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Abstract. We propose a method for eliminating a class of singularities in
optical media where the refractive index goes to zero or infinity at one or more
isolated points. Employing transformation optics, we find a refractive index
distribution equivalent to the original one that is nonsingular but shows a slight
anisotropy. In this way, the original singularity is ‘transmuted’ into another,
weaker type of singularity where the permittivity and permeability tensors are
discontinuous at one point. The method is likely to find applications in designing
and improving optical devices by making them easier to implement or to operate
in a broad band of the spectrum.
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1. Introduction

With the advent of metamaterials [1]–[4], new types of optical devices and instruments have
been proposed and implemented. However, in some of them the required parameters of the
optical medium can be unrealistic or very difficult to achieve. An example is the requirement
that the refractive index goes to zero or to infinity at some points, which, for example, is the
case for the Eaton lens [5]–[7] known from radar technology where the index tends to infinity.
Another example is the proposal for conformal invisibility cloaking [8]–[10], which requires
zeros in the index profile. As the zero or infinity of the refractive index can be satisfied only for
a single frequency, such a singularity can be a serious obstacle in constructing the corresponding
device or in operating it broadband.

As we show in this paper, a large class of such singularities of the refractive index can
be eliminated, or rather ‘transmuted’ into less demanding singularities, using the methods
of transformation optics developed in [8], [11]–[14] that have become a vibrant research
area, see [15] for a review. By squeezing or expanding the neighborhood of the point where
singularity occurs the refractive index can be made finite and nonzero while a slight optical
anisotropy emerges. It is then certainly easier to design the corresponding anisotropic material
than a material where the speed of light has to go to zero or infinity.

The paper is organized as follows. In section 2, we give a few examples of situations
with refractive-index singularities and in sections 3 and 4, we present heuristic and rigorous
arguments, respectively, of how to eliminate the singularity. In section 5, we show how our
method works in general and we conclude in section 6.

2. Singularities in refractive index

In a number of theoretical proposals for optical devices optical singularities occur where the
refractive index approaches zero or infinity at some point or points, which often prevents them
from being practically implemented as devices. We give three examples here—the Eaton lens,
an invisible sphere and the invisibility cloak based on optical conformal mapping.

The first example is the Eaton lens [5]–[7]: a device that returns the incident light rays back
to their source, a perfect retroreflector, see figure 1. It has a spherically symmetric refractive-
index distribution given by

n(r) =
√

2a/r − 1 for r 6 a and n = 1 for r > a. (1)

Clearly, the refractive index goes to infinity for r → 0 and hence the speed of light goes to zero
there. It can be easily shown that near r = 0 the refractive index behaves like n ∼ r−1/2.

The second example is an invisible sphere considered, among other things, in [16]. In
this proposal, a spherically symmetrical refractive-index distribution n(r) is employed within a
sphere of radius a where n(r) is given by the implicit equation4(

a

nr
+

√
a2

n2r 2
− 1

)2

= n (2)

4 This equation follows from formulae (11) and (2) of [16] by substituting ν = 1, n =
√

1 − U/E and replacing
b0 by a.
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Figure 1. Eaton lens. The Eaton lens is a perfect retroreflector based on the
index-profile (1). Light (shown in red) incident from the right impinges on the
Eaton lens (blue) where it turns along an ellipse segment and is reflected back to
the direction it came from. Since the index-profile (1) is radially symmetric the
retroreflector works for light from all directions.

Figure 2. Invisible sphere. Incident light (red) performs loops in the sphere
(blue) and leaves in the direction of incidence as if the sphere were not present.
This device is based on the index-profile (2).

and n = 1 outside the sphere. Remarkably, the sphere is not visible within the regime of
geometrical optics. The light rays that hit the sphere perform loops around its center and return
to their original paths, see figure 2. The only potentially observable effect is a constant time
delay of the rays. Although nothing can be hidden in the sphere, so it cannot be used as an
invisibility cloak, it still represents an ultimate optical illusion, because the space appears to be
empty while it is not. Using equation (2), it can be shown that n diverges like n ∼ r−2/3 near
r = 0.

The third example is the neighborhood of a branch point in the proposal of an invisibility
cloak based on conformal mapping [8]–[10]. In this proposal, transformation optics [15] is
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employed for constructing a cloaking device. The transformation from electromagnetic space
(complex plane w) to physical space (complex plane z) is given by the formulae

w = z +
a2

z
, z =

1

2

(
w ±

√
w2 − 4a2

)
. (3)

The refractive index in physical space is n = | dw/ dz|, see [8]. It is easy to verify that the
derivative vanishes at z = ±a, at the images of the branch points w = ±2a. Hence, the refractive
index goes to zero and the speed of light goes to infinity as one approaches either of these points
z = ±a. The Taylor expansion of n shows that n ∼ r near z = a where r = |z − a| denotes the
distance from the point z = a, and the behavior of n near z = −a is similar.

