
2 (Ir)reducibility of modules

Darek's notes on representation theory

(These notes should copy what I said in the lectures. They have been written hastily, so they may contain
typos etc. But the math really should be OK.)

1 Modules

In its heart, representation theory is concerned with studying how groups can act on vector spaces. For
that reason, the �rst structure we should introduce is a vector space that also �knows what to do� if elements
of a group act on it. Of course, the group should respect the structure of the vector space too, so if v and w
are two vectors in such a vector space and g is an element of the group G, we should have g(v+w) = gv+gw.
Similarly, if α is a constant, we should have g(αv) = αgv.1 Such a vector space is called a G-module.

The formal de�nition is as follows: a vector space V is called a G-module if for every g ∈ G and v ∈ V , a
unique gv ∈ V is de�ned in such a way that: �rst, g(αv + βw) = αgv + βgw (for all v, w ∈ V and α, β ∈ C);
second, if g = g1g2, then gv = g1(g2v) (for all g1, g2 ∈ G); third, ev = v (where e is the identity element of
the group).

As you can see, it's precise, but the essence is that �a G-module is a vector space on which elements of
group G act as we would intuitively expect�.

Here's an example: consider the group S3 of permutations of three symbols. It has six elements: the
identity permutation (), the three two-cycles (12), (23) and (31), and the two three-cycles (123) and (132).
We take the vector space R3 with an orthonormal basis e1, e2 and e3 and we say that each permutation of S3

acts on this space by permuting the basis vectors accordingly. So (12) will switch e1 and e2 (geometrically,
this is a re�ection through some plane), (123) will permute the three vectors cyclically (which corresponds to
the rotation by 2π/3 around the axis e1 + e2 + e3) etc. This is an S3-module.

This module is a bit peculiar. It is easy to see that the vector e1 + e2 + e3, or any multiple of it, is
una�ected by any of the operations in S3. This means that the one-dimensional subspace spanned by this
vector is also an S3-module in itself � its vectors still have the ability to be acted upon by elements of S3.
Moreover the result of any such operation will belong to the subspace, and it can never �leave� it. Hence this
subspace is actually a submodule of the original module.

2 (Ir)reducibility of modules

Obviously, any module has two trivial submodules: the zero module (that contains only the zero vector and
nothing else), and the module itself. These aren't very interesting. If a module as only these two submodules,
it is called irreducible. On the other hand, if a module has a non-trivial submodule, we say it is reducible.

In our example of an S3-module, we actually have a bit more: not only the subspace spanned by e1+e2+e3

is a submodule, but the �rest� of the vector space (a two-dimensional subspace spanned by e1−e2 and e2−e3)
is a submodule as well. Hence we can write the module as a direct sum2 of two smaller, but still non-trivial
submodules. In this case, we say the module is completely reducible.

It may seem that this is just playing with words and that �reducibility� and �complete reducibility� must
be the same thing. And often, it is. However, consider this example: we take the vector space R2, pick some

basis in it, and we act on it with the group Z3 as follows: each integer k acts as a matrix

(
1 k
0 1

)
. Since(

1 k
0 1

)(
1 n
0 1

)
=

(
1 k + n
0 1

)
, this vector space is a Z-module. It is obviously reducible: the basis vector(

1
0

)
is unchanged by any of those matrices, so the subspace generated by it is a submodule. However, the

1This will probably feel more natural if we realize that the elements of groups often correspond to some geometrical operations
like rotations, re�ections or translations.

2A sum of vector spaces V1 + V2 is just a vector space formed by taking all possible linear combinations of vectors, one from
V1 and one from V2. If the sum is direct, it just means that V1 and V2 are disjoint � they have just the zero vector in common.

3The group of all integers with addition.
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4 Maschke's theorem

�rest� of the vector space (the subspace generated by

(
0
1

)
) is not a submodule, because each group element

makes these vectors �leak� into the

(
1
0

)
direction. Hence this module is NOT completely reducible!

