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Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
(Dated: March 18, 2011)

We propose a class of magnifying absolute optical instruments with a positive isotropic refractive
index. They create magnified stigmatic images, either virtual or real, of optically homogeneous
three-dimensional spatial regions within geometrical optics.

PACS numbers: 42.15.-i, 42.15.Eq, 42.30.Va

Most optical instruments, including a simple lens or
sophisticated camera lenses, have various types of aber-
rations. There exist, however, optical instruments that
are free of aberrations and provide sharp (stigmatic) im-
ages of all points in some 3D region of space within
geometrical optics; such devices are called absolute in-
struments [1]. A prototype of an absolute instrument is
Maxwell’s fish eye, a device designed in 1854 by J. C.
Maxwell [2]. It uses positive refractive index and images
stigmatically the whole space. Another type of absolute
instrument is based on materials with a negative refrac-
tive index. It was proposed by J. Pendry in 2000 [3]
and later realized experimentally [4]. Remarkably, both
Maxwell’s fish eye and Pendry’s lens are not limited by
diffraction and provide sub-wavelength resolution [3–7].

Among absolute instruments there is a class of a par-
ticular interest, namely devices whose object and image
spaces are optically homogeneous regions, i.e., regions
with a uniform refractive index. Until recently, the only
known such devices were plane mirrors [1]. This has been
changed by a recent excellent work of J. C. Miñano [8]
who proposed several new absolute instruments imaging
homogeneous regions and also showed that some well-
known optical devices such as Eaton lens or Luneburg
lens [9] are in fact absolute instruments as well. All of
these devices have unit magnification, giving an image
of the same size as the original object, and no magni-
fying absolute instrument for homogeneous regions has
been known. We proposed a magnifying absolute instru-
ment recently [10] based on a numerically found refrac-
tive index with certain special properties, but our col-
league Klaus Bering has later shown analytically that
such an index in fact does not exist [11].

Here we present several magnifying absolute instru-
ments that provide stigmatic images of homogeneous re-
gions of 3D space with an arbitrary magnification. They
are all based on the same idea and provide either real or
virtual images. This is the first proposal of a magnifying
absolute instrument for homogeneous regions that em-
ploys isotropic materials with positive refractive index.
We will explain our idea first on a particular example
of a magnifying absolute instrument resembling Eaton
lens [12], and then proceed to other devices.

Our device consists of two distinct regions (see Fig. 1).
The first region (we will call it region I) is a sphere of unit
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FIG. 1: Regions in the magnifying device based on Eaton
lens. Regions III and IV that lie outside the device are the
optically homogeneous object and image space.

radius, the second region (II) occupies the space between
two hemispheres with the radii 1 and R > 1, respectively,
lying in the half-space y > 0. Both regions are filled
with a spherically symmetric refractive index that we will
denote by nI(r) and nII(r), respectively. The indices are
chosen such that nI(1) = nII(1) = R and nII(R) = 1. The
medium surrounding the lens is composed of two parts as
well. In the region r ≥ 1, y < 0 (region III) the refractive
index is equal to R while in the region r ≥ R, y > 0
(region IV) the refractive index is equal to unity. Thus
the index of the lens matches that of the surrounding
medium, apart from the annulus 1 < r < R, y = 0, and
also the indexes at the border between regions I and II
match each other.

The refractive index nII(r) is chosen such that a light
ray incident from region IV to region II is bent towards
the center, eventually crossing the border between re-
gions II and I. There is a large variety of refractive in-
dex profiles that achieve this, one option is to choose
nII(r) = [1 + c(r − 1)(R − r)]R/r with c > 0 sufficiently
large, which we have also used in our ray tracing simu-
lations with c = 1. We then design the refractive index
nI(r) in region I such that the light ray coming from re-
gion II is bent further and leaves region I for region III in
exactly opposite direction than was the original direction
of the ray in region IV, see Fig. 2. The performance of the
device is thus similar to the performance of Eaton lens;
we can therefore call it “magnifying Eaton lens”. As we
shall see, the difference is that the impact parameter of
the outgoing ray is R times smaller than the impact pa-
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FIG. 2: Magnifying Eaton lens with R = 2. Light rays inci-
dent on it from region IV are changed into rays in region III
propagating in the opposite direction, with impact parame-
ters reduced by the factor of R.

rameter of the incoming ray, and this fact is responsible
for the lens magnification.

