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Abstract
We show that a pulse of electromagnetic radiation launched into a cavity can be completely
absorbed into an infinitesimal region of space, provided one has a high degree of control over
the current flowing through this region.Wework out explicit examples of this effect in a
cubic cavity and a cylindrical one, and experimentally demonstrate the effect in themicrowave
regime.

1. Introduction

There is a fundamental limit to the amount of radiation that can be absorbed by a passive systemof a given size.
For instance, one formof the Rozanov limit [1] relates the thickness of a planarmedium to the bandwidth over
which it can be an efficient absorber. This limit has its origin in theKramers–Kronig relations [2], and generally
holds for any such passive system.However, this does not apply to an active systemof currents; based on some
knowledge of the radiation that one is trying to absorb, an active system can eliminate a polychromatic field,
even though itmight only occupy a small region of space. This was demonstrated by de Rosny and Fink [3]
through placing an active ‘drain’ (a current source driven in reverse) in the focus of an incoming soundwave,
showing that thewave could be concentrated and absorbedwithin a region of spacemuch less than awavelength
in size.

The use of an active current element to concentrate the electromagnetic field was recently the subject of
debate in the context of imaging [4–10], where it was claimed that the sub-wavelength scale of the field
around an active drain could be used to resolve small features of a distant object within theMaxwell fish-eye
lens. Although it now seems unlikely that a useful imaging device can bemade in this way [9], the device
proposed in [4] has other interesting properties. In particular, Tyc andDanner [12] have shown that
absolute optical instruments4 tend to have a nearly uniform spacing of eigenfrequencies. Such a spectrum
allows one to emit a pulse from a point and then later absorb all the radiation in the device by emitting a
second pulse through the same point. This is similar in spirit to the work of Fink and co-workers [3], except
that—rather than using time reversal of the field to focus it onto the drain—the properties of the spectrum
of the device ensure this instead, suggesting a close connection to the phenomenon of wave-packet
revival [13].

In this work, we demonstrate that the effect noticed by Tyc andDanner in absolute optical instruments can
also be observed in an empty cavity.We show that one can emit a pulse from a point within a cubic cavity and
then completely remove the energy from the cavity at a later time by emitting a second pulse from the same
point, or a point related bymirror symmetry. In the process of doing this, the energy will be removed from the
cavity andwillflow into the current element fromwhich the pulses are generated. Finally, we show an
experimental demonstration of this effect.
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For an absolute optical instrument, there is a region of space inwhich any point A has a sharp (stigmatic) image B; thismeans that infinitely

many rays fromA get to B. In the case of theMaxwell fish-eye lens [11], A can be any point in the device.
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2. Electromagnetic radiation froma source in a cavity

Webegin by recalling the behaviour of a source of electromagnetic radiation in a cavity with perfectly
conductingwalls. The radiation generated froma time-dependent current density j satisfies the inhomogeneous
electromagnetic wave equation
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This has the general solution
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whereV is the volume of space occupied by the cavity, ∫ω ω=j x j x t t t( , ) ( , )exp(i )d , and the electromagnetic
Green function G (a dyadic) satisfies
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The retardedGreen function can be expanded in terms of the eigenmodes of the system,which occur at discrete
frequencies ωn in the case of a cavity:
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where ‘⊗’ indicates a tensor product. There is also a sumover the polarization degree of freedom,which is
implicit in (4), the details of which can be found in appendix A. In (4), η is an infinitesimal positive number
whichwe take to zero at the end of every calculation, and δ −∥ x x( )0 is the longitudinal part of the delta function
[14], which is shown only for completeness and plays no role in the rest of this calculation. The E x( )n are the
eigenfunctions of the cavity in the absence of any source, given by
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and normalized such that
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It is assumed that the eigenmodes En are real-valued vector fields.

Suppose there is a point-like current δ= − j x x xt t( , ) ( ) ( )0
(3)

0 0 locatedwithin a cavity, switched on for a
time interval Δt0. Such a current has the following frequency domain representation:
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Wenote that, in order for the radiation source to remain uncharged, the net charge transferred to the source
must be zero:

∫ ω= = =
−∞

∞  t t( )d ( 0) 0. (7)0 0

Thismeans that the Fourier component of the source at zero frequencymust vanish.
When computed from expression (2), the electric field in the time domain is given as an integral over

frequency. For times prior to the start of the pulse ( Δ< −t t t 20 0 ), the integral overω can be replacedwith a
contour integral closed in the upper half frequency plane. TheGreen function (4) is analytic in the upper half
plane and this integral is zero.We have thus established the obvious fact that thefield in the cavity is zero before
the current is turned on:

Δ< − =E x t t t( , 2) 0. (8)0 0

Meanwhile, when Δ> +t t t 20 0 , the integral over frequency in (2)may be replacedwith a contour integral
closed in the lowerhalf frequency plane.Within this contour, theGreen function (4) has poles at ω ω η= ± − in ,
and an application of the residue theorem alongwith (7) yields
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To obtain (9), we assumed that the current takes a real value in the time domain so that ω ω= −⋆ ( ) ( )0 0 .
The pole at zero frequency, evident in the longitudinal part of theGreen function (4), does not contribute,
becausewe have assumed condition (7). Equation (9)means that the electric field reduces to a sumover the
eigenmodes of the cavity after the current has been switched off ( Δ> +t t t 20 0 ), with each eigenmodeweighted
by the corresponding Fourier component of the source ω ( )n0 .

Due to the dependence of (9) on the Fourier amplitude of the current at discrete eigenfrequencies of the
cavity, two different current pulses can produce the samefinalfield; they only have to interpolate the same value
at the eigenfrequencies. This freedom allows us to emit two pulses, with the second pulse serving to remove the
energy of thefirst (as stated earlier, this energyflows into the current element that produces the pulses). In the
next section, wework out the details of this phenomenon.

3. Actively absorbing radiation

For an ideal cavity with perfectly reflecting walls, the total energy in the electromagnetic fieldwill remain
constant after the current pulse 0 hasfinished. But supposewewant to reduce the energywithin the cavity to
zero by driving a second pulse through x1.What kind of secondary pulsewould be required?

In the following discussion, we consider the case when x0 and x1 are different points, but a very similar
analysis applies when they are the same point [12]. If a second current,  t( )1 , passes through x1during a time
interval Δt1, then the generalization of (9) for times later than Δ+t t 21 1 is
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If the second pulse is to reduce the cavity energy to zero, then (10)must equal zero. The onlyway for this to
happen is when the Fourier amplitudes of the two current pulses are related by

ω ω= − E x E x( ) · ( ) ( ) · ( ). (11)n n n n0 0 1 1

It is non-trivial to satisfy this for all possible pulses, and usually impossible without some restriction on x1. In the
next section, we construct expressions for  t( )1 in two example cavities.

To quantify the degree of absorption, we use the energy of the radiation contained in the cavity as a function
of time,ℰ t( ), given by
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where thefields have beenwritten in terms of the scalar and vector potentials, φ= − −E Ȧ and  ×=B A,
andwe imposed theCoulomb gauge  =A· 0 [15]. Expanding the vector potential in terms of the
eigenfunctions of the cavity gives
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and, applying (5), the energy in the cavity becomes
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where the contribution due to the scalar potential has been dropped (in any case, (7) ensures this term is zero
before and after the source acts). The expansion coefficients appearing in the energy in (14) can be found from
an examination of (2) and (4), resulting in
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which is automatically real because the current is real in the time domain. The energy in the cavity is calculated
by inserting (15) into (14).

In order to see the overall change of the energywith time, we averageℰ t( )R over a timewindow that is
assumed long in comparison to the inverse frequencies within the pulse.Writing = + ⋆ t c c( ) (1 2)[ ]n n n , where
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3.1. Cubic cavity
In a cubic cavity, there are analytical expressions for the eigenfunctions and eigenfrequencies, the details of
which can be found in appendix A. If the side lengths are L, the eigenfrequencies are given by

ω π= + +c

L
n m p , (16)n m p, ,

2 2 2

where n m p, , are integers, one of whichmay be zero. Aswe have seen, certainly the energy emitted at a point x0

can be absorbed at the same point; in addition, as wewill shownow, it is possible to absorb it also at the opposite
point (as shown infigure 1(a)).

We take current elements oriented along ez , and = − − −x y z L x L y L z( , , ) ( , , )1 1 1 0 0 0 . For concreteness,
the initial pulse is taken to be aGaussian centred around ω0 (although our results are not restricted to such a
pulse shape), given by

ω
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π= +ω ω ω ω− − − +
σ σ ( )J

( )
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The constant J determines the peakmagnitude of the current pulse, and σ the duration. The sumof the two
terms in the square brackets ensures the symmetry ω ω= −⋆ ( ) ( )0 0 , which leads to a real value for the current
in the time domain. The relationship between the two current pulses (11) is

