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We analyze dynamics of a quantum particle on a force-free surface of a cube. Employing methods
of the group theory, we divide the solutions of the stationary Schrödinger equation (the modes) into
classes based on irreducible representations of the symmetry group of the cube, and for each class
we reduce the problem to finding the modes on a square with special boundary conditions. We
analyze the properties of the resulting modes, present them visually, and discuss the possibility of
quantum state revivals on the cube.

I. INTRODUCTION

Investigating solutions of the Schrödinger and
Helmholtz equations on various spatial domains has at-
tracted attention of the scientific community for a long
time. It can directly be applied to solving quantum par-
ticle dynamics on such domains, or exploring vibrational
modes of a membrane with a given shape. Usually, sim-
ply connected parts of a plane are analyzed, such as in the
celebrated paper “Can one hear the shape of a drum?”[1].
The solutions of the stationary Schrödinger equation (the
stationary states, or simply modes) can be employed for
describing the full dynamics of the quantum particle on
such a domain, or, in the related optical or mechanical
case, of the electromagnetic or acoustic wave. The quan-
tum spectrum has different properties for non-ergodic
and ergodic systems; for the latter ones, such as, e.g.,
the stadium or Sinai dynamical billiard [2], the energy
levels exhibit the typical level repulsion [3].

Quantum mechanics on curved surfaces such as the
sphere has also attracted much attention in the previous
decades. One possible approach to this problem is to
consider quantum mechanics of a particle in R3 with an
infinitely strong potential that forces it to move on the
2D surface [4]. The Hamiltonian in this case is propor-
tional to the two-dimensional Laplacian corresponding
to the kinetic energy on the surface, plus an additional
term emerging from the constraint that the particle has
to stay on the surface [4]. A different approach [5, 6]
treats the surface as a 2D manifold from the beginning,
without considering any particular embedding into the
3D Euclidean space. For the case of a polyhedron, this
is equivalent to dealing with the individual flat polyhe-
dron faces with appropriately identifying the correspond-
ing edges. The Hamiltonian in this case is given purely
by the kinetic energy on the surface that is proportional
to the 2D Laplacian. Recently the surface of a regular
tetrahedron [5] was analyzed in this way; it turned out
that the modes can be found analytically and that the
quantum state exhibits perfect revivals due to the fact
that all energy levels are integer multiples of a common
constant. Later, more exotic domains such the Möbius
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strip, Klein’s bottle or the real projective plane were ana-
lyzed by the same method and it has been shown that the
quantum wavefunction exhibits perfect revivals on these
manifolds as well [6].
In this paper we employ the latter approach analyze

quantum mechanics of a particle on another compact
manifold, the surface of the cube. This manifold has al-
ready been analyzed in the setting of geometrical optics
(and equivalently, classical mechanics), including photo-
realistic simulations [7], but the case of a quantum par-
ticle on this surface has not been considered. Here we
provide a complete solution of the stationary Schrödinger
equation on this manifold, consisting of six unit squares
whose edges and vertices are indentified in the appro-
priate way. Employing the group theory, we sort the
modes into different classes according to their levels of
degeneracy. Subsequently, we find the modes and en-
ergies for each class, analytically for some classes and
semi-analytically for others. We also analyze the spectra
of the modes and show that unlike the above mentioned
manifolds, a general quantum wavepacket on the cube
does not exhibit perfect quantum revivals.
The paper is organized as follows: In Sec. II we dis-

cuss the equations governing the quantum particle on
the surface of the cube, in Sec. III we discuss the sym-
metry group of the cube and the resulting conditions
for the modes corresponding to different irreducible rep-
resentations, then in Secs. IV, V and VI we find the
non-degenerate, double-degenerate and triple-degenerate
modes, respectively. In Sec. VII we summarize the modes
found, we discuss their properties in Sec. VIII, and we
conclude in Sec. IX.

II. SCHRÖDINGER EQUATION ON THE
SURFACE OF THE CUBE

We start with the Schrödinger equation for a particle
moving on a potential-free surface of the unit cube,

iℏ
∂Ψ

∂t
= ĤΨ = − 1

2m
∆Ψ . (1)

Here the Hamiltonian consists purely of the kinetic en-
ergy term, −∆/(2m), where ∆ is the two-dimensional
Laplace operator. Separating the time variable as
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Ψ(r⃗, t) = ψ(r⃗) exp(−iEt/ℏ), where E is the particle en-
ergy, and working in the units where the Planck’s con-
stant ℏ and the particle’s mass m are equal to unity, we
get the stationary Schrödinger equation for ψ in the form

∆ψ + 2Eψ = 0 . (2)

Here, the wavefunctions ψ belong to the Hilbert space
of functions that are square-integrable over the six faces
of the cube and satisfy the appropriate boundary con-
ditions corresponding to the edge identification. The
scalar product is defined in the usual way, ⟨f |g⟩ =∑6
n=1

∫∫
n-th face

f⋆g dx dy, and the Hamiltonian is Her-
mitian with respect to this product.

Finding the eigenstates (modes) ψi and the corre-
sponding eigenvalues Ei of Eq. (2) completely deter-
mines the quantum dynamics of the particle. Moreover,
since Eq. (2) represents at the same time the Helmholtz
equation that governs scalar waves in a medium with a
constant refractive index, finding the modes of Eq. (2)
also solves the dynamics of light confined to a geodesic
lens [8, 9], in this case in the form of a cube.

