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ELLIPSES IN THE PHASE SPACE DIAGRAM FOR THE BILLIARD PARAMETER Φ CLOSE TO π

Iterating the Poincaré map multiple steps

In the following we investigate the Poincaré map M for the billiard parameter Φ close to π. We will show that
for an integer n > 1, there is a fixed point of the mapping M2n near the point (ξ, ω) = (0, π/(2n)). We will find
the position of this point and investigate the phase space diagram in the vicinity of this point; we will show that the
phase space diagram in the plane (ξ, ω) contains stacks of ellipses.
To shorten the notation, in the following equations we drop the symbol “mod 2π” used in the main paper; this way,

if any expression results in a value from outside the interval (−π, π], it is automatically increased or decreased by 2π
to belong to this interval.

We set Φ = π − ε with ε ≪ 1 and expand Eqs. (1–2) from the main paper in ε, keeping terms up to the first order
in ε. We denote sk ≡ sign[sin(ϑk − 2ωk)] = sign[sin(ξk −ωk)] to shorten notation, and employ Taylor expansion. This
yields

ϑk+1 =
πsk
2

− arctan

{
cot(ϑk − 2ωk) +

εsk tanωk

sin(ϑk − 2ωk)

}
= ϑk − 2ωk − εsk sin(ϑk − 2ωk) tanωk , (S1)

ωk+1 = − arcsin{− sinωk + εsk cosωk cos(ϑk − 2ωk)} = ωk − εsk cos(ϑk − 2ωk) . (S2)

With the help of Eqs. (3) from the main paper, we rewrite these equations in terms of the variables (ξ, ω) instead of
(ϑ, ω):

ξk+1 = ξk − 2ωk + εsk
cos ξk
cosωk

(S3)

ωk+1 = ωk − εsk cos(ξk − ωk) (S4)

We now wish to iterate Eqs. (S3) and (S4), starting from the point (ξ0, ω0) = (0, π/(2n)), by n steps forward. To
do that, we use the fact that for small ε, the resulting sequence of points {(ξk, ωk), k = 1, . . . , n} will be close to
the sequence {(ξ̃k, ω̃k), k = 1, . . . , n} of points that would correspond to a similar iteration with the same starting
point (ξ0, ω0), but with ε = 0. This latter sequence can be obtained easily by using ε = 0 in Eqs. (S3) and (S4) and
iterating, which gives ξ̃k = ξ0 − 2kω0 and ω̃k = ω0. Now, when calculating the sequence {(ξk, ωk)}, we use Eqs. (S3)
and (S4) where in the terms containing ε we replace ξk and ωk by their approximate values ξ̃k and ω̃k; doing that, we
introduce an error of order ε2, which is no problem because we are calculating up to the first order in ε. This way,
we obtain

ξk+1 = ξk − 2ωk + εsk
cos(ξ0 − 2kω0)

cosω0
, (S5)

ωk+1 = ωk − εsk cos[ξ0 − (2k + 1)ω0] . (S6)

We now go n steps forward. By repeatedly using the recurrence (S5–S6), we obtain

ξn = ξ0 − 2nω0 +
ε

cosω0

n−1∑
k=0

sk cos(ξ0 − 2kω0) + 2ε

n−1∑
k=0

(n− k − 1)sk cos[ξ0 − (2k + 1)ω0] ,

ωn = ω0 − ε

n−1∑
k=0

sk cos[ξ0 − (2k + 1)ω0] .

(S7)

As we have mentioned, we want to start our iteration near the point (ξ, ω) = (0, π/(2n)) (but not necessarily exactly

at that point). This way, we have ξ0 ≈ 0 and ω0 ≈ π
2n . Then since ξk −ωk ≈ ξ0 − (2k+1)ω0 ≈ − (2k+1)π

2n , we see that



2

all the signs s0, s1, . . . , sn−1 are equal to −1. This makes it possible to rewrite (S7) to

ξn = ξ0 − 2nω0 −
ε

cosω0

n−1∑
k=0

cos(ξ0 − 2kω0)− 2ε(n− 1)

n−1∑
k=0

cos[ξ0 − (2k + 1)ω0] + 2ε

n−1∑
k=0

k cos[ξ0 − (2k + 1)ω0] ,

ωn = ω0 + ε

n−1∑
k=0

cos[ξ0 − (2k + 1)ω0] .