By the way: by now, you probably feel that this (ir)reducibility of modules must have something to do with
the (ir)reducibility of representations. And it does. We use the modules because they o�er a much clearer
picture. Thanks to them, we see that the (ir)reducibility is the property of the module, i. e. of how the group
acts on a vector space, and not of the representation matrices. The problem with matrices lies in the fact that
we must always choose a basis in order to construct them; otherwise we wouldn't know which numbers to �ll
in. But that means that we are introducing extraneous information that obscures the problem and that we
must actively grapple with. This only leads to unnatural de�nitions like �a bunch of matrices is completely
reducible if we can change basis in such a way that they all simultaneously go to the block-diagonal form�.
Hence it is (in my opinion) better to use the language of modules.

3 Group algebra

Before we continue, we make a slight generalization. In a module, we can write things like g1v + 2g2v.
This could be also understood as a formal sum of group elements, g1 + 2g2, acting on the vector v. Of course,
someone could object that groups contain no notion of addition and scalar multiplication, and so these sums
do not make any sense. That is true to some extent.4 However, once we have some vector space on which
the group elements can act, we can easily act on it with such sums as well. In fact, we use sums of this type
pretty often in physics � for instance, we often write things like ( ∂

∂x
− 3 ∂

∂y
)f and understand them to be the

same as ∂f
∂x
− 3∂f

∂y
. Here we use the same principle.

These formal sums can also be multiplied in an intuitive fashion. For instance, (g1 − g2)(2g
−1
1 + g3) =

2 + g1g3 − 2g2g
−1
1 − g2g3 � we assume the distributive law, numbers go to the front and the group elements

multiply according to their multiplication table. All possible formal linear combinations of group elements,∑
cngn, with the intuitive multiplication rules, make up an object called the group algebra of that group. As

physicists, we assume that the coe�cients of the linear combination can be any complex numbers, and we
denote the group algebra of G simply by CG.

Now we can also slightly extend our idea of a G-module: we can allow acting not only with the group
elements, but with the formal linear combinations from CG as well. If we once more demand that these
linear combinations do the intuitive thing, i. e. (

∑
cngn)v =

∑
cn(gnv), we upgrade our G-module to a

�CG-module�. Since this is so easy and natural to do, we will work with these �algebra-modules� from now
on. It may seem like a useless formal trick, but it will come in handy later.

4 Maschke's theorem

Let's go back to the reducibility of modules now. We showed that reducibility and complete reducibility
were di�erent things. However, we can immediately forget about it, because there is an important result
called Maschke's theorem which simply says that for any �nite group G, any CG-module is always completely

reducible, so we always have the nice case.

What's more, the idea that makes it work is quite simple, and it can be gleaned from the S3 example that
we started with. That particular S3-module decomposes to a direct sum of the one-dimensional submodule
(a line in R3) and its orthogonal complement (the plane perpendicular to it). It turned out that the group
action was unable to violate the orthogonality.

Hence we consider a CG-module with a scalar product5 〈·, ·〉, and we use it to build an invariant scalar

product {·, ·} that does not change if we act with the same group element on both its operands, i. e.
{gv, gw} = {v,w} for any g ∈ G. If we can manage to do it, we win. If we �nd a submodule, we can use this

4This is why I say they are �formal� sums � they are objects obtained by writing some group elements with some numbers
in front of them and sticking plus signs in between them, nothing more.

5Remember, the modules are just vector spaces, so they can have scalar product. If the module doesn't have it, we can always
make one up by picking any basis and de�ning the scalar product by postulating that the basis vectors satisfy 〈ek, e`〉 = δk`.
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5 Homomorphisms

invariant product to get its orthogonal complement. Moreover, if we take any vector v from the submodule
and any w from the orthogonal complement, they will stay orthogonal no matter what group element is
applied to them (since the product is invariant), and the vectors in the complem ent cannot leak into our
submodule.