ω ω= − − + + ( ) ( 1) ( ), (18)n m p
n m p

n m p0 , , 1 , ,

where the factor of − + +( 1)n m p arises from the even/odd parity of the eigenmodes (this assumes ≠x x0 1). Atfirst
sight, it seems that (18) cannot be easily fulfilled: the current is evaluated at the eigenfrequencies ωn m p, , , which
depend on the sumof the squares of n,m and p, rather than their linear sum.However, it is a property of sets of
integers that the sumof their squares is even (odd) if their sum is also even (odd). Therefore, we can fulfil (18)
with

Figure 1. (a) Two sources at opposite positionswithin a cubic cavity emit sequential pulses, thefirst of which,  t( )0 , is sent through
x0. The second pulse,  t( )1 , is sent at a later time through x1 and serves to reduce thefield in the cavity to zero. (b)Normalized current
pulses as a function of time (τ = ct L is a time variable normalized by the time taken to cross the cavity). The initial pulse  t( )0 is
centred around τ = 0, and  t( )1 is shown for different values of q. The initial pulse is given by (17), with the arbitrary values
σ = c L2 and ω = c L100 .
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where q is an integer we are free to choose, according to the desired time delay between the initial pulse and the
absorbing one. An expression for the delay between the two pulses can be found from the expansion of the phase
of thefirst term in (19) around ω0:
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The term linear inω corresponds to a time delay between the centre of the first pulse and the centre of the
second, ω π− = +t t q L c2(2 1)1 0

2
0

2 , while the quadratic variation of the phase changes the shape of the second
pulse relative to the first. Figure 1(b) shows the two pulses for different choices of q. Although aGaussian pulse
shape does not strictly have afinite duration—as is assumed in (6)—onemay truncate the infinite tails at some
point when the amplitude of the current is arbitrarily small and then apply the argument of section 3. Figure 2
shows the cycle-averaged energy in the cavity as a function of time, computed from (14), for the case q=1 (for
details, see appendix A).

3.2. Thin cylindrical cavity
As a second example, we consider a thin cylindrical cavity of length L (see figure 3), where π ω≪L c2 for the
frequencies of interest. In this regime, the thickness is negligible with respect to thewavelength, whichmakes the
waves effectively two-dimensional and forces the electricfield to be polarized along the cylinder axis. The
normalized eigenmodes are then given by

θ
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( )E er
V J R c

J r c l( , )
2

cos( ), (21)n l

l n l

z l n l,
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where π=V R L2 is the volume of the cavity, Jl is the Bessel function of thefirst kind and the eigenfrequencies are
given by

ω = c

R
j ,n l l n, ,

where jl n, is the position of the nth zero of the lth order Bessel function of the first kind [16].We again choose the
absorption point to be opposite the emission point ( =r r1 0, θ θ π= +1 0 ; the z0,1 coordinates do notmatter
because themodes are independent of z in this regime), as shown infigure 3. From (11), wefind that the current
pulsesmust be related by

ω ω= − − ( ) ( 1) ( ). (22)n l
l

n l0 , 1 ,

For the current driven through x1 to remove the energy due to the pulse emitted from x0, we have to be able

towrite ω− − ( 1) ( )l
l as a function ofω that interpolates ω ( )0 at the eigenfrequencies. If we attempt tomake

(22) hold for all n and l, wefind that the required function generally oscillates wildly and irregularly asω
increases, due to the spacing of the zeros of Bessel functions of different orders. However, when the source and

Figure 2.Cycle-averaged energy in the cubic cavity in units of the characteristic energy μ J L0
2 , τ τ μ〈 〉 = 〈ℰ 〉E L J( ) ( ) 0

2, computed
from (14) as a function of time for the q=1 case (seefigure 1). After the second pulse has been emitted through x1, the energy in the
cavity is reduced to zero. In this case, the reduction of the energy occurs alongwith a comparatively large oscillation of cavity energy.
This oscillation can be quite different for different pulse shapes.
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emission point are close to the centre of the cavity, their coupling to the higher l eigenmodes ismuch reduced,
whichmakes the secondary pulsemuch better behaved.