Due to the compactness of the manifold, the spectrum
{Ei} is discrete and the eigenmodes are countable. One
option for finding the modes would be to unwrap the sur-
face of the cube into its unfolded net, and look for the
solutions of Eq. (2) on this planar domain with the ap-
propriate boundary conditions that involve the continu-
ity and smoothness of the solution when going from one
face to another via their common edge. However, here
we pursue a different strategy. We divide each face of the
cube into eight triangles using the axes of the face edges
and its diagonals as shown in Fig. 1(a). This yields the
total of 48 triangles for the whole cube, each of which is
joined to other three via its sides. Solving the Helmholtz
equation on the surface of the cube then reduces to solv-
ing it on each triangle and matching these solutions to-
gether so that both the combined solution and its normal
derivative is continuous on the sides connecting any two
triangles. In the next section, we establish a set of rules
for matching the solutions on the triangles together using
the group theory.

III. SYMMETRY GROUP OF THE CUBE

As it is well known, the cube has a symmetry group of
S4 × Z2, called also the octahedral group. It has 48 ele-
ments (24 rotations and 24 roto-reflections). By applying
a suitable element of the group, any of the 48 triangles
defined in the previous section can be transformed to any
other triangle. Moreover, a particular representation of
the group reveals how the modes belonging to this rep-
resentation are transformed among themselves when the
symmetry operations are applied to them. This way, if
we obtain a solution on one of those little triangles with
suitable properties, we can use this information to extend
it to the whole cube. Hence, one such little triangle will
be called the fundamental domain, see Fig. 1.

a)

(0, 0)
x

y
(1
2
, 1
2
)

b)

FIG. 1. a) One face of the unit cube divided into 8 isosceles
triangles. One of them, picked to be the fundamental domain,
is highlighted. b) To facilitate solution, we solve the equation
on two adjacent triangles. We use coordinates x, y as shown
in the picture.

It is also well known that the octahedral group has
10 irreducible representations in total. These can, for
instance, explicitly be found using the GAP software.
The character table of the octahedral group is shown in
Tab. I.

1 8 C3 6 C2 6 C4 3 C2
4 R 6 S4 8 S6 3 σh 6 σd

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 −1 −1 1 1 −1 1 1 −1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1
Eg 2 −1 0 0 2 2 0 −1 2 0
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1g 3 0 −1 1 −1 3 1 0 −1 −1
T2g 3 0 1 −1 −1 3 −1 0 −1 1
T1u 3 0 −1 1 −1 −3 −1 0 1 1
T2u 3 0 1 −1 −1 −3 1 0 1 −1

TABLE I. The character table for the octahedral group.

The table reveals that there are four one-dimensional,
two two-dimensional and four three-dimensional irre-
ducible representations of the group. Since the dimen-
sionality of the representation is equal to the degree
of degeneracy of the modes, we see that there will be
four different types of non-degenerate modes, two types
of double-degenerate modes, and four types of triple-
degenerate modes.
Before we can reduce the problem to solving the

Helmholtz equation on the fundamental domain, we must
obtain the appropriate boundary conditions — for each
irreducible representation, a certain set of boundary con-
ditions must be used, and it is not a priori obvious what
they are. Fortunately, we can obtain the conditions with
the help of a simple proposition that holds generally,
without any special reference to the cube.
Proposition. Let f1, f2,. . . , fn be a set of basis

functions defined in a region of a plane, and let R be
an operation of a reflection through a straight line l in
that region. If Rfk = Mkℓfℓ (we are using Einstein’s



3

convention, summing over repeated indices), then:

1. If ck is an eigenvector of the matrix MT with the
eigenvalue −1 (i.e., Mkℓck = −cℓ), then ckfk = 0
on the line l.

2. If ck is an eigenvector of MT with the eigenvalue
+1, then the normal (with respect to l) derivative
of the function ckfk is zero on the line l.

Proof: First consider the function f = ckfk correspond-
ing to an eigenvector of MT with the eigenvalue −1.
Upon reflection in the line l, this function changes to
f̃ = Rf = ckRfk = ckMkℓfℓ = −cℓfℓ = −f . At the
same time, on the line l itself we must have f̃ = f be-
cause l changes into itself upon reflection in l. Combining
these two properties of the functions f and f̃ , we see that
f = 0 on the line l.

Similarly, consider the function f = ckfk correspond-
ing to an eigenvector of MT with the eigenvalue +1.
Upon reflection in the line l, this function changes to
f̃ = Rf = ckRfk = ckMkℓfℓ = cℓfℓ = f , i.e., to it-
self, and consequently its normal derivative, ∂f/∂n⃗, flips
sign. By a similar argument as before we then see that
∂f/∂n⃗ = 0 on the line l. ■

IV. NON-DEGENERATE MODES

First we analyze the non-degenerate modes, corre-
sponding to the first four lines in character table, Tab. I.
From the table we can find how the modes behave if we
reflect the fundamental domain through one of its sides.
We can summarize this graphically as in Fig. 2. The
numbers shown are the “representation matrices” for the
reflections, in this case 1 × 1: if we perform a reflec-
tion through a given side, the mode will be multiplied by
the corresponding number. From the Proposition it then
follows that all the “−1”’s imply a boundary condition
of f = 0 for the modal function while all “+1”’s imply
∂f/∂n⃗ = 0.

