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It is known that there exist a limited number of analytic potentials with the unusual property
that any bound quantum state therein will be periodic in time. This is known as a perfect quantum
state revival. Examples of such potentials are the infinte well, quantum harmonic oscillator and
the Pöschl-Teller potentials; here, we present a general method of designing such potentials. A
key requirement is that their energy eigenvalues have integer spacings (up to a prefactor). We
first analyze the required conditions which permit quantum state revivals for potentials in general,
and then we use techniques of iterated Hamiltonian intertwining to construct potentials exhibiting
perfect quantum revivals. Our method can readily be extended to multiple dimensions.

I. INTRODUCTION

When a quantum wavepacket moving in a potential is
launched, it spreads out, explores the potential, and in
general never comes back to the exact initial state. How-
ever, under certain circumstances the wavepacket does
recover to the initial state, and this almost magical ef-
fect is called quantum state revival [1]. This happens in
general if the energy of the wavepacket is restricted to a
narrow interval [2], and the character of the energy spec-
trum determines the revival time. Wavepacket revivals
have been investigated in different contexts, both theo-
retically and experimentally [3, 4], including relativistic
systems [5], and other related effects such as fractional
revivals and superrevivals can be observed too; a com-
prehensive review can be found in Ref. [1].

At the same time, there exist certain quantum systems
where the energy spectra meet particular requirements
that allow exact wavepacket revival for any wavepacket
whose energy is restricted to the discrete part of the spec-
trum. There are only a few known such systems. Two of
them are familiar to any student of quantum mechanics,
namely the infinite potential well and the harmonic oscil-
lator, and others include exactly solvable Hamiltonians,
in particular Pöschl-Teller potentials, both in the hyper-
bolic and trigonometric versions [6, 7]. The question then
arises as to whether other potentials with perfect quan-
tum state revivals exist or not. Here we show that the
answer to this question is positive and that there is a
vast range of such potentials. To construct them, we em-
ploy the intertwining method, and demonstrate quantum
state revivals on a number of examples.
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II. QUANTUM STATE REVIVALS

Suppose we have a quantum particle in a static
1D potential V (x) governed by the Schrödinger equa-
tion Hψ(x, t) = Eψ(x, t) where the Hamiltonian H =

− 1
2

d2

dx2 + V (x) and we work in units in which the mass
of the particle and Planck’s constant ℏ are equal to
unity. To find conditions under which an arbitrary state
ψ(x, t) will be periodic in time, we expand the initial
wavefunction ψ(x, 0) at time t = 0 as a superposition
ψ(x, 0) =

∑
n cnψn(x, 0) of the eigenstates ψn(x, 0) of

the Hamiltonian. As the wavepacket propagates within
the potential, each component acquires a phase factor
φn(t) = −Ent which depends on its eigenenergy En, so
the state at time t becomes

ψ(x, t) =
∑
n

cne
−iEntψn(x, 0) . (1)

For the wavepacket at some moment t = Trev (the revival
time) to be equivalent to that at t = 0, all the exponential
terms e−iEnt have to be in phase at the time Trev. This
occurs when the energy levels En have integral spacing,
with a common real factor a and real offset b,

En = aNn + b , (2)

and the only requirement on Nn is that it be an inte-
ger. The state revival period can then easily be iden-
tified as Trev = 2π/a; at this moment ψ(x, Trev) =

e−
2πib
a ψ(x, 0), so the wavepacket is revived perfectly up

to an unimportant global phase factor. A useful measure
of the wavepacket revivals is the autocorrelation function
A(t) = ⟨ψ(0)|ψ(t)⟩. For a perfect revival, |A(Trev)| = 1.
It may happen that the Hamiltonian has a spectrum

that is partly discrete and partly continuous. If the dis-
crete levels obey the rule (2) and a wavepacket is created
only from the eigenstates corresponding to the discrete
levels, then the quantum revivals will still occur.
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The required energy spacing of (2) is satisfied for the
infinite potential well, the quantum harmonic oscillator
and its isospectral variants [8, 9], and the Pöschl-Teller
potentials, so these systems exhibit perfect wavepacket
revivals. In the following we show how to design other
potentials with such properties by engineering their en-
ergy levels to have suitable patterns through the inter-
twining technique [8, 10, 11]. This enables us to obtain an
unlimited set of potentials where perfect revivals occur.

