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Abstract
Wedevelop a simple, one-dimensionalmodel for super-resolution in absolute optical instruments
that is able to describe the interplay between sources and detectors. Ourmodel explains the
subwavelength sensitivity of a point detector to a point source reported in previous computer
simulations and experiments (Miñano 2011New J. Phys.13 125009;Miñano 2014New J. Phys.16
033015).

Perfect imagingwith positive refraction [1] has been subject to considerable controversy [2–17] that has given
important insight into thematter.Much of the controversy has centred on the role of detection in perfect
imaging—the perfect transfer of the electromagnetic field fromobject to image is only possible if the image is
detected. Another important point was noticed in a computer simulation [18] and a subsequent experiment
[19] byMiñano et al: at specific resonance frequencies of the instrument a point detector is sensitive to
displacements of a point sourcewith an accuracy that is significantly better than the diffraction limit. No
physical explanation for this feature has been found yet. Herewe develop a simplemodel that captures both
issues, the role of the detection and the role of the resonance, which allows us to deduce both physical
explanations and analytic expressions for the sensitivity.

Perfect-imaging devices with positive refraction are absolute optical instruments [20] with closed loops of
rays [21, 22]. The archetype of such instruments isMaxwell’sfish eye [23]where light goes in circles andwhere
all light circles originating fromany given point intersect at a corresponding image point. Luneburg [24]
discovered a geometrical picture that explains the properties ofMaxwell’sfish eye: the refractive-index profile of
Maxwell’s device appears to light as the surface of a sphere in two-dimensional (2D) and hypersphere in three-
dimensional (3D) space; light propagates in themediumof thefish eye as if it were confined to spherical surfaces.
The geodesics on the sphere appear as the circles of light (by stereographic projection), object and image
correspond to antipodal points on the sphere where geodesics intersect. Let us consider the simplest case of
perfect imaging, the one-dimensional (1D) sphere: the circle (figure 1). Imagine that light is confined to a circle,
say afibre loop or ring resonator. Here light can go in only two directions, to the right or to the left. An ‘image’ is
formedwhen the two raysmeeting have the same phase, which happenswhen both are antipodal. Light is
coupled in and out of the circle by two 1D channels that represent the source and the detector. These 1D
channels are idealizations of the cables used for injecting and extracting radiation in the simulation [18] and
experiment [19]. Clearly, this 1D system represents a rather primitivemodel, but it is going to reproduce the
findings of the experiment [19], themodel is simple, but not too simple.

We are going to showhow a point detecter is able to senseminute displacements of a point source. Note that
this is not imaging in the traditional sense of taking the image of a source distribution all at once, but rather it
corresponds to scanning, as follows. Suppose that the detector ismoved across the imaging region of the device.
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The detector would only produce a signal when it is close to the imaging point of the point source. The
resolution is the distance from the actual imaging point where the detector begins tofire.Wewill show that, for
light at the resonance frequency of the instrument, the resolution of the scan is infinitelyfine.Well-known and
widely-used examples of scanningmethods that beat the diffraction limit are near-field scanning optical
microscopy [25] andfluorescencemicroscopy [26]. In contrast to the former, in the case considered here the
detector is placed far away from the source, and in contrast to the latter, only linear optics is used. The idea of
Miñano et al [18] of turning an absolute optical instrument into a super-resolving scanning devicemay thusfind
a place in the arsenal ofmethods for breaking the diffraction limit. Herewe explain how it works.