So we just have to �nd an invariant scalar product. We do it as follows:

{v,w} :=
1

|G|
∑
g∈G

〈gv, gw〉.

With this de�nition, {hv, hw} = 1
|G|
∑
〈ghv, ghw〉. But for any group, each row and column of the multipli-

cation table contains each group element exactly once. This means that if g goes through the whole group,
gh does too, and the sum is unchanged, so we truly have {v,w} = {hv, hw} for any h ∈ G. The product
that we de�ned really is invariant, and Maschke's theorem is proved.

This is a result that will make our job much easier, because it can be applied repeatedly even to submodules
of our module. Each time, we �nd out that reducible submodules (or their reducible submodules etc.)
decompose into direct sums. This means that in the end, every CG-module must decompose to a direct sum
of irreducible submodules that do not interact with each other at all when group elements are applied. It
turns out that for each group G, there is only limited number of di�erent types of irreducible modules, and
every CG-module must be just a direct sum of some of these.

5 Homomorphisms

Now that we see that we are getting nice results for CG-modules, we ask the question that mathematicians
always ask when they encounter a new structure: Suppose that we have di�erent objects equipped with the
structure. What kind of maps can we make between them so that the structure is not ruined? Such maps
always get the traditional name homomorphism (and we already saw one example of it, since we proved some
properties of homomorphisms between groups).

Now suppose we have two CG-modules, U and V , and some map ϕ : U → V between them. What
properties should ϕ have in order to deserve the name of homomorphism between the CG-modules? It must
be a map that preserves their nice properties. So we must recollect what these properties are: �rstly, the
modules are vector spaces, secondly, they know how CG acts on them (and the elements of CG act in a certain
consistent and intuitive manner).

A homomorphism between CG-modules should preserve both of these things, so we de�ne it as a linear

map (i. e. it preserves the vector space structure) that also satis�es ϕ(gu) = gϕ(u) (for any u ∈ U and any
g ∈ CG; of course, the action of g on ϕ(u) on the right-hand side is that of the �destination� module V ).6

Maps that satisfy the two conditions above (linear map + ϕ(gu) = gϕ(u)) should be called �CG-module
homomorphisms�. But since that is quite a mouthful, and we will not consider homomorphisms of other
objects than modules, we just shorten the name to a �CG-homomorphism�.

Now that we know what the CG-homomorphisms are, we can start studying their properties. We know
from linear algebra that each linear map de�nes two important subspaces of the �source� and �result� modules.
It is the kernel, Kerϕ, which is the subspace of everything in U that gets sent to the zero in V , and the image,
Imϕ, which is the subspace of all possible results that ϕ can give. We should have a closer look on what the
group action does to these subspaces.

Let's have look at the kernel �rst. Suppose that some vector k ∈ U belongs to the kernel, which means
that ϕ(k) = 0. Now what happens if we act on k by some element g ∈ CG? The map ϕ will send it to ϕ(gk),
but, since ϕ is a homomorphism, this must be the same thing as gϕ(k) = g0 = 0. So if k is in the kernel,
every gk is there too. Hence Kerϕ is a vector subspace of U (we know that from linear algebra) that also
knows how CG acts on it (it's a subset of U and U knows it), and no matter what element of CG we apply,
the result still belongs to the kernel. It cannot ever leak out of it. Hence the kernel of any CG-homomorphism

is a submodule of U .

6In words, the second condition means that any element g ∈ CG acts on the �source� module U in the same way as it acts on
the �result� module V , which is what we need.
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7 More consequences of Schur's lemma

What about the image? Let's say that some vector v ∈ V belongs to the image. This means that it can
be obtained as a result of applying the homomorphism ϕ on some u ∈ U , so v = ϕ(u). However, if we apply
ϕ on gu (for any g ∈ CG), we get ϕ(gu) = gϕ(u) = gv, because ϕ is a CG-homomorphism. So every gv is
in the image as well, and the image of any CG-homomorphism is a submodule of V .

