 2
dτ =

2A− β
4
√
−2(E +B)

− |α|
2
, (59)

Jϕ = |α| . (60)

In evaluating the integrals for Jσ and Jτ we have assumed that E < −|B|. The total action is then

J = bσJσ + bτJτ + bϕJϕ (61)

=

(
bϕ −

bσ
2
− bτ

2

)
|α|+

(
bσ√

−2(E −B)
− bτ√

−2(E +B)

)
β

4
+

bσA

2
√
−2(E −B)

+
bτA

2
√
−2(E +B)

.

(62)

The conditions (20) then require that the factors in front of β and α are zero, which results in the
conditions

bϕ =
bσ + bτ

2
, (63)

E = −B b2
σ + b2

τ

b2
σ − b2

τ

. (64)

Keeping aside the well-known case when V reduces to the Newtonian potential (this corresponds to
B = 0 and bσ = bτ = bϕ), let us discuss the case of B 6= 0. The condition E < −|B| implies that if
B > 0, we must have bσ > bτ , and if B < 0, we must have bσ < bτ .

Eq. (64) then reveals very interesting properties of the potential (57): any combination of the
coprime natural numbers bσ and bτ , bσ 6= bτ , corresponds to a certain energy value for which we get
an absolute instrument. It is not hard to see that such energies form a dense set on the interval
(−∞,−|B|). This way, we have found a potential that has focusing properties for infinitely many
energies, and the character of the motion is different for different energies. The trajectories for
some of them are shown in Fig. 3. Moreover, the potential (57) can even be modified by adding
k2
x/x

2 + k2
y/y

2 to it (but not k2
z/z

2), which does not destroy the properties of the AI. The reason is
similar as in the case of spherical coordinates in the previous section.

6.4 Bispherical coordinates

Next we take the bispherical coordinates (σ, τ, ϕ) related to the Cartesian ones by

x =
sinσ

cosh τ − cosσ
cosϕ (65)

y =
sinσ

cosh τ − cosσ
sinϕ (66)

z =
sinh τ

cosh τ − cosσ
. (67)
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Figure 3: Projections of trajectories into planes xy and xz in the potential (57) with A = 1 and
B = 0.1 and different energies: (a) E = −5B/4 (with bσ = 3, bτ = 1, bϕ = 2), (b) E = −5B/3 (with
bσ = 4, bτ = 2, bϕ = 3), (c) E = −61B/60 (with bσ = 11, bτ = 1, bϕ = 6), and (d) E = −109B/60
(with bσ = 13, bτ = 7, bϕ = 10).

It is easy to show that for the potential

V =
1

2
f(τ)(cosh τ − cosσ)2 (68)

the Hamilton-Jacobi equation separates for a fixed energy E = 0. Indeed, in this case we have the
Hamiltonian

H =
(cosh τ − cosσ)2

2

(
p2
σ + p2

τ +
p2
ϕ

sin2 σ
+ f(τ)

)
= 0 (69)

and the Hamilton-Jacobi equation becomes(
dSσ
dσ

)2

+
1

sin2 σ

(
dSϕ
dϕ

)2

+

(
dSτ
dτ

)2

+ f(τ) = 0 . (70)

Repeating the usual procedure with separation constants β ≥ 0 and α, we find the action variables

Jϕ = |α| (71)

Jσ =
1

π

∫ σ+

σ−

√
β2 − α2

sin2 σ
dσ = β − |α| (72)

Jτ =
1

π

∫ τ+

τ−

√
−β2 − f(τ) dτ . (73)

If we put bσ = bϕ, the condition ∂J/∂α = 0 is satisfied automatically. The second condition
∂J/∂β = 0 then implies

∂Jτ
∂β

= − 1

π

∫ τ+

τ−

β dτ√
−β2 − f(τ)

= −bσ
bτ
. (74)
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Figure 4: Projections of trajectories into planes xy and xz in the potential (68) for two different
functions f(τ): (a) f(τ) = e4τ − 2e2τ , which corresponds to transmutation of the Hooke potential
(Luneburg lens) in spherical inversion, and (b) f(τ) = 2(e2τ − eτ ), which corresponds to transmu-
tation of the Newtonian potential (Eaton lens). Each trajectory lies on a sphere because before the
transmutation, it would lie in a plane, and spherical inversion transforms planes into spheres.