III. CONSTRUCTING POTENTIALS WITH
DESIRED SPECTRA

The technique begins with a known potential V0(x)
and associated Hamiltonian,

H0 = −1

2

d2

dx2
+ V0(x) . (3)

A new potential V1(x) shall be constructed such that it
has all the energy levels that V0(x) has, plus an addi-
tional level that shall lie below all those of V0(x). The
total number of bound states of V1(x) is thus one greater
than in V0(x). If V0(x) is one of the potentials whose dis-
crete levels obey the contraints of (2) and we then add a
new energy level below its ground state at the right en-
ergy, a new potential retaining the quantum state revival
property will result. It is then possible to iterate the in-
tertwining procedure with V1(x) as the starting point to
add another energy level below its ground state, and then
continue to create as many new energy levels as desired.
In the standard intertwining procedure as described in
[8, 10–12], an operator A+

1 is sought which connects two
Hamiltonians H0 and H1 such that

A+
1 H1 = H0A

+
1 . (4)

In the first-order intertwining, which we shall limit our-
selves to, the operator A+

1 has the following form:

A±
1 =

1√
2

(
± d

dx
+ U1(x)

)
(5)

The function U1(x) is to be determined, and A−
1 =

(A+)†. We take note that H0 and H1 can be factored,
where E is an undetermined constant:

H0 = A+
1 A

−
1 + E , H1 = A−

1 A
+
1 + E . (6)

If we now take E1 as an eigenenergy of H1 and ψ1 as
its normalized eigenfunction, then A−

1 A
+
1 ψ1 = (E1 −

E )ψ1. Multiplying from the left by A+
1 results in

A+
1 A

−
1 (A

+
1 ψ1) = (E1 − E )(A+

1 ψ1), equivalently

H0(A
+
1 ψ1) = E1(A

+
1 ψ1). (7)

If A+
1 ψ1 ̸= 0 then E1 is also an eigenvalue of H0. The

norm ∥A+
1 ψ1∥ =

√
⟨A+

1 ψ1|A+
1 ψ1⟩ is just

√
E1 − E and

hence the normalized eigenfunction is

ψ0
(normalized)

=
A+

1 ψ1

∥A+
1 ψ1∥

=
1√

E1 − E
(A+

1 ψ1). (8)

This is typically the situation unless E1 is the ground
state of H1, and this ensures the potentials have other-
wise identical spectra. The interesting condition occurs
when A+

1 ψ1 = 0 which implies that A−
1 A

+
1 ψ1 = 0 and

H1ψ1 = Eψ1. Then the eigenvalue E1 = E but ψ0 is
unnormalizeable since the norm in the denominator of
(8) is zero. We then have a situation where the new po-
tential V1(x) associated with Hamiltonian H1 is expected
to have a ground state at energy E1 < E0 which V0(x)
lacks. As for U1(x), by combining (3), (5), and (6), it
can be shown that it must satisfy a Ricatti equation,

U ′
1(x) + U2

1 (x) = 2[V0(x)− E ] , (9)

where prime denotes derivative with respect to x. The
new potential is

V1(x) = V0(x)− U ′
1(x) = U2

1 (x)− V0(x) + 2E , (10)

where Eq. (9) has been used. A general solution of Eq. (9)
is given in [8] and [13] and has the form

U1(x) =
d

dx
[lnψ0(x)] . (11)

The unnormalized wavefunction ψ0(x) = A+
1 ψ1 pertains

to the original function V0(x) and can be found by solving
the Schrödinger equation (7) that we rewrite as

ψ′′
0 (x) + 2[E − V0(x)]ψ0(x) = 0 . (12)

It is convenient to split ψ0(x) into even and odd parts,
ψ0(x) = ψeven(x) + αψodd(x), with the appropriate ini-
tial conditions ψ′

even(0) = 0, ψeven(0) = 1 and ψodd(0) =
0, ψ′

odd(0) = 1. Since the new energy level E lies below
the ground state of V0(x), the requirement that E < E0

will ensure that ψeven(x) be free of zeros. If ψodd(x) is
included in the solutions of ψ0(x), care must be taken
that α is not too large, otherwise the zero always present
in ψodd(x) would show up in ψ0(x).
For a practical calculation of the new potential V1(x),

it is more convenient to work with U1(x) rather than
ψ0(x) because one avoids the astronomically large values
that the unnormalizable ψ0(x) contains. To solve Eq. (9),
we also need to employ the initial condition U1(0) = α
that follows from the initial conditions for ψ0; the choice
α = 0 yields a symmetric potential V1(x) and in the
following we will restrict ourselves to this case.