A1g A1u A2g A2u
+1

+
1

+1+
1

+1

−1

−
1

−
1−

1

−1

−1

+
1

−
1−

1

+1

+1

−
1

+
1+

1

−1

FIG. 2. Transformations of the modal functions upon reflec-
tions in the sides of the fundamental domain, according to
the representation the function belongs to. The black num-
bers indicate whether the modal function remains unchanged
(+1) or flips the sign (−1) upon the reflection. A second little
triangle, marked by a dashed line, is added as in Fig. 1. The
blue numbers have the same meaning for these added trian-
gles as the black numbers have for the fundamental domain.

We add a second little triangle to make a square (as
indicated in Fig. 1(b)) and start solving the equations.

For the representation A1g, we must solve the Helmholtz
equation on the square with normal derivatives vanish-
ing at the edges. The solution is easily shown to be
cos(2πkx) cos(2πℓx) with k, ℓ ∈ N0, where the Cartesian
coordinate system xy for the fundamental domain is de-
picted in Fig. 1(b). However, the reflection through the
diagonal (effected by interchanging x and y) must leave
the mode invariant since there is “+1” on the diagonal,
so the only solution that we can accept as a mode is a
sum of the above solution with its reflected version. This
gives the mode in the form

ψ(A1g) = cos(2πkx) cos(2πℓy) + cos(2πℓx) cos(2πky) ,
(3)

with the energy eigenvalue E = π2

2 [(2k)2 + (2ℓ)2].
The other three cases can be analyzed in the same

fashion. For the representation A1u, we obtain

ψ(A1u) = sin(2πkx) sin(2πℓy)− sin(2πky) sin(2πℓx) ,
(4)

again with E = π2

2 [(2k)2+(2ℓ)2]. However, we can easily
see that if k = 0, ℓ = 0 or k = ℓ, the formula will yield
an identical zero. Therefore, in the representation A1u,
we only have modes when k ̸= 0, ℓ ̸= 0, k ̸= ℓ.
Next, for A2g we have

ψ(A2g) =cos[(2k + 1)πx] cos[(2ℓ+ 1)πy]

− cos[(2ℓ+ 1)πx] cos[(2k + 1)πy] (5)

with E = π2

2

[
(2k + 1)2 + (2ℓ+ 1)2

]
. Once again, there

is no mode for k = ℓ. Finally for A2u we find

ψ(A2u) =sin[(2k + 1)πx] sin[(2ℓ+ 1)πy]

+ sin[(2ℓ+ 1)πx] sin[(2k + 1)πy] (6)

with E = π2

2

[
(2k + 1)2 + (2ℓ+ 1)2

]
.

These results, along with other modes, are summarized
in Table II. in section VII.

V. DOUBLE-DEGENERATE MODES

To analyze the case of double-degenerate modes, we
proceed in a similar fashion as for the non-degenerate
modes. However, now there are two independent modes
f and g for each energy, so the sides of the fundamental
domain will be labelled by 2 × 2 matrices as in Fig. 3.
They show how the modes change due to the reflection R
through the given side in the manner used in the Propo-

sition, i.e.,
(

Rf
Rg

)
= M

(
f
g

)
.

We start with the modes Eg. We will find the eigenvec-
tors and eigenvalues of the matrices the sides are labeled
with, and translate them into boundary conditions using
the Proposition; then we add a second triangle to the
fundamental domain to make a square, and proceed with
the solution on the square. All in all, we obtain a bound-
ary problem characterized by Fig. 4. In order to solve
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Eg Eu

( 1 0
0 1 )

( 0 1
1 0 )

(
0

e −
2π
i/3

e 2π
i/3

0 ) (−1 0
0 −1

)
(

0 −1
−1 0

)

(
0

−
e −

2π
i/3

−
e 2π

i/3

0 )

(a) (b)

FIG. 3. The relevant representation matrices for the two-
dimensional irreducible representations, (a) Eg and (b) Eu.
There is a basis of the 2D eigenspace of the Laplacian that
transforms with these matrices when the functions are re-
flected through the given side of the triangle.

f ′=0
g′=0

f−g=0
(f+g)′=0

f
+
e iπ/3

g
=
0

e−
iπ
/
3
f
+
e−

2
π
i/
3
g
=

0

f ′=0
g′=0

FIG. 4. Boundary conditions obtained for the basis functions
of the Eg representation. The prime is used as an abbreviation
for the the normal derivative.

the problem, we would like to construct functions that
have simple boundary conditions on at least three sides
of the square. For this purpose, it is useful to introduce
an alternative basis

ψ = f − g, φ = e−iπ/3f + e−2πi/3g.

According to the representation matrix in Fig. 3(a), the
reflection R in the diagonal acts as Rf = e−2πi/3g and
Rg = e2πi/3f , which implies Rψ = e−2πi/3g − e2πi/3f =
φ. This way, the function φ can be obtained simply by
reflecting the function ψ through the diagonal, which can
also be expressed as ψ(y, x) = φ(x, y). This results in
significantly simpler conditions for the functions ψ and
φ on three sides of the square than there would be for f
and g; these conditions are summarized in Fig. 5(a).