Thefirst important conceptual point wemake concerns the sources and detectors. In the context of the
controversy on perfect imaging, finding a simple, practicalmodel for detectors has been a long-outstanding
problem [9, 15, 17, 27–30]. Usually a sourcewas assumed to be a predetermined current that generates
electromagnetic waves, a detector wasmodelled as a drain. Active drains are produced by predetermined
currents just like sources; passive drains are supposed to react to the in-coming electromagnetic radiation and
absorb it. In truth, both sources and detectors are neither fully active nor fully passive. A detector is a dynamical
system, it responds to the electromagnetic field by absorbing radiation, and then reacts back to the field: it is both
passive and active. Also a realistic source is not simply a predetermined current that generates the field: the
sourcemust be able to receive radiation not captured by the detector, because otherwise an equilibrium
between in- and out-going radiation is impossible. The simplest source is an atom in an excited state, emitting
light, the simplest detector is an atom in the ground state, absorbing light. In the experiment [19] the sourcewas
a cable wheremicrowave radiationwas injected froma synthesiser, the detector was a cable connected to a
vector analyser. Source and detector are essentially the same, what distinguishes them are the initial
conditions: in a source radiation is injectedwith a predetermined flux, in a detector radiation is not injected,
although it could be, if, for example, the detecting atomwere excited or the detector cable connected to a
synthesiser.We thus need to consider sources and detectors as identical physical systemswith different initial
conditions.

Describing sources and detectors is particularly easy in our 1Dmodel: both are identical vertices where an
external channel is connected to the circle (figure 2).Wemodel them as specific linearmultiports [31, 32] using
the following arguments. Consider one vertex, say the source. The vertex has three in-goingmodes, themode
incident through the external channel and one clockwise- and one counter-clockwise-propagatingmode in the
device. The vertex turns these three in-goingmodes into three out-goingmodes: it is a six-port. As the out-going
radiationmust be proportional to the in-going radiation, the six-port is required to be a linear device.We denote

Figure 1.One-dimensionalmodel of a perfect-imaging device. The device is represented by a circle where light can propagate
clockwise and counter-clockwise. Light is coupled in and out through one-dimensional channels that represent the sourcewith in-
coming amplitude =a 10 and the detectorwith =a 01 . Awavewith amplitude ′a0 is reflected back to the source and awavewith
amplitude ′a1 is detected.We calculate the transmission ∣ ′∣a1

2 as a function of thewavenumber and themisalignment δ between the
actual detector position and the image of the source.
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the complex amplitude of the incident radiation in the external channel by a0 and the amplitudes of the
clockwise- and counter-clockwise-propagating waves in the circle by ±a ; together they constitute the amplitude

vector = + −a a a a( , , )T
0 . To denote the out-goingmodeswe use primes: ′ = ′ ′ ′+ −a a a a( , , )T

0 .We require that
the vertex performs a linear transformation:

′ =a aV . (1)

As a consequence of energy conservation, aHamiltonian for themode transformationmust exist, fromwhich
follows thatV is unitary [31]. In order to deduce the specific formofVwemake use of the semantics and the
symmetries of our system. At the source, light is coupled inwith a certain efficiency and then distributed equally
to the twowaves in the device. At the detector, light is captured equally from the twowaves and coupled outwith
a certain efficiency, assumed to be the same as for the source. Let usmentally separate the in- and out-coupling
from the equal distribution and gathering, bywritingV as

= −V S T S (2)1

with

=
−

S

1 0 0

0 1 2 1 2

0 1 2 1 2

. (3)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The orthogonalmatrix S describes the equal distribution of an amplitude from an intermediate channel to ±a .
As intermediate channel we have chosen the second component of the amplitude vector. The 1 2 terms
guarantee that the sumof the intensities of the outgoing amplitudes is equal to themodulus squared of the initial
amplitude. By the same token, the inversematrix −S 1describes the equal gathering of the clockwise- and
counter-clockwise-propagating waves. The intermediate channel is coupled to the external channel via the
matrixT that depends on the coupling efficiency.We know thatVmust be unitary, soT should be a 2Dunitary
transformation between the external and the intermediate channel. For simplicity, we assumeT to be real. For
perfect couplingT describes aflip between the two channels, for imperfect coupling an incomplete flip:

α α
α α=

−
T

sin cos 0
cos sin 0

0 0 1
. (4)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The angleα parameterizes the coupling efficiency; for α = 0 we get a perfect flip and hence perfect coupling, for
generalα the cosine ofα describes the transmissivity τ and αsin the reflectivity ρ. It turns out to bewise to
parametrize the coupling as