Equation (10) provides the desired potential V1 with
the added level E and it is suitable for numerical calcula-
tions. The entire procedure can be iterated to add arbi-
trarily many new energy levels, provided that each new
level be below all of the previously added levels; refer to
Algorithm 1 for a complete description. We have tested
the algorithm to construct several potentials (see below),
and it can easily be used to add hundreds of levels.
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Algorithm 1: Procedure for Creating Potential
with m New Energy Levels

Data:

• Starting potential V0(x)

• An array of desired new levels E of size m in
descending order

Result: New potential Vm(x)
for i← 1 to m do

Solve the equation for Ui(x):
U ′

i + U2
i + 2[Ei − Vi−1(x)] = 0,

where Ui(0) = 0.
Create potential Vi(x):
Vi(x)← U2

i (x)− Vi−1(x) + 2Ei .

return Vm(x);
Output the final potential containing additional m
energy levels.
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FIG. 1. Biperiodic potentials. Starting from the harmonic po-
tential x2/2 (the uppermost curve, red), N = 25 additional
energy levels with spacing of 2 at values −1,−3, . . . ,−49 have
been added successively using the scheme in Algorithm 1, cre-
ating 25 new potentials. The numerically calculated spectra
of each potential are shown towards the left in matching col-
ors; the leftmost column shows the spectrum of the lowermost
potential. The fact that the levels of various potentials match
is apparent.

The intertwining method works, by its nature, in the
“top to bottom” direction: we start from a given poten-
tial and add new energy levels below its existing levels.
However, it might be more natural to work “bottom to
top”, starting with the ground state and then adding se-
quentially higher energy levels. Fortunately, the method
is suitable for this purpose too: We first list as many
levels as desired that follow a required “bottom to top”
pattern in our new potential. We then choose any suit-
able initial potential, typically the harmonic oscillator or
a constant potential; we then invert our list of desired
levels and add them in reverse order. Numerical simula-
tions reveal that when many levels are added, then the
choice of the initial potential becomes unimportant and
does not influence the resulting potential on the relevant
energy interval.

IV. CONSTRUCTING POTENTIALS WITH
PERFECT REVIVALS

In the following we introduce several examples of en-
ergy level structure that yield perfect quantum state re-
vivals, and construct the corresponding potentials. We
also demostrate the revivals using the autocorrelation
function and quantum carpets.

A. Biperiodic oscillator

Let’s start from the harmonic oscillator potential with
energy levels En = n+ 1

2 for n ≥ 0 and sequentially add
an additional N levels E = −1,−3,−5, . . . ,−(2N − 1).
Employing the semiclassical relation between separation
of quantum energy levels and classical period of oscilla-
tions [1], we find that this would correspond to a classical
biperiodic oscillator that has frequency ω1 = 1 for E > 0
and ω2 = 2 for E < 0; such a potential was described
for instance in Ref. [14]. The resulting quantum poten-
tials and energy levels are shown in Fig. 1 for N ranging
from 1 to 25; the levels were numerically calculated from
the constructed potentials and they match the desired
levels with a high precision. The quantum potentials
closely resemble their classical counterpart (see Fig. 1(a)
in Ref. [14]). We can conveniently represent the time
evolution and revival of the wavepacket by the quantum
carpet [1], which is analogous to the Talbot carpet in
optics [15]. Fig. 2 shows examples of quantum carpets
that represent the time evolution of wavepackets for the
biperiodic potential with N = 100 added levels, where
the bi-periodicity is apparent. Fig. 3(a) shows the mag-
nitude of the autocorrelation function |A(t)| and confirms
perfect wavepacket revivals.
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FIG. 2. Quantum carpets for the biperiodic potential where
100 levels with spacing of 2 were added to the original har-
monic potential x2/2. The absolute value of the wavefunction
is indicated by the brightness (larger value corresponds to a
darker color), the vertical axis represents time proportional to
Trev = 4π. Two initial wavepackets were used: (a) superposi-
tion of two Gaussian states and (b) a shifted cosine oscillating
between 0 and 1. It is apparent, especially in (a), that the
period of the lower-amplitude Gaussian component is equal
to half of the period of the higher-amplitude component.
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FIG. 3. The plots show the magnitude of the autocorrelation
function, |A(t)|, for the following quantum carpets: (a) the
carpet from Fig. 2(b), (b) the carpet from Fig. 5(b), (c-d) the
carpets from Fig. 6(e-f), respectively, (e,f) the carpets from
Fig. 7(b,d), respectively.

B. Reverse biperiodic oscillator

Consider now a situation similar to the previous one:
we again start from the harmonic oscillator potential with
energy levels En = n+ 1

2 for n ≥ 0 and sequentially add

an additional N levels E = 0,− 1
2 ,−1,− 3

2 , . . . ,−(N −
1)/2, this time with a smaller separation than the origi-
nal levels. The resulting quantum potentials and energy
levels are shown in Fig. 4.
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FIG. 4. Same as Fig. 1, but for reverse biperiodic potentials.
N = 15 levels were added successively with spacing of 1/2 at
values 0,−1/2,−1, . . . ,−7. Fewer added levels than in Fig. 1
were used for the sake of clarity of the plot.

