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Broadband Invisibility by
Non-Euclidean Cloaking

ULf Leonhardt™?* and Tomas Tyc>3

Invisibility and negative refraction are both applications of transformation optics where the
material of a device performs a coordinate transformation for electromagnetic fields. The device
creates the illusion that light propagates through empty flat space, whereas in physical space,
light is bent around a hidden interior or seems to run backward in space or time. All of the
previous proposals for invisibility require materials with extreme properties. Here we show that
transformation optics of a curved, non-Euclidean space (such as the surface of a virtual sphere)
relax these requirements and can lead to invisibility in a broad band of the spectrum.

eometry has always played a distin-
Gguished role in optics (7), but direct op-

tical applications of differential geometry
are rather recent (2—4). Most notably, electro-
magnetic cloaking devices (5) are inspired by
ideas of transformation optics (6—10), whereby
transparent materials mimic coordinate transfor-
mations, forcing light to follow curved coordi-
nates. The coordinates may enclose a hidden space,
making the interior invisible and the act of cloaking
undetectable. Another application of transforma-
tion optics (3, 4) is negative refraction (11, 12),
where light follows coordinates that run backward
in space (2) or time (/3). One can also create
optical analogs of the event horizon (2, 3, /4) and
perhaps even electromagnetic wormholes (/5).
The key to engineering practical implementations
of ideas that normally belong to general relativity
(2—4) is the application of modern metamaterials
(16-19). In metamaterials, man-made subwave-
length structures generate unusual electromag-
netic and optical properties. Metamaterials are
potentially very versatile, but they are still subject
to fundamental limits.

Take, for instance, the cloaking device (/0)
with the coordinate transformation illustrated in
Fig. 1. The coordinates of physical space (Fig.
1B) are curved transformations of straight Car-
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tesian coordinates in a virtual space that we call
electromagnetic space (2) (Fig. 1A). This space is
empty, so light follows straight lines that appear
curved in physical space. If the coordinate trans-
formation expands one point in electromagnetic
space to an extended volume in physical space,
anything in the “interior of the point” is invisible,
as shown in Fig. 1B. However, Fig. 1 also reveals
a fundamental problem of such cloaking devices.
In electromagnetic space, light passes a point in
infinitely short time, but in physical space the
point has become an extended region. Thus, light

must propagate along the inner lining of the cloak
at infinite speed (2). In materials, including meta-
materials, the phase velocity (/) of light may
approach infinity, but only at discrete frequencies
that correspond to resonances of the material’s
constituents. Light with different frequencies (dif-
ferent colors) would not be cloaked but instead be
distorted. Furthermore, the group velocity (/)
tends to be zero at resonances: Light pulses would
become glued to the device instead of traveling
around it (20). Therefore, turning invisibility from
a tantalizing idea into a practical broadband de-
vice requires a different approach.

So far, transformation optics have mostly ap-
plied concepts of only Euclidean, flat space, the
curved light rays being mere coordinate trans-
formations of a space that is inherently flat. Here
we explain how concepts of non-Euclidean ge-
ometry (i.e., of intrinsically curved space) could
pave the way to broadband invisibility. In curved
space, light may propagate along closed loops or
may avoid some regions altogether. Most trans-
parent materials act as if they would curve the
geometry of light (3); light focused by a lens,
refracted in a water droplet, or bent in a mirage
perceives space as being curved, in general. Trans-
formation media where the perceived space is
inherently flat are the exceptions (3). However, to

HiE

Fig. 1. Euclidean cloaking device (10). The device performs a coordinate transformation from the
virtual space (A) to physical space (B). The virtual space is empty and flat (Euclidean). Because the
curved coordinate lines of physical space are transformations of straight lines, physical space is
Euclidean as well. The device creates the illusion that light propagates through flat space that is
empty, apart from one point that, in physical space, has been expanded to finite size. The interior
of the expanded point is hidden. Light, however, passes a point in infinitely short time. So, in
physical space, the speed of light in the material of the device must approach infinity, which
severely limits the use of Euclidean cloaking (20).
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Fig. 2. Non-Euclidean cloaking device in two dimensions. The device creates the illusion shown in (A): Light
propagates through a virtual space that consists of a plane and the surface of a sphere, a curved space, which
touch along a line. Some incident light rays venture from the plane to the sphere; they return after one loop
and continue in the same direction. Note that the rays never cross the red zigzag line on the sphere. Plane and
sphere carry a coordinate grid that is mapped onto physical space (B). The magenta circle defines the
boundary of the device. Its interior has been expanded to make space for the grid of the sphere. In particular,
the line where plane and sphere touch has been opened like an eye (thick black lines) to include the sphere.
This is not a cloaking device yet, but one could place a mirror around the equator of the virtual sphere (C),
making the northern hemisphere invisible and creating the same illusion as shown in (A). (D) Alternatively,
one could expand the red line that light never crosses to create a hidden space.