6 Schur's lemma

Perhaps you're now asking ��ne, Kerϕ and Imϕ are submodules. So what?� But we really should be
interested in that, since we want to study irreducible modules (i. e. modules without submodules), and these
simple facts already put stringent conditions on maps between such modules.

So suppose that we have two irreducible CG-modules, U and V , and a CG-homomorphism ϕ between
them. What does ϕ look like? There's not really much freedom here, because Kerϕ must be a submodule of
U , and since U is irreducible, it has only the two trivial submodules: the zero and U itself. In the �rst case,
ϕ must be a bijection7, and the image is all of V . In the second case, ϕ maps everything to zero, and the
image is the zero module. Nothing else is possible.

This gives the following: Any CG-homomorphism between two irreducible CG-modules is either a bijection,

or a zero map. This result is called the Schur's lemma and though it is simple, it is powerful enough to serve
as a base out of which everything in the representation theory may be derived.

There is also a related question: what CG-homomorphisms can exist from an irreducible module U back
to itself? Such a linear map ϕ : U → U can be represented by a square matrix M (if we pick some basis in
U). This matrix has some eigenvalues given by the equation det(M − λE) = 0. We pick one of them and
consider the map ϕ − λ. It is also a CG-homomorphism from U to U , so Schur's lemma may be applied to
it. Hence ϕ − λ must be a bijection, or zero. But its determinant is zero (λ was picked in such a way that
it would be!), so it cannot be a bijection. Hence ϕ − λ = 0 and the only possible CG-homomorphisms from

an irreducible module to itself is a multiplication by a constant.8 This result is often also called the Schur's
lemma and it too will be very useful for us in the following.

7 More consequences of Schur's lemma

I told you that Schur's lemma was powerful enough to serve as a foundation for the whole representation
theory, so it would be good to start deriving some of its consequences. Before we do that, I'll summarize the
results of the previous section in di�erent words: A CG-homomorphism between two irreducible CG-modules

is just a scalar multiplication if the two modules are isomorphic (often we would just say �the same�), and

zero map otherwise.

Now assume that we have a general (perhaps reducible) CG-module U and an irreducible CG-module V ,
and we want to know how CG-homomorphisms from U to V may look like. This is easy to �nd out, since U
can be decomposed as a direct sum of irreducible modules due to Maschke's theorem, and we can write

U = U1 ⊕ U2 ⊕ · · · ⊕ Un,

where each of the summands is an irreducible CG-module. This means that no matter what element of CG
is applied, vectors in each Uk will stay in it. Hence to construct a homomorphism, it su�ces to decide how
to map each Uk by itself. When this is known, we can map any vector u ∈ U by breaking it into a sum of u1

from U1, u2 from U2, etc., and then (because the homomorphism must be linear) do

ϕ(u) = ϕ(u1 + u2 + · · ·+ un) = ϕ(u1) + ϕ(u2) + · · ·+ ϕ(un).

7Each u ∈ U is mapped to something in V , and each to something di�erent. If two u1 6= u2 map to the same ∈ V , their
di�erence must map to zero due to linearity, and so it must be in the kernel. But the kernel has only the zero vector in it.

8Here it is crucial that everything we do is over complex numbers. Then det(M − λE) is a polynomial in λ with complex
coe�cients, so it always must have a complex root λ. In real numbers, for instance, this would not work (for instance, the real
matrix ( 0 1

1 0 ) does not have a real eigenvalue)! However, as physicists, we love complex numbers and we use them everywhere, so
we don't need to worry about this result being true only when complex numbers are allowed. (In fact there are other �algebraically
closed �elds� that have this property. But we should leave them to the mathematicians.)
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8 Regular module

But mapping each of the irreducible parts is easy. According to what we said above, we see that each part
not isomorphic to V must map to zero. For each part that is isomorphic to V , all possible homomorphisms are
given just by multiplication by a (complex) constant. So if we want to describe all possible CG-homomorphisms
from U to V , we must give one constant for each summand in U that is isomorphic to V .

