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Memory effect assisted imaging through
multimode optical fibres
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When light propagates through opaque material, the spatial information it holds becomes

scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this

information: methods relying on optical memory effects, and transmission matrix (TM)

approaches. Here we develop a general framework describing the nature of memory effects in

structures of arbitrary geometry. We show how this framework, when combined with

wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any

such system. This highlights that guide-star assisted imaging is possible regardless of the

type of memory effect a scatterer exhibits. We apply this concept to multimode fibres

(MMFs) and identify a ‘quasi-radial’ memory effect. This allows the TM of an MMF to be

approximated from only one end - an important step for micro-endoscopy. Our work

broadens the applications of memory effects to a range of novel imaging and optical com-

munication scenarios.
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Coherent images are encoded in spatial light modes: pat-
terns in the intensity and phase of light. When these
patterns propagate through an opaque scattering material,

such as frosted glass, a multimode optical fibre (MMF), or bio-
logical tissue, they distort and fragment, and the spatial infor-
mation they carry becomes scrambled. This corrupts the
formation of images of objects hidden behind or inside turbid
media. In the last decade or so, a series of pioneering studies have
demonstrated how digital light shaping technology can be used to
measure and reverse scattering effects - unscrambling the light
back to the state it was in before it entered the medium1–4. These
techniques take advantage of the linear (in electric field) and
deterministic nature of the scattering, and have enabled focussing
and imaging through scattering systems5–9. At the heart of this
capability lies the transmission matrix (TM) concept, which
describes the scattering as a linear operation relating a set of input
spatial light modes incident on one side of the scatterer, to a new
set of output modes leaving on the opposite side3. Once the TM
of a scatterer has been measured, it tells us what input field is
required to create an arbitrary output field, and thus permits the
transmission of images through the scatterer. However, mea-
surement of the TM typically requires full optical access to both
sides of the scatterer - impossible when the image plane is, for
example, embedded in living tissue.

To overcome this limitation and look inside scattering envir-
onments, a useful suite of tools has emerged in the form of optical
memory effects: the presence of underlying correlations between
the incident and transmitted fields10–13. These hidden correla-
tions have been extensively studied in thin randomly scattering
layers which have direct applications to imaging through biolo-
gical tissue. In this case tilting10, shifting12, spectral14 and
temporal15 correlations have been revealed. The tilt and shift
memory effects are related to correlations in the Fourier-space or
real-space TM of a scatterer - and have enabled extraction of
subsets of the TM which can be used to image over small areas
inside scattering systems.

In parallel with these advances, TM approaches have also
spurred the development of alternative methods of seeing into
tissue much more deeply, albeit invasively, by guiding light along
narrow waveguides. These techniques use MMFs to achieve high-
resolution imaging at the tip of a needle - acting as ultra-low
footprint endoscopes. Modal dispersion scrambles coherent
optical signals transmitted through MMFs, and so before they can
be deployed in scanning imaging systems, their TM must also
first be measured. MMF based micro-endoscopy has great
potential for deep tissue imaging, as indicated by a swathe of
recent successes16–19, yet a major challenge holding back broader
uptake of this technique is the fragility of the TM used to control
the optical field at the distal (far) facet. After TM calibration,
which as described above conventionally requires access to both
ends of the fibre, the MMF must be held completely static, as even
small perturbations in fibre configuration (e.g., bends or twists) or
temperature de-phase the propagating fibre modes, severely
reducing the contrast of focussed spots at the distal facet, and the
fidelity of the reconstructed images. Flexible operation of micro-
endoscopic imaging systems based on current optical fibre tech-
nology require a TM characterisation method that can be rapidly
performed on the fibre in-situ, with access only at the proximal
(near) end.

Here we develop a general framework describing how mono-
chromatic memory effects arise in samples of arbitrary geometry,
and apply it to the MMF case. We show that deployment of a
guide-star located on the distal facet of an MMF (and capable of
reporting its local field intensity to the proximal end), combined
with an estimate of the basis in which the TM is close to diagonal,
provides a way to approximate the TM of, and thus image

through, optical fibres. Crucially, this approach only requires
access to the proximal end of the MMF: offering a route to in-situ
TM calibration of flexible micro-endoscopic imaging systems.
More generally, the concept we describe here enables guide-star
based scanning imaging to be performed through scattering
systems of any geometry, without invoking conventional shift or
tilt memory effects, as long as we have an estimate of the basis in
which the TM is quasi-diagonal. Our work broadens the appli-
cations of memory effects beyond thin randomly scattering layers
to a range of novel imaging and optical communication scenarios.

Results
The memory effect in an arbitrary basis. We start by describing
the emergence of memory effects in optical systems of arbitrary
geometry. These systems may encompass, for example, the well-
understood case of thin scattering layers, but also networks of
wave-guides, or any other linear optical system through which
light is transmitted. We assume that we know the geometry of the
object before us - for example a thin scattering layer, or an optical
fibre - but we do not have detailed knowledge of its scattering
properties - for example we do not know the spatial function of
the refractive index throughout a layer, or the length or bend
configuration of a fibre. Given this level of prior information, we
describe when and how optical memory effects may be used to
achieve imaging.

In the general case, our aim is to image through a scattering
system that has an unknown monochromatic TM, T. As a first
step, let’s assume that the geometry of the system reveals enough
information for us to estimate a basis in which T is approximately
diagonal, i.e., T=UDU−1, where we know matrix U−1 which
allows us to transform to the quasi-diagonal basis from knowl-
edge of the field in real-space. We assume that D is quasi-
diagonal (i.e., it has a significant proportion of its power
concentrated on the diagonal), but we have no knowledge of
the complex elements of D. We consider the following questions:
is advance knowledge of a basis in which the TM of a scatterer is
quasi-diagonal enough information to (i) predict a memory effect
in, and (ii) image through, the system?

The memory effect occurs when a given modulation (i.e.,
transformation) of the field incident onto a scatterer modifies the
output field in a deterministic way - for example, creating a lateral
displacement of the output field. To explore this idea in a general
basis, we express the input field as a column vector u, which holds
the complex coefficients of the input field in real-space. Incident
field u is transformed into an output field v= Tu via propagation
through a scatterer. We consider a modulation of the incident
field in the form u0 ¼ Ou ¼ UMU�1u, where M is a diagonal
matrix. After such a modulation, the output field v is changed to
v0, which can be written as

v0 ¼ Tu0 ¼ UDMU�1u: ð1Þ

Given that M is exactly diagonal, and D is close to diagonal, the
two matrices will commute with an error [D,M] that is due to the
off-diagonal elements of D, i.e., DM=MD+ [D,M]. As D
becomes closer to diagonal this error will reduce, becoming zero
in the limit of an exactly diagonal matrix. We therefore rewrite
Eq. (1) as

v0 ¼ UMDU�1uþ UðDM�MDÞU�1u

¼ OTuþ U D;M½ �U�1u;
ð2Þ

which shows that for input transformations of the form O=
UMU−1, the output field undergoes the same transformation
with an error η=U[D,M]U−1u. In more condensed notation,
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Eq. (2) is

v0 ¼ Ov þ η � Ov: ð3Þ
Equation (3) describes a general form of the memory effect. In
answer to our first question (i), Eq. (3) tells us that without
knowing anything about the elements of the quasi-diagonal
matrix D, we can deterministically modify the field transmitted
through a scattering system. The basis in which the TM is
diagonal is linked to the form of the field modification, i.e.,
memory effect, that is possible. This highlights the existence of an
infinite family of memory effects operating in scattering systems
of different geometries, each requiring its own unique but
predictable set of transformations on input fields, with a
deterministic transformation of the output that is not, in general,
a translation of the field. We now focus on some special cases,
and highlight when imaging is possible using these memory
effects.