In particular, we know that ∂φ/∂x = 0 on the line x =
0, and φ = 0 on the line x = 1/2. A function of x that
satisfies these conditions has the form cos[(2k + 1)πx],
k ∈ N, and this function has to be multiplied by a suitable
function of y so that the total energy amounts to given,
but yet unknown constant E. Since φ must have zero
normal derivative at y = 0, this function must be of the
form cos(Cy). Hence, we may write the solution as a

Eg Eu

ψ
′=

0
φ
′=

0

ψ=0
(ψ−2φ)′=0

φ
=

0

ψ′=0
φ′=0

ψ
=
0

φ
=
0

ψ′=0
(ψ−2φ)=0

φ
′
=

0

ψ=0
φ=0

φ(x, y) = ψ(y, x) φ(x, y) = −ψ(y, x)
(a) (b)

FIG. 5. Boundary conditions for the new basis φ, ψ for both
two-dimensional representations.

series

φ(Eg) =

∞∑
k=0

ck cos[(2k+1)πx] cos
[√

2E − (2k + 1)2π2y
]
.

(7)
In the sum, for k sufficiently large the number under the
square root goes negative; then the root itself becomes
purely imaginary, which turns the trigonometric func-
tions cos into the hyperbolic function cosh. Such terms
(we will call them evanescent terms) have to be included
in the sum as well; however, it turns out that only the
first few such terms are non-negligible.
The possible values of E will be found from the ex-

tra boundary condition. As seen from Fig. 5(a), the

condition is ∂
∂y (ψ − 2φ)

∣∣∣
y=1/2

= 0, where ψ(x, y) =

φ(y, x). This can be expressed as an equation of the form∑∞
k=0 ckgk(x;E) = 0 for some functions gk. This means

that the energies will be precisely the values E for which
the set of functions gk(x;E) is linearly dependent (as
functions of x). We do not attempt to find them exactly;
instead, we truncate the sum after a suitable number of
terms (usually terminating the series after three evanes-
cent terms gives highly satisfactory results, see also Ap-
pendix A), expand each of the gk into a suitable Fourier
basis, and, using the singular value decomposition, we nu-
merically find the energies for which the gk’s are “closest
to being linearly dependent”. The details can be found
in Appendix A. The result of our procedure are the ener-
gies and the corresponding expansion coefficients ck that
determine the wavefunctions in terms of Eq. (7).
The case of the representation Eu is solved in a similar

fashion: we define functions ψ and φ in the same way as
before and find for them the boundary conditions shown
in Fig. 5(b). Subsequently, we express the wavefunction
as

φ(Eu) =

∞∑
k=0

ck sin[(2k + 1)πx] sin
[√

2E − (2k + 1)2π2y
]

(8)
with an additional condition that [φ − 2ψ]y=1/2 = 0,
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where ψ(x, y) = −φ(y, x). By the procedure described
above we again find the energies and the corresponding
expansion coefficients ck. The resulting modes are pre-
sented in Sec. VII.

VI. TRIPLE-DEGENERATE MODES

To analyze the triply degenerate modes corresponding
to the representations T1g, T1u, T2g and T2u, we repeat
the same process once again. Fig. 6 shows the relevant
representation matrices, where “±” means “+” for the
“g” representations, and “−” for the “u” representations.

T 1g, T 1u T 2g, T 2u

± (
−
1
−
1
1 )

±
(

1
1

1

)

± (
1

−
1

−
1 )

± (
−
1
−
1
1 )

±
( −1

−1
−1

)

± (
−
1

11 )

FIG. 6. The relevant representation matrices for all four
three-dimensional irreducible representations. In “±”, the
plus and minus signs apply to the “g” and “u” representa-
tions, respectively.

Denote the three basis functions by f , g, h. Using the
Proposition, we arrive at boundary conditions for them
that are summarized in Fig. 7.

Let us start with T1g. We see that for g, we already
have simple boundary conditions on three sides of the
square. Hence, we may write down the solution as a
series

g(T1g) =

∞∑
k=0

dk sin[(2k + 1)πx]

× cos
[√

2E − (2k + 1)2π2 y
]
. (9)

Obtaining a solution for the function f is more compli-
cated. We only have two simple boundary conditions:
f must be zero on x = 0 and y = 0, so it is a lin-
ear combination of products of two sines in the form
sinK1x sinK2y with arbitraryK1,2 (even imaginary) sat-
isfying K2

1 +K2
2 = 2E. Hence, f can be any function of

the following form:

f (T1g) =

∫ ∞

−∞
dλ c(λ) sin

(√
λx

)
sin

(√
2E − λ y

)
. (10)

Additionally, f and g must be equal on the bottom side
where y = 1/2. Since g is a series in sin[(2k + 1)πx],
we demand f to be the same kind of series, too, i.e.,∑
cn sin[(2n+1)πx], on that side. However, there is also

T 1g T 1u

f=0
g=0
h′=0

f−g=0
(f+g)′=0

h′=0

f+h=0
(f−h)′=0

g′=0

f=0
g′=0
h=0

f ′=0
g′=0
h=0

f+g=0
(f−g)′=0

h=0

f−h=0
(f+h)′=0

g=0

f ′=0
g=0
h′=0

f(x, y) = f(y, x)

g(x, y) = −h(y, x)

f(x, y) = −f(y, x)

g(x, y) = h(y, x)

T 2g T 2u

f=0
g=0
h′=0

f+g=0
(f−g)′=0

h=0

f−h=0
(f+h)′=0

g=0

f=0
g′=0
h=0

f ′=0
g′=0
h=0

f−g=0
(f+g)′=0

h′=0

f+h=0
(f−h)′=0

g′=0

f ′=0
g=0
h′=0

f(x, y) = −f(y, x)

g(x, y) = h(y, x)

f(x, y) = f(y, x)

g(x, y) = −h(y, x)

FIG. 7. Boundary conditions for the three basis functions f ,
g, h of all four three-dimensional irreducible representations
and additional relations between the functions.

a requirement that f must not change when we reflect
through the diagonal. Therefore we use the following
ansatz for f :

f (T1g) =

∞∑
k=0

ck
{
sin[(2k + 1)πx] sin[

√
2E − (2k + 1)2π2 y]

+ sin[(2k + 1)πy] sin[
√

2E − (2k + 1)2π2 x]
}
.