Classically, this spectrum would correspond to a
biperiodic oscillator with frequency ω1 = 1 for E > 0
and ω2 = 1/2 for E < 0. It turns out, however, that
such a classical potential does not exist. Indeed, when

solving the inverse problem of finding a classical poten-
tial V (x) from a given dependence T (E) of period on
energy [16], one first obtains the function x(V ) that has
to be inverted to get V (x); since the resulting function is
decreasing here, this is impossible. Such a non-existence
of the classical counterpart is related to the oscillations
of the quantum potentials apparent in Fig. 4; the par-
ticle tunnels between local potential minima, which is
not possible classically. Quantum carpets for the reverse
biperiodic potential with N = 100 added levels are shown
in Fig. 5, the bi-periodicity is apparent again. The auto-
correlation function is shown in Fig. 3(b).

C. Potentials with alternating gaps between levels

As the next example, let us construct a potential with
the gap between the subsequent levels alternating be-
twen two values. Starting from the harmonic oscillator,
we construct N = 100 additional levels following this
pattern.
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FIG. 5. Quantum carpets for the reverse biperiodic potential
where 100 levels with spacing of 1/2 were added to the original
harmonic potential x2/2. The initial conditions are similar as
in Fig. 2. The biperiodicity is apparent again, this time the
period of the lower-amplitude component equals twice the
period of the higher-amplitude component. The revival time
is Trev = 4π.

The resulting potentials are illustrated in Fig. 6(a-
b) for two particular cases of gap patterns between the
levels. Fig. 6(c-f) then shows the corresponding quan-
tum carpets exhibiting an interesting quantum interfer-
ence effects. The autocorrelation functions are shown in
Fig. 3(c,d).

D. Potentials with prime and Fibonacci spectra

To demonstrate the power of the method, we present
two more examples, namely potentials whose spectra are
given by prime and Fibonacci numbers. Denoting the nth

prime number by pn, we start from the constant potential
at the level pN+1 for some N ∈ N and add sequentially N
levels pN , pN−1, . . . , p1. Fig. 7 (a–b) shows the resulting
potential for N = 50 and an example of the quantum car-
pet; the autocorrelation functions is shown in Fig. 3(e).
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FIG. 6. Potentials with alternating gaps between the energy
levels. The gaps alternate (a) between the values 1 and 1/2
and (b) between the values 1/2 and 3/2. The potentials were
shifted by suitable constants to produce zero ground state
energy. The spectrum is shown by the red lines. (c-d) show a
quantum carpet for the potentials in (a-b), respectively, for an
initial Gaussian wavepacket. (e-f) the same as (c-d), but for
a narrower initial wavepacket. The potentials seem to act like
diffraction gratings for the incoming wavepackets, splitting
them into two and then rejoining them into one again. In
both cases, the revival time is Trev = 4π.

Next we repeat the same procedure for Fibonacci num-
bers Fn instead of primes; however, the first Fibonacci
number 1 has to be omitted to avoid repeating level val-
ues, so the designed level values are F2, F3, . . . , FN . The
resulting potential has a regular structure; it is depicted
along with its quantum carpet in Fig. 7 (c–d) for N = 13;
the autocorrelation function is shown in Fig. 3(f).

V. MULTIDIMENSIONAL CASE

Our method can be readily extended to multiple
dimensions. Suppose we have designed potentials
{Vk(x); k = 1, . . . , n}, all with the property (2) with com-
mon values of a and b. Consider now a combined poten-
tial V (x1, . . . , xn) =

∑n
k=1 Vk(xk), where xk are Carte-

sian coordinates of the n-dimensional Euclidean space.
The energy levels of a particle moving in the potential V
will be in the form of sums of energy levels of the individ-
ual potentials Vk, as can easily be shown via separation
of variables in the n-dimensional Schrödinger equation.
Therefore the energy levels in the potential V will also
have the property (2) and will lead to perfect revivals of
n-dimensional wavepackets.

VI. CONCLUSIONS

We have presented a method for desiging potentials
that exhibit perfect quantum state revivals. The exam-
ples given demonstrate the power and flexibility of the
method; there is and endless amount of other energy level
patterns that obey Rule (2); constructing the correspond-
ing quantum potentials for them leads to a multitude of
potentials that exhibit perfect wavepacket revivals. A
possible extension of our work could include designing
potentials for relativistic quantum revivals [5].
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FIG. 7. (a) Potential with spectrum given by the first 50
prime numbers (2, 3, 5, . . . , 229) and (b) its quantum carpet.
(c) Potential with spectrum given by the 12 Fibonacci num-
bers 1, 2, 3, 5, 8, . . . , 233 and (d) its quantum carpet. In both
cases, the revival time is Trev = 2π.