To design the refractive index nI(r), we employ the
standard method for solving the inversion problem [9, 13].
We will characterize rays in the lens by the quantity
L = nr sinα analogous to mechanical angular momen-
tum, where α is the angle between the radius vector and
the ray [14]. Angular momentum is conserved and mo-
tion of a particle is planar in central potentials, and the
same holds for light ray in a spherically symmetric refrac-
tive index. Consider a ray propagating in the plane xy
horizontally (i.e., in the direction of x-axis) in region IV
and entering region II of the lens at point A. Since n = 1
in region III, the angular momentum L is equal to the
impact parameter of the incoming ray. The polar angle
h swept by the ray in region II before entering region I
(say, at point B) can be calculated by the expression [15]

h(L) = L

∫ R

1

dr

r
√

[rnII(r)]2 − L2
. (1)

h(L) is at the same time the change of the ray direction
during propagation in region II from point A to B. This is
because the product nr is the same at both points A and
B, so is L = nr sinα, and therefore the angle α between
the ray and radius vector is the same at B as is in A.

The scattering angle χ (change of ray direction) corre-
sponding to motion in region I must therefore be

χ(L) = π − h(L) , (2)

which ensures that the total change of ray direction dur-
ing motion in regions II and I is π. Solving the inversion
problem, we then arrive at the following implicit equation
for the refractive index nI(r) [9, 13]:

nI(r) = R exp

[
1

π

∫ R

rnI(r)

χ(L)dL√
L2 − [rnI(r)]2

]
. (3)

This way the refractive index is expressed analytically,
although not explicitly. The refractive index in regions I
and II is shown in Fig. 4.
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FIG. 3: Image formation in magnifying Eaton lens. Light
rays emerging from a point A at ~rA in region III, after passing
through the lens, propagate in region IV as if they originated
from a point A′ at ~rA′ = −R~rA. The image is virtual and is
magnified R-times.

Now we have to show that the device we have just
described is indeed an absolute magnifying instrument,
i.e., it provides stigmatic image of some 3D region of
space. First we note that from conservation of L it follows
that the impact parameter of the outgoing ray in region
II is R-times smaller than the impact parameter of the
incoming ray in region IV. Second we note that although
we considered a horizontal ray in the xy-plane in our
construction, the lens will have a similar effect on most
other rays too, i.e., rays incident on it from region IV will
be changed to rays moving in the opposite direction in
region III and having R-times smaller impact parameters.
This is caused by the spherical symmetry of the refractive
index in regions I and II. There will also be rays for which
this does not happen, namely the ones that at some point
cross the interface between regions II and III, but still
for an infinite number of rays the lens does the job it is
designed for.

Now consider a collection of rays emerging from some
point A at radius vector ~rA in region III and incident
on region I of the lens. As we have seen, these rays
will be transformed by the lens into rays propagating
in region IV, each parallel to the original ray in region
III. Therefore the lines on which these outgoing rays lie
intersect at the point A′ with radius vector ~rA′ = −R~rA,
which this way becomes the virtual image of the point A
(see Fig. 3), and the magnification of the device is clearly
equal to R.

As can be shown, the refractive index in region I di-
verges for r → 0. To avoid this singularity, we can mod-
ify the lens by utilizing the fact that Luneburg lens [9]
equipped with a spherical mirror on its surface has the
same effect on the incoming rays [8] as Eaton lens. Imag-
ine we place a mirror on the part of the interface between
regions I and II, allowing the rays in region I to be re-
flected before re-entering region II. We again require that
the outgoing rays move in the opposite direction with
respect to the incoming rays, but now rays with small
impact parameters do not have to make a rapid turn
near the origin at it was the case with magnifying Eaton
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FIG. 4: Refractive index in regions I and II of magnifying
Eaton lens (thick red), Luneburg lens (thin black) and mag-
nifying invisible sphere (dashed blue) with R = 2.

mirror

FIG. 5: Magnifying Luneburg lens with R = 2. A spherical
mirror covers part of the interface between regions I and II.
The effect on rays coming from region IV is the same as that
of magnifying Luneburg lens and therefore it also provides a
magnified virtual image.

lens, and therefore the index will not need a singularity
there. It can be shown by simple geometrical consider-
ations that in this case the required scattering angle in
region I corresponding to the ray segment between point
of entrance to region I and the point of incidence on the
mirror is

χ(L) = arcsin
L

R
− h(L)

2
, (4)

which, after substitution to Eq. (3) leads to the refractive
index shown in Fig. 4 for R = 2. Ray tracing in the
magnifying Luneburg lens is shown in Fig. 5.

