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Institute of Theoretical Physics and Astrophysics,
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We propose a device with a positive isotropic refractive index that creates an approximate
magnified perfect real image of an optically homogeneous three-dimensional region of space within
geometrical optics. Its key ingredient is a new refractive index profile that can work as an
approximate perfect lens on its own, having a very moderate index range.

PACS numbers: 42.15.-i, 42.15.Eq, 42.30.Va

In perfect imaging, light rays emerging from any point
P of some three-dimensional region are perfectly (stig-
matically) reassembled at another point P’, the image
of P. Perfect imaging has been one of the hot topics in
modern optics since 2000 when J. Pendry showed that a
slab of a material with negative refractive index [1] can
work as a perfect imaging device (perfect lens). Much
effort has then been put into designing and constructing
perfect lenses based on materials with negative refrac-
tive index [2], which led e.g. to demonstrations of sub-
wavelength resolution [3].

On the other hand, as early as in 1854 J. C. Maxwell
found a device with an isotropic and positive refractive
index that images the whole space perfectly, which he
called fish eye. More than 150 years later, U. Leonhardt
and T. Philbin showed that Maxwell’s fish eye provides
perfect imaging not only in terms of geometrical optics
also in the full framework of wave optics [4, 5], and there-
fore enables sub-wavelength resolution similarly as per-
fect lenses based on negative refraction. Recent experi-
ments have confirmed this [6]. Only a few other perfect
lenses with an isotropic positive refractive index were
known until recently. Even less was known about de-
vices that would image perfectly homogeneous regions of
space, i.e., regions with a uniform refractive index. In-
deed, even in the last issue of Born and Wolf’s Principles
of Optics [7] we read that the only known example of
such a device is a plane mirror or a combination thereof.
This has been changed by a recent excellent work of J.
C. Miñano [8] who proposed several new perfect lenses
imaging homogeneous regions and also showed that some
well-known optical devices such as Eaton lens or Luneb-
urg lens [9] are in fact perfect lenses as well. All of them
have unit magnification, giving an image of the same size
as the original object.

Here we present a lens that provides an approximate
perfect real image of a homogeneous region of 3D space
with an arbitrary magnification. Our device is a non-
trivial combination of Maxwell’s fish eye and a new re-
fractive index profile. This profile equipped with a spher-
ical mirror can work as an approximate perfect lens on
its own, giving a real image of a homogeneous sphere and
using just a moderate refractive index range. Our lens
employs isotropic material with positive refractive index.

FIG. 1: Medium with a spherically-symmetric refractive index
that focuses parallel rays inside an optically homogeneous unit
sphere (blue) to a point at distance R from its center (here
R = 7).

The key ingredient of our lens is a spherically symmet-
ric refractive index profile n(r) that focuses all parallel
rays within a sphere of, say, radius 1 and a constant re-
fractive index to a point at a distance R > 1 from the
center of the sphere (Fig. 1). To see why this can be
useful, imagine that a spherical mirror is placed at the
radius R (Fig. 2). A ray that emerges from a point P
inside the unit sphere reaches the mirror, is reflected and
enters the sphere again. Because of the law of reflection
and the above focusing property, the ray after re-entering
the sphere will be parallel with the original ray and lie
opposite to it from the center of the sphere. Therefore
it will pass approximately through the point P’ that is
opposite of P, viewed from the center of the sphere. This
shows that an approximate perfect real image of point P
is formed at point P’.

To find the corresponding refractive index n(r), we use
the expression for the polar angle swept by the ray during
propagation from r = 1 to r = R [10] (see Fig. 3):

∆φ = L

∫ R

1

dr

r
√
n2r2 − L2

. (1)

Here L = nr sinα and α denotes the angle between the
ray and the radius vector. L corresponds to the angu-
lar momentum in the equivalent mechanical problem [11]
and is conserved in any spherically-symmetric refractive
index profile. Assuming that the refractive index inside
the unit sphere is equal to one, L is equal to the distance
of the ray from the center and ∆φ = arcsinL (Fig. 3).
Inserting this into Eq. (1) and making the substitutions
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FIG. 2: Approximate perfect lens formed by surrounding the
medium from Fig. 1 with a spherical mirror of radiusR (shown
in black).
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FIG. 3: Notation used for deriving the refractive index profile
nR(r).

r = ex, N = nr, we obtain an integral equation

L

∫ X

0

dx√
N(x)2 − L2

= arcsinL, (2)

where X = lnR. As has been shown [12], this equation
does not have an exact solution; we therefore employed
two different methods to find an approximate solution
N(x) numerically.

