Absolute optical instruments

Tomáś Tyc, Masaryk University, Czechia

What is an absolute instrument?

Absolute instrument (AI) images a 3D region stigmatically (sharply)

Theory of AI within geometrical optics

[J. C. Maxwell, Camb. Dublin Math. J. 8, 188 (1854)]
[M. Born \& E. Wolf, Principles of Optics]
[J. C. Miñano, Opt. Express 14, 9627 (2006)]
[T. Tyc, L. Herzánová, M. Šarbort, K. Bering, New J. Phys. 13, 115004 (2011)]
Magnifying AI:
[T. Tyc, Phys. Rev. A 84, 031801(R) (2011)]

Maxwell's fish eye

Maxwell's fish eye - discovered by J. C. Maxwell in 1854
Spherically symmetric refractive index

$$
n=\frac{2}{1+r^{2}}
$$

Ray trajectories are circles, every point of space has a sharp image

Stereographic projection leading to Maxwell's fish eye

Stereographic projectio is a conformal map \Rightarrow isotropic magnification
Geometrical path on the sphere $=$ optical path in the plane:

$$
\mathrm{d} L=\frac{2}{1+r^{2}} \mathrm{~d} /
$$

Geodesics on the sphere are mapped to rays in the plane

More examples of AI

Luneburg index profile

Eaton index profile $\quad n=\frac{\sqrt{2 m(E-V(\vec{r}))}}{p_{0}}$ Miñano lens

$$
n(r)=\sqrt{2-r^{2}}
$$

$$
n(r)=\sqrt{\frac{2}{r}-1}
$$

$$
n(r)=\left\{\begin{array}{cc}
\sqrt{\frac{2}{r}-1}, & r \leq 1 \\
1, & r \geq 1
\end{array}\right.
$$

How to design Als?
[T. Tyc, L. Herzánová, M. Šarbort, K. Bering, New J. Phys. 13, 115004 (2011)].
Problem similar to the inverse scattering problem
We assume radially symmetric index $n(r)$

$$
\begin{aligned}
& \Delta \varphi=\frac{P}{Q} \pi \\
& P, Q \in \mathbb{N}
\end{aligned}
$$

Conservation of angular momentum $L=r n \sin \alpha=\rho \sin \alpha$

$$
r h(r)=\rho \quad \tan \alpha=r \frac{\mathrm{~d} \varphi}{\mathrm{~d} r}=\frac{L}{\sqrt{\rho^{2}(r)-L^{2}}}
$$

$$
\begin{aligned}
& \sin \alpha=\frac{L}{\rho} \\
& \sin \alpha=\frac{L / \rho}{\sin \alpha}=\frac{\sqrt[L]{2}}{1-\frac{L^{2}}{()^{2}}}
\end{aligned}
$$

Turning angle $\Delta \varphi$ - angle swept by radius vector between the turning points:

$$
\begin{aligned}
& \Delta \varphi(L)=L \int_{r_{-}(L)}^{r_{+}(L)} \frac{d r}{r \sqrt{\rho^{2}(r)-L^{2}}} \\
& \text { to } x=\ln r \text { gives }
\end{aligned} d \varphi=\frac{L d r}{r \sqrt{\rho^{2}-L^{2}}}
$$

Changing variables from r to $x=\ln r$ gives

$$
\begin{aligned}
& \Delta \varphi(L)=L \int_{x_{-}(L)}^{x_{+}(L)} \frac{\mathrm{d} x}{\sqrt{\rho^{2}(x)-L^{2}}} \Delta y=\int_{r_{+}}^{r_{+}} \frac{L d r}{r^{2} \sqrt{2 m\left(E-V(r)-\frac{L^{2}}{r^{2}}\right.}} \\
& \rho(x) \text { from the known } \Delta \varphi(L)-\text { inverse problem }
\end{aligned}
$$ period of motion as a function of energy [Landau \& Lifshitz, Mechanics]