Another interesting magnifying device can be derived
by our method from the invisible sphere described in [13].
Here we require again that the rays leaving the lens prop-
agate parallel to their original direction, but this time go
forwards instead of backwards. The scattering angle in
this case is χ(L) = 2π − h(L). If the lens should work
well for rays with the direction close to x-axis, the border
between regions III and IV now has to be in the yz plane
and similarly region II now lies at x > 0 instead of y > 0.
The virtual image of a point A is now formed at point
A′ with ~rA′ = R~rA. Ray tracing in this lens is shown in
Fig. 6, the refractive index is in Fig. 4.

The last device we will discuss is a magnifying absolute

II IV

I

III

FIG. 6: Magnifying device derived from the invisible
sphere [13]. The rays make loops in region I and after leav-
ing the device, they propagate in the original direction. This
device again forms a virtual image.

instrument that provides real images. Now we have to
arrange regions I – IV in a somewhat different fashion,
see Fig. 7: region I is given by the condition r > R, so
it is the whole 3D space with the exception of the sphere
of radius R. Region II occupies the space between two
hemispheres with the radii 1 and R > 1, respectively,
lying in the half-space x > 0. Region III is the unit
hemisphere at x > 0 and region IV is a hemisphere of
radius R at x < 0. Refractive indices in regions II, III
and IV are as before. Light rays now enter the lens (re-
gion II of it) from region III, i.e., from the inside. After
having been bent in region II, they propagate in region I
and we require that when they enter region IV, they are
parallel to their original direction in region III, see Fig. 7.
To find the refractive index nI(r) that achieves this, we
have to solve an “outer” inversion problem instead of the
usual “inner” problem. This can be done by employ-
ing inversion in the sphere of radius R which transforms
the outer problem to the inner one. A careful analysis
of the scattering angle χ′ in the transformed problem
reveals that χ′(L) = 4 arcsin(L/R) − h(L), which then
gives the transformed refractive index n′I(r

′) as a func-
tion of the transformed radius r′ = R2/r with the help
of formula (3), but with the “R” omitted in front of the
exponential since we require n′I(R) = 1. The index nI(r)
can then be calculated as

nI(r) =
R2

r2
n′I(R

2/r) , (5)

which follows from the equality of optical paths in the
original and transformed region I.

To see that this device indeed creates a real magnified
image, consider rays emerging from some point A at ra-
dius vector ~rA in region III, see Fig. 8. The rays get to
region IV assuming their original direction and head to-
wards the point A′ at ~rA′ = R~rA. This point lies outside
of region IV and therefore the image is virtual. However,
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FIG. 7: Inside-out magnifying instrument with the regions
marked. The rays enter the lens from region III inside the
lens (the object space) and after making loops in region I,
which now extends to infinity, enter region IV (image space)
in their original direction.
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FIG. 8: Image formation on the instrument from Fig. 7. Rays
originating at point A in region III and converging in region
IV to a point outside this region are reflected by the mirror
to the real image A′′ of A.

we can take advantage of the fact that the rays are con-
verging and place a mirror at the flat interface of region
IV, see Fig. 8. This way the virtual image it turned into
a real image at point A′′, which is a mirror image of A′

in the plane x = 0. Making the mirror double-sided, also
rays emerging from the point A to the left will contribute
to forming the image.

In conclusion, we have proposed several absolute op-
tical instruments that create magnified stigmatic images
of homogeneous 3D region. They are all designed by the
same general idea. Especially appealing is the lens giv-
ing a real magnified image and the magnifying Luneburg
lens with its moderate refractive index range; for R not
too large, it should be possible to realize the latter for
near infrared or even visible light using e.g. graded index
structures in silicon [16] or diamond. Further research
will reveal whether some of these devices, e.g. the lens
giving the real image, could provide sub-wavelength res-
olution similarly to Maxwell’s fish eye [5–7]. Magnifying
absolute instruments could find their applications in var-
ious fields, for example in photolitography, but more im-
portantly, our research has shown that such devices exist
at all, something that was not clear until this date [1, 8].
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