π α= −g 2 tan
4 2

, (5)⎜ ⎟
⎛
⎝

⎞
⎠

wherewe get for the transmissivity and reflectivity

τ α ρ α= =
+

= =
−
+

g

g

g

g
cos

2 2

2
, sin

2

2
. (6)

2

2

2

Figure 2.Coupling vertex.Wemodel both source and detector as a linear coupler where a one-dimensional external channel interacts
with the twomodes in the device such that the amplitudes ′ ′ ′+ −a a a( , , )0 of the out-goingwaves are a linear transformation of the
amplitudes + −a a a( , , )0 of the in-goingwaves.
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In terms of gwefind for the vertexmatrix

=

−
+ + +

+ +
−

+

+
−

+ +

V
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g

g

g

g

g g
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2
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2
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. (7)
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The form (7) of the vertexmatrix reveals an important property:V is symmetric

=V V . (8)T

AsV is an orthogonalmatrix,VTmust be the inverse ofV, and thus

= −V V . (9)1

The in-coupling vertex is also the out-coupling vertex, sources and detectors are fundamentally the same.
Let us briefly discuss two limiting cases, g=0 and = ∞g . For g=0we obtain = −V diag( 1, 1, 1), the

incident radiation is perfectly reflectedwith the reflected radiation changing sign, while themodes inside are not
changed at all. They are shielded from the external channel: the case g=0 corresponds to zero couplingwhere
the vertex acts as a perfectmirror. For = ∞g we obtain

= −
−

V
1 0 0
0 0 1
0 1 0

,
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

the incident field is also reflected, butwithout changing sign, while thewaves inside the circle are reflected
with change of sign: the case = ∞g describes a perfect scatterer. Perfect coupling corresponds to α = 0 and so
to the case =g 2 . In order tofind a direct interpretation for gwe derive from equations (1) and (7) the
relations

′ + = + ′ + ′ = ′ ++ − + − + −( )a a a a a a g a a, . (10)0 0

Wemay interpret relations (10) as conditions on the amplitudes of the fields and in this way obtain an
interpretation for g as follows.

Consider thefield in the circle around the source point. As coordinate on the circle we chose the angleϑ
where the source sits at ϑ = 0. Thefield shall oscillate ν times along the circle, ν corresponds to thewavenumber
with respect to the angle ϑ. If ν is integer the light is resonant. On the right of the source point (figure 2) the
clockwise-propagatingmode is outgoingwith amplitude ′+a and the counter-clockwisemode is incident with
amplitude −a . On the left of the source the clockwise-propagatingmode is incident with +a and the counter-
clockwisemode is outgoingwith ′−a . Hencewe canwrite the complex fieldψ as

ψ
ϑ

ϑ
=

′ + ⩾

+ ′ ⩽

νϑ νϑ

νϑ νϑ
+ −

−

+ −
−

a a

a a

e e for 0,

e e for 0.
(11)

i i

i i

⎪

⎪

⎧
⎨
⎩

Relations (10) show that thefield is required to be continuous at the source.We also see that the intensity
∣ + ′∣a a0 0

2 in the external channel is g2 times larger than the field intensity inside. For example, for perfect in-
coupling =g 2 , so the incident channelmust provide twice the intensity of the field inside, as onewould
expect, because the incident radiation propagates away in two directions. The parameter g thus describes the
ratio between external and coupled field amplitude, which is a useful parameterization of the coupling.