(S8)
Evaluating the sums is a technical task. After a lot of algebra, we find

ξn = ξ0 − 2nω0 +
ε

sinω0

[
sin(nω0) sin(ξ0 − nω0)

sinω0 cosω0
− n sin ξ0

]
,

ωn = ω0 + ε
cos(ξ0 − nω0) sin(nω0)

sinω0
,

(S9)

Finding the fixed point of the map M2n

As we have mentioned, we are looking for a fixed point of the mapping M2n near the point (ξ, ω) = (0, π/(2n)).
Instead of iterating the full 2n steps forward, we instead compare the result of iterating just n steps forward with the
result of iterating n steps backward. By requiring that the result be the same, we obtain the position of the fixed
point of the mapping M2n. Compared to iterating 2n steps forward, this more symmetric approach leads to equations
of a simpler form for the fixed point than the iteration by 2n steps would lead to. Therefore we prefer this approach.

It is not difficult to find the relations for the backward iteration analogous to Eqs. (S3) and (S4) based on symmetry
consideration of the spherical wedge billiard and the resulting symmetries of the Poincaré map M in the plane (ξ, ω);
we omit these considerations here and just state the result:

ξ−n = ξ0 + 2nω0 +
ε

sinω0

[
sin(nω0) sin(ξ0 + nω0)

sinω0 cosω0
− n sin ξ0

]
,

ω−n = ω0 + ε
cos(ξ0 + nω0) sin(nω0)

sinω0
.

(S10)

We can now express the differences of the result of n iterations forward and n iterations backward as

ξn − ξ−n = −4nω0 − 4ε
sin2 nω0 cos ξ0
sinω0 sin 2ω0

, (S11)

ωn − ω−n = 2ε
sin2 nω0

sinω0
sin ξ0 . (S12)

The requirement that the point (ξ0, ω0) is a fixed point of the mapping M2n is equivalent to requiring ξn = ξ−n and
ωn = ω−n, so the right-hand sides of Eqs. (S11) and (S12) must vanish. The second condition is clearly satisfied by
ξ0 = 0. Writing ω0 = π/(2n) + b, after a bit of algebra the first condition yields the following equation for b

b = − ε cos2 nb

n sin
(

π
2n + b

)
sin
(
π
n + 2b

) . (S13)

Taking into account that b is of order of ε as Eq. (S13) shows, we can get neglect all b on the right-hand side of
Eq. (S13), which gives b up to the first order in ε as b = −ε/(n sin π

n sin π
2n ). So finally we can write the coordinates

of the fixed point of the mapping M2n that we denote by F = (ξF, ωF) as follows:

ξF = 0 , ωF =
π

2n
− ε

n sin π
n sin π

2n

(S14)

This result is in an excellent agreement with numerical calculations with an error of the second order in ε, as expected.
We also note that the position of one fixed point of M2n given by Eq. (S14) can be used to find the positions of all
the 2n − 1 other fixed points with the help of Eqs. (S9) and (S10), i.e., we can recover the whole 2n-periodic orbit
up to the first order in ε. Another important fixed point of this mapping is the one that is a result of applying the
mapping Mn to the fixed point F we have found, i.e., the point F ′ = (ξ′F, ω

′
F) = MnF . It is not hard to see that

this point has the same ω coordinate as the fixed point F while its ξ coordinate differs by π; this way, we can write
F ′ = (π, π

2n − ε/[n sin π
n sin π

2n ]).
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Getting equations for the ellipses

Having found the fixed points of the mapping M2n, it remains to find the relation between the difference (ξ−n,
ω−n) − F ′ of the original point and the fixed point and the difference (ξn, ωn) − F ′ of the resulting point and the
fixed point; this relation is described by the Jacobi matrix