Memory effect based imaging through scattering systems. We
first consider the well-known tilt–tilt memory effect10,11. In a thin
randomly scattering layer, multiple scattering is governed at a
statistical level by a diffusion process, meaning that light focussed
to a given lateral position on the input will only diffuse locally to
nearby lateral positions at the output. In this case our assumption
is that U= I, the identity matrix, i.e., the monochromatic TM is
quasi-diagonal in the position basis (and equivalently exhibits
diagonal correlations in the Fourier basis12). Our transformation
O is thus also diagonal in the position basis: O= IMI=M. This
means that any spatially varying phase change applied to the
input field, is also applied to the output field. More specifically, a
tilt of the input beam results in a tilt of the output beam, in which
case the diagonal elements of M correspond to a phase ramp
modulation given byM ¼ diag ½eiðδkxxþδkyyÞ�, where diag[d] places
vector d on the main diagonal of a square zero matrix, x and y are
vectors specifying the x and y coordinates of each pixel on the
input plane, and δkx and δky specify the desired change in x- and
y-components of the wave-vector normal to the tilted wavefront.

Tilting of the output beam is not in itself useful to image the
output plane of the sample. However, in the far-field of the
output, this tilt corresponds to a lateral shift, and so unknown
speckle patterns can be controllably translated in the far-field.
Bertolotti et al.20 showed that imaging is then possible from the
input side by measuring the fluorescent intensity excited by these
unknown patterns as they are scanned in two dimensions. This
procedure yields the amplitudes of the Fourier components of the
image, but not the phases of these Fourier components. Despite
this missing information, a diffraction limited image of an object
in the far-field can be estimated using a phase retrieval algorithm
with appropriate constraints21.

Next we consider how the more recently discovered shift–shift
memory effect appears in our general framework12. The
shift–shift memory effect occurs for some anisotropic disordered
materials, assuming that the scatterer has a thickness less than the
transport mean-free-path (TMFP) of the system. The TMFP is
the average length over which scattering randomises the photon
direction (wave-vector). This means that we expect only small
changes in the angular deviation of rays from input to output, and
so assume the TM of the scatterer to be quasi-diagonal when
represented in the two dimensional Fourier basis U= F−1. In this
case a transformation O= F−1MF of the input beam leads to
approximately the same transformation of the output beam.
Again choosing a phase ramp along the diagonal of M, O
becomes a spatial shift operator, and so lateral displacement of
the input beam results in a corresponding shift of the output
beam, i.e., M ¼ diag ½e�iðkxδxþkyδyÞ�, where kx and ky are vectors

specifying the x- and y-components of the wave-vectors arriving
at the input plane, and δx and δy specify the desired lateral shift of
the input . Equivalently the TM exhibits diagonal correlations in
real-space12. In this case, imaging in the near-field of the output is
theoretically possible by once again scanning unknown speckle
patterns in 2D and performing phase retrieval20. We note that the
shift–shift and tilt–tilt memory effects are Fourier duals of each
other, one moving the field, the other re-directing it. As a Fourier
transform and its inverse contain factors of exp(−ikx) and exp
(+ikx) respectively, then the applied phases in the two memory
effects must similarly differ by a minus sign.

The addition of a ‘guide-star’ embedded in the scatterer
provides more information, and so improves the memory effect
based imaging that is possible: yielding images with higher a
signal-to-noise ratio (SNR), and without the need for phase-
retrieval. First implemented in astronomy to correct for atmo-
spheric turbulence22, a guide-star is a point within the scatterer
capable of signalling the intensity of its local field to the outside
world. For use in microscopy, guide-stars have been created from
highly reflective embedded particles23, or via a range of
alternative methods exploiting, for example, fluorescent24,
magnetic25, movement-based26, photo-acoustic27, or acousto-
optic28 properties. The input field required to focus on a guide-
star, ugs, can be calculated by phase conjugation of a field
emanating from the guide-star2, or by phase stepping
holography4. ugs constitutes a single column of the inverse of
the TM of the scatterer, T−1 (with the output discretised in the
real-space ‘pixel’ basis). In cases where the TM is unitary (or at
least approximately so), T−1= T†, and knowledge of ugs is
equivalent to knowing one row of the TM29.

Memory effects that laterally shift the output field (such as the
tilt and shift memory effects) can be understood to arise from the
existence of correlations in the real-space TM of the scatterer (or
its Fourier transform), so that measuring one row of the TM also
provides information about other rows12. Therefore once ugs is
found and a focus formed on the guide-star, these shift memory
effects can be exploited to controllably scan the focus over a local
area around the guide-star, known as the isoplanatic patch. The
size of the isoplanatic patch is governed by the distance over
which the output field can be translated before it de-correlates
(i.e., the degree to which the approximation in Eq. (3) holds).
This strategy has been used to create scanning imaging systems
inside randomly scattering samples by a suitable combination of
tilting and/or lateral translation of the input wavefront30,31.
Therefore, in an initial answer to our second question (ii), so far it
has been shown that diffraction limited imaging is possible using
the shift–shift and tilt–tilt memory effects, which are capable of
laterally translating the output field in two dimensions.

Rotational and radial memory effects in multimode fibres. We
now consider the emergence of memory effects in other geome-
tries, and examine an MMF as a key example. The near cylind-
rical symmetry of MMFs leads to the prediction of a basis in
which the TM is approximately diagonal. For example, solving
the wave equation in an idealised straight section of step index
fibre at a single wavelength results in a set of orthogonal circularly
polarised eigenmodes that maintain a constant spatial profile and
polarisation on propagation32. Here, following work by Plöschner
et al.33, we refer to these modes as propagation invariant modes
(PIMs). Even though real optical fibres differ from this idealised
case, it was recently shown in ref. 33 that the TM of a short length
of step index MMF is relatively diagonal when represented in the
PIM basis.