Compare now this equation with Eq. (48). Setting τ = ln r, f = 2r2V , E = 0, bσ = Q and
bτ = P , we can transform the equations to one another. This means that whenever we find some
AI that separates in spherical coordinates as described in Sec. 6.2 (call this AIspherical), we can find
its counterpart that separates in bispherical coordinates (call this AIbispherical). This remarkable
relation can be explained in a natural way. It can be shown that the AIbispherical is related to the
AIspherical by a transmutation [16] by spherical inversion. The spherical inversion is a conformal map
(the only non-trivial 3D one), so it transforms isotropic refractive index profiles again to isotropic
ones. Fig. 4 shows trajectories in the potential (68) for two different functions f(τ) corresponding
to transmutation of the Hooke potential and the Newtonian potential.

Moreover, the transmutation argument can further be extended to arbitrary AIs, also the ones
without spherical symmetry. This way, for any absolute instrument we can find infinitely many of
its partners by transmuting it by spherical inversions with different centres and radii.

A special case of the potential (68) corresponds to the choice f = −1/ cosh2 τ , which gives
V = −2/(1 + r2)2. Remarkably, we obtain the same potential even when we perform the above
described transmutation (i.e., f/(2r2) = −2/(1 + r2)2 as well). Both of these potentials correspond
to Maxwell’s fisheye which is a transmutation of itself in spherical inversion.

Finally, we put the potential (68) into the form suitable for raytracing. Direct calculation shows
that

V =
1

2

1(
1+r2

2

)2 − z2
f

arcsinh
z√(

1+r2

2

)2 − z2

 . (75)

6.5 Superintegrable potentials as AIs

As we have mentioned, a superintegrable system is a system with more integrals of motion than
degrees of freedom. The additional integrals restrict the trajectory in the phase space, so such
systems are good candidates for absolute instruments. In the following we discuss separately the
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cases of maximally and minimally superintegrable systems.

6.5.1 Maximally superintegrable potentials

In a maximally superintegrable system with n degrees of freedom, there are 2n − 1 independent
integrals of motion, so the motion is restricted to a 1D manifold in the phase space. Therefore
maximal superintegrability leads to closed orbits in bound systems, which immediately gives AIs.

A great deal of literature exists on superintegrable mechanical systems. For example, Evans
[20] has presented a complete list of all 3D superintegrable systems with integrals that are linear
or quadratic polynomials in the momenta. With the restriction to quadratic integrals, there are
11 orthogonal coordinate systems in which the Hamilton-Jacobi equation separates. Evans presents
a table of maximally superintegrable potentials with 5 integrals of motion, which we label V1−5 in
line with his table ordering in Ref. [20]; in three of these cases, V1, V2, and V5, the trajectories are
closed and they directly correspond to absolute optical instruments for any energy. Although the
trajectories are not closed in V3 and V4, modifications to these potentials are possible which break
the restriction to quadratic integrals but which then result in new AIs. For example, we have found
that the term k0r

2 can be added to V3 which prevents Jr from diverging.
We present the action variables for potentials V1, V2, and our modified V3,modified = V3 + k0r

2 in
Table 1. (V5 differs from V1 in an insignificant way so we omit it for brevity.) We see that indeed for
each case the total action does not depend on the separation variables as required by Eq. (20). Note
that the potentials V1 and V2 are special cases of AIs discussed in Sec. 6.2.2.

6.5.2 Minimally superintegrable potentials

Evans [20] also presents a table of minimally superintegrable systems in 3D with 4 integrals of motion;
in these systems, the trajectories are not closed in general, but are restricted to 2D surfaces in the
phase space. Moreover, in all of these minimally superintegrable systems there is a great deal of
freedom since each contains a function F of some combination of coordinates to be chosen freely.
This raises an interesting question: is it possible to choose some special form of F and/or a fixed
value of energy such that the trajectories become closed? The answer it that in many cases it is so,
which allows us to create new absolute instruments. In the following we show several examples.