$$
\frac{r_{-}}{r_{+}}
$$

$$
\begin{aligned}
& T=2 \int_{x_{1}}^{x_{2}} \frac{d x}{V}=2 \int_{x_{1}}^{x_{2}} \frac{d x}{\sqrt{\frac{2}{m}(E-V)}} \\
& =\sqrt{2 m} \int_{x,}^{p \pi} \frac{d x}{\sqrt{E-V}} \\
& =\int_{x_{-}(L)}^{x_{+}(L)} / \int_{L}^{\rho(x)} \frac{L^{\prime} \mathrm{d} L^{\prime}}{\sqrt{L^{\prime 2}-L^{2}}} \int \frac{\mathrm{~d} x}{\sqrt{\rho^{2}(x)-L^{\prime 2}}} \\
& =\int_{x_{-}(L)}^{x_{+}(L)}\left[\arcsin \sqrt{\frac{L^{\prime 2}-L^{2}}{\rho^{2}(x)-L^{2}}}\right]_{L^{\prime}=L}^{L^{\prime}=\rho(x)} \mathrm{d} x \\
& =\int_{x_{-}(L)}^{x_{+}(L)}\left(\frac{\pi}{2}-0\right) \mathrm{d} x=\frac{\pi}{2}\left(x_{+}(L)-x_{-}(L)\right)=\frac{\pi}{2} \ln \frac{r_{+}(L)}{r_{-}(L)} \\
& \text { (} \\
& L=\operatorname{nr} \sin \alpha=\rho \sin \alpha \\
& L \leqslant \rho \\
& \rho \geqslant L \quad \rho(x) \geqslant L
\end{aligned}
$$

We can rewrite this as

$$
\ln \frac{r_{+}(L)}{r_{-}(L)}=\frac{2}{\pi} \int_{L}^{L_{0}} \frac{\Delta \varphi\left(L^{\prime}\right) \mathrm{d} L^{\prime}}{\sqrt{L^{\prime 2}-L^{2}}}
$$

To get closed ray trajectories, $\Delta \varphi$ should be constant, $\Delta \varphi=\pi / \mu, \mu \in \mathbb{Q}$

$$
\begin{aligned}
\Delta \varphi & =\frac{P}{Q} \pi \\
\mu & =\frac{Q}{P}
\end{aligned}
$$

Then we get

$$
\ln \frac{r_{+}(L)}{r_{-}(L)}=\frac{2}{\mu} \operatorname{arcosh} \frac{L_{0}}{L} \quad \frac{L_{0}}{L}=\cosh \frac{\mu}{2} \ln \frac{r_{+}}{r_{-}}
$$

which can be expressed as

$$
\begin{equation*}
\frac{L_{0}}{L}=\frac{1}{2}\left[\left(\frac{r_{+}(L)}{r_{-}(L)}\right)^{\mu / 2}+\left(\frac{r_{-}(L)}{r_{+}(L)}\right)^{\mu / 2}\right] \tag{2}
\end{equation*}
$$

Now we define a function $f(r)$ such that

$$
f(r)=\left\{\begin{array}{lll}
r_{+}(L(r)) & \text { for } \quad r \leq r_{0} \\
r_{-}(L(r)) & \text { for } \quad r \geq r_{0}
\end{array}\right.
$$

The function $f(r)$ is hence defined such that for a given lower turning point r_{-}it produces the upper turning point r_{+}corresponding to the same angular momentum and

$$
\begin{aligned}
& \text { vice versa: } \\
& \text { vice versa. } \\
& L=\rho=\operatorname{hr}\left(v \underset{\text { Made) }}{\operatorname{lode}} \frac{L_{0}}{L}=\frac{1}{2}\left[\left(\frac{r_{+}(L)}{r_{-}(L)}\right)^{\mu / 2}+\left(\frac{r_{-}(L)}{r_{+}(L)}\right)^{\mu / 2}\right]\right. \\
& f(f(r))=r \\
& \text { This yields the refractive index } \\
& n=\frac{L(r)}{r}(v \operatorname{\text {bosec}} \underset{\text { Nad }}{ }) \quad n(r)=\frac{2 L_{0}}{r\left[\left(\frac{r}{f(r)}\right)^{\mu / 2}+\left(\frac{f(r)}{r}\right)^{\mu / 2}\right]}
\end{aligned}
$$

Examples of Als

Maxwell's fish eye: $\Delta \varphi=\pi, \mu=1$,

$$
f(r)=1 / r, \quad n(r)=\frac{2}{1+r^{2}}
$$

Examples of Als

Eaton index profile: $\Delta \varphi=\pi, \mu=1$,

$$
f(r)=2-r, \quad n(r)=\sqrt{\frac{2}{r}-1}
$$

Examples of Als

Luneburg index profile: $\Delta \varphi=\pi / 2, \mu=2$,

$$
f(r)=\sqrt{2-r^{2}}, \quad n(r)=\sqrt{2-r^{2}}
$$

Examples of Als

Maxwell's fish eye mirror: $\Delta \varphi=\pi / 2, \mu=2$,

$$
f(r)=1, \quad n(r)=\frac{2}{1+r^{2}}
$$