(11)

It may look like this solution will not match g on the
account of the factors sin

√
(· · · )x. However, we use the

fact that the functions 2 sin[(2k+ 1)πx] are orthonormal
on the interval [0, 1/2] with respect to the inner product

⟨f |g⟩ =
∫ 1/2

0
f⋆g dx. That makes it possible to expand

the offending sine into a series in sin[(2k+ 1)πx] as well:

sin
[√

2E − (2n+ 1)2π2 x
]
=

4
√
2E − (2n+ 1)2π2 cos

(
1
2

√
2E − (2n+ 1)2π2

)
×

∞∑
k=0

(−1)k sin[(2k + 1)πx]

π2[(2k + 1)2 + (2n+ 1)2]− 2E
. (12)

Hence our ansatz can be still rewritten as a series in
sin[(2k+1)πx], so it can be accepted as the most general
form of f .



6

Now we have two sets of coefficients, ck and dk, and two
conditions: on the bottom side, we must have both f = g
and f ′ = −g′. This way, we must find twice as many co-
efficients as in the case of double-degenerate modes, but
we also have twice as many equations available. The pro-
cedure is the same as before — the energies are precisely
the values of E for which we can find nonzero ck and
dk such that the two conditions are fulfilled, and ck, dk
themselves determine the modes.

Similar solutions can be obtained for the remaining
representations as well. All are summarized in Table II
in section VII, along with formulae that we derived for
all other representations.

VII. DISCUSSION OF THE MODE
PROPERTIES

The modes derived above in Sections IV—VI are sum-
marized in Table II. In the following, we describe some
general properties of the modes belonging to different
representations. These properties can be derived from
the symmetry analysis of the modes, and they are also
clearly visible on the examples of modal functions plot-
ted on the net of the cube in Figs. 8—11 as well as in the
mode gallery in Sec. VIII.

The first observation is that the non-degenerate modes
A1g, A1u, A2g and A2u look the same on all the cube faces,
see Fig. 8. The modes A1u and A2g vanish on the cube
edges while the modes A1g and A2u have zero normal
derivative on the edges. The modes A1u, A2g and A2u

vanish at the cube face centers while the modes A1g have
there local extrema.

FIG. 8. Examples of non-degenerate modes. First row:
A1g, A1u. Second row: A2g, A2u. All four cases correspond
to k = 2, ℓ = 1. The modal functions on different faces are
always the same (in some cases, apart from a rotation by
π/2). In this and all subsequent pictures, brightness corre-
sponds to the amplitude, and hue to the phase. Since the
non-degenerate modes are real, we only have red hue for pos-
itive and cyan for negative values.

The double-degenerate modes can be represented ei-
ther using the functions ψ,φ that are real, or these two
can be combined back to make the original basis f , g.
The latter functions are complex, and in fact they satisfy
g = −f⋆. Let us discuss them further.
As follows from the analysis and can be seen in Fig. 9,

the modes f (and equivalently g) are the same on the
cube faces up to phase factors of e±2πi/3. This corre-
sponds to the mode picking up these phases when ro-
tated by ±2π/3 radians around the space diagonals of
the cube. Expressed differently, there is a phase singu-
larity (analogous to an optical vortex [10]) at each vertex
of the cube. When switching from a given mode f to its
partner g, the sign of this phase singularity (topological
charge [10]) reverses because, as we have mentioned, the
mode f is the complex conjugate of −g.

FIG. 9. Examples of double-degenerate modes for the repre-
sentations Eg and Eu. The modal functions on different faces
are the same up to phase factors of e±2πi/3. Both pictures
show one of the basis function f , g. The other one can be
found using the relation g = −f⋆.

FIG. 10. An alternative representation of the double-
degenerate modes shown in Fig. 9. Each row shows the real
part u and the imaginary parts v, respectively, of f for the Eg

mode (first row) and the Eu mode (second row). The modal
functions look different on the polar faces (the squares at the
top and bottom of the net) and on the equatorial faces (the
squares in the middle row).

Alternatively, one could also present the double-
degenerate modes using the original functions f , g. How-
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A1g cos[2kπx] cos[2ℓπy] + cos[2kπy] cos[2ℓπx] E = 1
2
π2[(2k)2 + (2ℓ)2]

A1u sin[2kπx] sin[2ℓπy]− sin[2kπy] sin[2ℓπx] E = 1
2
π2[(2k)2 + (2ℓ)2]; k, ℓ nonzero and different

A2g cos[(2k + 1)πx] cos[(2ℓ+ 1)πy]− cos[(2ℓ+ 1)πx] cos[(2k + 1)πy] E = 1
2
π2[(2k + 1)2 + (2ℓ+ 1)2]; k and ℓ different

A2u sin[(2k + 1)πx] sin[(2ℓ+ 1)πy] + sin[(2ℓ+ 1)πx] sin[(2k + 1)πy] E = 1
2
π2[(2k + 1)2 + (2ℓ+ 1)2]

Eg φ =

∞∑
k=0

ck cos[(2k + 1)πx] cos
[√

2E − (2k + 1)2π2y
]

with ∂
∂y

(ψ − 2φ)
∣∣∣
y=1/2

= 0, where ψ(x, y) = φ(y, x).