First, we show this procedure for a potential from Table II of Ref. [20]:

V9 = − k√
x2 + y2

+
k1x

y2
√
x2 + y2

+
k2

y2
+ F (z) , (76)

which separates in cylindrical polar coordinates. The Hamilton-Jacobi equation is

1

2

(
dSr
dr

)2

+
1

2r2

(
dSϕ
dϕ

)2

+
1

2

(
dSz
dz

)2

+ V9 = E (77)

and the separated equations for this potential are

1

2

(
dSr
dr

)2

+
k

r
+

α

2r2
+β = E ,

(
dSϕ
dϕ

)2

+
2k2

sin2 ϕ
+

2k1 cosϕ

sin2 ϕ
= α ,

1

2

(
dSz
dz

)2

+F (z) = β . (78)
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Table 1: Maximally superintegrable potentials based on Evans [20]
Potential and separation coordinates Action Variables Notes

V1 = k(x2 +y2 +z2)+ k1
x2

+ k2
y2

+ k3
z2

Cartesian

Jx =
α

2
√

2k
−
√
k1

2

Jy =
β

2
√

2k
−
√
k2

2

Jz =
E − α− β

2
√

2k
−
√
k3

2

J =
E

2
√

2k
−
√
k1

2
−
√
k2

2
−
√
k3

2

Special case of
Sec. 6.1 and
Sec. 6.2.2; bi = 1

V2 = −k
r

+ k1
x2

+ k2
y2

spherical

Jr = −β − k√
−2E

Jθ = β − α

Jϕ =
α

2
−
√
k1

2
−
√
k2

2

J = −
√

2k1 −
√

2k2 +
k√
−2E

Special case of
Sec. 6.2.2; br =
bθ = 1, bφ = 2

V3 = k1x

y2
√
x2+y2

+ k2
y2

+ k3
z2

V3,modified = V3 + k0r
2

spherical

Jr =− 1

2
β +

E

2
√

2k0

Jθ =
β − α +

√
2k3

2

Jϕ =α−
√
k2 − k1

2
−
√
k2 + k1

2

J =−
√
k2 − k1

2
−
√
k2 + k1

2
+√

2k3 +
E√
2k0

See Sec. 6.5.1;
br = bθ = 2,
bϕ = 1
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The action variables are then evaluated by the residue method:

Jr =
1

π

∫ r+

r−

√
2

(
E − β − k

r

)
− α

r2
dr =

√
α +

k√
2(β − E)

(79)

Jϕ =
1

π

∫ ϕ+

ϕ−

√
α− 2k2

sin2 ϕ
− 2k1 cosϕ

sin2 ϕ
dϕ = −

√
α +

√
k2 + k1√

2
+

√
k2 − k1√

2
(80)

Jz =
1√
2π

∫ z+

z−

√
β − F (z) dz . (81)

We immediately notice that E and β are together in the same term under the square root in Jr, but
Jz is nominally a function only of β. For the total action J = brJr + bϕJϕ+ bzJz to be independent of
β, E must therefore be a constant, and we can put E = 0 without loss of generality. The condition
∂J/∂α = 0 implies br = bϕ, and the condition ∂J/∂β = 0 implies∫ z+

z−

dz√
β − F (z)

=
brkπ

2bzβ3/2
. (82)

This equation can be inverted by the inverse Abel transformation, similar to the case of Cartesian
coordinates in Section 6.1. This way we find

z+(F )− z−(F ) =
brk

2bz

∫ F

β0

β−3/2 dβ√
F − β

=
brk
√
F − β0

bzF
√
β0

, (83)

where β0 > 0 is the value of F at its minimum; we can choose this parameter. Similarly as in the
case of Cartesian coordinates in Section 6.1, there is a great deal of freedom in choosing F (z). One
possible choice is to require that the function be symmetric, z+(F ) = −z−(F ). We then obtain

