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Abstract: We propose a three dimensional optical instrument with an
isotropic gradient index in which all ray trajectories form Lissajous curves.
The lens represents the first absolute optical instrument discovered to exist
without spherical symmetry (other than trivial cases such as the plane
mirror or conformal maps of spherically-symmetric lenses). An important
property of this lens is that a three-dimensional region of space can be
imaged stigmatically with no aberrations, with a point and its image not
necessarily lying on a straight line with the lens center as in all other
absolute optical instruments. In addition, rays in the Lissajous lens are not
confined to planes. The lens can optionally be designed such that no rays
except those along coordinate axes form closed trajectories, and conformal
maps of the Lissajous lens form a rich new class of optical instruments.
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1. Introduction

The advent of transformation optics [1, 2] and recent efforts to construct useful non-Euclidean
lenses [3] have brought increased attention to the field of gradient index lens design. In this
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paper, we show that the field of absolute optical instruments, a special subset of non-Euclidean
gradient index lenses, is richer than previously realized.

An absolute optical instrument is a region of space filled with an optical medium where all
points are imaged stigmatically. In other words, light rays emanating from a single point any-
where in space will, at some later time, all converge to a single point in space. The well-known
textbook by Max Born and Emil Wolf [4] discusses the two then-known examples of absolute
optical instruments, the plane mirror (which creates virtual images of all points in half-space),
and the Maxwell Fisheye (which creates real images of all points in space). It was recently
discovered that there is an infinite number of absolute optical instruments of both categories,
and many properties of these lenses, as well as techniques for determining the refractive index
profiles of them, are now known [5, 6]. Nonetheless, there are still many open questions; for
example, is there a formulaic way of constructing all possible absolute optical instruments?

2. The Lissajous lens

Absolute optical instruments possess interesting properties, both in terms of ray behavior and
in wave optics. Rays, for example, spreading out from any point A in space will later converge
at point B in space (which may happen to be the same point as A). Examples of this behavior
of rays are shown in Fig. 1(a) for the Maxwell fisheye and in Fig. 1(b) for the Luneburg [7]
lens. This property of diverging and converging rays extends to wave optics as well; waves
diverging from a dipole point source in an absolute optical instrument all later converge. It
has been shown [8, 9] that this behavior is closely related to the properties of the spectrum of
absolute instruments which is highly degenerate and almost evenly spaced; this tends to keep
optical pulses from spreading out. In the lens presented in this paper that we will refer to as
the Lissajous lens, as we shall see, the degeneracy and even spacing of the spectrum is perfect,
and optical pulses have a soliton-like property when propagating within such a cavity, never
spreading out but periodically oscillating in shape.

The proposed Lissajous lens is an optical analogue of an anisotropic mechanical harmonic
oscillator. To explain the properties of the lens, we start with the oscillator and then proceed to
the optical case.

The Lagrangian of the anisotropic oscillator with mass m is given by

L =
m
2
(ẋ2 + ẏ2 + ż2)− E

2

(
x2

a2 +
y2

b2 +
z2

c2

)
, (1)

where E is a constant with the dimension of energy and a, b, and c are constants with
the dimension of length representing the anisotropy of the potential in the three Carte-
sian directions. Clearly, the Lagrangian of the system is separable in Cartesian coordinates.
This leads to independent harmonic oscillations in the three spatial directions; for example,
x(t) = Ax cos(ωxt −φx), where Ax and φx are constants depending on the initial conditions, and
ω2

x = E /(ma2). The combination of the three harmonic motions results in a trajectory with the
form of a three-dimensional (3D) extension of the well-known Lissajous curve [10]. (We will
use the term “Lissajous curve” throughout this paper although the 3D version of the curve is
usually called “Lissajous knot”.)