Following our general framework, in this case U= P, the
matrix transforming from the PIM basis to real-space, and so the
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TM of an MMF can be factorised according to T= PDP†, where
as before D is quasi-diagonal, and here we have used the
conjugate transpose P† in place of the inverse P−1 under
the assumption that P is sufficiently oversampled in real-space
such that P†P∝ I. (This is because the fibre modes are continuous
functions of position, and orthonormal with respect to an integral
over all space. Therefore as the sampling in real space is
increased, the matrix multiplication P†P becomes an increasingly
better approximation to the set of mode overlap integrals, and
therefore ever closer to the form of the identity matrix). Figure 1a
shows a simulated low-dimensional example of these matrices for
an MMF that supports 42 modes per polarisation at a wavelength

of 633 nm. Circularly polarised PIMs are specified by an
azimuthal and radial index, ℓ and p respectively. For a step index
fibre of radius a, the transverse field of ψℓ,p, in cylindrical
coordinates (denoted by radial position r and azimuthal position
θ), is given by

ψ‘;p r; θð Þ ¼ N‘;pe
i‘θ

J ‘ðu‘;pr=aÞ=J ‘ðu‘;pÞ for r < a

K‘ðω‘;pr=aÞ=K‘ðω‘;pÞ for r ≥ a;

(
ð4Þ

where Nℓ,p is a normalisation constant ensuring each mode has a
total intensity equal to 1, J ‘ is a Bessel function of the first kind
of order ℓ, and K‘ is a modified Bessel function of the second kind

Fig. 1 Field transformations through multimode fibres. a The TM of an ideal MMF may be factorised into the product of three matrices. Shown is a low-
dimensional example of these matrices for an MMF that supports 42 modes per polarisation at a wavelength of 633 nm. The scale-bar (shown at the
bottom of the figure) indicates the amplitude (encoded in the brightness) and phase (encoded in the colour) of each complex matrix element. When real-
space pixels are ordered outwards along an Archimedes spiral (example shown inset), translational correlations in the real-space TM are highlighted, i.e., a
single row is similar to a spatially shifted copy of adjacent rows. b An example of a proximal field ugs required to form a focus (shown in green in (c)) onto a
guide-star at the edge of the distal facet of an ideal fibre (position of guide-star indicated by a red circle). The scale-bar representing the complex value of
the electric field at the proximal and distal facets is the same as described in (a). Due to the rotational memory effect, by rotating the input field around the
fibre axis (d) the output field is rotated by the same angle, moving the focus azimuthally (e). Using knowledge of ugs and P enables estimation of the TM of
the system, and prediction of the proximal field (f) required to radially translate the focus (g). These simulations model an ideal fibre supporting 754
modes per polarisation at a wavelength of 633 nm—this mode capacity is used for all simulations throughout the rest of the paper.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23729-1

4 NATURE COMMUNICATIONS |         (2021) 12:3751 | https://doi.org/10.1038/s41467-021-23729-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


of order ℓ. uℓ,p and ωℓ,p are normalised transverse wave-numbers
of each PIM in the core and cladding respectively, which may be
found from the roots of the characteristic equation describing the
parameters of the fibre (see ref. 32 and Methods for more details).
ℓ, the vortex charge, is proportional to the amount of orbital
angular momentum (OAM) carried by the PIM, which is
characterised by a helical wavefront that accrues a phase change
of 2πℓ around one circuit of the fibre axis34.

Equation (3) leads to an input modulation of O= PMP†,
which tells us that phase changes imparted to individual PIMs at
the input of the fibre are preserved at the output. Applying a
phase ramp modulation linearly proportional to azimuthal mode
index ℓ, i.e., M= diag[e−iℓδϕ], is equivalent to rotating the input
field around the fibre axis by an angle δϕ. Here ℓ is a vector
specifying the vortex charge of each PIM. As these ℓ-dependent
phase changes are preserved through the fibre, the output field is
also rotated by δϕ, as shown in Fig. 1b–e. This effect is already
well-known, and coined the rotational memory effect35. Our
general framework tells us that it is a rotational analogue of the
shift-shift memory effect: the angular dependence of the MMF
TM is quasi-diagonal in the 1D cylindrical Fourier basis (i.e., the
OAM basis), and therefore an angular shift of the input field leads
to an angular shift of the output field. Figure 1a shows the
corresponding diagonal correlations in the real-space TM, when
the real-space pixels are ordered along, for example, an
Archimedes spiral, winding out from the central axis of the fibre
(see spiral inset in Fig. 1).

We might wonder whether there is a corresponding effect
where we can displace the output field from the fibre in a radial
direction. Equation (3) highlights that the form of any memory
effect based field transformation is intrinsically linked to the basis
in which the TM is diagonal. As shown in all cases above, a
displacement operation at the output is diagonalized in the
Fourier basis. Therefore, without knowledge of the TM, any
lateral displacement of the unknown output field is only possible
in systems where the TM is quasi-diagonal in the Fourier basis.
The radial dependence of the MMF TM is not quasi-diagonal in
the Fourier basis. This means that a ‘radially–shifting’ memory
effect, that serves to translate the entire output field of an MMF
radially, does not occur—and in any case, such translations would
be ill-defined at the fibre axis and core-cladding interface. In
Supplementary Note 1, we explore the disruption of shifting
memory effects in MMFs in more detail. We show how the
presence of the fibre edges—the core-cladding interface—breaks
the translational symmetry thus disrupting the equivalent of the
2D shift-shift memory effect in MMFs.

Despite this, modulations that operate on the field in the radial
direction do exist. For example, consider the effect of a
modulation based on the radial mode index p on the input
beam: M= diag[eipδρ], i.e., a phase ramp linearly proportional to
p, where vector p holds the radial index of each PIM, and where
δρ= πδr/a, and δr is radial distance across the fibre facet. Such a
modulation may be viewed as a ‘quasi-radial’ memory effect:
although as described above, it can’t enable a simple translation of
the distal field.

Figure 2 shows the behaviour of the quasi–radial memory
effect. Intriguingly, if the output field is concentrated to a
diffraction limited spot centred on the fibre axis, then the above
modulation on the input field does indeed correspond to a radial
shift of this point—i.e., it is transformed into a ring of intensity of
radius δr (see Fig. 2a). However, output fields corresponding to
diffraction limited points at other radii on the distal facet show a
variety of different transformations, depending on the radial
coordinate of the point (see Fig. 2b–d). We emphasise that all of
these output transforms can be achieved using the same input
modulation, regardless of the length of the fibre. This tells us that

if the field is localised to a diffraction limited spot anywhere on
the distal facet, the intensity pattern can be deterministically
transformed—with a fidelity governed once again by how well the
approximation in Eq. (3) holds.

In Supplementary Note 2 we investigate two other quasi-radial
memory effects: Firstly we show that if the position of the initial
focussed spot is known, then this information enables a phase-
only modulation linearly proportional to the radial component of
the wave-vectors composing the modes, kr, to be applied - which
is capable of moving the spot with less distortion than shown in
Fig. 2 (although still not perfectly). Secondly we show that a
modulation of the form M ¼ diag ½cosðu‘;pr=aÞ� enables a point
to be radially expanded about its initial position, wherever that
may be on the distal facet. Yet for an arbitrary speckled output
beam, these radially varying transformations all interfere in a way
that cannot be predicted without knowledge of the amplitudes
and phases of the original distal speckle field - which itself
requires knowledge of the entire TM.