F (z) =
γ2 −

√
γ4 − 16γ2β2

0z
2

8β0z2
, (84)

where we have denoted γ = brk/bz for brevity. The function F is defined only on the interval
[−zmax, zmax], where zmax = γ/(4β0), and reaches the maximum of 2β0 at z = ±zmax. This way, the
planes z = ±zmax form boundaries of the device. It may happen that for certain initial conditions the
particle will reach one of the boundaries and escape, so it would no longer form closed trajectories.
However, if z stays inside the boundaries, the trajectories will be closed. Fig. 5 shows the trajectories
for several choices of the constants br, bz.

A similar procedure can be applied to potentials V10, V12, and V13 from Table II of Ref. [20], with
the following results for F10 and F12, where here β0 is a rational number:

F10(θ) =
α0

(cos β0θ + sin β0θ)2
(85)

F12(ϕ) = ±1

2
csc2(2ϕ)

√
(cos(4ϕ) + 1)

(
4α2

0 + 4α0

√
α0 − k1

√
α0 + k1 + k2

1 cos(4ϕ)− 3k2
1

)
+ csc2(2ϕ)

(√
α0 − k1

√
α0 + k1 + α0

)
(86)

For F12(ϕ), the negative branch should be chosen when ϕ is small, and the positive branch can chosen
after the branch cut for larger values of ϕ. F13(z) also has a closed algebraic solution, but is many
pages long and thus is not shown here. Similar to F (z) in V9, F13(z) depends on E (as well as k, k1,
k2, and α0) and only works for rays within a certain z range.
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Figure 5: Trajectories in the potential (76) with F (z) according to Eq. (84) with the parameters
k = 1, k1 = k2 = 0, β0 = 0.9, E = 0 and (a) br = bϕ = 2, bz = 5 and (b) br = bϕ = 6, bz = 7. The
part of V depending on x, y is the Newtonian potential, so the projections of the trajectories into
the plane xy are the Kepler ellipses. This motion is combined with oscillations in the z direction.

We summarize the action variables for the minimally superintegrable potentials of Evans [20] for
an AI in Table 2. (V8 and V11 are very similar to V7 and V10, respectively, and are omitted from the
table.) In each case, the action variable depending on the function F can be expressed using the
conditions (20), and the resulting equation can be inverted to find the specific form of F . This way,
each of these minimally superintegrable systems will form an AI. Some of them will even work for
different energies, for example V10 or V12.

7 Conclusion

We have analyzed general properties of focusing potentials and absolute optical instruments by
separating the Hamilton-Jacobi equation. We have defined the total action that has a simple inter-
pretation in the optical case as the optical path length of a closed ray. Using methods of theoretical
mechanics, we have derived a central result of this paper, namely that the total action should not
depend on the separation variables for the trajectories to be closed. This result has a nice interpre-
tation in the optical case where it corresponds to Fermat’s principle of stationary time. We have also
employed the WKB method for finding the general properties of spectra of absolute instruments;
these properties perfectly agree with the ones derived previously for special cases of AIs.

Then, enforcing the condition that the total action must be independent of the separation con-
stants in various coordinate systems at a single energy E, we have found numerous absolute optical
instruments. In particular, we have applied our theory to potentials with spherical symmetry, includ-
ing their modifications, and to Cartesian coordinates to confirm the previously known AIs. Working
with bispherical coordinates, we have found a class of new AIs that turned out to be transmutations
via the spherical inversion of the spherically-symmetric AIs. This idea was then extended to any
AI that can be transmuted by inversion to obtain another AI. In the rotational parabolic system,
a remarkable new AI was constructed in Sec. 6.3 that gives different types of closed trajectories for
different energies as shown in Fig. 3. From superintegrable potentials already known in classical me-
chanics, we have identified those which can form absolute optical instruments due to the additional
freedom from choosing a free function in them and/or fixing the energy which had not been reported
as AIs before.