To summarize: if an irreducible CG-module V is not present in U , then the only CG-homomorphism

possible from U to V is the zero map. If V is present n times in U , all possible CG-homomorphisms from

U to V are given by n complex constants. As we can see, this can be a good basic tool for �nding out
how many times is an irreducible representation present in some module � we just have to �nd all possible
homomorphisms between them and count them.

8 Regular module

We have already proved some nice general results about modules and homomorphisms. However, the task
that we originally set out to solve is to �nd, for instance, what kinds of irreducible modules are at all possible
for a given group. And we haven't made any progress with that. To make contact between groups and
modules, it would be very useful to come up with a way of embodying properties of any given group in a
module.

Fortunately it is quite easy to do that. We just have to remember our group algebra CG and the fact that
we can form products of elements of CG; of course, the group algebra is also a vector space. Thus the group
algebra CG is a vector space that can be acted upon by elements of CG, and so it is itself a CG-module. This
module is called the regular module of a given group G.

Just to put it in another perspective: in general CG-modules, we know how to apply elements of group
algebra CG to vectors of some vector space. In the regular module, we apply elements of CG to CG itself.
Similarly, a general CG-homomorphism ϕ : U → V must respect the group operation, so for any g ∈ CG and
u ∈ U , we must have ϕ(gu) = gϕ(u). But if the source module is the regular module, the vectors u ∈ U are
in fact elements of the group algebra too!

This gives us a powerful conclusion: if ϕ is a CG-homomorphism from the regular module to some module
V , we actually must have ϕ(gh) = gϕ(h) for any g, h ∈ CG. We can get an even more striking result if we
put h = 1:9 then we have ϕ(g1) = ϕ(g) = gϕ(1) and all possible homomorphisms are just given by the choice
of ϕ(1)!

So let's consider any irreducible CG-module V . What are all possible CG-homomorphisms from CG to V ?
The only choice we have is the vector of V that we pick to be the result of ϕ(1). This means that all such
possible homomorphisms are given by dimV complex constants (the components of the vector ϕ(1) ∈ V in
some arbitrary basis).

Hence we see that not only each irreducible CG-module that can exist is present in the regular module,
but the number of times it appears in the regular module is equal to its dimension! This means that the
number of possible irreducible CG-modules for a given group is severely limited � they all must ��t� into the
regular module. In fact, since the regular module can be written as a direct sum of these irreducible modules
(courtesy of Maschke's theorem again!), their dimensions must exactly add up to the dimension of the regular
module, which is |G|.10

Let's denote U1, U2,. . . , Un all the di�erent (i. e. non-isomorphic) irreducible modules present in CG (and
we know that these are all that are possible!). Then U1 is present dimU1 times, U2 is present dimU2 times
etc. In the end, we have

|G| =
∑
k

(dimUk)2.

That's already a bunch of pretty powerful results. And we'll �nd more!

9By �1� I mean 1e, or one times the identity element of the group. This is perfectly in line with what lazy physicists do �
they con�ate numbers with multiples of identity operators all the time.

10Remember, it's just CG � all formal linear combinations of group elements. So the |G| group elements form a natural basis
of CG.
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10 Characters

9 Decomposition of the regular module

Let's now decompose CG in a slightly di�erent manner. We know that each irreducible module Uk is
present dimUk times in CG, so we can lump them together and denote the direct sum of all these copies by
Wk. Then we have

CG = W1 ⊕W2 ⊕ · · · ⊕Wn,

where each Wk is a direct sum of all the copies of the irreducible module Uk. Of course, this means that if we
pick two di�erent W 's they do not share any irreducible submodules with each other (since each is built out
of copies of a di�erent irreducible module). This will give us more powerful results.