Guide-star assisted imaging through MMFs. The lack of a true
‘radially–shifting’ memory effect has implications for imaging
through uncalibrated MMFs. As scanning of unknown speckle
patterns is only permitted in 1D (azimuthally), then there is no
way to perform imaging based on 2D scanning of these speckle
patterns as in ref. 20. However, provided we know how to focus
the field at the output to a point, the existence of the quasi-radial
memory effects suggests a form of ghost imaging might be pos-
sible. For example, a sequence of known intensity patterns could
be projected to the distal end of the fibre using the rotational and
quasi-radial memory effects, and their level of overlap with the
distal scene recorded back at the proximal end by measuring
the total intensity of the return signal, allowing an image to be
computationally reconstructed36,37. Although this idea holds
promise, we now show that it is possible to do even better, and
use the information held in matrix P (i.e., knowledge of the basis
in which the TM is quasi-diagonal), to scan a well-defined focus
around a guide-star in both azimuthal and radial directions. This
opens up a 2D isoplanatic patch at the output of the fibre, within
which scanning imaging is possible.

We imagine placing a single guide-star, such as a fluorescent
particle, at the distal facet of the fibre (see the red circle on the
fibre schematic in Fig. 1). The proximal field that will focus onto
the guide-star, ugs, can be measured using phase stepping
holography, with access only to the proximal end, as described
in, for example, ref. 4, or in a single shot using phase
conjugation2.

So far, guided by Eq. (3), we have restricted ourselves to
transforms on the input field of a particular form O=UMU−1.
We now relax this and consider more general transformations of
the input field to achieve a radial shift in the position of a
focussed spot on the distal facet. To accomplish output field
modulations beyond what is possible with conventional memory
effects alone (such as in this case), knowledge of the full TM of
the scatterer is required - see Supplementary Note 1 for more
discussion. Fortunately, it is indeed possible to obtain an estimate
of the TM using the information at our disposal. In the case of an
MMF, we can make the assumption that the TM is unitary (i.e.,
power loss is minimal). We also assume the real fibre’s TM to be
perfectly diagonal in the PIM basis. Under these assumptions, we
can now find D0, a diagonal approximation to the true quasi-
diagonal TM D. To proceed, we show that the measurements on
the guide-star reveal the phase delay of each PIM due to
propagation through the MMF. This phase information can then
be used to populate the complex elements along the main
diagonal of D0, while setting all off-diagonal elements to zero.
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More specifically, the defining equation for the input field ugs

that focuses onto a guide-star is

Tugs ¼ PDPyugs ¼ vm0 ; ð5Þ
where we denote the output field focussed onto the guide-star as
vm0 , which has all elements equal to zero except for one at the
spatial point corresponding to the location of the guide-star,
indexed by m0. Substituting the perfectly diagonal approximation
D0 that we wish to find in place of the real quasi-diagonal TM D,
and multiplying both sides of Eq. (5) by the adjoint of P then
gives D0Pyugs ¼ Pyvm0 . Our assumption of the unitarity of the
fibre TM means that the elements of the diagonal matrix D0 only
vary by their phase term, i.e., the nth element D0

nn ¼ expðiϕnÞ.
Therefore we can also re-write the defining equation for ugs as

eiϕn ∑
m
Py
nmu

gs
m ¼ Py

n;m0
: ð6Þ

If we can estimate the PIM basis P and we know the input field
ugs that focuses onto the guide-star at m0, we can estimate the
phases on the diagonal of D0 by rearranging Eq. (6) for eiϕn ,
yielding

D0
nn ¼ eiϕn ¼ eiðσn�γnÞ; ð7Þ

where the two contributions to the phase are given by

σn ¼ arg Py
nm0

h i
; ð8Þ

γn ¼ arg ∑
m
Py
nmu

gs
m

� �
: ð9Þ

Here γn is the phase delay mode n picks up on propagation
through the fibre, and σn is a mode dependent phase correction
term, equal to the relative phase required for each PIM to
constructively interfere at the lateral location of the guide-star if it
were positioned at the proximal end of the MMF. The intuition

behind σn is to ensure that we incorporate only the phase delay
due to the scatterer into the estimated TM, and remove any
apparent phase delay associated purely due to the choice of
diagonal basis. The Approximate Transmission Matrix (ATM) of
the MMF in the real-space basis is then given by T0 ¼ PD0Py. The
ATM can now be used to predict the proximal field modulations
required to move the focus both azimuthally and radially (see
Fig. 1f, g). Evidently, as will be shown later, knowledge of the
ATM gives more general control over the output field than simply
shifting the position of a focus.

The fidelity of the ATM will clearly depend upon how well we
can estimate the basis in which the TM is diagonal (i.e., the
validity of the approximation in Eq. (3)). Figure 3 shows
simulations of the imaging performance through an MMF as
our ability to accurately estimate the diagonal basis is compro-
mised. We simulate the measurement of ugs using a guide-star
placed at the core-cladding boundary (marked by a red circle in
Fig. 3), and construct the ATM. See Methods for a detailed
description of these simulations, which capture how power is
spread away from the diagonal of the TM in a realistic manner.
Figure 3a–f shows the power-ratio pr - the ratio of power focussed
into a target spot using the ATM compared to total power
transmitted to the distal facet, as pd, the percentage of power on
the main diagonal of the real TM D, decreases. Each panel maps
how the power-ratio varies over the distal facet - capturing the
size and shape of the isoplanatic patch. We see that the error in
the ATM T0 is non-uniformly distributed over its columns—
meaning that columns representing points close to the guide-star
are well captured, while the errors in columns representing points
further away grow with distance from the guide-star. This results
in an isoplanatic patch that gradually collapses around the
location of the guide-star as pd reduces. Figure 3g–l shows
simulations of the guide-star based imaging performance,
indicative of the spatial variation in contrast and resolution in

Fig. 2 The quasi-radial memory effect in MMFs. Each row shows simulations of a sequence of distal intensity patterns obtained by applying an input
modulation O= PMP−1 using M= diag[eipδρ], for increasing δρ, where the initial distal field (left most panel) is a diffraction limited spot at four different
radial coordinates: on the fibre axis (a), just off fibre axis (b), midway between fibre axis and core-cladding boundary (c), and near core-cladding boundary
(d). The scale-bar indicates the relative intensity within each panel. We see a variety of different predominantly radial transformations take place. We
emphasise that all of these transformations are independent of the length of the fibre (i.e., independent of the complex values of the elements of D). We
also note that if the initial spot position is rotated about the fibre axis, so are these output fields, by virtue of the rotational memory effect35.
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each case. Here imaging across the entire facet appears to be
disrupted once pd falls below ~25%.

We now consider the factors that govern the area of the
isoplanatic patch at the distal facet of the MMF. The angular
extent of the tilt–tilt memory effect, α, is related to a single
parameter describing the sample: the thickness of the scattering
layer Ls, so that α ~ λ/(2πLs), where λ is the incident
wavelength13. This raises the question of whether it is also
possible to derive a similar equation describing the limits of the
memory effects in MMFs. We start by noting that, as shown in
Fig. 3a, an ideal perfectly straight MMF supports a rotational
memory effect of 2π, and a quasi-radial memory effect of r,
regardless of its numerical aperture, core diameter or length.
However, the size and shape of the isoplanatic patch exhibited by
real MMFs is highly sensitive to a large number of parameters.
These include misalignments of the optical system at the input
and output of the fibre (at least 6-degrees of freedom at each end),
the departure of the cross-sectional refractive index profile of the

fibre from the ideal (or assumed) case, how this profile varies
along the fibre’s length, and the bend configuration of the fibre33.
This renders finding an analytical expression for the extent of
the memory effect in MMFs a challenging task. Nevertheless, the
combined effect of these parameters is to spread power into
the off-diagonal elements of the real TM D, and we find that the
approximate area of the isoplanatic patch, Aiso, is related to the
fraction of power remaining on the diagonal of the actual TM, pd,
according to: Aiso ~ πr2pd. See Methods for a derivation of this
expression and the approximations used. This trend is qualita-
tively apparent in Fig. 3.