The simplest case is where both x0 and x1 are close to the centre of the cavity, and the initial pulse is centred
around a frequency ω ≫R c 1. For large n and ≫n l , the zeros of the Bessel functions are approximately

π∼ + −j n
l

2

1

4
(23)l n,

⎛
⎝⎜

⎞
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so thatwe can fulfil (22)with
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where q is again an integer that we are free to choose, and determines the delay of the second pulse. In this
approximation, the second pulse is of the same shape as the initial pulse but delayed by − = +t t q R c2(2 1)1 0 ,
which is the time taken for light to travel to thewalls of the cavity and back again an odd number of times. The
approximation gets worsewith increasing q, due to the fact that the exponential in (24) was found from (23), and
the error in this approximation ismultiplied by +q2 1within the exponent. Figure 3 shows the cycle-averaged
energy in the cavity for the case q=2. In contrast tofigure 2, the energy in the cavity does not oscillate before
being reduced to zero. This is a consequence of the uniform spacing of the eigenfrequencies (23), which leads to
a second pulse (24) that is the same shape as the initial pulse, and thus an absorption process that is the time
reverse of the emission process.

4. Experimental results

In order to verify our results experimentally, we took ametallic cubic cavity with sides of =L 15 cm, so that the

eigenfrequencies occur in themicrowave regime: ω π= + + × −n m p2 10 rad sn m p, ,
2 2 2 9 1. Two small

antennas (a fewmillimeters of exposed coaxial cable) were inserted through two holes drilled into themiddle of
opposite sides of the box, one acting as a probe of the field in the cavity, and one acting as both source and drain.
The probe antennawas roughly half the length of the source. The theory discussed in section 3.1 applies to this
situation, but for the simpler case of =x x1 0. In this case, onemust remove the factor of − + +( 1)n m p from (18),

and the phase factor in (19) becomes ω πqL cexp(2i )2 2 2 .
The source/drain antennawas attached to an arbitrary waveform generator (AWG) (Tektronix AWG70000

series), and the probewas attached to an oscilloscope (TektronixMSO70000 series) tomonitor the field inside
the cavity.We generated a time series of voltage values from the analytic expressions for the pulse shapes
necessary to absorb thefield, whichwere imported into the AWG to generate the pulses. TheAWGoutputs the

Figure 3. (a) Two sources at opposite positionswithin a thin cylindrical cavity emit sequential pulses.(b) Energy in the cavity as a
function of time, scaled in units of μ J L0

2 . The expression for τ τ μ〈 〉 = 〈ℰ 〉E L J( ) ( ) 0
2 is given in appendix B. In this case,

=r R0.010 , σ = c R3 and ω = c R200 .
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desired time domain signal, then starts again at the beginning—we included a long gap of zero output ( μ>1 s) to
let the field in the cavity decay to a small value before emitting the pulses again. Two cases were compared to one
another: (i) the case when the second pulse ought to reduce the field in the cavity to zero; and (ii) the same as (i),
but with the second pulsemultiplied by−1. Figure 4(a) shows the output from theAWG for these two cases
(solid and dashed lines, respectively). Figures 4(b) and (c) show themeasuredfield inside the cavity as a function
of time. Figure 4(d) is a plot of the time average of the voltage squared for the cases shown in panels (b) and (c),
and shows that the qualitative features are in good agreement with the theory presented in the previous section.
It is worth comparing the two lines infigure 4(d); in case (ii) the current delivered to the source differs only in the
sign of the second pulse, and shows amuch larger cavity field; in this case the second pulse, instead of extracting
the cavityfield, adds the samefield oncemore,multiplying the originalfield by the factor of two and the energy
by the factor of four.Notice however that there is some small residual field remaining in the case when the field is
supposed to be brought to zero. One possible reason for this discrepancy is that we have not included the lifetime
of the eigenmodes in our theory: the cavity decay is clearly evident for pulse (ii) infigure 4(d).

5. Conclusions

Wehave shown that a pulse launched into an empty cavitymay be completely absorbed at a later time through
launching a second pulse. The shape of the second pulse is a function of the first pulse and the eigenfrequencies

Figure 4. (a)Measured output from the AWG.The x axis is in units of nano-seconds and the y axis is in units of volts. The upper line
(i) shows the voltage sent into the cavity for the case shown in panel (b), and the lower line (ii) is for the case shown in panel (c). (b)
Measured field inside the cavity for the case when the second pulse ought to reduce the cavityfield to zero. The dashed box shows the
interval of time given in panel (a). (c)Measured field inside the cavity, with the second pulsemultiplied by−1. (d) Time averaged (7 ns
window) voltage squared (units of μV2) calculated from the data shown in panels (b) and (c).
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of the cavity. In particular, both cubic and cylindrical cavities have simple relationships between the two pulses,
andwe have verified by direct computation that the cavity energy is reduced to zero. In these cases, the shape of
the absorption pulse can be relatively simple and of a duration that is comparable to the initial pulse. This is
thanks to the symmetry of the cavity. For a general cavity shapewithout such symmetry, the absorption pulse is
often incomparably longer than the emission pulse [12].