Let's say that we pick some w1 ∈ W1 and multiply by it all vectors of CG from the right. Each g ∈ CG
gets sent to gw1. But here's the catch: W1 is a submodule of CG, which means that no matter what group
element is used to act on it, the result stays in the submodule. So any gw1 will in fact lie in W1.

Now let's ask what happens to a vector w2 ∈ W2 when we form this product. It goes to w2w1 ∈ W1. We
also notice that this mapping is trivially a CG-homomorphism11 from W2 to W1, and since W1 and W2 do
not share any equivalent irreducible submodules, the only possible CG-homomorphism between them is zero.
This means that if we multiply any vectors from di�erent W 's, the product is always zero!

And we can get more. Since CG can be written as a direct sum of the W 's, it means that any vector in
CG can be resolved into a sum of w1 +w2 + · · ·+wn, where each wk comes from its own Wk, and this can be
done in one way only. In particular, this is also true for the unit element 1 of the algebra CG, so we have

1 = e1 + e2 + · · ·+ en, where each ek ∈ Wk,

and this de�nes the ek's precisely, without any freedom. Since each ek comes from a di�erent Wk it is still
true that a product of two di�erent ek's is zero. But they have another nice property which can be obtained
by a simple trick. For any vector wk from some Wk, we can write the following:

wk = 1wk = (e1 + e2 + · · ·+ en)wk = ekwk,

since all other e's belong to a di�erent W , and the product of any two vectors from di�erent W 's is zero.
What's more, it also works from the other side:

wk = wk1 = wk(e1 + e2 + · · ·+ en) = wkek.

So if we multiply any vector g by ek from either side, the part of g that belongs to Wk is kept untouched,
and everything else is killed. In particular, ek belongs to Wk, so if we multiply it by ek, it will be untouched.
Hence e2k = ek.

It is clear that these ek are quite important, and they deserve to get a special name. We call them the
idempotents.12 Let us summarize their nice properties:

1. Each idempotent is a projection operator onto its corresponding W (i. e. it keeps the W -part of any
vector alone and kills the rest).

2. Hence e2k = ek, and any power of the idempotent is equal to the idempotent itself.

3. And if we multiply two di�erent idempotents, each tries to project the other into its own space and the
result must be zero.

But remember: all of this works only if the W 's do not share irreducible submodules! Otherwise
we cannot ensure that wkw` = 0, and the whole argument crumbles.

10 Characters

We already know a bit about characters (from the text about modes of the square), but it will certainly
be good to repeat the important facts once more. We'll also need to translate the notion of the character to
our new language of modules etc.

11Because if ϕ(w) = ww1, then we must have ϕ(gw) = gϕ(w), which obviously works.
12�idem-�, not �im-�! In Latin, �idem� means �the same�. The idea is that the powers of ek are the same as ek itself.
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11 Orthogonality

Fortunately, this is not too di�cult. We already introduced characters as traces of representation matrices,
and in our treatment, the matrices have been replaced by the modules. In the matrix language, the emphasis
is on the tables of numbers. For us, it is on the underlying vector spaces that know what to do if acted upon
by elements of a group � the modules.

The module is (by de�nition) a vector space on which group elements act linearly, so multiplication by any
group element corresponds to a certain linear mapping from the module back to itself. This means that in any
basis that we pick, the mapping is described by a square matrix, and the trace of the matrix is independent
of the choice of the basis. Hence these traces are the property of the module itself (of course, for each group
element the trace may be di�erent).

Since we already talked a bit about characters in the document about the modes of the square, we just
repeat the important properties without proof here:

� χ(1) is always equal to the dimension of the module.

� All elements in the same conjugacy class have the same character.

� For a k-dimensional module, the matrices are k×k. Say that g is an element of order n, so that gn = 1.
The same holds for the matrices too, so their eigenvalues must be n-th roots of unity. Each character is
then a sum of k such numbers.