In all of the previous examples, as well as others not explicitly stated here, the refractive
index behaves like n ∼ r p, p ∈ R near the point r = 0 and the speed of light diverges or goes
to zero at this point. We will refer to such a singularity of the material properties as ‘material
singularity’. As we will show in the following, if p > −1 (which includes all of the above
examples), the material singularity of the refractive index can be efficiently removed by means
of transformation optics.

3. Heuristic argument

Here, we give a heuristic derivation of the transformation that removes the material singularity
using the properties of the refractive index. Then we proceed to a rigorous calculation of the
transformed permittivity and permeability tensors in the next section.

Suppose we have a spherically symmetric refractive index distribution n(r) = r p, p 6= 0 in
three-dimensional space5, and wish to remove its singularity at r = 0. Suppose for a moment
that p < 0, which means that the light gets very slow near r = 0. If we could expand the
neighborhood of this point in such a way that the expansion factor would increase as one
approached r = 0, then we might be able to provide light with more space such that its
speed could remain above some fixed positive value. This is indeed possible if we expand
the space according to the rule R = r p+1, where R is a new radial coordinate, and leave the
spherical angles θ, φ intact. According to the general terminology of transformation optics,
(R, θ, φ) will be referred to as physical space, whereas the original (r, θ, φ) space will be
called electromagnetic space. If the light travels in the radial direction, then the expansion
factor is ηR = dR/ dr = (p + 1) r p, so the light moves ηR-times faster in physical space than
in electromagnetic space. The refractive index is therefore ηR-times smaller in physical space
and becomes nr = 1/(p + 1), which means that the singularity has been removed. If the light
travels in the angular direction instead (say in the direction of increasing φ), the expansion
factor will be ηφ = Rsin θ dφ/(rsin θ dφ) = r p, which leads to nφ = 1, and in a similar way we
get nθ = 1.

We see that the singularity of the refractive index has been removed in both the radial
and angular directions. The price to be paid is a slight optical anisotropy because the refractive
indices in the radial and angular directions differ by the factor of p + 1. One also sees that the
transformation works only if p > −1. In this way we can eliminate all singularities with n → 0
and many singularities with n → ∞.

5 To avoid dimensional discrepancies in equations like n = r p and in order to make formulae as simple as possible,
we will consider all distances dimensionless.
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4. Singularity transmutation

Suppose again that we have a spherically symmetric refractive-index distribution n(r) = r p. In
order to remove the material singularity at r = 0, we apply the transformation R = r p+1, where
R is a new radial coordinate. To calculate the optical properties of the medium in physical space
(R, θ, φ), we apply the method described in [14] and [15].

We use the connection between dielectric media and spatial geometries. We start with
the covariant metric tensors of electromagnetic space g′

i j = diag (1, r 2, r 2sin2θ) and of physical
space γi j = diag (1, R2, R2sin2θ) in spherical coordinates. The transformation matrix between
the two spaces is denoted by 3i

j = ∂(R, θ, φ)/∂(r, θ, φ); we find 3i
j = diag ( dR/ dr, 1, 1).

Equation (5.1) of [15] gives the recipe for calculating the contravariant components of the
permittivity and permeability tensors εi j , µi j in physical space from their values ε′, µ′ in
electromagnetic space that we assume to be scalar:

εi j
= ε′

√
g

√
γ

g′kl3i
k3

j
l , µi j

= µ′

√
g

√
γ

g′kl3i
k3

j
l . (4)

Here g′kl is the contravariant form of the metric tensor (the inverse of g′

i j ), γ is the determinant
of the tensor γi j and g = det(g′

i j)/det2(3i
j). We adopt Einstein’s summation convention over

repeated indices. Note that the εi j and µi j are tensors with respect to the background geometry
γi j although they are not tensors for the electromagnetic geometry gi j [15]. Substituting all the
relevant quantities into equation (4), we obtain

εi j
= ε′ diag

(
r 2

R2

dR

dr
,

1

R2 dR/ dr
,

1

R2 sin2 θ dR/ dr

)
(5)

and the analogous equation holds for µi j . However, it is the mixed (covariant–contravariant)
components of the permittivity and permeability tensors that are of physical relevance [15],
because they correspond to the tensors expressed in Cartesian coordinates and are directly
related to the refractive indices. Lowering one index of εi j using the metric tensor γi j , we get

εi
j = ε′ diag

(
r 2

R2

dR

dr
,

dr

dR
,

dr

dR

)
, µi

j = µ′ diag
(

r 2

R2

dR

dr
,

dr

dR
,

dr

dR

)
, (6)

which is a general result. Assuming that the original refractive index in electromagnetic space
was realized by an impedance-matched medium for which ε′

= µ′
= n(r) = r p and using the

transformation R = r p+1, we obtain from equation (6) for the mixed tensors in physical space

εi
j = µi

j = diag
(

p + 1,
1

p + 1
,

1

p + 1

)
. (7)