Nonetheless, the theory is still incomplete; although trying, we have been unable to identify
new AIs in prolate spherical coordinates, for example, and we have not yet examined some other
coordinate systems in which the Hamilton Jacobi equation separates. We suspect that in higher
order orthogonal coordinate systems, such as cyclidic coordinates, additional AIs may be identified.
Indeed, the identification of superintegrable mechanical systems is an active area of research. In this
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Table 2: Minimally superintegrable potentials based on Evans [20]
Potential and separation coordinates Action Variables Notes

V6 = F6(r) + k1
x2

+ k2
y2

+ k3
z2

spherical

Jφ =
|α| −

√
2k1 −

√
2k2

2

Jθ =
β − |α| −

√
2k3

2

Jr =
1

π

∫ r+

r−

√
2E − 2F6(r)− β2

r2
dr

F6(r) analyzed
in Sec. 6.2.2 and
Ref. [9].

V7 = k(x2 + y2) + k1
x2

+ k2
y2

+ F7(z)

Cartesian

Jx =
α

2
√

2k
−
√
k1

2

Jy =
β

2
√

2k
−
√
k2

2

Jz =
1

π

∫ z+

z−

√
2[E − α− β − F7(z)] dz

F7(z) ana-
lyzed in Section
Sec. 6.1 (special
case).

V9 = − k√
x2+y2

+ k2
y2

+ k1x

y2
√
x2+y2

+F (z)

cylindrical

Jr =
√
α +

k√
2(β − E)

Jθ = −
√
α +

√
k2 + k1√

2
+

√
k2 − k1√

2

Jz =
1√
2π

∫ z+

z−

√
β − F (z) dz

F (z) analyzed in
Sec. 6.5.2

V10 = k(x2 +y2 +z2)+ k3
z2

+ F10(x,y)
x2+y2

cylindrical

Jz =
β

2
√

2k
−
√
k3

2

Jθ =
1

π

∫ θ+

θ−

√
α− 2F10(θ) dθ

Jr =
E − β
2
√

2k
−
√
α

2

F10(θ) analyzed
in Sec. 6.5.2

V12 = −k
r

+ k1z
r(x2+y2)

+ F12(x,y)
x2+y2

spherical

Jr = −
√
β +

k√
−2E

Jθ =
√
β −
√
α− k1√

2
−
√
α + k1√

2

Jϕ =
1

π

∫ ϕ+

ϕ−

√
2(α− F12(ϕ) dϕ

F12(ϕ) analyzed
in Sec. 6.5.2

V13 = k
R

+ k1
√
R+y
R

+ k2
√
R−y
R

+ F13(z)

parabolic cylindrical

Jσ = i
8βE + 8Ek − 8(β + k) + k2

2

16(−α + E)3/2)

Jτ = i
−8βE + 8Ek + 8(β − k) + k2

1

16(−α + E)3/2

Jz =
1

π

∫ z+

z−

√
2(β − F13(z)) dz

R =
√
x2 + y2

F13(z) analyzed
in Sec. 6.5.2
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work we tied this body of literature to classical and wave optics, so that future advances in mechanics
would be immediately applicable here as well.

Acknowledgments

The authors thank H. L. Dao for highlighting to us the work of N. W. Evans, which led us to connect
superintegrability in mechanical systems to absolute optical instruments. TT acknowledges support
of grant P201/12/G028 from the Czech Science Foundation (Grantová Agentura České Republiky).
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[13] M. Šarbort, T. Tyc, ”Multi-focal spherical media and geodesic lenses in geometrical optics”, J.
Opt. 15, 125716 (2013).

[14] T. Tyc, ”Spectra of absolute instruments from the WKB approximation ”, New J. Phys. 15,
065005 (2013).

[15] T. Tyc and A. Danner, ”Frequency spectra of absolute optical instruments”, New J. Phys. 14,
085023 (2012).

[16] U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover, Mineola,
2010).

22



[17] L. D. Landau and E. M. Lifshitz, Mechanics, (Pergamon, Oxford, 1991).

[18] J. C. Maxwell, Camb. Dublin Math. J. 8, 188 (1854).
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