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Angular momentum, transmutation using logarithm,

inversion problem

1 Angular momentum

In the central potential the angular momentum with respect to the centre plays a primary role. It
is conserved because the Lagrangian does not change when rotating the sysem about the centre.
Angular momentum is

|~L| = |~r × ~p| = rp sinα = rn(r) sinα (1)

where p is the momentum of the particle and α is the angle between the particle trajectory and the
radius vector. We have used tha fact that p =

√
2[E − V (r)] = n(r); the momentum is equal to the

refractive index.
We can also determine the maximum angular momentum that the particle or the ray can have

at some radius r. Clearly, it is Lmax = rn(r) ≡ ρ(r). We will call this value turning parameter.

2 Transmutation of central potentials via the logarithm

Consider physical plane with central potential V (r) and the equivalent refractive index n(r). We
identify this plane with the complex z-plane and map it into a complex w-plane (which will be called
virtual plane) by

w = ln z. (2)

This relation implies in particular that r = |z| = |ew| = eRe w. The refractive index in w-plane is
then

N(w) = n(|z|)
∣∣∣∣ dz

dw

∣∣∣∣ = n(eRe w) eRe w = rn(r) (3)

We see that the transmuted refractive index depends only on the real part of w. Putting w = x+ iy,
the original problem of motion in the central potential has been transformed into the problem of
motion of a particle in the virtual plane (x, y) where the potential depends only on x.

Examples:

• Transmutation of motion in potential of fatal attraction, V (r) = −α/r2 with zero energy by
logarithm.
The refractive index is n(r) =

√
2α/r and the transmuted refractive index will be

N(w) = rn(r) =
√

2α = const. (4)

Therefore rays in the transmuted plane will form straight lines. At the same time, we can from
this deduce the form of trajectories in the original plane. Any straight line in the transmuted
plane can be written as x = ay + b with some real constants a, b, or as y = c. This, translated
into the original plane where r = ex and ϕ = y, gives r = eb+ay, which is an equation of a
logarithmic spiral, or into ϕ = c, which is a radial line. So these are the trajectories in potential
of fatal attraction with zero energy, see Fig 1. Note that for a = 0 and different b we get circles
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Figure 1: Transmutation of potential of fatal attraction with E = 0 (trajectories are logarithmic spirals) to
constant potential (trajectories are straight lines). Vertical lines (such as the blue one) in the second space
are mapped on circles, which shows that there are infinitely many circular orbits in the potential of fatal
attraction with E = 0.

with an arbitrary diameter. This is because for one particular value of angular momentum,
namely L =

√
2α, the effective potential

Vef = − α
r2

+
L2

2r2
(5)

turns identically to zero, and therefore a particle with zero energy in this potential cannot
move, i.e., must have r = const., which corresponds to a circular trajectory, and r can be
arbitrary (but fixed).

Circular orbits in physical plane

Consider a circular orbit in physical plane. This corresponds to a particle moving uniformly along
the line x = x0 in virtual plane. Clearly, such a motion is possible iff dN/dx|x=x0 = 0 because then
the particle feels no force in the x direction. Substituting N = rn into this condition yields

n(r) + rn′(r) = 0 , (6)

where prime means derivative with respect to r.
On the other hand, for motion on a circular trajectory the acceleration is v2/r, which must be

equal to the force in radial direction, F = −dV/dr, that is,

n2

r
=
v2

r
= −dV

dr
= − d

dr

n2

2
= −nn′ , (7)

which gives exactly Eq. (6) and shows that the theory of transmutation via logarithm really works.

Angular momentum

How is the angular momentum reflected in the (x, y) plane? Angular momentum in We use the fact
that the map (2) is conformal. Then α from Eq. (1) is at the same time the angle between the
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Figure 2: Transmutation of Newton potential via logarithm. The resulting potential depends only on the
x-coordinate, hence solution of equations of motion in the transmuted plane is extraordinarily simple. The
trajectories corresponding to transmuted Hooke potential would be almost the same, just scaled by the
factor 1/2 in both x and y directions as the Hooke potential is just a transmutation of the Newton potential.

trajectory and the x-direction in virtual plane. Now, since L is conserved in physical plane, then
the quantity N(x) sinα should be conserved in virtual plane. Is this reasonable? Indeed, and very
much! The condition N(x) sinα = L = const. is precisely the Snell’s law in virtual plane. The value
of L is equal to the refractive index at the point where the trajectory of the particle turns vertical,
which corresponds to a turning point in the original plane. In other words, L is equal to the turning
parameter ρ at that point.

Trajectories in virtual plane

To find the trajectories in virtual plane, we use the standard methods of classical mechanics. The
potential U(x) is related to N(x) as N =

√
2(ε− U). First of all, the motion in y-direction is free,

so ẏ = β = const. From conservation of energy we get

ẋ2 + β2

2
+ U(x) = E, (8)

which enables to calculate ẋ as

ẋ =
√

2[E − U(x)]− β2 =
√
N2(x)− β2. (9)

Then

dx

dy
=
ẋ

ẏ
=

√
N2(x)

β2
− 1. (10)

This equation allows separation of variables. We also see another interesting thing: if the trajectory
turns vertical, LHS of Eq. (10) turns to zero and hence N = β. With respect to what has been said
above, β is then equal to the angular momentum L in physical plane and we can replace β by L in
the above equations. Then Eq. (10) can be rewritten as

dx

dy
=

√
N2(x)− L2

L
. (11)
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Figure 3: Transmutation of Maxwell fish eye via logarithm. The trajectories in the transmuted plane
correspond to the border between day and night on the Earth at some moment of time drawn in Mercator
projection.