Fig. 3. 3D cloaking. One can extrapolate the ideas illustrated in Fig. 2 to 3D space, replacing the plane by flat
space and the sphere by a hypersphere. The lentil-shaped object indicates the hidden interior of the device,
and the partly shaded grid denotes the boundary of the invisibility device. For better contrast, light rays are
shown in red. (A) Rays are bent around the invisible region. (B) In three dimensions, some rays turn out to
perform two loops in hyperspace that appear in physical space as light wrapped around the invisible interior.

REPORTS I

achieve invisibility, it is necessary to curve the
geometry in specific ways.

We explain our ideas with pictures, the
complete calculations behind the pictures being
described in the supporting online material (27).
As three-dimensional (3D) curved space is dif-
ficult to visualize, we first explain our concept on
a 2D example and then extend this case to three
dimensions. Figure 2A shows the archetype of a
non-Euclidean space (the surface of a sphere)
combined with a Euclidean space (the plane) that
touches the sphere like a piece of paper partially
wrapped around a globe. Both the plane and the
sphere carry a coordinate grid that we map onto
physical space (the plane shown in Fig. 2B). The
entrance to the sphere (i.e., the line where the
globe touches the plane) has been opened like an
eye in the physical plane to make space for the
grid of the sphere. In mathematical terminology,
electromagnetic space consists of two branches,
plane and sphere, that are connected at a branch
cut. Although the globe has been flattened in
physical space, the exterior curvature of the sphere
is maintained as intrinsic curvature.

As there is a one-to-one correspondence be-
tween light propagation in the physical plane
(Fig. 2B) and in electromagnetic space (Fig. 2A),
we discuss the optics in electromagnetic space.
Light rays follow geodesics (3), lines of shortest
or longest path (/, 3). The geodesics on the
sphere are the great circles. Light entering the
sphere through the branch cut performs a loop
and leaves in the same direction as before; the
sphere is invisible but it does not make anything
else invisible yet. However, if we place a mirror
around the equator of the globe (Fig. 2C), light is
reflected twice, creating the illusion of follow-
ing a great circle, yet never reaching the northern
hemisphere. Anything placed inside the corre-
sponding area in physical space is invisible. A
more elegant option instead of hiding behind a
mirror is the creation of an invisible space that
light naturally avoids (22). For example, the light
circles on the sphere never cross the red zigzag
shown in Fig. 2A. Imagine we open the zigzag
like a zip in physical space (Fig. 2D). Anything
inside this region is hidden, and the act of hiding
is not detectable on the light rays: We have a cloak-
ing device. On the other hand, light performs loops
on the sphere, which takes time. Measuring time
delays or examining the phase fronts of light rays
could reveal the presence of the cloaking device.
This imperfection (9, 22) is the price to pay for
practical invisibility, whereas perfect invisibility
(10) is not practical.