In the first method, we changed the integration vari-
able in Eq. (2) from x to N to obtain

L

∫ N1

1

u(N)
dN√

N2 − L2
= arcsinL, (3)

where u(N) = dx/dN and N1 = Rn(R). This equation
can be solved by Galerkin’s method for the linear integral
equations of the first kind [13] as follows. The unknown
function u(N) is first expanded as u(N) =

∑
iAiϕi(N),

where Ai are real coefficients and ϕi(N) is a set of func-
tions on the interval (1, N1). Substituting this expression
into Eq. (3) and interchanging the summation and inte-

gration, we obtain∑
i

Aigi(L) = arcsinL , (4)

where gi(L) = L
∫ N1

1
ϕi(N)(N2−L2)−1/2 dN . For a cho-

sen set of functions ϕi(N) we need to calculate the un-
known coefficients Ai. For this purpose we define another
set of functions ψj(L) on the interval (0, 1). Multiplying
both sides of Eq. (4) by ψj(L), integrating over L from
0 to 1 and interchanging the order of summation and
integration, we obtain the matrix equation∑

i

σijAi = Bj , (5)

where σij =
∫ 1

0
ψj(L)gi(L) dL and Bj =∫ 1

0
ψj(L) arcsinLdL. The unknown coefficients Ai

are then solutions of the system of linear equations (5).
Using the calculated coefficients Ai, the approximate
solution of function u(N) is finally obtained. In our cal-
culation, we have chosen polynomials as basis functions,
ϕi(N) = N i, ψj(L) = Lj , with i, j running from 0 to
some maximum value M .

The second, less sophisticated but equally efficient
method, was based on numerical minimization of the lens
aberration. We have represented the function N(x) in

Eq. (2) by a polynomial N(x) = 1 +
∑k

1 aix
i with coef-

ficients ai and calculated the aberration

A =
∑
{Li}

(
Li

∫ X

0

dx√
N(x)2 − L2

i

− arcsinLi

)2

(6)

as a function of a1, . . . , ak. Here Li denotes a chosen set
of representative values of L from the interval (0, 1]. To
find the minimum aberration, we have employed the nu-
merical function NMinimize of the program Mathemat-
ica. It turned out that using polynomial of degree k = 5
and ten uniformly distributed values of Li gave a refrac-
tive index with a negligible aberration; for example, for
X = 3 the mean difference of the angle ∆φ from the
correct value was 10−6 radians. It turned out that the
method works very well for X ≥ 2, but does not work for
X ≤ 1, which would correspond to R ≤ e.

Both methods give similar results for n(r). Fig. 4
shows the refractive index n(r) obtained by the second
method for several values of R. The ray trajectories are
shown in Fig. 1 for R = 7. Of course, the whole func-
tion n(r) (including the region r < 1) can be multiplied
by any real constant C without changing the focusing
properties of the lens. In addition, the size of the lens
can be scaled by an arbitrary factor D. If we denote the
original refractive index distribution by nR(r) instead of
n(r) to emphasize that it depends on the parameter R,
then the most general refractive index of our lens be-
comes n(r) = CnR(r/D). This lens focuses parallel rays
within the sphere of radius D to the point at the distance
DR from its center. Using for instance R = 7 and setting
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FIG. 4: Refractive index nR(r) calculated by the method of
minimizing aberration for R = 5 (red full line), R = 10 (blue
dashed line) and R = 15 (green dash-dotted line). The verti-
cal line marks the border of the homogeneous region at r = 1.
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FIG. 5: Regions in the approximate magnifying perfect lens,
the z axis (θ = 0) being vertical. The radii of the individual
spheres are marked along horizontal axis. The dashed line
shows the radius a = R

√
m of Maxwell’s fish eye profile lo-

cated in Region III. The object and image spaces are marked
by a slightly darker color.

C = 2.74 to bring n(r) above one in the whole lens, we
get 1 ≤ n ≤ 3.11, which is a very moderate range.

Having described the lens that approximately focuses
parallel rays to a single point, we proceed now to con-
struction of the magnifying lens. For this purpose, we
divide the whole Euclidean 3D space into three regions
denoted I, II and III (see Fig. 5). Using spherical coordi-
nates (r, θ, φ) centered at a point O, we define the regions
as follows. Region I is given by the conditions 0 ≤ r ≤ R
and 0 ≤ θ < π/2; region II is given by the conditions
0 ≤ r ≤ mR and π/2 < θ ≤ π, where m ≥ 1 is going
to be the lens magnification; region III occupies the rest
of the space. Refractive index in region I is given by the
above described profile, i.e., nI = nR(r). Refractive in-
dex in region II is nII = nR(r/m)/m. Refractive index

FIG. 6: Ray tracing in the approximate magnifying perfect
lens with m = 3/2. The parts of the rays in regions I, II
and III are shown in blue, red and green, respectively. The
numbers help to match the two parts of the same ray. The
primes mark the rays that are reflected from the mirror before
entering region III while unprimed rays are reflected after
leaving region III.

in region III is described by Maxwell’s fish eye profile

nIII =
n1(1 + 1/m)

1 + r2/(mR2)
, (7)

with the fish eye radius, i.e., the radius of ray that runs
at a fixed distance from the center O, equal to a = R

√
m,

and n1 = nR(R). It is easy to check that the refractive
index is continuous at the hemispherical interfaces of re-
gion III with both regions I and II, i.e., nI(R) = nIII(R)
and nII(mR) = nIII(mR).