From figure 2, it is clear that theway inwhich thefield energy is reduced to zero can be quite unlike the time
reversal operation discussed by de Rosny and Fink [3].We also experimentally demonstrated this effect in a
cubic cavity, showing that the field in the cavity could be either amplified or diminished through a judicious
choice of the second pulse, in broad agreement with our theory.
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AppendixA. Evaluating the energy in a cubic cavity

To compute the energy, we used the expressions for the two kinds ofmodeswithin the cavity E(1,2) given by
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n m p n m p

, ,
(1)

, ,
(1)

, ,
(2)

, ,
(2)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

In (A.1), one of the integers n m p, , may be zero. This is distinct from the case of scalar waves, where all of the
integersmust be greater than zero [12]. This particular representation of themodeswithin the cavity (A.1) can
be obtained from the expressions for the electric field in a rectangular waveguide [17] (propagation axis ez),
applying the boundary condition that the tangential electric field is zero at the ends of the guide =z L0, . The
normalization of themodes is chosen so that themodes satisfy (5):

δ δ

δ

=
+ + +

=
+ + + +( )

N
L n m

N
L n m n m p

2 1 1

( 1 )( 1 )
,

2 1

( )( ) 1
.

n m p
n m

n m p
p

, ,
(1)

3 2

2 2
0 0

, ,
(2)

3 2

2 2 2 2 2
0

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

When computing the energy (14), we assume the two sources are oriented along the ez axis so that they only

couple to En m p, ,
(2) . The expansion coefficients (15) then take the form

τ
μ

π δ
π π π

τ= +
+ + +


( )

J L

s

n m

n m p

n x

L

m y

L

p z

L
I( )

2

( ) 1
sin sin cos Re ( ) ,

(A.3)

n m p
p

n m p, ,
(2) 0

2 2

2 2 2
0

0 0 0
, ,⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ⎡⎣ ⎤⎦

where

∫τ ξ
π ξ η

=
− −

+ + − +
ξτ

−∞

∞
+ +

− −

ξ
π

ξ ξ

+

−

I
n m p

( ) d

1 ( 1) e

( ) ( i )
e e (A.4)

( )
n m p

n m p

, , 2 2 2 2 2
i

q

s

i(2 1) 2

0
2

2 2

⎡
⎣⎢

⎤
⎦⎥

and 0 is given by the same expression as listed infigure 1, with σ = sc L and ω ξ= c L0 0 . Inserting (A.3) into
(14), we obtain the following expression for the time averaged energy in the cavity:
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∑ ∑τ
μ π δ

τ
τ

π τ
ℰ

= +
+ + +

+ + +
∈ =

∞

( )
( )

L

J s

n m

n m p

I
n m p I

( ) 1

( ) 1

d ( )

d
( )

(A.5)

R

n m p p

n m p
n m p

0
2 2

, , odd 0

2 2

2 2 2
0

, ,
2

2 2 2 2
, ,

2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

which has been scaled by the characteristic energy μ J L0
2 . The position x0 has been chosen as L L( 2, 2, 0),

leading to the sumover only odd integers n andm. Equation (A.5)was numerically evaluated for the case q=1,
and the arbitrary value η = −10 4 in order to obtain figure 2.

Appendix B. Evaluating the energy in a cylindrical cavity

From the expression for themodes in the cavity given by (21), the expansion coefficients (15) are given by

τ
μ
π

τ=
+

 ( )
( )

JR

s L

J j r R

J j
I( ) Re ( ) ,n l

l l n

l l n

n l,
0 , 0

1 ,

,
⎡⎣ ⎤⎦

where θ = 00 and

∫τ ξ
ξ η

=
− −

− +
×

ξ π ξ

τ
−∞

∞
+ +

− −
ξ ξ−

( )
I

j
( ) d

1 ( 1) e

( i )
e e . (B.1)

( )
n l

l q

l n

x
,

2i(2 1)
4

sign( )

,
2 2

i
s

0
2

2 2

⎡
⎣⎢

⎤
⎦⎥

In this case, the time variable τ = ct R is scaled by the time taken to get from the centre of the cavity to the edge.
This leads to the following expression for the cavity energy, plotted in figure 3:

∑τ
μ π

τ
τ

τ
ℰ

= × +
+

( )
( )

L

J s

J j r R

J j

I
x I

( ) 1

4

d ( )

d
( ) . (B.2)R

n l

l l n

l l n

n l
n l n l

0
2 2 2

,

, 0

1 ,

2

,
2

,
2

,
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
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