3. Ray propagation inside the Lissajous lens and its geodesic equivalence

To proceed to the construction of Lissajous lens, we employ the close relationship between
classical mechanics and geometrical optics [11]. The geometrical shape of particle trajectories
with the Lagrangian (1) and energy E are the same as trajectories of light rays in a medium
with refractive index proportional to

√
2(E −V ), where V is the potential energy. Setting the
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Fig. 1. Ray trajectories in a) Maxwell’s fisheye, b) the Luneburg lens, c) a Lissajous lens
with a = 1, b = 2, and d) a Lissajous lens with a = 5/3, b = 2. The solid simple curves
represent the line on which n = 1 in the optical case, and the outer dotted lines represent
the n = 0 lens boundary. In (a–c), points A and B represent example source and image,
respectively.

energy E to E , this leads to the refractive index distribution

n(x,y,z) =

√
2−

( x
a

)2 −
( y

b

)2 −
( z

c

)2
; (2)

the index is equal to unity at the surface of the ellipsoid with the semiaxes a,b, and c. From
the analogy with mechanics it then immediately follows that the ray trajectories in this index
are also given by Lissajous curves. Figures. 1(c) and 1(d) show example ray trajectories in two
two-dimensional (2D) lenses for two different a-to-b ratios. It can be seen clearly in Fig. 1(c)
that light emerging from one point later converges to another, and this property is true for light
emanating from any point within the lens, so long as the ratio of a and b is rational. Note that the
image points do not have to lie on a straight line with the center of the lens [6], a property likely
unique to this lens (excepting conformal inversions of other reported lenses). Figure 2(a) shows
an example of a 3D Lissajous lens and again illustrates its unique imaging property. Figure 2(b)
shows an example lens where ray trajectories become helical if one of the parameters a,b or c
goes to infinity.

In the language of transformation optics [11], the refractive index (2) of the Lissajous lens
creates an effective non-Euclidean geometry for light rays that follow geodesic curves with
respect to this geometry. In the case of the 2D lens, this geometry can be visualized by embed-
ding a certain 2D non-Euclidean surface into 3D space; ray trajectories are then represented by
geodesics on this surface. Mathematically, this means that the profile n(x,y) is equivalent to a
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Fig. 2. a) Lissajous lens with a = 1, b = 2, c = 1, b) Lissajous-like lens with a = 1, b → ∞,
c= 1. The surface plots are the surfaces of unity index. The full red lines mark intersections
of these surfaces with the xy plane while the dotted red lines mark the places in this plane
where n = 0.

surface S (x,y,z) with n = 1 homogeneously. Every refractive index profile has an equivalent
non-Euclidean surface, which is called its geodesic lens. The geodesic lenses can be obtained
analytically for spherically symmetric profiles as done in [12]; but for profiles without spher-
ical symmetry, it is exceedingly hard to obtain analytical solutions. For this reason, we have
developed numerical methods to generate the surface shown in Fig. 3; although infinitely many
solutions are possible, it was a computationally complex task to numerically find even a single
solution.

Specifically, we generated the surface by a numerical optimization procedure using the built-
in algorithm NMinimize of the software Mathematica, which gives the explicit coordinates
(xi,yi,zi) of points Pi with i= 1,2, . . . ,N, (where N is the number of points used in the numerical
grid) belonging to the geodesic lens surface at the end of the optimization process. To obtain
this, we made the set of all unknown coordinates (xi,yi,zi) to be the variables with respect to
which a certain object is optimized. The object to be optimized is the sum of the distances ∑di j

between neighboring points Pi,Pj on the surface of the geodesic lens, together with a set of
constraints designed to get a sensible result. The constraints used are: Firstly, the individual
distances di j must match the corresponding optical paths in the 2D optical profile as closely as
possible; and secondly, the surface must be smooth (having approximately the same curvature
throughout).