The radius a of Maxwell’s fish eye was chosen such that
it images the hemispheric interface of regions I and III
to the hemispheric interface of regions II and III. Indeed,
the relation of radial coordinates r, r′ of a point and its
image in the fish eye is rr′ = a2 [7], which is satisfied in
our case.

We will show now that this device approximately im-
ages the object space, which is the homogeneous hemi-
sphere of radius r = 1 and refractive index n = 1 in region
I, to the image space, which is the homogeneous hemi-
sphere with radius r = m and refractive index n = 1/m
in region II (see Fig. 5). Consider a ray emerging from
some point P placed at the radius vector rP in the ob-
ject space in the direction described by a unit vector ν
that has a positive component in z-direction. Due to
the focusing properties of the profile nR(r) in region I,
it will hit the interface of regions I and III at the point
A = Rν. The Maxwell’s fish eye profile in region III will
ensure that the ray will then propagate along a circle
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and hit the interface of regions III and II at the point
B = −mRν. Moreover, since the ray is a segment of a
circle, clearly the angle between the ray and the straight
line AOB at point A is the same as the angle between the
ray and the line AOB at point B. The ray hence enters
region II with the same impact angle with which it left
region I. Now since the index profiles in regions I and II
differ only by a spatial scaling by m and a multiplica-
tive factor, it is clear that the shape of the ray in region
II will be the same as its shape in region I, up to scal-
ing by m. In particular, when the ray enters the image
space, it will resume its original propagation direction ν,
but the straight line on which it lies will be m× more
distant from the origin O than the straight line of the
first segment of the ray in region I. This means that the
ray will be directed towards the point P’ placed at mrP.
Now if many rays emerge from point P, they will form
an image at P’; however, this point lies outside of region
II, so the image would be virtual. Because of this, we
place a mirror at the interface of regions I and II that
changes the virtual image at P’ into a real image at a
point P” at position ẐmrP, with Ẑ meaning the oper-
ation of inverting the z-coordinate. Furthermore, if we
make the mirror double-sided, then we can take advan-
tage also of the rays that emerge “down” from P (those
with negative z-component of ν). These rays will be re-
flected from the mirror while still propagating in object
space and then reach the image P” without a further re-
flection, as marked in Fig. 6 by primes. It turns out,
however, that some rays with positive z-component of ν
will hit the flat interface between regions III and II. Since
it is not possible to use these rays for imaging, we block
them by placing an absorber at this flat interface on the
side of region III, keeping the mirror on the side of region
II. This way, not all rays emerging from P reach P”, but
it is a negligible minority of rays that are lost in this way,
especially if the magnification m is not too large. Still,
it is not necessary for a device to capture all rays to be
called a perfect lens within geometrical optics [7].

In summary, we have proposed a lens that makes an
approximate magnified perfect real image of a homoge-
neous 3D region. Performance of this lens in the full wave
optics regime is a subject of investigation, but we believe
that it may provide sub-wavelength resolution similarly
as Maxwell’s fish eye. Manufacturing this lens would be
difficult because the refractive index of Maxwell’s fish
eye profile in region III goes to zero for r →∞, and rays
forming the image do get very far from the origin. Mul-
tiplying the whole index profile by a large number will
not help much because then the index in the object and
the image spaces then becomes very large. An option
how to reduce refractive index range significantly would
be to position regions I and II differently and use some
other, not spherically symmetric index profile in region
III to image the surface of one sphere to the other. On
the other hand, the index profile nR(r) that is a part of
the device can work as an approximate perfect lens on its
own, requiring just a moderate refractive index range and
therefore having potential to become a practical device.

After we published this paper on the arXiv, our col-
league Klaus Bering proved analytically that there exists
no function N(x) that solves the integral equation (2)
exactly and therefore the refractive index nR with the
focusing properties does not exist either. Before that, we
believed that Eq. (2) does have an exact solution but that
we just could not find it. A detailed proof of the non-
existence of the solution is given in Ref. [12]. In spite
of that, we believe that even though our device works
only approximately, it still may have value for further
research; therefore we have replaced the paper on arXiv
instead of withdrawing it. In the meantime, we have
found another method for designing magnifying perfect
lenses (or absolute instruments) [14] that works exactly
and is much more flexible than the method presented in
this paper.

We thank Klaus Bering, Ulf Leonhardt, Michael Krbek
and Aaron Danner for very useful discussions.
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