Having developed a simplemodel for both the source and the detector, we can now combine it with the
propagation in the device (figure 1). The detector is shifted by δ from the antipodal position (it sits at ϑ π δ= +
while the source sits at ϑ = 0).Waves propagating in positive direction from the source thus experience a phase
shift of ν π δ+( ) followed by a phase shift of ν π δ−( )back to the source, for waves propagating in negative
direction the phase shift is ν π δ−( ) followed by ν π δ+( ). The total phase of each round trip is πν2 , a constant,
which is the property of an absolute optical instrument [20–22] thatwe use.We describe the propagationswith
the help of thematrices

= ν π δ

ν π δ
± ±

∓
U

1 0 0

0 e 0

0 0 e

. (12)i ( )

i ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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The light coupled in at the source propagates to the detector,

′
=+

−

+ +

−

a

b

b

U V
a
a
a

, (13)
0 0
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⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ′a0 denotes the light reflected back to the source and the ±b are thewave amplitudes incident at the
detector. There the light is partly coupled out, with amplitude ′a1 , partly reflected back to the source

′
=+

−

− +

−

a
a
a

U V

a

b

b
. (14)
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We require that light with unity amplitude is incident at the source and that no light enters through the detector

= =a a1, 0. (15)0 1

The transmission coefficient t is given by

= ′t a . (16)1
2

Equations (13)–(15)with definitions (7) and (12) establish six inhomogeneous linear equations for the six
variables ±a , ±b , ′a0 and ′a1 with a unique solution. Solving this systemwe obtain for the transmission coefficient

νδ νπ

νπ νπ νδ
=

+ + −( )( )
t

g

g g g

16 cos sin

4 sin 2 4 sin sin
. (17)

4 2 2

4 2 4 2 4 2
2

Figure 3 shows the transmission as a function of ν for various coupling strengths g and offsets δ. Let us discuss the
most relevant limiting cases. For perfect alignment, δ = 0, we obtain fromour result (17)

νπ
≡ ∣ =

+ −
δ=

( )
t t

g

g g

16

16 4 sin
. (18)0 0

4

4 4 2 2

For perfect alignment the transmission is periodic in ν, it reaches unity at resonancewhere ν is integer, andwe
obtain for the integral

∫ ν= =
+

T t
g

g
d

4

4
. (19)

0

1

0

2

4

For perfect coupling, =g 2 , the transmission (18) is unity for all ν, but for different coupling parameters the
total transmission (19) lies belowunity. The device behaves like a typical Fabry–Perot resonator [20], it spectrally
distributes the transmission such that at resonance it always reaches unity. This Fabry–Perot feature of the device
is completely expected. The surprising feature of the perfect-imaging device appears for δ ≠ 0 where source and
detector aremisaligned.We directly see fromour result (17) that

δ ν= ≠ ∈ t 0 for 0 and . (20)

Exactly at resonance, the Fabry–Perot transmission curve drops to zero for δ ≠ 0. To deduce ameasure for the
width of the dipwe calculate the second derivative of t at the resonance (the first derivative vanishes, as zero is
obviously aminimumof = ∣ ∣t a1

2).We find

ν
π νδ

νδ
π

νδ
δ∂

∂
= ∼ ≠

ν∈

t

g g

1

2

16 cos

sin ( 2)
for small 0. (21)

2 2 2

4 4

2

4

The smaller the displacement δ of the detector the sharper is the dip.However, regardless how small the
displacement is, at resonance occurs a step change between alignment and displacement. This ultrasensitive
behaviour can be used tomeasure, with afixed detector, small displacements of the source, as only the relative
angle between source and detectormatters. Irrespective whether ourmodel is of direct practical relevance, it
represents the simplest toymodel for the super-resolution in absolute optical instruments. The diffraction limit
of imaging [20]would suggest a resolution of νδ ∼2 1, here the resolution is in-principle unlimited forfinite
wavenumber.Miñano et al observed the characteristic transmission dips for a 2D system in a computer
simulation [18] and then in an experiment [19]; let us call themMiñano dips. Herewe have captured this
characteristic feature in a simple formula5.