For 2D refractive index profiles with the boundary n = 0 at r =
√

x2 + y2 → ∞ like that of
the Maxwell fisheye’s, the equivalent geodesic lenses have two parts: an upper part with z > 0
corresponding to n ≥ 1 and a lower part with z < 0 corresponding to 0 ≤ n < 1; the surfaces
nicely close at n = 0 (or at r → ∞). However, for refractive index profiles that have n = 0 at

#228968 - $15.00 USD Received 5 Dec 2014; revised 28 Jan 2015; accepted 28 Jan 2015; published 24 Feb 2015 
© 2015 OSA 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.005716 | OPTICS EXPRESS 5719 



a finite distance from the origin like that of the Luneburg (r =
√

2) or Eaton (r = 2) lenses,
the lower parts of the geodesic lenses can only be partially constructed as the coordinate z will
become complex at some value of n close to, but smaller than 1 [12]. Unfortunately, the same
thing happens with the 2D Lissajous profile, which has finite values of x and y at n = 0; thus
it is impossible to fully construct a geometrical representation of the required surface in 3D
Euclidean space and still maintain a real-valued z-coordinate when 0 ≤ n � 0.85. The surface
shown in Fig. 3 corresponds to the inner part of the lens where n > 1, and is the geodesic-lens-
equivalence of the lens shown in Fig. 1(c). In both Fig. 3 and Fig. 1(c), the two image points
are visible.

Fig. 3. Equivalent geodesic surface to a Lissajous lens with a = 1, b = 2 for the region of
the lens where n ≥ 1.

4. Wave properties of the Lissajous lens

Lastly, we will describe the wave-optical properties of the Lissajous lens. For simplicity, we will
consider scalar waves instead of the full vector description in terms of Maxwell’s equations.
In the wave equation C2Δψ − n2ψtt = 0, where C is the speed of light, all the variables can
be separated to give the solution in the form ψ(x,y,z, t) = ψx(x)ψy(y)ψz(z)cos(ωt −φ). The
(unnormalized) functions ψx,y,z are scaled Hermite Gaussians,

ψx(x) = Hn(x
√

k/a)e−kx2/(2a)

ψy(y) = Hm(y
√

k/b)e−ky2/(2b)

ψz(z) = Hp(z
√

k/c)e−kz2/(2c)

(3)

where

k =
ω
C

=
n+1/2

a
+

m+1/2
b

+
p+1/2

c
(4)

with n, m, and p non-negative integers, and Hn denoting the Hermite polynomial. If the ratios
a/b, b/c, and a/c are rational, then it is not hard to show that all the eigenfrequencies are
integer multiples of ω0 = C/(2d), where d is the least common multiple of a,b,c (i.e., the
smallest value for which d/a,d/b,d/c are all integers). This implies that an abitrary wave in
such a Lissajous lens is periodic with period T0 = 2π/ω0. Hence if a pulse of light is emitted
from any point within the lens, some time later the wave will be exactly the same as it was
when released. This means that an arbitrary point A is an image of itself, and depending on the
ratios of a,b, and c, there may exist also intermediate images (such as point B in Fig. 1(c)).
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Fig. 4. Time evolution of a Gaussian pulse propagating in a Lissajous lens with a = 1,
b = 2, illustrating stigmatic imaging.
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The fact that all the eigenfrequencies are integer multiples of ω0 =C/(2d) also means that the
frequency spectrum has behavior typical for absolute instruments – it is highly degenerate with
equidistantly spaced groups [8, 9]. This is in particular obvious for Luneburg lens for which
a = b = c and all the eigenfrequencies are of the form ω = (N + 1/2)C/a with N integer.
Moreover, the degeneracy and equidistancy of the spectrum of Lissajous lenses is perfect, in
contrast to some other absolute instruments where it is only approximate [8, 9].

Figure 4 shows that a Gaussian pulse initially emitted from one point will later reform at the
image point. This means that sharp, aberration-free imaging by this lens is possible not only for
rays, but also for waves. Conversely, if at least one of the ratios a/b, b/c,a/c is irrational, rays
will not form closed curves, and a wave released from any point from within the lens will never
reform its original shape.

5. Conclusion

In conclusion, we have presented a class of absolute optical instruments where light rays trace
out Lissajous figures and imaging is stigmatic everywhere within the lenses. Unlike in the
previously known absolute instruments, the source, its image and the center of the lens do not
have to lie on a straight line. Whether other lenses exist with this property or whether this lens
is unique remains an open question.
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