J2n =

(
∂ξn
∂ξ−n

∂ξn
∂ω−n

∂ωn

∂ξ−n

∂ωn

∂ω−n

)
(S15)

expressed at the fixed point. With the help of Eqs. (S9) and (S10) we can calculate J2n up to the first order in ε:

J2n =

(
1− 4nε

sin[π/(2n)] −4n+ εf(n)
2ε

sin[π/(2n)] 1− 4nε
sin[π/(2n)]

)
, (S16)

where f(n) is a function of n that can be evaluated explicitly but whose form is not important for our considerations.
We now perform a specific similarity transformation of this matrix:

J̃2n ≡
(
1 0
0 1/Rn

)
J2n

(
1 0
0 Rn

)
, (S17)

where Rn =
√
ε/{2n sin[π/(2n)]}. The matrix diag(1, 1/Rn) in Eq. (S17) effectively scales the coordinate ω by the

factor 1/Rn, so the transformed matrix J̃2n can be regarded as the Jacobi matrix of the mapping M2n in the rescaled
coordinates (ξ, ω/Rn). A direct calculation using Eqs. (S16) and (S17) shows that, up to the first order in ε, the
matrix J̃2n is just the rotation matrix:

J̃2n =

(
cosαn − sinαn

sinαn cosαn

)
, (S18)

where αn =
√
8nε/ sin[π/(2n)]. This way, in the rescaled coordinates (ξ, ω/Rn) the mapping M2n simply rotates the

neighborhood of the fixed point F ′ by the angle αn around F ′. And similarly, in the same coordinates the mapping
M2n rotates the neighborhood of the fixed point F by the angle αn around F . Using this latter fact, we can express
the sequence of points (ξ2nk, ω2nk) corresponding to iterations by the mapping M2n in the original plane (ξ, ω) as

ξ2nk = ξF +A cos(kαn + ϕ0) = A cos(kαn + ϕ0),

ω2nk = ωF +ARn sin(kαn + ϕ0) =
π

2n
− ε

n sin π
n sin π

2n

+ARn sin(kαn + ϕ0) ,
(S19)

where A is an amplitude [radius of a circle in the plane (ξ, ω/Rn)] and ϕ0 denotes the initial phase. This way, the
orbit of the mapping M2n in the plane (ξ, ω/Rn) in the neighborhood of the fixed point F consists of points lying on
a circle of radius A centered at the fixed point F , with a constant angle αn separating two subsequent points. In the
original plane (ξ, ω) the corresponding points lie along ellipses with axis ratio Rn. This is the reason that for small
ε, i.e., for Φ just slightly less than π, the phase space diagram consists of plethora of ellipses. Here we have focused
on just a subset of all these ellipses; similar considerations as the ones made here would lead to description of the
other ellipses too. In particular, one would find that there are infinitely many other stacks of ellipses centered near
the points (ξ, ω) = (0,mπ/(2n)), where n and m < n are relatively prime. The size and axes ratio of a given stack
depends only on n, but not m; the size of the stacks in the ξ direction is approximately π/n, so it decreases with an
increasing denominator of the fraction m/n. This way, the arrangement of the stacks of ellipses along the ω axis in
the SWB reflects the structure of rational numbers within the set of real numbers. A similar structure can be found
in the fractional Talbot effect where at the distance given by the ratio m/n of the Talbot length behind the diffraction
grating, there is a superposition of n mutually shifted copies of the original grating.
Fig. S1 shows the phase space diagrams for several values of ε. The ratio of the scales on the axes ξ and ω is chosen

to be Rn→∞ =
√
ε/π so that the ellipses corresponding to large n are almost circles.
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FIG. S1. The phase space diagrams for Φ close to π, for several values of ε = π − Φ: (a) ε = 0.005π, (b) ε = 0.001π, (c)
ε = 0.0002π. The ratio of the scales on the axes ξ and ω is chosen such that most of the ellipses look like circles. The uppermost
set of four ellipses located near ω = π/4 corresponds to n = 2 as discussed above.