5
In practice [18, 19] theMiñano dips were shifted by about 10−3 with respect to the exact resonance, which is presumably due to the finite

size of the sources and detectors used.
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Moreover, using our simple 1Dmodel for perfect imaging, we can also identify the physicalmechanism
behind theMiñano dips. At resonance and formisaligned source and detector, the incident radiationwould
build up an infinitefield inside the device, unless, in the stationary regime, it is prevented from entering. For
δ ≠ 0 and ν ∈ we obtain from the solution of equations (13)–(15)

νδ
= ′ = = ′ = ′ = =

νδ

+ + − −

−
a a a a

g
a a*

i e

sin
, 1, 0. (22)*

i

0 1

With these coefficients we get for the field (11)

ψ
ν δ ϑ

νδ
= −

g

2 sin [ ( )]

sin
. (23)

The incident radiation is reflected, without changing sign, while a standingwavewith finite amplitude is formed
inside the device. The incident plus the reflected amplitude amounts to + ′ =a a 20 0 , which, according to
relations (10), is g times thefield amplitude ψ (0) at the source, as equation (23) shows. Similarly, the standing
wave described by equation (23) has a node at the detector, as there the total out-coupled field + ′a a1 1 is zero.
We thus see how for δ ≠ 0 the standingwave formed inside the device adjusts itself at equilibrium such that
further radiation is prevented from entering, which reduces the transmission to zero, causing the characteristic
Miñano dips.

Now consider the case of perfect alignment, δ = 0.We obtain from the solution of equations (13)–(15) the
amplitudes

τ ρ η τ η

ρ η τ η

= = ′ = ′ =

′ = − ′ =

νπ

νπ νπ

+ − + −

( )

a a a a

a a

2
e ,

2
,

e 1 , e (24)

2i

0
2i

1
2 i

in terms of the reflectivity ρ and transmissivity τ according to equation (6) and the coefficient η describing
Fabry–Perotmultiple reflections:

Figure 3.Transmission through the device.We plot the transmission t from equation (17) as a function ofwavenumber ν and for
various displacements δ (light grey: δ = 0.1, grey: δ = 0.05, black: δ = 0.01). The transmission curves follow Fabry–Perot resonances
that depend on the coupling coefficient g. Near the resonances where ν is integer the transmission sharply drops to zero. The smaller
the displacement the narrower the dip, as described by equation (21). At exact resonance, the transmission changes abruptly between
0 for δ ≠ 0 and 1 for δ = 0.
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∑η
ρ

ρ=
−

=
νπ

νπ

=

∞
1

1 e
e . (25)

m

m m
2i 2

0

2 i 2

The total transmission (19)we can understand as τ ρ∑ =
∞
m

m4
0

4 , the product of the transmissions τ2 at source and
detector times themultiple reflections in the device.We get for the field (11)

ψ τ ρ η= +ν ϑ νπ ν ϑ−( )
2

e e e . (26)i 2i i

The ν ϑ∣ ∣exp(i ) and ν ϑ− ∣ ∣exp( i ) are theGreen functions of wave propagationwith two sources, one at ϑ = 0
and one at ϑ π= , describing waves running from source to detector and vice versa. Thefield thus consists of
runningwaves (and theirmultiple reflections). No standingwave is formed, because it does not need to be
formed: for perfect alignment the radiation can run through the device; it is not accumulated at resonance. In the
case of perfect couplingwe get

ψ =
ν ϑe

2
, (27)

i

which is the 1D equivalent of the propagating wave inMaxwell’sfish eye that performs perfect imaging [1]. The
amplitude is reduced by 2 , because the incident radiation is distributed to two partial waves, one running to
the right, the other to the left.

To summarize,wehavedevelopeda simple 1Dmodel for super-resolution in absolute optical instruments that has
allowedus todescribe the interplaybetween source anddetector.Thekey innovationof ourmodel is thedescriptionof
sources anddetectors as lineardynamical systems.Weused a simple 1Dmodel thatwebelieve canbe extended to2D
or3Dsystems.Ourmodel has captured someof themost characteristic features of super-resolutionwithpositive
refraction:wehave foundanalytic expressions for theMiñanodips [18, 19] and their physical explanation.
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