Solution of the inverse problem

The transmutation via logarithm provides an elegant solution of the inverse problem discussed by
Ostrovsky [4]. From Eq. (11) we can, for finite motion in x-direction, calculate the increment h of y
corresponding to x changing from its minimum value xmin to its maximum value xmax as a function
of L:

h(L) = L

∫ xmax

xmin

dx√
N2(x)− L2

. (12)

Here xmin, xmax denote the minimum and maximum value, respectively, of x for a given angular
momentum L in physical plane; they are solutions of the equation N(x) = L.

The inverse problem can be solved in a very similar way to finding the 1D potential from the
known period of oscillations as a function of energy [8]. We first change the integration variable in
Eq. (12) from x to N :

h(L) =L

∫ x0

xmin

dx√
N2(x)− L2

+ L

∫ xmax

x0

dx√
N2(x)− L2

=L

∫ Lm

L

dxmin

dN

dN√
N2 − L2

+ L

∫ L

Lm

dxmax

dN

dN√
N2 − L2

=− L
∫ Lm

L

d(xmax − xmin)

dN

dN√
N2 − L2

. (13)

Here we denoted x0 the value of x between xmin and xmax for which dN/dx = 0, which corresponds
to motion with constant x (and hence to circular orbit in physical plane), and Lm denotes the
corresponding angular momentum in physical plane.

Next we divide h(L) by
√
L2 − L2, where L is a parameter, and integrate from L to Lm:

ξ(L, Lm) ≡
∫ Lm

L

h(L) dL√
L2 − L2

= −
∫ Lm

L

L dL√
L2 − L2

∫ Lm

L

d(xmax − xmin)

dN

dN√
N2 − L2

. (14)
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Inverting the order of integration and changing the limits appropriately, we get

ξ(L, Lm) = −
∫ Lm

L

d(xmax − xmin)

dN
dN

∫ N

L

L dL√
N2 − L2

√
L2 − L2

. (15)

The integral over L is equal to π/2 (by the substitution t = L2 it can be transformed into integral
obtained in [8]) and hence

ξ(L, Lm) = −π
2

∫ Lm

L

d(xmax − xmin)

dN
dN =

π

2
[xmax(L)− xmin(L)]. (16)

Here we have used the fact that xmax(Lm) = xmin(Lm). Combining Eqs. (35) and (37) and relabeling
L to L and L to L′, we finally get

xmax(L)− xmin(L) = ln
rmax(L)

rmin(L)
=

2

π

∫ Lm

L

h(L′) dL′√
L′2 − L2

, (17)

which can be re-written as

rmax(L)

rmin(L)
= exp

(
2

π

∫ Lm

L

h(L′) dL′√
L′2 − L2

)
. (18)

In addition, we must add the following equations that express the fact that rmin and rmax are really
turning points:

rminn(rmin) = rmin

√
2[E − V (rmin)] = L , (19)

rmaxn(rmax) = rmax

√
2[E − V (rmax)] = L . (20)

This way, transmuting the potential via logarithm provided a nice solution of the inverse problem
and reproduced the result of Ostrovsky [4].

Construction of focusing potentials

Consider the situation when the turning angle ϕ is independent of L and equal to h = π/m. If m
is a rational number, then the trajectories will be closed. The integral in Eq. (18) then leads to
arccosh L′

L
and we get

rmax(L)

rmin(L)
= exp

(
2

m
arccosh

Lm

L

)
=

(
Lm

L
+

√
L2

m

L2
− 1

)2/m

. (21)

From this equation we can express the ratio Lm/L as follows:

Lm

L
= cosh

(
m

2
ln
rmax(L)

rmin(L)

)
=

1

2

[(
rmax

rmin

)m/2

+

(
rmin

rmax

)m/2
]
. (22)

Now the equations (19), (20) and (22) provide a simple recipe for generating focusing potentials.
Suppose we choose a function f that, for given rmin, gives rmax = f(rmin) and at the same time
for given rmax, it gives rmin = f(rmax). This means that the graph of the function f is symmetric
with respect to the axis of the first quadrant and the point where the graph and the axis intersect
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corresponds to rmax = rmin and hence a circular trajectory. With the function f defined this way, we
can express L from Eq. (22):

L = 2Lm

[(
r

f(r)

)m/2

+

(
f(r)

r

)m/2
]−1

(23)

and then substitute this into either of Eqs. (19), (20) to get the refractive index follows:

n(r) =
L

r
=

2Lm

r

[(
r

f(r)

)m/2

+

(
f(r)

r

)m/2
]−1

(24)

The potential becomes

V (r) = E − 2L2
m

r2

[(
r

f(r)

)m/2

+

(
f(r)

r

)m/2
]−2

(25)

We illustrate this method on a few specific examples.