We see that all the components of the tensors ε and µ are non-singular, in contrast to their
original values in electromagnetic space. In this way, the infinity or zero of the speed of light
at r = 0 has been removed. At the same time, equation (7) shows that the tensors ε and µ are
anisotropic, which is due to the fact that the transformation from electromagnetic to physical
space is not conformal. Clearly, the tensors are diagonal in the spherical coordinates and their
angular eigenvalues coincide. This means that the optical medium is uniaxial with the optical
axis oriented in the radial direction, which resembles the field lines of a monopole, see figure 3.
At R = 0 the optical axes meet at a topological defect, a singularity similar to the one known
from the problem of combing a hedgehog. We have thus arrived at a new type of singularity of
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Figure 3. The optical axes of the transmuted medium resemble field lines of a
monopole that emerge radially from a single point.

the medium that may be called a ‘geometrical singularity’. Unlike the material singularity, the
geometrical singularity is not characterized by any diverging properties of the material (because
the speed of light is finite and nonzero and the anisotropy is slight and constant), but rather by
the fact that the orientation of the optical axis changes arbitrarily quickly near the point R = 0.
As the direction of the optical axis is not defined at R = 0, the tensors ε and µ are discontinuous
at this point.

Our method thus describes a transformation of one type of singularity to another, a
‘transmutation of singularities’. Certainly, constructing a material with a geometrical singularity
is significantly less demanding in practice than creating the material singularity where light has
to stop or propagate infinitely quickly. Moreover, a medium with a geometrical singularity can
be made broadband in contrast to the material singularity, because one does not need to rely on
resonance effects. However, as our result (7) suggests, it may be necessary to use materials with
one ε component smaller than unity—anomalous dispersion where the phase velocity of light
exceeds the speed of light in vacuum, which is possible in principle, but restricted to certain
frequency bands for a given material. As an easy alternative, one could put the device into a
host dielectric with sufficiently high refractive index, because only the relative variation of ε

matters. The only real practical limitation in constructing the transmuted medium will occur in
a very small vicinity of the point R = 0: if the features of the metamaterial to be used have a
typical dimension d, then, clearly, the proposed properties of the transmuted medium cannot be
achieved within a sphere with radius of about d. However, this is not a major problem as d is
typically of the order of the wavelength, which is by several orders of magnitude smaller than
the size of a typical device. Our method can therefore enable construction of devices that would
otherwise be very difficult to make, by relaxing the strong requirements placed on the material.

5. Generalizing the method

In the previous section, we showed how the singularity n = r p of the refractive index at r = 0
can be transmuted by the transformation R = r p+1. Moreover, our method can be applied also to
situations where n(r) has a more general form but still behaves like r p for r → 0. The singularity
will be transmuted if we apply any suitable transformation in which R behaves like r p+1 for
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Figure 4. Transformed Eaton lens. Equally spaced incident light rays are nearly
equally spaced around the origin of the transformed Eaton lens, which illustrates
that the refractive-index profile is not singular anymore.

r → 0. If the original refractive index distribution n(r) is spherically symmetric, it is even
possible to make the angular eigenvalues of ε, µ constant by defining R(r) = (1/n0)

∫ r
0 n(r ′) dr ′

where n0 is a constant. It can be easily verified from equation (6) that in this case εθ
θ = ε

φ

φ = n0

and εr
r = (nr/R)2/n0, which is non-singular and nonzero if n ∼ r p and R ∼ r p+1. When we

apply this transformation to the Eaton lens, we obtain

R =
4a

π + 2

[
arcsin

√
r

2a
+

√
r

2a

(
1 −

r

2a

) ]
, (8)

for r 6 a and we set R = r for r > a. The multiplicative constant in equation (8) was chosen
such that the function R(r) is continuous at r = a. Figure 4 shows the light ray trajectories in
the transformed Eaton lens.

Our method is rather flexible in treating singularities of the refractive index. The radial
transformation may be applied just locally in the neighborhood of the singularity, or even several
of such transformations can be applied at the same time, to transmute multiple singularities,
which would be the case of the third example of section 2 where two singularities have to be
treated. Understandably, our method works only for isolated singularities and cannot be used to
transmute zero or infinite refractive indices on a line or surface. For example, the zero refractive
index at the inner lining of a perfect cloaking device [13] cannot be transformed away.

6. Conclusion

In conclusion, we have proposed a method for eliminating material singularities where the
refractive index goes to zero or infinity as n ∼ r p for r → 0 with p > −1. The material
singularity is transmuted into a geometrical singularity where the permittivity and permeability
tensors are not singular but are anisotropic, and the anisotropy forms a topological defect.
One can never completely remove a singularity or a zero of the refractive index in an
isotropic medium, but one can transmute it into a monopole in an anisotropic material,
a much less harmful and practically realizable singularity6. Our method provides a useful

6 Singularities are like curses in myths and prophecies: they cannot be taken back, but they can be altered.
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tool for implementing some proposed optical devices or for letting them operate in a
broad band of the spectrum, and it may also lead to the design and construction of new optical
instruments.
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