Eu φ =

∞∑
k=0

ck sin[(2k + 1)πx] sin
[√

2E − (2k + 1)2π2y
]

with ψ(x, 1
2
)− 2φ(x, 1

2
) = 0, where ψ(x, y) = −φ(y, x).

T 1g

f =

∞∑
k=0

ck
{
sin[(2k + 1)πx] sin

[√
2E − (2k + 1)2π2 y

]
+sin[(2k + 1)πy] sin

[√
2E − (2k + 1)2π2 x

]} with f(x, 1
2
)− g(x, 1

2
) = 0, ∂

∂y
(f + g)

∣∣∣
y=1/2

= 0

g =

∞∑
k=0

dk sin[(2k + 1)πx] cos
[√

2E − (2k + 1)2π2 y
]

h(x, y) = −g(y, x)

T 1u

f =

∞∑
k=0

ck
{
cos[(2k + 1)πx] cos

[√
2E − (2k + 1)2π2 y

]
− cos[(2k + 1)πy] cos

[√
2E − (2k + 1)2π2 x

]} with f(x, 1
2
) + g(x, 1

2
) = 0, ∂

∂y
(f − g)

∣∣∣
y=1/2

= 0

g =

∞∑
k=0

dk cos[(2k + 1)πx] sin
[√

2E − (2k + 1)2π2 y
]

h(x, y) = g(y, x)

T 2g

f =

∞∑
k=0

ck
{
sin[2kπx] sin

[√
2E − π2k2 y

]
− sin[2kπy] sin

[√
2E − (2k)2π2 x

]} with f(x, 1
2
) + g(x, 1

2
) = 0, ∂

∂y
(f − g)

∣∣∣
y=1/2

= 0

g =

∞∑
k=0

dk sin[2kπx] cos
[√

2E − (2k)2π2 y
]

h(x, y) = g(y, x)

T 2u

f =

∞∑
k=0

ck
{
cos[2kπx] cos

[√
2E − π2k2 y

]
+cos[2kπy] cos

[√
2E − (2k)2π2 x

]} with f(x, 1
2
)− g(x, 1

2
) = 0, ∂

∂y
(f + g)

∣∣∣
y=1/2

= 0

g =

∞∑
k=0

dk cos[2kπx] sin
[√

2E − (2k)2π2 y
]

h(x, y) = −g(y, x)

TABLE II. Table of the modes of the cube corresponding to all irreducible representations of the octahedral group.

ever, a still slightly different mode basis is more useful for
their visual presentation, namely the real and imaginary
parts of the function f that we can denote by u and v,
respectively. The resulting modes have different proper-
ties than f and g themselves. In particular, for each of
u and v there are two types of faces: two mutually op-
posite faces (we will call them “polar faces”) that look
the same, and the remaining four faces (we will call them
“equatorial faces”) that again look the same as one an-
other (up to a possible sign flip) but different than the
polar faces, see Fig. 10. Obviously, one could rotate these
modes around the space diagonals to change the position
of the polar faces without changing the energy of the
state. This way, one can obtain six different states, three
for u and three for v, differing by polar face positions;
still only two of these six states are linearly independent.

Next we proceed to triple-degenerate modes. Their
general character is the same as described above for the
double-degenerate modes u and v, so for each mode f , g

or h there are two polar and four equatorial faces. Unlike
the double-degenerate case, however, now the three pos-
sible choices of polar face positions correspond precisely
to the three linearly independent modes f , g and h.
We will also discuss an interesting question whether

the quantum particle on the surface of the cube exhibits
quantum state revivals. Such revivals are present in a
quantum system if all the energy levels are integer mul-
tiples of some common constant (with an optional global
additive constant) because then after a certain time T
(the revival time), all the modes acquire a phase that is
an integer multiple of 2π, so the initial quantum state is
perfectly recovered. Perfect quantum revivals are present
for a particle in an infinite potential well in the shape of
a square, on a flat torus, on a sphere [11], on the surface
of a tetrahedron [5], on the Möbius strip, Klein’s bottle
and the real projective plane [6], to name some exam-
ples. However, the surface of the cube does not have this
property in general. The energy spectrum, apart from
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the analytically derived non-degenerate levels, does not
follow the above rule, so perfect quantum revivals cannot
be expected. However, the nondegenerate levels alone do
observe the above rule because their energies are inte-
ger multiples of π2 (see Sec. IV or Table II), which gives
the revival time T = 2/π. This way, special wavepackets
on the cube containing only the non-degenerate modes
would exhibit perfect quantum state revivals.

FIG. 11. Examples of triple-degenerate modes. First row:
T1g, T1u. Second row: T2g, T2u. One of the three basis func-
tions f , g, h is shown. The remaining modes g and h from
the same level differ just by polar face positions.
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VIII. GALLERY OF MODES

In Figs. 12—21 we present a gallery of modes, showing a perspective view of the cube. We show the eight lowest
modes for each irreducible representation along with the energy values (exact for the non-degenerate modes and
numerically calculated for the degenerate modes). For the triple-degenerate modes whose polar and equatorial faces
differ, one of the polar faces is at the top. The general properties discused in Sec. VII can clearly be seen.

k = 0, ℓ = 0, E = 0 k = 1, ℓ = 0, E = 2π2 k = 1, ℓ = 1, E = 4π2 k = 2, ℓ = 0, E = 8π2

k = 2, ℓ = 1, E = 10π2 k = 2, ℓ = 2, E = 16π2 k = 3, ℓ = 0, E = 18π2 k = 3, ℓ = 1, E = 20π2

FIG. 12. The first eight modes for the irreducible representation A1g.