Proof of principle experiments. In order to test our concept in
practice, we design an experiment capable of measuring the TM
of a step index MMF at a single circular input and output
polarisation. We study an MMF of NA = 0.22, core diameter =
50 μm, and L ~ 30 cm in length, supporting 754 spatial modes per

Fig. 3 The size and shape of the isoplanatic patch:. a–f Simulated maps of the power-ratio of points focussed to different regions of the distal facet
through non-ideal fibres with quasi-diagonal TM D. The scale-bar indicates the power-ratio across the distal facet. Higher values of the power-ratio indicate
regions on the distal fibre facet where spot scanning can be achieved with greater contrast, leading to higher fidelity imaging. We see that the isoplanatic
patch gradually shrinks around the location of the guide-star (marked by a red circle). Foci are created using ATM D0 calculated from ugs using Eq. (7). pd,
the power on the diagonal of D, decreases from (a) to (f) and is given at bottom of each panel. g–l Simulations of scanning imaging capabilities in each
case. The scale-bar indicates the relative intensity of the reconstructed images.
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polarisation at a wavelength of 633 nm. These dimensions are
chosen as a typical example of an MMF that may find micro-
endoscopic imaging applications. Since the input circular polar-
isation is maintained over propagation through short lengths of
fibre, we sample an orthogonal sub-space of the full TM (i.e., a
single polarisation), which is sufficient for high-contrast imaging
behind the distal end33. The experimental set-up is similar to that
described in ref. 38 and is shown in Fig. 4a. The spatial mode of
input light is controlled using a digital micro-mirror device
(DMD) in the Fourier plane of the proximal fibre facet, and the
distal fibre facet is imaged onto a high-speed camera, along with a
coherent reference beam enabling extraction of the complex field
via phase stepping holography (See Methods and Supplementary
Notes 3 and 4 for more details. Supplementary Note 9 details the
loss throughout the experimental system).

We first fully sample the TM of the MMF at a single
polarisation. Supplementary Movie 1 shows the input probe
fields, and holographically reconstructed output fields during this
measurement. After correcting for coarse misalignments in the
input and output beams following the strategy outlined in ref. 33

(we note this does not require an optimisation procedure), and
transforming to the PIM basis representation, the fully sampled
TM possesses pd ~ 15% of its power on the main diagonal (TM
shown in Fig. 4b). The degree of mode coupling in the TM can
also be quantified by the ratio of L/ℓf, where ℓf is the TMFP in the
fibre mode (PIM) basis, i.e., the estimated length of fibre beyond
which the TM can be considered fully coupled. In this case we

find our experimentally measured TM has a level of mode
coupling consistent with L/ℓf ~ 0.02, a value we estimate by
following the methods given in ref. 39. Therefore, in this
experiment we anticipate a guide-star assisted imaging perfor-
mance equivalent to that predicted in Fig. 3f—i.e., an isoplanatic
patch extending around the guide-star, but not reaching across
the entire output facet of the fibre.

Figure 4c and d shows the experimentally measured power
ratio maps of foci generated at the distal facet of the fibre using
the fully sampled TM 4(c), and a guide-star based ATM (Fig. 4d).
Supplementary Movie 2 shows the focus as it is scanned in 2D
across the isoplanatic patch at the distal facet of the MMF. The
ATM was constructed from data recorded by a single pixel of the
camera imaging the output facet, mimicking the action of a
guide-star. The extent of the isoplanatic patch in Fig. 4d matches
well with Fig. 3f as predicted. Figure 4e–g shows transmission
images of a resolution target using the fully sampled TM.
Figure 4h–j shows the same scenes imaged using the ATM (more
detail of how these images was recorded is given in Methods). As
expected, we see that imaging is possible through a small
isoplanatic patch around the guide-star, and objects outside this
patch are not discernible as we are unable to create a high
contrast focus in these regions. The gradual reduction in
resolution and contrast away from the guide-star is analogous
to the situation found in memory effect based imaging through
thin scattering layers.

Fig. 4 Proof of principle experiments. a Experimental set-up to measure the full TM of an MMF, emulate ATM measurement with a guide-star, and image
through the MMF using the full TM and ATM. HW half wave-plate, QW quarter wave-plate, BS beamsplitter, PBS polarising beamsplitter, SF spatial filter.
Supplementary Note 3 provides a more detailed description of the set-up. b Fully sampled TM of an MMF represented in PIM basis. The scale-bar is the
same as that used in Fig. 1, and here indicates the amplitude (encoded in brightness) and phase (encoded in colour) of each matrix element. Inset shows an
enlarged region of the TM indicating the fine structure around the main diagonal. Supplementary Fig. 4 shows an enlarged plot of this TM. Supplementary
Movie 1 shows the input and output fields used to fully sample the TM, which also visually highlights the symmetries present in the MMF transform. Power
ratio maps of scanned foci using the fully sampled TM (c) and guide-star based ATM (d). The scale-bar indicates the power-ratio across the distal facet.
Guide-star location is marked with a red circle. e–g Example transmission images of a resolution target obtained with the fully sampled TM. The location
where the resolution target is inserted at the distal facet of the fibre is marked with an O. h–j Examples of transmission images of the same scene as (e–g),
in this case obtained with guide-star based ATM. The scale-bar indicates the relative intensity of the reconstructed images. Supplementary Movie 2 shows
the focus being scanned in 2D across the isoplanatic patch at the distal facet of the MMF.
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We note that in these experiments, the object (resolution
target) is positioned ~40 μm away from the distal facet of the
fibre. Therefore, in order to reconstruct an image of the object in
focus, the scanned foci had to be axially refocussed from the distal
facet to the object plane. Due to the cylindrical symmetry of the

fibre, the radial k-vector kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q� �
of input light is

approximately preserved at the output—which is a consequence
of the quasi-diagonal nature of the fibre TM in the PIM basis. As
previously demonstrated in refs. 17,40, refocussing can be achieved
by taking advantage of this symmetry and adding a quadratic
‘lensing’ phase term directly to the field that is generated by the
DMD. We note this input transformation is also related to the
recently reported ‘chromato-axial’ memory effect studied in other
forward scattering media41. Therefore we actually create fields
corresponding to defocussed spots at the distal facet of the fibre,
which then focus onto the resolution target. Despite this increase
in complexity, Fig. 4h–j demonstrates that this refocussing can be
successfully achieved using the ATM, which affords a high level of
control over the field within the isoplanatic patch. Supplementary
Note 5 discusses the refocussing capability in more detail.