� The element g−1 has a matrix whose eigenvalues are all reciprocal to the original ones. But, since
the eigenvalues are roots of unity, their reciprocals are the same as their complex conjugates. Hence
χ(g−1) = χ(g)?.

11 Orthogonality

In this section, we get another powerful result: it turns out that we will be able to calculate the idempotents
just by looking at the character table, and from the idempotents, we will be able to prove nice properties of
the characters themselves.

However, if we want to make contact with the characters, we �rst have to �nd a way of obtaining them
using our present formalism. Fortunately this is not too hard. If we want to get the character of the module
Wk, we just have to consider what happens if any g ∈ G (just in the group, not in the whole algebra!) acts
on it. This will take any wk ∈ Wk to a product gwk which is still in Wk, so this is a linear map Wk → Wk. Its
trace is exactly the character of the element g in Wk. But this character is not exactly the one that we look
up in the table, because the table shows characters of irreducible modules. And each Wk is made of multiple
copies of the same irreducible module. This means that in a nice basis, the matrices of the map wk → gwk

are all block-diagonal; the blocks are all the same. This is because Wk is a sum of some number of equivalent
irreducible modules. Let's call that number nk. Then we have nk blocks on the diagonal, all of them are the
same and each of them has the trace χk(g) that we can look up in the table. Hence the character of g in Wk

is nkχk(g).

We can also obtain this number by acting on the whole CG. We just have to �rst project down to Wk.
So if we consider the map that takes any r ∈ CG and maps it to gekr, we �nd that its trace is also nkχk(g)
(because ek discards everything that does not belong to Wk).

Now let's consider the same map from a di�erent point of view. ek is an element of CG, so it must be a
certain linear combination of the group elements, and we can write ek =

∑
h∈G chh. Can we �nd the trace of

gekr independently? Yes: we can replace ek by the sum and �nd that the result is
∑

h∈G chghr. Now we can
calculate the trace easily, because we already know that the trace of any map r → gr is |G| if g = 1 and zero
otherwise. This means that the trace is just |G|cg−1 (because h = g−1 is the only element that makes gh = 1),
and we have

|G|cg−1 = nkχk(g) =⇒ cg =
nkχk(g−1)

|G|
,

so the idempotent may be written as

ek =
nk

|G|
∑
g∈G

χk(g−1)g =
nk

|G|
∑
g∈G

χ?
k(g)g.
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12 Class functions

But we know that e2k = ek. Plugging the explicit expression above into it, we get

n2
k

|G|2
∑
g∈G

∑
h∈G

χk(g−1)χk(h−1)gh =
nk

|G|
∑
g∈G

χk(g−1)g.

Let's �nd out the coe�cient at 1 on both sides. In the sum on the left, we pick only the terms with gh = 1,
or h−1 = g. This gives

n2
k

|G|2
∑
g∈G

χk(g−1)χk(g) =
nk

|G|
χk(1) =⇒ 1

|G|
∑
g∈G

χk(g)χ?
k(g) = 1.

On the other hand, eke` = 0. Doing the same trick, we �nd

nkn`

|G|2
∑
g∈G

∑
h∈G

χk(g−1)χ`(h
−1)gh = 0,

or after canceling nkn`/|G| and picking only the coe�cient at 1,

1

|G|
∑
g∈G

χ?
k(g)χ`(g) = 0.

So if we introduce a scalar product of two functions ϕ(g), ψ(g) (that take a group element g and yield a
complex number) like this:

〈ϕ|ψ〉 =
1

|G|
∑
g∈G

ϕ?(g)ψ(g), (1)

we �nd that the irreducible characters (the rows in the character table) are orthonormal:

〈χk|χ`〉 = δk`. (2)

12 Class functions

We already noted that the characters are always the same for all elements of the same conjugacy class,
and so they are really just functions of conjugacy classes. Any such function is called a class function. Those
functions can be fully speci�ed just by giving one complex number for each conjugacy class (the result of the
function of that class). We can also add them together and multiply them by scalars. This means that class
functions form a k-dimensional vector space, where k is the number of conjugacy classes.