• Harmonic (or Hooke) potential

Take m = 2, Lm = 1 and f(r) =
√

2− r2, which corresponds to the condition of semiaxes of
the ellipses a2 + b2 = 2. Then Eq. (24) yields

n(r) =
√

2− r2 (26)

and Eq. (25) gives

V (r) = E − 1 +
r2

2
(27)

Setting E = 1, we arrive at the quadratic potential V (r) = r2/2.

• Newton potential

Take m = 1, Lm = 1 and f(r) = 2− r since now both the turning points are on the main axis
and a = 1. Then Eq. (24) yields

n(r) =

√
2

r
− 1 (28)

and Eq. (25) gives

V (r) = E +
1

2
− 1

r
(29)

Setting E = −1/2, we arrive at the Newton potential V (r) = −1/r.

• Maxwell fish eye

Take m = 1, Lm = 1 and f(r) = 1/r. Then Eq. (24) yields

n(r) =
2

1 + r2
, (30)

which is the famous Maxwell fish eye profile. The potencial (when using E = 0) is

V (r) = − 2

(1 + r2)2
(31)

If we use the same formula f(r) = a2/r but take a general m, then the general Demkov
refractive index is obtained:

n(r) =
2

r [rm + r−m]
(32)
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The inverse problem for infinite motion

The method described above can be adapted also to infinite motion in a potential (scattering) and
one can obtain the generally known result [9], Eq. (8).

We start with the scattering angle χ = π−2α, where α is now the angle corresponding to motion
from infinity to turning point rmin = exmin . Now α is given by a formula analogous to Eq. (12), just
the upper limit is infinity. We also represent π by a suitable integral. This way we get

χ(L) = π − 2L

∫ ∞
xmin

dx√
N2(x)− L2

= 2L

(∫ ∞
L

dN

N
√
N2 − L2

−
∫ ∞

xmin

dx√
N2(x)− L2

)
(33)

Introducing a new variable z = lnN , using the fact that dz/dN = 1/N and changing integration
variable in the second integral from x to N , we get

χ(L) = 2L

(∫ ∞
L

dz

dN

dN√
N2 − L2

−
∫ ∞

L

dx

dN

dN√
N2 − L2

)
= 2L

∫ ∞
L

d(z − x)

dN

dN√
N2 − L2

(34)

The variable z has a nice interpretation. Since N = ez, we see that if z were the coordinate in
the transmuted plane instead of x, then the refractive index in the original plane would be unity.
Indeed, the refractive index in the log-plane is N = rn(r) = exn(ex), so if n = 1, then N = ex. This
way Eq. (34) compares the motion in the actual potential with the motion that would occur if the
potential were constant.

In a similar way as in the case of finite motion, we now divide χ(L) by
√
L2 − L2, where L is a

parameter, and integrate from L to infinity:

ξ(L) ≡
∫ ∞
L

χ(L) dL√
L2 − L2

= 2

∫ ∞
L

L dL√
L2 − L2

∫ ∞
L

d(z − x)

dN

dN√
N2 − L2

. (35)

Inverting the order of integration and changing the limits appropriately, we get

ξ(L) = 2

∫ ∞
L

d(z − x)

dN
dN

∫ N

L

L dL√
N2 − L2

√
L2 − L2

. (36)

Again, the integral over L is π/2 and hence

ξ(L) = π

∫ ∞
L

d(z − x)

dN
dN = π[xmin(L)− z(L)] (37)

Here we have used the fact that in the upper limit the difference between z and x is zero, i.e.,
z(∞) = x(∞). In other words, the refractive index n(r) converges to a constant for r →∞. This is
reasonable, otherwise the scattering problem cannot even be well defined.

So finally we get, after renaming some variables,

xmin(L) = lnL+
1

π

∫ ∞
L

χ(L′) dL′√
L′2 − L2

, (38)

which is equivalent to Eq. (8) of [9].
We see that the scattering problem and the inverse problem for finite motion can be treated

almost identically. Is there more beyond this? How about a situation when h(L) is given for finite
motion in some interval of angular momentum and also χ(L) is given for infinite motion. Can the
two cases be somehow combined?

7



References

[1] U. Leonhardt, Science 312, 1777 (2006).

[2] Yu. N. Demkov, V. N. Ostrovsky, N. B. Berezina, Sov. Phys.-JETP 33, 867 (1971).

[3] V. N. Ostrovsky, J. Phys. B: At. Mol. Phys. 14, 4425 (1981).

[4] V. N. Ostrovsky, Phys. Rev. A 56, 526 (1997).

[5] U. Leonhardt and T. Tyc, Science 323, 110 (2009).

[6] J. Bertrand, C. R. Acad. Sci., Paris 77, 849 (1873).

[7] T. Needham, Visual complex analysis, Oxford Univeristy Press, Oxford 2000.

[8] L. D. Landau, E. M. Lifshitz, Mechanics.

[9] U. Leonhardt, Phys. Rev. Lett. 97, 073902 (2006).

8