In addition to imaging, it is also possible to project patterns
through the MMF into the isoplanatic patch, examples of which
are described in Supplementary Note 6. We also studied the effect
of fibre deformation on guide-star assisted focusing, and found
only a minor reduction in the power-ratio of foci was observed
when the fibre was bent through 90∘ with a radius of curvature of
~10 cm, as described in Supplementary Note 7. This result shows
there is potential for applying single-ended guide-star based TM
calibration to image through flexible MMFs undergoing time
varying deformations. More generally, these refocussing and
pattern projection results show that point-spread-function
engineering should be possible within the isoplanatic patch42.

The location of the guide-star on the distal facet also plays a
key role in determining the accuracy of the ATM, and thus the
size and shape of the isoplanatic patch. Each focus is formed as a
superposition of PIMs which interfere constructively. We can
only measure the phase change of PIMs that have an intensity
profile that overlaps with the guide-star position. Therefore, it is
preferable to choose a guide-star location that overlaps with the
highest number of PIMs. Inspecting the rows of matrix P, which
hold this overlap information, reveals that guide-star locations at
the core-cladding boundary overlap with all of the PIMs -
although we note that some PIMs of index ℓ= 0 will have very
low intensity at the edge of the core as their fields are
concentrated mainly on the fibre axis. Therefore we have chosen
a guide-star positioned at the core-cladding boundary.

It is straight forward to test alternative guide-star positions in
our proof-of-principle experiments—moving the guide-star
simply means choosing a different camera pixel to use for
ATM construction. Figure 5 shows the experimental power ratio
maps for three different choices of guide-star location, along with
the theoretical level of overlap with the PIMs in each case. As
expected, the area of the isoplanatic patch is maximised when the
guide-star is placed on the core-cladding boundary (Fig. 5a),
enabling recovery of most of the diagonal elements of the ATM in
the PIM basis. As the guide-star location is moved radially
inwards towards the centre of the core, the number of PIMs
sampled by the guide-star progressively decreases (Fig. 5a–c).
When the guide-star is placed at a radius of a/2, we observe a
strong arc in the isoplanatic patch, a signature of the rotational
memory effect (Fig. 5e). This isoplanatic arc is formed as
projection of foci to the same radius as the guide-star require the
same combination of PIMs, the phase delays of which have been
accurately sampled in the ATM. However we also observe a sharp
reduction in the power-ratio when the focus is moved radially in

Fig. 5e as these points require the constructive interference of
different combinations of PIMs, some of which are not well-
sampled by the guide-star. When the guide-star is located on the
fibre axis, it exclusively samples only the PIMs with a vortex
charge of ℓ= 0 (Fig. 5c), and the isoplanatic patch contracts to a
single spot as shown in Fig. 5f.

There is one point on the distal facet that we know how to
focus on perfectly: the position of the guide-star itself, which has
been directly measured. However, as can be seen in both
simulations and experiments in Figs. 3–5, as pd decreases, then
using the ATM does not yield a perfect focus even onto the guide-
star itself. This is a consequence of our assumptions that the fibre
TM is perfectly diagonal and unitary - assumptions that become
less accurate with lower values of pd. To mitigate this, when
scanning over the guide-star location, the proximal field returned
by the ATM can be replaced with ugs. Points at the same radius as
the guide-star may also be created with a higher power ratio than
achievable with the ATM, by rotating the field used to generate
the guide-star focus around the fibre axis - i.e., directly employing
the rotational memory effect35. This observation also points to a
more sophisticated approach to reconstruct the ATM: instead of
forcing D0 to be diagonal, we could try to iteratively search for a
non-diagonal and potentially non-unitary D0, allowing the
minimum power in off-diagonal elements43, so that PD0Py also
perfectly focusses onto the guide-star when operating on input
field ugs. This is a severely under-constrained problem that we
plan to investigate in more detail in the future.

Equation (7) stipulates that we must know the location of the
guide-star on the distal facet in order to apply the phase
correction term σ. However, if the location of the guide-star is
unknown and σ is omitted (i.e., σ= 0), D0 still provides an
estimate of the TM of the MMF, but with an unknown rotation
between the proximal and distal planes. We note that in this case,
the approximate radial location of a guide-star at an unknown
position can be retrieved, as it is uniquely encoded in the relative
amplitudes of the PIMs overlapping with the guide-star, which is
extracted by decomposing ugs in the PIM basis. This implies that
the methods presented here may be possible even without
specifically engineering a guide-star on the distal facet of the fibre.
For example, a guide-star may be formed at a random location by
optimising a non-linear feedback signal at the proximal end of the
fibre44. Once the proximal field required to generate a focus, ugs,
is found, the focus can then be scanned in 2D using the methods
we have presented here.

Discussion
In summary, we have demonstrated the possibility of guide-star
assisted imaging through multimode fibres, which can be cali-
brated with access only to the proximal end of the fibre. We
believe this technique to hold promise for the development of
flexible multimode fibre based imaging systems. The recon-
struction of the ATM, and of the images through the fibre,
requires no iterative phase retrieval, and invokes no assumptions
about the statistical properties of the scene at the end of the fibre
—instead relying on assumptions about the properties of the fibre
itself. Using a high-speed DMD capable of modulating input light
at ~ 20 kHz, measurement of the proximal field that focuses on a
fluorescent guide-star, ugs (from which the ATM is calculated)
consisting of, for example, ~1000 modes can be performed in
~200 ms using phase stepping holography38,45. Using a highly
reflective guide-star, the same calibration could potentially be
achieved in a single shot—albeit with a lower SNR2,23 (Supple-
mentary Note 8 contrasts these two methods). Therefore there is
potential for both calibration and imaging to be performed in
real-time.
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In our proof of principle experiments, the isoplanatic patch
does not extend over the full area of the distal facet. However our
simulations show that the area of this isoplanatic patch can be
significantly increased by making a better estimate of the basis in
which the TM of the MMF is diagonal (see Fig. 3). Such an
estimate can be achieved by optimising the fibre parameters with
access to the full TM, before subsequent deployment of the sys-
tem as a flexible micro-endoscope33,46, which will be a focus of
our efforts in future work. To image through longer MMFs which
possess higher levels of mode coupling (and therefore lower
values of pd even after fibre parameter optimisation), we envisage
that multiple guide-stars, distinguished by, for example, emission
frequency or speckle pattern contrast47,48, could be used to
increase the total area of the distal facet through which it is
possible to image. If necessary, accurate guide-star placement
could potentially be achieved using, for example, laser-ablation-
assisted attachment of fluorescent sensors49.