IX. CONCLUSION

In conclusion, we have found a simple but power-
ful method for solving the Schrödinger (or equivalently,
Helmholtz) equation on the surface of the cube. Using
the representation matrices of the octahedral group, we
were able to break down the problem into 10 different
cases, corresponding to the 10 irreducible representations
of the group, and we obtained appropriate boundary con-
ditions that enable us to reduce the solution to just 1/8
of one face. Then, it was sufficient to solve a boundary
problem on a planar region, namely a square, as opposed
to a complicated manifold like the surface of the cube.

In the case of one-dimensional representations, we have
obtained analytic expressions for the modes and their en-
ergies. In the other cases, we have been able to express
the modes semi-analytically, in the form of a sum with
unknown coefficients that need to be found numerically.
We have developed a computer procedure for performing
this task, allowing us to calculate as many modes and
their energies as required, with a good degree of accu-

racy. The expressions for the modes belonging to all rep-
resentations were summarized in Table II, and a gallery
of modes was presented in Sec. VIII.

We have also shown that a general quantum
wavepacket on the cube does not exhibit perfect quan-
tum revivals; only specially prepared states do.

Finally, we note that the method developed here is
very general and it may be used for studying the modes
of different polyhedra as well. Its success depends only
on one’s ability to solve the Helmholtz equation on the
corresponding planar fundamental domain. For instance,
it could be used to find at least some modes of the oc-
tahedron and the icosahedron, since they consist of equi-
lateral triangles, and solutions of Helmholtz equation on
an equilateral triangle are known.

Our procedure may be adapted to the approach fol-
lowed by da Costa [4] of restricting the 3D quantum
mechanical problem to the 2D surface, as mentioned in
the Introduction. There, an additional term would ap-
pear in the Schrödinger equation that contains the mean
and Gauss curvatures. This would result in appearance
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k = 2, ℓ = 1, E = 10π2 k = 3, ℓ = 1, E = 20π2 k = 3, ℓ = 2, E = 26π2 k = 4, ℓ = 1, E = 34π2

k = 4, ℓ = 2, E = 40π2 k = 4, ℓ = 3, E = 50π2 k = 5, ℓ = 1, E = 52π2 k = 5, ℓ = 2, E = 58π2

FIG. 13. The first eight modes for the irreducible representation A1u.

of negative Dirac δ-potentials on the cube edges, which
would cause jumps of the normal derivatives of the wave-
function when going from one cube face to another, and
complicate the boundary conditions slightly. However,
the mathematical structure of the problem would essen-
tially remain the same, in particular the hierarchy of the
solutions and their degeneracies steming from the irre-
ducible representations of the octahedral group. More-
over, the modes corresponding to the irreducible repre-
sentations A1u and A2g would be the same as described
in this paper because they are zero on the cube edges, so
they would not be altered by the additional delta poten-
tial on the edges. Analysis of the remaining modes will
be subject of future research.

Appendix A: Numerical calculation of coefficients
in Eqs. (7), (8), (9) and (11)

In this Appendix, we give a more detailed explanation
of the numerical procedure we employed to find the en-
ergies and modes for the degenerate cases.

For concreteness, let us consider the two-dimensional
representation Eg. We have obtained a series for the basis
functions φ and ψ; φ is given by Eq. (7), and ψ is related
to it as ψ(x, y) = φ(x, y). The series contains unknown
coefficients ck and the unknown energy E. To find them,

we employ the boundary condition ∂
∂y (ψ − 2φ)

∣∣∣
y=1/2

=

0. Plugging in the series representations, we rewrite this

condition as
∑∞
k=0 ckgk(x;E) = 0 for all x ∈ [0, 1], where

gk(x;E) = −(−1)k(2k + 1)π cos
[√

2E − (2k + 1)2π2 x
]

+ 2
√

2E − (2k + 1)2π2 sin

√
2E − (2k + 1)2π2

2

× cos [(2k + 1)πx] . (A.1)

This is effectively a homogeneous linear system for ck.
For almost all values of E, the gk will be linearly inde-
pendent and there will only be a zero trivial solution.
Hence, we must search for E for which the gk are depen-
dent.

Such a search is most easily performed if the functions
gk(x) are expanded in a suitable basis. In that case, gk
can be replaced by a vector of its coefficients, and the
problem is reduced to establishing linear dependence of
vectors with numerical entries. To find a good basis,

we notice that ∂ψ
∂y

∣∣∣
y=1/2

is a series in cos[(2k + 1)πx],

and that 2 ∂φ
∂y

∣∣∣
y=1/2

must be equal to it, so ∂φ
∂y

∣∣∣
y=1/2

must also be expandable into a series of this form. Hence∑
ckgk can be expanded like this too. Furthermore, the

functions 2 cos[(2k+1)πx] are orthonormal on the inter-

val [0, 1/2] with respect to the inner product
∫ 1/2

0
f⋆g dx,

so they form the basis we are looking for. All of this
makes it reasonable to expect that gk can be written as
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k = 0, ℓ = 0, E = π2 k = 1, ℓ = 0, E = 5π2 k = 2, ℓ = 0, E = 13π2 k = 2, ℓ = 1, E = 17π2

k = 3, ℓ = 0, E = 25π2 k = 3, ℓ = 1, E = 29π2 k = 3, ℓ = 2, E = 37π2 k = 4, ℓ = 0, E = 41π2

FIG. 14. The first eight modes for the irreducible representation A2g.