The implementation of our idea does not de-
mand extreme optical properties such as infinities
or zeros of the speed of light, for the following
reason: In electromagnetic space, light propa-
gates at the speed of light in vacuum. Physical
space represents a deformed image of electro-
magnetic space; the speed of light follows this
deformation. Expressed in quantitative terms, if
an infinitesimal line element in electromagnetic
space is n times longer than its image in physical
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space, then the refractive index in the corresponding
direction in physical space is n. Figure 2 as well as
calculations (27) show that the ratio of the line
elements is neither infinite nor zero. Even at a
branch point the spatial deformation in any di-
rection is finite, because here the coordinate grid
is only compressed in angular direction by a finite
factor, in contrast to optical conformal mapping
(9). Furthermore, the spatial deformations are grad-
ual, for avoiding reflections at boundaries (23).
Figure 3 illustrates the extension of our idea
to three dimensions. Instead of the 2D surface of
the globe of Fig. 2A, we use the 3D surface of a
4D sphere (a hypersphere). Such a geometry is
realized (24, 25) in Maxwell’s fish eye (1, 26).
Inside the cloaking device, we inflate a 2D sur-
face, the branch cut in 3D, like a balloon to make
space for the 3D surface of the hypersphere.
Again, at this point the cloak is invisible but does
not hide anything yet. Then we open another
spatial branch on the “zip” of the hypersphere to
create a hidden interior. The branch cuts are
curved surfaces in electromagnetic space, which
is the only important difference when compared
with the 2D case. Some light rays may pierce the
entrance to the hypersphere twice; they perform
two loops in the non-Euclidean branch. In phys-
ical space, light is wrapped around the invisible
interior in such cases (Fig. 3B). We calculated

the required electromagnetic properties (2/) and
found that the electric permittivity ranges from
0.28 to 31.2 for our specific example. One could
give the cloaking device any desired shape by
further coordinate transformations, which would
change the requirements on the optical proper-
ties of the material. As a rule, the larger the cloaked
fraction of the total volume of the device, the
stronger the optics of the material must be, but the
required speed of light will always remain finite.
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Control of Self-Assembly of DNA
Tubules Through Integration of

Gold Nanoparticles

Jaswinder Sharma,’?* Rahul Chhabra,?* Anchi Cheng,® Jonathan Brownell,?

Yan Liu,%?t Hao Yan'?t

The assembly of nanoparticles into three-dimensional (3D) architectures could allow for greater
control of the interactions between these particles or with molecules. DNA tubes are known to form
through either self-association of multi-helix DNA bundle structures or closing up of 2D DNA tile
lattices. By the attachment of single-stranded DNA to gold nanoparticles, nanotubes of various 3D
architectures can form, ranging in shape from stacked rings to single spirals, double spirals, and
nested spirals. The nanoparticles are active elements that control the preference for specific tube
conformations through size-dependent steric repulsion effects. For example, we can control the
tube assembly to favor stacked-ring structures using 10-nanometer gold nanoparticles. Electron
tomography revealed a left-handed chirality in the spiral tubes, double-wall tube features, and

conformational transitions between tubes.

anoparticles can exhibit distinctive elec-
tronic, magnetic, and photonic properties

(1), and their assembly into well-defined
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one-dimensional (1D), 2D, and 3D architectures
with geometric controls could add to their
functionality. DNA-mediated assembly of nano-
particles is an attractive way to organize both
metallic and semiconducting nanoparticles into
periodic or discrete 1D and 2D structures (/—14)
through the programmable base-pairing interac-
tions and the ability to construct branched DNA
nanostructures of various geometries. Recent
success in using DNA as a molecular glue to
direct gold nanoparticles (AuNPs) into periodic
3D crystalline lattices further demonstrates the

power of DNA as building blocks for 3D nano-
engineering (15, 16).

Here, we report a group of complex 3D geo-
metric architectures of AuNPs created using DNA
tile-mediated self-assembly. These are tubular
nanostructures with various conformations and
chiralities resembling those of carbon nanotubes.
The nanoparticle tube assembly can be engi-
neered both by the underlying DNA tile scaffolds
and the nanoparticles themselves. Previous work
in structural DNA nanotechnology has shown
that DNA tubes can form through either the self-
association of multi-helix DNA bundle structures
or the closing up of 2D DNA tile lattices (1 7-26).
The forces that drive tube formation have been
attributed to the intrinsic curvature of the tile-
array (2/) and the thermodynamic requirement to
lower the free energy of the system by minimizing
the number of unpaired sticky ends (22). The in-
trinsic dimensional anisotropicity of the DNA tiles
also plays an important role in the kinetic control
of the tube growth (26).

In all of the above studies, the true 3D
conformations of DNA tubes have never been
revealed in detail because of limitations in micro-
scopic imaging techniques; deposition of the
samples on a surface for atomic force microscope
(AFM) or transmission electron microscope
(TEM) imaging usually causes flattening and
sometimes opening of the tubes. This limitation
has prevented a comprehensive understanding of
the structural features of DNA nanotubes. For
example, the handedness of the chiral tubes can
be better revealed with 3D structural characteriza-
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