We highlight that recently there have been several innovative
proposals to achieve single ended TM characterisation of an MMF.
For example, Gu et al. proposed recovery of the forward TM by
measurement of the round trip reflection matrix of a fibre in which
the distal facet has been engineered with a partial reflector of spa-
tially varying reflection coefficient, and moveable shutter50. The
same group more recently suggested a simpler approach with a
uniform partial reflector that can go some way to improving spot

formation51. Gordon et al. proposed the placement of a stack of
patterned spectral filters at the distal facet and recovering the for-
ward TM by measuring the reflection matrix at multiple
frequencies52. Chen et al. proposed placing a compact spatial
multiplexer at the distal facet capable of imprinting a mode
dependent time delay or frequency modulation53. The engineering
requirements of these proposals are technically challenging, and so
they have yet to be experimentally realised in MMFs of high enough
resolution to be useful for imaging. The re-imaging properties of
graded index fibres have also been demonstrated to enable a spot to
be focussed at a chosen location within up to half of a distal facet
using a non-linear feedback signal from two-photon fluorescence54.
However, in this case, an optimisation process taking on the order
of several minutes was required to achieve a focus at each new
location. The guide-star assisted imaging concept we present here is
arguably simpler than these recent proposals, although it may be
more limited in terms of the accuracy of the forward TM that can
be recovered, and the length of the fibre that may be calibrated. In
addition to spatial correlations in weakly coupled MMFs, we also
note that spatio-temporal correlations have been identified in
MMFs with strong mode coupling that may prove useful for pulse
delivery55,56. Ultimately, we hope that some combination of our
imaging strategy, in conjunction with the alternative concepts
above, may provide the most robust method to enable imaging
through flexible MMFs.

Fig. 5 Choice of guide-star location. a–c Theoretical absolute values of the level of overlap of all PIMs with three different guide-star locations. The scale-
bar indicates the relative amplitude of the each PIM. Maps (a–c) corresponds to guide-star locations shown by red circles in (d–f). The colour of point ℓ, p
in PIM maps represents the relative level of overlap of ψℓ,p with the specified guide-star location. d–f Experimentally measured power-ratio maps using
ATMs reconstructed from guide-stars in the three different locations, marked with red circles. The scale-bar indicates the power-ratio across the distal
facet. A guide-star positioned at the core-cladding interface gives the greatest level of overlap with all of the PIMs and therefore the largest isoplanatic
patch. A guide-star positioned on the fibre axis achieves the lowest level of overlap with the PIMs, and the isoplanatic patch shrinks to a single diffraction
limited point in this case.
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Beyond applications to step index optical fibres, and in answer
to our questions posed earlier, we have shown that guide-star
assisted imaging need not invoke tilt or shift memory effects, and
can be extended to any scattering system in which we have an
estimate of the basis in which the TM is quasi-diagonal. Prior
knowledge of this sort can be understood as a generalisation of the
concept of the TMFP to spaces other than the momentum basis39.
i.e., advance knowledge that a scattering system possesses an
optical path length that is much lower than a ‘generalised’ TMFP
in a known (arbitrary) basis. The diagonal nature of the TM
indicates that spatial modes input in the diagonal basis are not
randomised into the entire vector space describing the allowed
modes within the structure. Our work provides a guide on how to
efficiently hunt for and make use of memory effects in optical
systems of arbitrary geometry. This concept may be applied to a
range of other media including graded-index57,58 and photonic
crystal fibres59, few-mode fibre bundles (which have the constraint
that the guide-star is ideally placed in the far-field of the output60),
photonic lanterns61, opaque walls (i.e., imaging around corners)62,
and artificially engineered photonic networks and scattering
systems.

Methods
Construction of matrix P. To perform guide-star assisted imaging through MMFs,
we must estimate matrix P, that transforms from the propagation invariant mode
(PIM) basis to real-space. The PIMs are found by solving the wave equation in a
cylindrical geometry. This reduces to finding the roots of the scalar characteristic
equations describing the modal dispersion32.

u
J ‘�1ðuÞ
J ‘ðuÞ

þ ω
K‘�1 ωð Þ
K‘ ωð Þ ¼ 0; ð10Þ

where J ‘ is a Bessel function of the first kind of order ℓ, and K‘ is a modified
Bessel function of the second kind of order ℓ. u and ω are normalised transverse
wave-numbers which are related to the fibre parameters through

u ¼ a k2n2core � β2
� �1

2; ð11Þ

ω ¼ a β2 � k2n2core
� �1

2; ð12Þ

ω2 ¼ v2 � u2; ð13Þ

v ¼ akNA ; ð14Þ

NA2 ¼ n2core � n2clad: ð15Þ
Here a is the radius of the core, NA is the numerical aperture of the fibre and ncore
and nclad are the refractive indices of the core and cladding respectively. In this
work we use the manufacturer’s values of a= 25 μm and NA=0.22. k is the
vacuum wavenumber: k= 2π/λ, where λ is the vacuum wavelength. β is the pro-
pagation constant describing the phase velocity of each mode. Equation (10) may
have multiple roots uℓ,p, indexed by the vortex charge ℓ specified in the order of the
Bessel functions, and radial index p which counts the roots for a particular choice
of ℓ. Once the roots have been found, the function ψℓ,p(r, θ) represents the complex
2D field profile of the mode indexed by ℓ, p according to Equation (4). Here ωℓ,p are
related to uℓ,p through Equation (13), and r and θ are the radial and azimuthal
coordinates respectively across the core. Roots with a real phase velocity βℓ,p are
propagating modes within the core. Kℓ takes argument ωℓ,p, which is imaginary
when β‘;p < k2n2core . This then describes the evanescent field in the cladding of the
fibre (i.e., for the region r ≥ a). The PIMs, indexed by ℓ, p are ordered into a 1D list,
indexed by n. Once the 2D complex functions describing each PIM have been
found, column n of matrix P is constructed by representing the complex field of the
nth PIM in Cartesian coordinates on a 2D grid, and reshaping it into a column
vector.

To account for some of the experimental misalignments, misalignment
operators are measured and applied at each end of the fibre that remove course
position and tilt misalignments of the input and output. These operators are found
following the coarse alignment methods in ref. 33. In brief, we make use of the fact
that both ends of the MMF are accessible before it is employed as an endoscope,
and measure the full real-space TM of the fibre (at a single polarisation). This real
space TM can be processed without optimisation to reveal estimates of the position
and tilt misalignments of the inputs and outputs in the following ways: (i) The
central position of the core at output can be found by measuring the centre-of-mass
of the sum of the intensity of all output measurements. (ii) The tilt of the output
can be found by measuring the centre-of-mass of the sum of the intensity of the
Fourier transform of all output measurements. Both of these methods can be

understood as operations involving summing over the absolute square of the
columns of the measured TM. Under the assumption that the TM is unitary, the
transpose of this TM is equivalent to the TM if it were measured in the opposite
direction through the fibre. Therefore the position of the core at the input, and the
tilt of the input light can be found by performing the equivalent to (i) and (ii), but
summing over the rows rather than the columns of the TM. Once these
misalignments are found, they can be represented as misalignment matrices at the
proximal end (Rpr) and at the distal end (Rdl), as described in more detail in
Supplementary Note 4.

Simulations. The optical transformation properties of fibres in real-space are
modelled following the methods in ref. 33, by decomposing real space input fields
into the PIMs, multiplying by a TM represented in the PIM↦ PIM basis (D), and
transforming back to real space (see Fig. 1a): T= PDP†.