The characters of irreducible modules are, of course, class functions, and according to (2), they are or-
thonormal with respect to the scalar product in (1), which means that they must be linearly independent.
From that alone, we immediately see that there can be at most as many irreducible characters as there are
classes.

That's quite an interesting result. Can we make it more precise? It turns out that we can if we look at
the group algebra CG once again. Let's say that the group has conjugacy classes K1, K2, . . .Kk. For each of
them, we form the sum of all the elements in it:

s` =
∑
h∈K`

h.

These s1, s2, etc. are, of course, elements of the group algebra. However, they are quite special: since
each class contains all elements that can be obtained one from another by conjugation, it follows that if we
conjugate all elements in a class by a single element g, we obtain all the elements of the class again (just
maybe in a di�erent order). Hence, if we conjugate any s`, the terms in the sum can shu�e around, but we
get the same sum again:

gs`g
−1 = s` for any g ∈ G and any s`.
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12 Class functions

This means that each such s` commutes with every group element, and so it commutes with everything in
the whole group algebra itself. This is very useful, because it means that left multiplication by any s` is a
homomorphism. Technically said, if we de�ne ϕ(g) to be s`g, we see that

ϕ(gh) = s`gh = gs`h = gϕ(h),

and ϕ truly is a homomorphism.

Once more, we utilize Schur's lemma. Consider an irreducible module U . Since it's a module, multiplication
by any sk always ends up in U , and so sk is a homomorphism from U to U . Hence it acts on U just as a
multiplication by a constant. The same is true for the submodules Wk that contain all the copies of a single
irreducible module (multiplication by sk acts as multiplication by the same constant on all the copies). Hence
we can write

sk = sk1 = sk(e1 + e2 + · · ·+ en) = λ1e1 + λ2e2 + · · ·+ λnen,

where the e's are the idempotents (each of them comes from its own W ) and the λ's are some complex
constants.

Hence each sk can be written as a linear combination of the idempotents, and (since each sk is a sum of
di�erent group elements) all of them are linearly independent. Hence there are at most as many classes (sk's)
as there are irreducible characters (idempotents). Putting it together with the previous result, we see that
the number of irreducible modules possible for the given group G is always equal to the number of conjugacy

classes of G.

Since the irreducible characters are linearly independent class functions, and there are as many of them as
there are classes, we see that the irreducible characters form a basis of the vector space of all class functions.
This means that any class function can be written as a linear combination of the irreducible characters.

One nice class function that can be written in this manner is the indicator function of a given class: the
function that gives 1 for members of the class and 0 for everything else:

∆`(g) =

{
1 if g belongs to the class K`,

0 otherwise.

We write it as a linear combination of irreducible characters:

∆`(g) =
n∑

p=1

cp,`χp(g),

where cp,` are some unknown coe�cients. These can be found easily if we use the orthogonality conditions
(2): if we take the scalar product of both sides with one irreducible character χr, we simply �nd that
cr,` = 〈χr,∆`〉 = 1

|G|
∑

g∈G χr(g)?∆`(g). The indicator function ∆`(g) is zero for all elements that do not

belong to the class K`, and for those that do, it gives one. Hence we sum χr(g)? for each element of the class,
and we get

∆`(g) =
∑
p

|K`|
|G|

χp(K`)
?χp(g),

where |K`| is just the size of the class, and χp(K`) is the character of any of its elements. This can also be
rewritten as

∑
p

χp(g)?χp(h) =

{
|G|/|K`| if both g and h belong to the same class K`,

0 if they belong to di�erent classes.

If you think about it a little bit, you will �nd that this means that the columns of the character table are also

orthogonal.
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