∑∞
n=0Gkn cos[(2n+ 1)πx], where

Gkn = 4

∫ 1
2

0

gk(x;E) cos[(2n+ 1)πx] dx. (A.2)

This means that each gk can be represented by an (infi-
nite) vector of its coefficients Gkn. The energies are now
determined as the values of E that make the (infinite)
set of vectors Gkn linearly dependent.

In practice, it turns out that we can truncate this infi-
nite system and still get good results. This is because in
most of the gk, the cos

√
(· · · )x will in fact turn into a

cosh as discussed in Sec. V, producing evanescent terms.
In other words, the “superoscillatory” behavior of the
term in the y direction will be compensated by its ex-
ponential behavior in the x direction. However, with an
increasing “evanescent wavenumber” the derivative picks
up a factor corresponding to the wavenumber, so the
evanescent terms have to decrease quickly, and usually
truncating the series after just three evanescent terms
gives excellent results.

We further proceed in this fashion: we break the posi-
tive half-line [0,∞) of energies E into smaller intervals, so
that on each of them, the number of terms with ordinary
(not hyperbolic) cosines in the expansions of φ and ψ is
constant, i. e. (0, π2/2), (π2/2, 9π2/2), (9π2/2, 25π2/2)
etc. Each of these intervals is then processed separately:
we truncate the expansion of gk so that it contains all the
ordinary cosines, and the given constant number (in our

case, three) of the hyperbolic cosines (evanescent terms).
Then we calculate the same number of coefficients Gkn
for each gk. This yields a square matrix Gkn whose co-
efficients depend only on the energy.
Now we must find the values of E in the given interval

for which the truncated matrix Gkn is close to having
less than full rank. To this end, we employ the singular
value decomposition: we numerically find the least sin-
gular value of Gkn for many energies in the interval and
look for local minima. The neighborhoods of such min-
ima are then searched again in a more fine manner, and
this refinement is repeated several times. The resulting
positions of the local minima are the required energies,
and the corresponding singular vectors give the coeffi-
cients ck that can be used to construct the mode. This
is repeated for as many intervals as we please.
The modes and energies of all other representations can

be found in the same manner. In each of the other cases,
the expansions are slightly different, but the process it-
self remains the same. The biggest difference occurs for
the triple-degenerate modes where there are two sets of
coefficients (ck that characterize the function f , and dk
that do the same for the function g) and two conditions
instead of one. However, we can still expand both func-
tions to the same number of terms N , which gives 2N
unknown coefficients, and similarly, both conditions can
be Fourier-expanded to N terms, which gives 2N equa-
tions. The solution mechanism remains the same, apart
from the fact that the matrices have bigger dimensions.
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k = 0, ℓ = 0, E = π2 k = 1, ℓ = 0, E = 5π2 k = 1, ℓ = 1, E = 9π2 k = 2, ℓ = 0, E = 13π2

k = 2, ℓ = 1, E = 17π2 k = 2, ℓ = 2, E = 25π2 k = 3, ℓ = 0, E = 25π2 k = 3, ℓ = 1, E = 29π2

FIG. 15. The first eight modes for the irreducible representation A2u.
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E ≈ 7.111 E ≈ 22.88 E ≈ 46.60 E ≈ 71.40

E ≈ 83.59 E ≈ 113.9 E ≈ 126.5 E ≈ 151.6

FIG. 16. The first eight modes for the irreducible representation Eg. A vortex is formed at each cube vertex.

E ≈ 30.39 E ≈ 59.04 E ≈ 89.89 E ≈ 130.7

E ≈ 143.1 E ≈ 184.6 E ≈ 194.7 E ≈ 231.0

FIG. 17. The first eight modes for the irreducible representation Eu. A vortex is formed at each cube vertex.



14

E ≈ 5.750 E ≈ 18.84 E ≈ 39.87 E ≈ 47.93

E ≈ 66.61 E ≈ 73.57 E ≈ 107.0 E ≈ 113.1

FIG. 18. The first eight modes for the irreducible representation T1g.

E ≈ 13.36 E ≈ 34.69 E ≈ 56.23 E ≈ 65.12

E ≈ 91.24 E ≈ 104.3 E ≈ 133.3 E ≈ 142.7

FIG. 19. The first eight modes for the irreducible representation T1u.
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E ≈ 22.47 E ≈ 43.13 E ≈ 76.28 E ≈ 82.91

E ≈ 107.1 E ≈ 119.8 E ≈ 158.4 E ≈ 168.4

FIG. 20. The first eight modes for the irreducible representation T2g.

E ≈ 2.082 E ≈ 12.85 E ≈ 27.95 E ≈ 32.84

E ≈ 54.49 E ≈ 62.83 E ≈ 83.40 E ≈ 94.97

FIG. 21. The first eight modes for the irreducible representation T2u. The wavefunction on the bottom polar face (unseen) is
the negative of the one on the upper polar face.