An ideal fibre (as simulated in Figs. 1 and 2), of length L is modelled by a
diagonal matrix D, where the nth diagonal element is given by eiLβn . To model non-
ideal fibres with quasi-diagonal TMs in the PIM basis, as shown in Fig. 3, simulated
misalignment matrices R are introduced that transform the real-space field at each
end of the fibre into a new real-space basis that is laterally (dx and dy) and axially
(dz) shifted, and tilted (about x and y), and defocussed a small randomly chosen
amount. A quasi-diagonal Dq with realistic off-diagonal coupling is created by
absorbing these misalignment matrices into the TM in the PIM↦ PIM basis, i.e.,

Dq ¼ R
0y
dlDR0

pr, where R0
pr ¼ PyRprP and R0

dl ¼ PyRdlP are the two different
misalignment operators at the proximal and distal end of the fibre respectively here
represented in the PIM basis. Therefore to reduce the power on the diagonal (pd) of
Dq, and spread it off the diagonal in a realistic manner, the magnitudes of the
randomly chosen misalignment in each dimension are increased.

Figure 3 shows modelling of the reconstruction of the ATM, and the
performance of using it to focus and image through the fibre pd is decreased. To
simulate this, we use T= PDqP† to calculate the field required to focus on the
guide-star, ugs, where ugs ¼ Tyvm0 , and column vector vm0 represents the desired
field in vectorised form (i.e., zeros everywhere except for 1 at the element m0

corresponding to the location of the guide-star). ugs is then used to reconstruct the
ATM T0 according to Eqs. (7)–(9). The ATM T0 is then used to calculate the
estimated input fields required to raster scan a focus across the distal facet of the
fibre, which are then propagated through the real TM T, enabling the power ratio
maps and reconstructed images to be modelled.

Binary amplitude hologram design. A DMD is used to shape the light into the
MMF during TM measurement and for imaging. To generate an arbitrary
(bandwidth limited) spatially varying complex field A ¼ Aðx; yÞeiαðx;yÞ in the first
diffraction order in the Fourier plane of the DMD (x and y being Cartesian
coordinates of real-space in the optical Fourier plane of the DMD), we encode the
inverse Fourier transform of A, i.e., B ¼ F�1ðAÞ ¼ Bðx0; y0Þeiγðx0 ;y0 Þ, into a binary
amplitude hologram to be displayed on the DMD, Hðx0; y0Þ. Here x0 and y0 are
Cartesian coordinates on the DMD chip. Following63,64, Hðx0; y0Þ is given by

Hðx0; y0Þ ¼ 1
2
þ 1

2
sgn cosðpðx0; y0ÞÞ � cosðqðx0; y0ÞÞ	 


; ð16Þ

where

pðx0; y0Þ ¼ γðx0; y0Þ þ ϕtiltðx0; y0Þ; ð17Þ

qðx0; y0Þ ¼ arcsin
Bðx0; y0Þ
Bmax

� �
; ð18Þ

and where Bmax is the maximum amplitude of B, and ϕtilt ðx0; y0Þ ¼ kxx
0 þ kyy

0 is a
phase gradient directing the desired beam into the first diffraction order at an angle
defined by wave-vectors kx and ky. This hologram H can be intuitively understood
as one in which the local phase of the grating (i.e., local lateral position of the
grating cycle) varies in proportion with the desired phase of the target complex
field, and the local duty cycle of the grating varies as a function of the desired
amplitude. H also results in light transmitted into other diffraction orders, which
can be spatially filtered in the Fourier plane of the DMD, leaving only the desired
optical field transmitted into the rest of the optical system. The wave-vectors kx and
ky also place a bandwidth limit on the complex field that can be generated and still
successfully separated from other diffraction orders in the Fourier plane of
the DMD.

Imaging through guide-star calibrated MMFs. The experimental setup, along
with TM and ATM measurement are described in detail in Supplementary Notes 3
and 4. Once the TM and ATM are measured, they are used to capture the scanning
imaging results are presented in Fig. 4. A transmissive resolution target mounted
on a manually operated 3D translation stage was manoeuvred to ~ 40 μm from the
distal facet of the fibre. The scanning spot was refocussed from the distal fibre facet
to the plane of the resolution target by adding a quadratic Fresnel lens phase
function to the hologram displayed on the DMD. The fully sampled TM or the
ATM was used to calculate the proximal fields required to attempt to raster scan
the focus across the resolution target. At each spot position x, y, the total
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transmitted intensity arriving at camera C1 was recorded (I(x, y)), which directly
represented pixel x, y of the reconstructed image. We also attempted reflection
based imaging by using a reflective resolution target and recording the total
intensity of light reflected back through the fibre to camera C3. However we found
that reflection images were very noisy due to the low laser power (1 mW) of the
laser available for the experiment. Reflection imaging through MMFs has been
successfully demonstrated in the past, but due to the low numerical aperture of
MMFs, signals are typically very low when imaging beyond the end of the fibre
facet, as we were doing here, and so laser powers on the order of at least several
hundred mW are necessary for the return signal to be accurately measured.
Reflection imaging using the ATM should be possible in future work using higher
power lasers.

The extent of the isoplanatic patch in MMFs. The approximate area of the
isoplanatic patch, Aiso, is related to the fraction of power remaining on the diagonal
of the actual TM, pd, according to: Aiso ~ πr2pd. This can be shown as follows:

pd ¼ 1
N1

Tr ½DyD� � 1
N2

Tr ½SyS�
� 1

πa2
R a
0

R 2π
0 prðr; θÞr dθdr � Aiso

πa2 :
ð19Þ

Here Tr[⋅] refers to the trace of a matrix, and N1 and N2 are normalisation con-
stants given by N1=∑n∑m∣Dnm∣2 and N2=∑n∑m∣Snm∣2. We have introduced
matrix S ¼ LTT

0y , i.e., the real TM of the fibre represented with a change of input
and output basis. The basis of S is chosen such that the input modes are the set of
input fields predicted by the ATM to focus to each point across the distal facet of
the fibre, and the output modes are the actual fields generated at the output of the
fibre, which will be well formed foci only at positions within the isoplanatic patch.
Here matrix L reduces the resolution of the output pixel basis to that commen-
surate with the size of the diffraction limited focus. Thus S natively describes the
action of focussing using the ATM, and tends to the identity matrix as D tends to a
perfectly diagonal matrix. The approximation that the normalised traces are
equivalent in the first line of Eq. (19) is made under the assumption that the off-
diagonal terms of D are small. An alternate way of expressing the fraction of power
on the diagonal of S is given on the second line of Eq. (19), which corresponds to
the mean power-ratio of foci created at the output of the fibre. This mean power-
ratio also provides an estimate of the area of the isoplanatic patch Aiso as a fraction
of the total area of the core (third line), by considering the most compact form
function pr(r, θ) can take: as we expect pr to be highest near the guide-star, and the
maximum value of pr is limited to 1, then the area over which this maximum
region could extend gives an approximation to Aiso.

Data availability
The experimental measurements shown in Figs. 4 and 5, and Supplementary Figs. 4–7,
are available at https://doi.org/10.24378/exe.3203. All other data are available from the
corresponding authors on request.
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